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The index of analytic vector fields and
Newton polyhedra

by

Carles Bivià-Ausina (València)

Abstract. We prove that if f : (Rn, 0)→ (Rn, 0) is an analytic map germ such that
f−1(0) = {0} and f satisfies a certain non-degeneracy condition with respect to a Newton
polyhedron Γ+ ⊆ Rn, then the index of f only depends on the principal parts of f with
respect to the compact faces of Γ+. In particular, we obtain a known result on the index
of semi-weighted-homogeneous map germs. We also discuss non-degenerate vector fields
in the sense of Khovanskĭı and special applications of our results to planar analytic vector
fields.

1. Introduction. Let f : (Rn, 0) → (Rn, 0) be a continuous map germ
such that 0 is isolated in f−1(0). Then the index or mapping degree of f ,
denoted by ind0(f), is a well known topological invariant of f (see [7], [12] or
[18] for the definition and properties of this invariant). In this paper we give
a qualitative result on the index of analytic map germs f : (Rn, 0)→ (Rn, 0)
which are strongly adapted to a given Newton polyhedron Γ+ in Rn (see
Definition 2.3). This notion was introduced by the author in [2] in order
to give estimates for Łojasiewicz exponents of analytic functions (Rn, 0)→
(R, 0) with an isolated singularity at the origin.

The class of maps strongly adapted to a given Newton polyhedron Γ+
contains the class of non-degenerate maps on Γ+, a notion defined in [3]
using the Newton filtration induced by Γ+, thus generalizing semi-weighted-
homogeneous maps. In the present paper we generalize the main result of
Cima–Gasull–Torregrosa [6] on the index of a semi-weighted-homogeneous
map germ (Rn, 0)→ (Rn, 0); we shall state this result after some preliminary
definitions.

Let x1, . . . , xn be a coordinate system in Rn and let w = (w1, . . . , wn),
where each wi is a positive integer. Given a monomial xk=xk1

1 . . . x
kn
n , ki ≥ 0,
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and d > 0, we say that xk has w-degree d if w1k1 + . . . + wnkn = d.
If d1, . . . , dp are positive numbers, a polynomial map g = (g1, . . . , gp) :
(Rn, 0)→ (Rp, 0) is said to be weighted homogeneous of weights w1, . . . , wn
and degrees d1, . . . , dp if each monomial xk appearing in the expression of gi
has w-degree di for all i = 1, . . . , p.

Suppose that g : (Rn, 0) → (Rp, 0) is a weighted homogeneous map
germ of weights w1, . . . , wn and degrees d1, . . . , dp such that g−1(0) = {0}.
If G = (G1, . . . , Gp) : (Rn, 0) → (Rp, 0) is an analytic map germ such that
every monomial xk appearing in the Taylor expansion of Gi has w-degree
> di for all i = 1, . . . , p, then the map g + G is said to be semi-weighted-
homogeneous of weights w1, . . . , wn and degrees d1, . . . , dp. In this case, the
map g is called the weighted homogeneous part of g+G or the principal part
of g +G with respect to the weights w1, . . . , wn.

The motivation of our work is the following result.

Theorem 1.1 ([6]). Let f = g + G : (Rn, 0) → (Rn, 0) be a semi-
weighted-homogeneous map germ, where g is the weighted homogeneous part
of f . Then (g +G)−1(0) = {0} and ind0(g) = ind0(g +G).

We give a generalization of the above theorem by considering map germs
strongly adapted to a given Newton polyhedron instead of semi-weighted-
homogeneous map germs (see Theorem 2.8). The result thus obtained is
intended to be useful in differential equations and differential geometry. We
also study, in Section 4, how systems strongly adapted to a given Newton
polyhedron are related to strongly non-degenerate systems, a notion inspired
by Khovanskĭı’s definition of non-degenerate complete intersection (see Def-
inition 4.6). A corollary of our main result in particular applies to planar
analytic vector fields (see Corollary 4.8). Further works analysing topolog-
ical information supplied by certain principal parts of planar vector fields
are due to Brunella–Miari [5] and Županović [21].

2. Result. We set R+ = {x ∈ R : x ≥ 0}, Q+ = Q ∩ R+ and Z+ =
Z ∩ R+.

Definition 2.1. We say that Γ+ ⊆ Rn+ is a Newton polyhedron if there
exists some set A ⊆ Qn+ such that Γ+ is the convex hull in Rn+ of {k + v :
k ∈ A, v ∈ Rn+}. Then Γ+ is also called the Newton polyhedron determined
by A.

Let An be the local ring of analytic function germs g : (Rn, 0)→ R and
let mn be its maximal ideal. If g =

∑
k akx

k is the Taylor expansion of a
germ g ∈ An, the support of g is the set supp(g) = {k ∈ Zn+ : ak 6= 0}. If
g = 0, then supp(g) = ∅.
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Given g ∈ An, the Newton polyhedron of g, denoted by Γ+(g), is the
Newton polyhedron determined by supp(g). If g = 0, then Γ+(g) = ∅. If
S = {g1, . . . , gs} ⊆ An, the Newton polyhedron of S, Γ+(S), is the convex
hull of Γ+(g1) ∪ . . . ∪ Γ+(gs). If I is an ideal of An and S is a generating
system of I, we define the Newton polyhedron of I as Γ+(I) = Γ+(S), where
S is any generating system of I. It is immediate to check that this definition
does not depend on the chosen generating system of I.

We denote by 〈u, v〉 the usual scalar product of two vectors u, v ∈ Rn.
If v ∈ Rn+ \ {0} and Γ+ is a given Newton polyhedron, we define `(v, Γ+) =
min{〈k, v〉 : k ∈ Γ+} and ∆(v, Γ+) = {k ∈ Γ+ : 〈k, v〉 = `(v, Γ+)}. Every
set of the form ∆(v, Γ+) is called a face of Γ+; in this case we say that v
supports ∆(v, Γ+). The dimension of a face ∆ of Γ+ is the dimension of
the smallest affine subspace containing ∆. We denote by Γ the union of all
compact faces of Γ+. If S ⊆ An, then Γ (S) is defined analogously.

A vector v ∈ Zn+ \ {0} is said to be primitive if it is the vector with
smallest length among all the vectors in the line determined by v, that is, v
has mutually prime integer coordinates. Every face of dimension n− 1 of a
Newton polyhedron Γ+ ⊆ Rn is supported by a unique primitive vector. We
denote the set of primitive vectors supporting some face of Γ+ of dimension
n − 1 by F(Γ+). We write Fc(Γ+) to denote the subset of F(Γ+) given by
those vectors supporting some compact face of Γ+ of dimension n − 1. We
observe that Fc(Γ+) ⊆ (R+ \ {0})n. If S ⊆ An then we denote F(Γ+(S))
and Fc(Γ+(S)) by F(S) and Fc(S), respectively.

We observe that any Newton polyhedron Γ+ ⊆ Rn+ can be expressed as

Γ+ = {k ∈ Rn+ : 〈k, v〉 ≥ `(v, Γ+) for all v ∈ F(Γ+)}.
If Γ+ ⊆ Rn is a Newton polyhedron intersecting each coordinate axis,

then it is easy to check that F(Γ+) = Fc(Γ+)∪{e1, . . . , en}, where e1, . . . , en
is the canonical basis in Rn.

Given v ∈ Rn+ \ {0} and g ∈ An, g 6= 0, we set `(v, g) = `(v, Γ+(g)) and
∆(v, g) = ∆(v, Γ+(g)). If g = 0, then we define `(v, g) = 0 and ∆(v, g) = ∅.

Let w = (w1, . . . , wn), where each wi is a positive integer. Then we can
consider the Newton polyhedron Γ+ determined by the points {w−1

i ei : i =
1, . . . , n}. We have Fc(Γ+) = {w} and F(Γ+) = {w, e1, . . . , en}. If g ∈ An,
then `(w, g) is the minimum of the w-degrees of the monomials xk such that
k ∈ supp(g).

Definition 2.2. If g =
∑

k akx
k ∈ An, g 6= 0, and v ∈ Rn+, we define

the principal part of g with respect to v as the germ pv(g) ∈ An given by the
sum of those akxk such that k ∈ ∆(v, g). If g = 0, then we set pv(g) = 0.

Let Γ+ ⊆ Rn be a Newton polyhedron. If J ⊆ F(Γ+) and g =
∑

k akx
k

∈ An, then we define the principal part of g with respect to J as the germ
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pJ(g) ∈ An given by the sum of those akxk such that k ∈ ⋂v∈J ∆(v, g). The
set
⋂
v∈J ∆(v, g) could be empty; in this case, we set pJ(g) = 0.

Definition 2.3 ([2]). Let S = {g1, . . . , gs} ⊆ An and let Γ+ ⊆ Rn be a
Newton polyhedron. If J ⊆ F(Γ+), we say that S satisfies the (CJ) condition
when

(1) {x ∈ Rn : pJ (g1)(x) = . . . = pJ(gs)(x) = 0}⊆{x ∈ Rn : x1 . . . xn = 0}.
We say that S is a system adapted to Γ+ if S satisfies the (CJ) condition

for each J ⊆ F(Γ+) such that
⋂
v∈J ∆(v, Γ+) is a compact face of Γ+.

The analogous definition can be given for systems S = {g1, . . . , gs} con-
tained in the ring On of complex-analytic map germs (Cn, 0) → C; in this
case, we replace Rn by Cn in (1). It is clear that, if S = {g1, . . . , gs} ⊆ An
contains some monomial xk = xk1

1 . . . xknn , then S is adapted to any Newton
polyhedron Γ+ ⊆ Rn.

Until the end of this section, we shall denote by Γ+ a Newton polyhedron
in Rn intersecting each coordinate axis. If L ⊆ {1, . . . , n}, we define RnL =
{x ∈ Rn : xj = 0, ∀j ∈ L} and (Γ+)L = Γ+ ∩ RnL. We observe that (Γ+)L
is again a Newton polyhedron. If g =

∑
k akx

k ∈ An, we denote by gL the
series obtained as the sum of those akxk such that k ∈ supp(g) ∩ RnL. If
supp(g) ∩ RnL = ∅, we set gL = 0. If S = {g1, . . . , gs} ⊆ An, then we write
SL = {(g1)L, . . . , (gs)L} ⊆ An−|L|, where |L| is the cardinality of L. We also
denote by 〈g1, . . . , gs〉 the ideal of An generated by g1, . . . , gs.

Definition 2.4 ([2]). We say that S is a system strongly adapted to Γ+
if SL is adapted to (Γ+)L for each L ⊆ {1, . . . , n} such that L 6= {1, . . . , n}
(including L = ∅). An analytic map germ g = (g1, . . . , gs) : (Rn, 0)→ (Rs, 0)
is said to be strongly adapted to Γ+ if the system {g1, . . . , gs} is strongly
adapted to Γ+.

Obviously, every system strongly adapted to Γ+ is adapted to Γ+. We
observe that if S is adapted to Γ+ and Γ+(gi) intersects each coordinate
axis for all i = 1, . . . , s, then S is strongly adapted to Γ+.

Example 2.5. Let f : (R2, 0)→ (R2, 0) be the map defined by f(x, y) =
(f1(x, y), f2(x, y)) = (x12 + x5y+ x3y2 + x2y3 + xy5 + y12, xy9 + x9y). Then
f is adapted to the Newton polyhedron Γ+(f1). It is also strongly adapted
to Γ+(f1), since the support of f1 intersects each coordinate axis.

Example 2.6. Let S = {x7 + x2y − xy2, y7 + x2y − xy2} ⊆ A2. This
system is not adapted to Γ+(S). Let S′ = S ∪ {z7} ⊆ A3, where we denote
by x, y, z the coordinates in R3. Then S′ is adapted to Γ+(S′), since S′

contains a monomial; but S ′ is not strongly adapted, because S = S ′L,
where L = {3}.
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The proof of the following proposition is given in the next section, after
introducing the notion of integral closure.

Proposition 2.7. Let f = g+G : (Rn, 0)→ (Rn, 0) be a semi-weighted-
homogeneous map germ, where g is the weighted homogeneous part of f . Let
w = (w1, . . . , wn) be the vector of weights of g. Then f is strongly adapted
to the Newton polyhedron determined by {w−1

i ei : i = 1, . . . , n}.
We now state the main result of this paper; its proof is given in the next

section.

Theorem 2.8. Let g : (Rn, 0) → (Rn, 0) be an analytic map germ such
that g−1(0) = {0}. Suppose that g is strongly adapted to Γ+. Let G :
(Rn, 0)→ (Rn, 0) be another analytic map germ such that `(v,Gi) > `(v, gi)
for all i = 1, . . . , n and all v ∈ Fc(Γ+). Then (g + G)−1(0) = {0} and
ind0(g) = ind0(g +G).

As we shall see in the last section of the paper, the above result has
special applications to the problem of determining which monomials can be
added to each component of an analytic map g : (R2, 0) → (R2, 0) with
g−1(0) = {0} without changing the index.

3. Adapted systems and the integral closure of ideals. Now, we
give the definition of the integral closure of an ideal in An. This notion plays
a fundamental role in the proof of Theorem 2.8.

Definition 3.1 ([9, p. 318]). Let I = 〈g1, . . . , gs〉 ⊆ An be an ideal and
let h ∈ An. We say that h is integral over I if there exists an open neigh-
bourhood U of 0 in Rn and a constant C > 0 such that

|h(x)| ≤ C sup
i
|gi(x)| for all x ∈ U.(2)

It is easy to see that this definition does not depend on the chosen system
of generators of I. The set of elements of An which are integral over I forms
an ideal I of An containing I, called the integral closure of I. It is obvious
that I ⊆ I.

The above definitions can be reproduced analogously for ideals in the ring
On of analytic function germs f : (Cn, 0) → C (in this case, the inequality
(2) must be satisfied in an open neighbourhood of 0 in Cn). As can be seen
in [15] and [20, p. 289], if I is an ideal of On and h ∈ On, then h ∈ I if and
only if h satisfies a relation of the form hm+a1h

m−1 + . . .+am−1h+am = 0
for some m ≥ 1 and some ai ∈ Ii, i = 1, . . . ,m.

Theorem 3.2 ([16, p. 136]). Let f, g ∈ An be such that g−1(0)⊆f−1(0).
Then there exists an open neighbourhood U of 0 in Rn and positive constants



256 C. Bivià-Ausina

C and α such that

|f(x)|α ≤ C|g(x)| for all x ∈ U .(3)

The above result is also found in [4] and in [19], where it is proved that
the minimum of α > 0 satisfying (3), for some constant C > 0 and all x in
some neighbourhood of 0, is a rational number. This number is called the
Łojasiewicz exponent of f with respect to g.

If f : (Rn, 0) → (Rn, 0) is an analytic map germ, then we shall write
If for the ideal of An generated by the component functions of f . We also
denote by |f | the function given by |f(x)|2 = f1(x)2 + . . .+ fp(x)2.

Definition 3.3. If f : (Rn, 0) → (Rn, 0) is an analytic map germ such
that f−1(0) = {0}, then we can consider, by Theorem 3.2, the minimum of
those α > 0 such that

|x|α ≤ C|f(x)|
for all x in some open neighbourhood of the origin in Rn. This number is
the Łojasiewicz exponent of f and we denote it by α0(f).

Corollary 3.4. Let f : (Rn, 0) → (Rn, 0) be an analytic map germ.
Then f−1(0) = {0} if and only if there exists some β ≥ 1 such that mβ

n ⊆ If .

Proof. Suppose that f−1(0) = {0}. Then we can apply Theorem 3.2 to
f and the function %(x) = x2

1 + . . . + x2
n. Hence, there exists some α > 0

such that
|%(x)|α ≤ C|f(x)|

for some positive constant C and all x in some open neighbourhood of 0
in Rn. But, by the definition of integral closure, this implies that mβ

n ⊆ If
for all integers β ≥ [α] + 1, where [α] is the integer part of α.

The converse follows from a direct application of the definition of integral
closure.

If g : (Rr, 0) → (Rn, 0) is an analytic map germ, we denote by g∗ the
ring morphism An → Ar given by g∗(f) = f ◦ g for all f ∈ An.

Proof of Proposition 2.7. We have pw(g + G) = g, and pei(g + G) is
the sum of those k ∈ supp(g + G) such that ki = 0 for i = 1, . . . , n. Let
J ⊆ F(Γ+) = {w, e1, . . . , en} be such that

⋂
v∈J ∆(v, Γ+) is a compact face

of Γ+. Then w ∈ J and pJ (gi + Gi) = pJ (gi) for all i = 1, . . . , n. Thus, we
have to prove that {x ∈ Rn : (g1)L(x) = . . . = (gn)L(x) = 0} ⊆ {x ∈ Rn :
x1 . . . xn = 0} for all L ⊆ {1, . . . , n} with |L| 6= n.

Given such an L, if {1, . . . , n}\L = {j1, . . . , jr}, r = n−|L|, we consider
the map ϕL : (Rr, 0) → (Rn, 0) such that ϕL(xj1 , . . . , xjr) = (y1, . . . , yn),
where

yj =
{
xjl if j = jl ∈ {j1, . . . , jr},
0 otherwise.
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We observe that fL = f ◦ ϕL = ϕ∗L(f) for all f ∈ An. Since g−1(0) = {0},
there exists some β ≥ 1 such that mβ

n ⊆ Ig, by Corollary 3.4. Then, for any
L ⊆ {1, . . . , n}, we have

mβ
r = ϕ∗L(mβ

n) ⊆ ϕ∗L(Ig) ⊆ ϕ∗L(Ig) = 〈(g1)L, . . . , (gn)L〉.
From Corollary 3.4, it follows that the zero set germ of 〈(g1)L, . . . , (gn)L〉,
as an ideal of Ar, is {0}.

The following result, which is a direct consequence of the main result
of [2], will help us to prove Theorem 2.8.

Theorem 3.5 ([2]). Let S = {g1, . . . , gs} ⊆ An be a system adapted to a
Newton polyhedron Γ+ ⊆ Rn. Let I ⊆ An be the ideal generated by S and let
k ∈ Zn+ be such that 〈k, v〉 ≥ max{`(v, g1), . . . , `(v, gs)} for all v ∈ F(Γ+).
Then xk ∈ I.

Remark 3.6. In the conditions of the above theorem, if we assume that
the support of each germ gi intersects each coordinate axis, then for each
i ∈ {1, . . . , n}, there exists some ki ≥ 0 such that xkii ∈ I.

For z ∈ Rn, we denote by An,z the ring of analytic function germs g :
(Rn, z) → R. Suppose that g : U → R is a map defined on an open set
U ⊆ Rn. Then we write γz(g) for the germ of g at any z ∈ U . Let ϕz :
(Rn, 0) → (Rn, z) be given by ϕz(x) = x + z. If g ∈ An,z, we define the
support of g as supp(g) = supp(g ◦ ϕz). Given any v ∈ Rn+ \ {0}, we also
define the number `(v, g) as `(v, g ◦ϕz). If Γ+ ⊆ Rn is a Newton polyhedron
and S = {g1, . . . , gs} ⊆ An,z, we say that S is adapted to Γ+ if the system
S′ = {g1 ◦ ϕz, . . . , gs ◦ ϕz} is adapted to Γ+. The following is an immediate
consequence of Theorem 3.5.

Corollary 3.7. Let z = (z1, . . . , zn) ∈ Rn and let S = {g1, . . . , gs} ⊆
An,z be a system adapted to a Newton polyhedron Γ+ ⊆ Rn. Let I ⊆ An,z
be the ideal generated by S and let k = (k1, . . . , kn) ∈ Zn+ be such that
〈k, v〉 ≥ max{`(v, g1), . . . , `(v, gs)} for all v ∈ F(Γ+). Then

(x1 − z1)k1 . . . (xn − zn)kn ∈ I.
The following result is a version for real-analytic functions of the integral

Nakayama lemma (see [20, p. 324] for an algebraic proof in the context of
ideals in On).

Lemma 3.8. Let I, J ⊆ An be a pair of ideals. If I ⊆ J +mnI, then
I ⊆ J .

Proof. Let g1, . . . , gs be a generating system for I and let h1, . . . , hr be a
generating system for J . The inclusion I ⊆ J +mnI means that there exist
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an open neighbourhood of 0 in Rn and a constant C > 0 such that

sup
i
|gi(x)| ≤ C sup

j,k,l
{|hj(x)|, |xkgl(x)|}(4)

for all x ∈ U . Suppose that I * J . Then, for any constant B > 0, there
exists a sequence {xBm}m≥1 in Rn tending to 0 such that

sup
i
|gi(xBm)| > B sup

j
|hj(xBm)| for all m ≥ 1.

Then, taking B = 2C and m large enough, we have

sup
i
|gi(x2C

m )| = C

2C
sup
i
|gi(x2C

m )|+ C

2C
sup
i
|gi(x2C

m )|

> C sup
j
|hj(x2C

m )|+ C|x2C
m | sup

i
|gi(x2C

m )|

≥ C sup
j,k,l
{|hj(x2C

m )|, |(x2C
m )k| · |gl(x2C

m )|},

which contradicts (4). Therefore, I ⊆ J .

If g =
∑

k akx
k is the Taylor expansion of a germ g ∈ An and r ≥ 1,

we denote by jrg the r-jet of g, that is, the sum of those akxk such |k| =
k1 + . . .+ kn ≤ r. If f : (Rn, 0)→ (Rp, 0) is an analytic map, we denote by
jrf the map (jrf1, . . . , j

rfp).
The next lemma was proved in [7, p. 31] for finite map germs, that is,

for analytic map germs f : (Rn, 0)→ (Rn, 0) such that dimRAn/If <∞.

Lemma 3.9. Let f : (Rn, 0) → (Rn, 0) be an analytic map germ with
f−1(0) = {0}. Then there exists some r ≥ 1 such that if g : (Rn, 0) →
(Rn, 0) is another analytic map germ such that jrf = jrg, then g−1(0) = {0}
and ind0(f) = ind0(g).

Proof. Since f−1(0) = {0}, there is an integer r ≥ 0 such that mr
n ⊆ If ,

by Theorem 3.2. Then we obtain

If ⊆ Ijrf +mr+1
n ⊆ Ijrf +mnm

r
n ⊆ Ijrf +mnIf ⊆ Ijrf +mnIf .

Thus, from Lemma 3.8, we obtain the inclusion If ⊆ Ijrf . Consider now the
homotopy gt = jrf + t%, where % = (%1, . . . , %n) and %i ∈ mr+1

n ⊆ mnIf for
all i = 1, . . . , n and t ∈ [0, 1]. We deduce that

|jrf(x) + t%(x)| ≥ |jrf(x)| − t|%(x)| ≥ C1|f(x)| − tC2|x| · |f(x)|
= |f(x)|(C1 − t C2|x|)

for some constants C1, C2 > 0, for all x in an open neighbourhood U of 0 in
Rn and all t ∈ [0, 1]. By the above inequalities and the relation f−1(0) = {0},
we can take U small enough that

{(x, t) ∈ U × [0, 1] : jrf(x) + t%(x) = 0} = {0} × [0, 1].
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But this implies that (gt)−1(0) = {0} and ind0(f) = ind0(gt) for all t ∈ [0, 1]
(see [18]).

Remark 3.10. By the proof of the above lemma, if f : (Rn, 0)→ (Rn, 0)
is an analytic map germ such that f−1(0) = {0}, then ind0(f) = ind0(jrf)
for all r ≥ α0(f).

Lemma 3.11. Let F : (Rn × [0, 1], {0} × [0, 1]) → (Rn, 0) be an ana-
lytic map germ. If F = (F1, . . . , Fn) and t ∈ [0, 1], let Jt be the ideal
of An+1,(0,t) generated by the germs γ(0,t)(F1), . . . , γ(0,t)(Fn), and let ft :
(Rn, 0) → (Rn, 0) be given by ft(x) = F (t, x). Suppose that there exists
some N > 0 such that xNi ∈ J t for all t ∈ [0, 1] and i ∈ {1, . . . , n}. Then 0
is isolated in f−1

t (0) and ind0(f0) = ind0(ft) for all t ∈ [0, 1].

Proof. By hypothesis, given any t0 ∈ [0, 1], the function %(x) = x2N
1 +

. . . + x2N
n belongs to J t0 . But this means that there exist open neighbour-

hoods Ut0 ⊆ Rn and Vt0 ⊆ R of 0 and t0 respectively such that

|%(x)| ≤ Ct0 sup
i
|Fi(x, t)|

for all (x, t) ∈ Ut0 × Vt0 and some constant Ct0 > 0.
By the compactness of [0, 1], there exist t1, . . . , ts ∈ [0, 1] such that

[0, 1] ⊆ Vt1 ∪ . . . ∪ Vts . Let C = max{Ct1 , . . . , Cts} and U = Ut1 ∩ . . . ∩ Uts .
Then

|%(x)| ≤ C sup
i
|Fi(x, t)|

for all (x, t) ∈ U × [0, 1]. In particular,

{(x, t) ∈ U × [0, 1] : Fi(x, t) = 0, ∀i = 1, . . . , n} = {0} × [0, 1],(5)

which implies the desired result.

Proof of Theorem 2.8. Consider the function θ(x) =
∑n

i=1 x
M
i , where

M is a positive number, and the map g∗ = (g1 + θ, . . . , gn + θ). If M is
large enough, we can suppose that supp(gi + θ) = supp(gi) ∪ supp(θ) for
i = 1, . . . , n, and that ind0(g) = ind0(g∗), by Lemma 3.9. Let us see that g∗

is adapted to Γ+. If v = (v1, . . . , vn) ∈ Fc(Γ+) and i ∈ {1, . . . , n}, then

`(v, gi + θ) = `(v, gi) ⇔ `(v, gi) ≤ min{〈k, v〉 : k ∈ supp(θ)}
⇔ `(v, gi) ≤ min{Mvj : j = 1, . . . , n}

⇔ `(v, gi)
min{vj : j = 1, . . . , n} ≤M.

By the above observation, if we take M large enough, we conclude that
`(v, gi + θ) = `(v, gi) and ∆(v, gi + θ) = ∆(v, gi) for all v ∈ Fc(Γ+),
and `(ej , gi + θ) = 0 for all i, j ∈ {1, . . . , n}. If J ⊆ F(Γ+) is such that⋂
v∈J ∆(v, Γ+) is a compact face of Γ+ then, defining LJ = {i : ei ∈ J}, we
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obtain
pJ (gi + θ) = pJ ((gi + θ)LJ ) = pJ((gi)LJ ).

Combining this with the hypothesis that S is strongly adapted to Γ+,
we find that the system {g1 + θ, . . . , gn + θ} is adapted to Γ+.

Let F : (Rn × [0, 1], {0} × [0, 1]) → (Rn, 0) be the map germ defined
by F (x, t) = g∗(x) + tG(x). For each t ∈ [0, 1], we denote by Jt the ideal
in An+1,(0,t) generated by γ(0,t)(F1), . . . , γ(0,t)(Fn), where F1, . . . , Fn are the
coordinate functions of F . We will prove that there exists some N > 0
such that xNi ∈ J t for all t ∈ [0, 1] and i ∈ {1, . . . , n}, in order to apply
Lemma 3.11.

Consider the Newton polyhedron Γ ′+ = Γ+ ×R+ (we recall that Γ+ is a
Newton polyhedron intersecting all the coordinate axes). We claim that the
system St = {γ(0,t)(F1), . . . , γ(0,t)(Fn)} is adapted to Γ ′+ for all t ∈ [0, 1]. Let
pa : Rn → Rn+1 be given by pa(k1, . . . , kn) = (k1, . . . , kn, a), where a ∈ R.
For any i ∈ {1, . . . , n}, we observe that

(6) supp(γ(0,t)(Fi))

=
{
p0(supp(gi + θ)) ∪ p0(supp(Gi)) ∪ p1(supp(Gi)) if t 6= 0,

p0(supp(gi + θ)) ∪ p1(supp(Gi)) if t = 0.

We also have Fc(Γ ′+) = ∅ and

F(Γ ′+) = {p0(v) : v ∈ F(Γ+)} ∪ {(0, . . . , 0, 1)} = {p0(v) : v ∈ Fc(Γ+)} ∪ B,
where B denotes the canonical basis in Rn+1.

Fix some t ∈ [0, 1], a vector v ∈ Fc(Γ+) and an index i ∈ {1, . . . , n}.
Then the condition `(v,Gi) > `(v, gi), together with (6), implies that

`(p0(v), γ(0,t)(Fi)) = `(p0(v), γ(0,t)(gi + θ)) = `(v, gi + θ),(7)

where, in the first equality, we are considering gi + θ as a germ in A(0,t) in
the obvious way.

Moreover, it is clear that

`(u, γ(0,t)(Fi)) = 0 for all u ∈ B.(8)

Hence, the principal parts of γ(0,t)(Fi) and γ(0,t)(gi + θ) with respect to
any vector of F(Γ ′+) are equal. Thus, the principal part of γ(0,t)(Fi) with
respect to a subset J ⊆ F(Γ ′+) (see Definition 2.2) is equal to the principal
part of γ(0,t)(gi+ θ) with respect to J , for all t ∈ [0, 1]. This implies that the
system St is adapted to Γ ′+, since {g1 + θ, . . . , gn + θ} is adapted to Γ+.

Therefore, from the identities (7) and (8) and Corollary 3.7, there is a
sufficiently large positive integer N such that xNi ∈ J t ⊆ An+1,(0,t) for all
i = 1, . . . , n (see Remark 3.6). Hence, the result follows from Lemma 3.11.

Example 3.12 ([6]). Let g : (R2, 0) → (R2, 0) be given by g(x, y) =
(y2, y−x4), and f(x, y) = g(x, y) + (−x3y, 0). The map g is weighted homo-
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geneous of weights 1, 4 and degrees 8, 4. Moreover ind0(g) = 0 and ind0(f) =
−1. Let us see explicitly that the deformation F (x, t) = g(x) + t(−x3y, 0)
does not satisfy the conditions of Lemma 3.11.

Let J0 be the ideal of A3 generated by S = {y2− tx3y, y− x4}. Suppose
that there exists some N > 0 such that xN , yN ∈ J0. In particular, there
exists some open neighbourhood U of 0 in R3 and a constant C > 0 such that

|xN | ≤ C sup{|y2 − tx3y|, |y − x4|}(9)

for all (x, y, t) ∈ U . But the right hand side of (9) vanishes on the curve
{(x, y, t) : x = t, y = x4}, which passes through the origin. Thus, we have a
contradiction.

Example 3.13. Let g : (R2, 0)→ (R2, 0) be given by g(x, y) = (xa+ya+
xa−4y2 + x2ya−4, xya−2 + xa−2y), where a ≥ 7. Then g is strongly adapted
to Γ+ = Γ+(g). Here is a picture of Γ+(g):
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Let Γ ′+ be the Newton polyhedron determined by the points (a, 0), (a−2, 1),
(1, a− 2) and (0, a). By Theorem 2.8 any analytic map germ G = (G1, G2) :
(R2, 0) → (R2, 0) such that supp(G1) ⊆ Γ+ \ Γ and supp(G2) ⊆ Γ ′+ \ Γ ′
satisfies (g +G)−1(0) = {0} and ind0(g) = ind0(g +G).

Example 3.14. Let g : (R3, 0)→(R3, 0) be given by g(x, y, z) = (xa+zc,
yb− y2z2 + zc, xa + yb + y2z2), where a > 0 and b, c > 4. Let g1, g2, g3 be the
components of g and let Γ+ ⊆ R3 be the Newton polyhedron determined by
them. Let Γ be the union of the compact faces of Γ+. Here is what Γ looks
like:
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The map g is strongly adapted to Γ+ and `(v, g1) = `(v, g2) = `(v, g3) for
all v ∈ Fc(Γ+). Suppose that g−1(0) = {0} and G = (G1, G2, G3) : (R3, 0)→
(R3, 0) is another analytic map germ such that supp(Gi) ⊆ Γ+\Γ , i = 1, 2, 3.
Then, by Theorem 2.8, (g +G)−1(0) = {0} and ind0(g) = ind0(g +G).

4. Non-degenerate maps. In this section, we introduce the concept
of strongly non-degenerate maps (Rn, 0) → (Rn, 0), which is motivated by
the notion of non-degenerate complete intersection given by Khovanskĭı (see
[9, p. 315] or [14]). We obtain an analogue of Theorem 2.8 for the index of
strongly non-degenerate maps, which generalizes a result of Gutiérrez–Ruas
[13] about the index of germs of vector fields in R2.

Definition 4.1. Let S = {g1, . . . , gs} ⊆ An and v ∈ Rn+ \ {0}. We say
that S satisfies the (Kv) condition if

{x ∈ Rn : pv(g1)(x) = . . . = pv(gs)(x) = 0} ⊆ {x ∈ Rn : x1 . . . xn = 0}.
The system S = {g1, . . . , gs} ⊆ An is said to be non-degenerate if S satisfies
the (Kv) condition for all v ∈ Rn+ \{0}. If g = (g1, . . . , gs) : (Rn, 0)→ (Rs, 0)
is an analytic map germ, we say that g is non-degenerate if the system
{g1, . . . , gs} is non-degenerate.

We need some preliminary lemmas in order to relate non-degenerate sys-
tems and systems adapted to Newton polyhedra. If Γ 1

+, . . . , Γ
s
+ are Newton

polyhedra in Rn, their Minkowski sum, denoted by Γ 1
+ + . . . + Γ s+, is the

Newton polyhedron given by {k1 + . . .+ ks : ki ∈ Γ i+, i = 1, . . . , s}.
The proof of the following result can be found in [8, p. 77].

Lemma 4.2. Let Γ+ be the Minkowski sum of the Newton polyhedra
Γ 1

+, . . . , Γ
s
+ ⊆ Rn and let v, v′ ∈ Rn+ \ {0}. Then

(1) `(v, Γ+) = `(v, Γ 1
+) + . . .+ `(v, Γ s+);

(2) ∆(v, Γ+) = ∆(v, Γ 1
+) + . . .+∆(v, Γ s+);

(3) ∆(v, Γ+) = ∆(v′, Γ+) if and only if ∆(v, Γ i+) = ∆(v′, Γ i+) for all
i = 1, . . . , s.

Lemma 4.3. Let Γ+ ⊆ Rn be a Newton polyhedron and let J ⊆ Rn+ \{0}
be a finite subset. Then the following assertions are equivalent :

(1) `(
∑

v∈J v, Γ+) =
∑

v∈J `(v, Γ+);
(2) ∆(

∑
v∈J v, Γ+) =

⋂
v∈J ∆(v, Γ+);

(3)
⋂
v∈J ∆(v, Γ+) 6= ∅.

Proof. This follows easily from the definitions.

Now, we give a technical lemma that we will use in the proof of the next
proposition. This lemma says that in the definition of a system adapted to
a given Newton polyhedron Γ+ (see Definition 2.3), the conditions (CJ) can
be attached to arbitrary faces of Γ+.
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Lemma 4.4. Let Γ+ ⊆ Rn be a Newton polyhedron. Then the system
S = {g1, . . . , gs} ⊆ An is adapted to Γ+ if and only if S satisfies the (CJ)
condition for any J ⊆ F(Γ+) such that

⋂
j∈J ∆(vj, Γ+) is a (not necessarily

compact) face of Γ+.

Proof. The “if” part is obvious. Let us see the other implication. Let
J ⊆ F(Γ+) be such that

⋂
v∈J ∆(v, Γ+) is an arbitrary face of Γ+ (not nec-

essarily compact). Then the system {pJ (g1), . . . , pJ(gs)} is adapted to Γ+.
But, by Theorem 3.5, there exists some monomial xk belonging to the inte-
gral closure of the ideal in An generated by {pJ(g1), . . . , pJ (gs)}. In partic-
ular, by Definition 3.1, the zero set of {pJ(g1), . . . , pJ(gs)} is contained in
{x ∈ Rn : x1 . . . xn = 0}.

Proposition 4.5 ([2]). Let S = {g1, . . . , gs} ⊆ An. Then S is non-de-
generate if and only if S is adapted to the Newton polyhedron Γ+ = Γ+(g1)+
. . .+ Γ+(gs).

Proof. Suppose that S is adapted to Γ+. Let F(Γ+) = {v1, . . . , vr}. If
v ∈ Rn+ \ {0}, then ∆(v, Γ+) =

⋂
j∈J ∆(vj, Γ+) for some J ⊆ {1, . . . , r}.

Thus, there exist ki ∈ Γ+(gi) for i = 1, . . . , s such that

〈k1 + . . .+ ks, v
j〉 = `(vj, Γ+), ∀j ∈ J.

But, by Lemma 4.2(1), the above relation is equivalent to 〈ki, vj〉 = `(vj, gi)
for all i ∈ {1, . . . , s}, j ∈ J . In particular, this means that

⋂
j∈J ∆(vj, gi) 6= ∅

for all i ∈ {1, . . . , s}. Therefore, from Lemma 4.3, we have
⋂

j∈J
∆(vj, gi) = ∆

(∑

j∈J
vj, gi

)
for all i ∈ {1, . . . , s}.(10)

If w =
∑

j∈J v
j , the above equality implies that pJ(gi) = pw(gi) for all

i = 1, . . . , s. Moreover, the fact that
⋂
j∈J ∆(vj, Γ+) 6= ∅ also implies that

∆(v, Γ+) =
⋂

j∈J
∆(vj, Γ+) = ∆

(∑

j∈J
vj , Γ+

)
= ∆(w,Γ+).(11)

Then, from Lemma 4.2(3), we have ∆(v, Γ+(gi)) = ∆(w,Γ+(gi)) for all
i = 1, . . . , s. But this means that pv(gi) = pw(gi) = pJ(gi) for all i = 1, . . . , s.
Hence, by Lemma 4.4, we conclude that S satisfies the (Kv) condition.

Suppose that S is non-degenerate. Let J ⊆ {1, . . . , r} be such that⋂
j∈J ∆(vj, Γ+) is a face of Γ+. Then, if we define w =

∑
j∈J v

j, by an
argument similar to the previous one, we also deduce that pJ(gi) = pw(gi)
for all i ∈ {1, . . . , s}. Thus S satisfies the (CJ) condition.

The next definition is analogous to Definition 2.4.

Definition 4.6. The system S = {g1, . . . , gs}⊆An is said to be strongly
non-degenerate if, for any L ⊆ {1, . . . , n} with |L| 6= n, the system SL is
non-degenerate as a system in An−|L|.
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Let S = {g1, . . . , gs} ⊆ An. Then it is straightforward that if Γ+(gi)
intersects each coordinate axis for all i = 1, . . . , s, then S is non-degenerate
if and only if S is strongly non-degenerate.

Corollary 4.7. Let g : (Rn, 0)→ (Rn, 0) be a non-degenerate analytic
map germ such that g−1(0) = {0} and Γ+(gi) intersects each coordinate axis
for all i = 1, . . . , s. Suppose that G : (Rn, 0) → (Rn, 0) is an analytic map
germ such that `(v,Gi) > `(v, gi) for all i = 1, . . . , n and all v ∈ Fc(Γ+),
where Γ+ = Γ+(g1) + . . .+ Γ+(gs). Then

(g +G)−1(0) = {0} and ind0(g) = ind0(g +G).

Proof. The Minkowski sum Γ+ = Γ+(g1)+. . .+Γ+(gs) is again a Newton
polyhedron intersecting each coordinate axis, so (Γ+)L 6= ∅ for all L ⊆
{1, . . . , n} with |L| 6= n. By Proposition 4.5, g is strongly non-degenerate
if and only if it is strongly adapted to Γ+. Now the result follows from
Theorem 2.8.

Corollary 4.8. Let g : (Rn, 0)→ (Rn, 0) be a strongly non-degenerate
analytic map germ such that g−1(0) = {0}. Let G : (Rn, 0)→ (Rn, 0) be an
analytic map germ such that supp(Gi) ⊆ Γ+(gi) \Γ (gi) for all i = 1, . . . , n.
Then (g +G)−1(0) = {0} and ind0(g) = ind0(g +G).

Proof. Consider the map θ(x) = xM1 + . . .+ xMn , where M is a positive
integer, and set h = (g1 +θ, . . . , gn+θ). From Lemma 3.9, there is an M > 0
large enough such that h−1(0) = {0} and ind0(g) = ind0(h). Following a
similar argument to the proof of Theorem 2.8, we can choose M so that
`(v, gi) = `(gi + θ) for all v ∈ (R+ \ {0})n and all i = 1, . . . , n, and we
can prove that h is also non-degenerate. Since Γ+(gi + θ) intersects each
coordinate axis for i = 1, . . . , n, we can apply Corollary 4.7 to the map h.

We observe that the condition supp(Gi) ⊆ Γ+(gi) \ Γ (gi) for all i =
1, . . . , n is equivalent to saying that for all i = 1, . . . , n and all v ∈ Rn+ \ {0},
the following condition holds:

{
`(v,Gi) > `(v, gi) if v ∈ (R+ \ {0})n,

`(v,Gi) ≥ `(v, gi) otherwise.

In particular, `(v,Gi) > `(v, gi+θ) for all v ∈ Fc(Γ+(g1+θ)+. . .+Γ+(gn+θ))
and all i = 1, . . . , n. Therefore, the result follows by applying Corollary 4.7
to the map h = (g1 + θ, . . . , gn + θ).

Remark 4.9. If g = (g1, g2) : (R2, 0) → (R2, 0) is a non-degenerate an-
alytic map germ such that g−1(0) = {0}, then g is automatically strongly
non-degenerate. This is because if g−1(0) = {0}, then supp(g1) ∪ supp(g2)
contains a pure monomial xkii of each variable xi, i = 1, 2. Therefore, Corol-
lary 4.8 generalizes the result of [13] on the index of planar vector fields.
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Let f ∈ An, say f =
∑

k akx
k. Then we define the principal part of f

as the polynomial given by the sum of those akxk such that k ∈ Γ (f). We
denote this polynomial by p(f). Given an analytic map f : (Rn, 0)→ (Rn, 0),
f = (f1, . . . , fn), the principal part of f is the map p(f) : (Rn, 0)→ (Rn, 0)
given by p(f) = (p(f1), . . . , p(fn)). We observe that f is non-degenerate if
and only if p(f) is non-degenerate. Moreover, Corollary 4.8 implies that if
f : (Rn, 0) → (Rn, 0) is an analytic strongly non-degenerate map such that
p(f)−1(0) = {0}, then f−1(0) = {0} and ind0(f) = ind0(p(f)). This is also
proved, for n = 2, in the paper [13] of Gutiérrez–Ruas. As we shall see,
Corollary 4.8 can be substantially improved in the case n = 2. First, we give
a preliminary definition. If g = (g1, g2) : (R2, 0) → (R2, 0) is an analytic
map germ such that Fc(g1) 6= ∅ or Fc(g2) 6= ∅, then we define

Γ g+(gi) = {k ∈ R2
+ : 〈k, v〉 ≥ `(v, gi) for all v ∈ Fc(g1) ∪ Fc(g2)}, i = 1, 2.

It is clear that Γ g+(gi) is also a Newton polyhedron; we denote by Γ g(gi) the
union of its compact faces. Moreover, it is obvious that Γ+(gi) ⊆ Γ g+(gi),
with equality if Γ+(gi) intersects each coordinate axis.

Corollary 4.10. Let g = (g1, g2) : (R2, 0) → (R2, 0) be an analytic
non-degenerate map germ such that g−1(0) = {0}. Suppose that Fc(g1) 6= ∅
or Fc(g2) 6= ∅. Let G = (G1, G2) : (R2, 0)→ (R2, 0) be another analytic map
germ such that supp(Gi) ⊆ Γ g+(gi)\Γ g(gi), i = 1, 2. Then (g+G)−1(0) = {0}
and ind0(g +G) = ind0(g).

Proof. Since g is non-degenerate, it is adapted to the Newton polyhedron
Γ+ = Γ+(g1) +Γ+(g2), by Proposition 4.5. Moreover, since Γ+(g1)∪Γ+(g2)
meets each coordinate axis, g is strongly adapted to the Newton polyhedron

Γ g+ = {k ∈ R2
+ : 〈k, v〉 ≥ `(v, Γ+) for all v ∈ Fc(Γ+)}.

It is obvious that Fc(Γ+) = Fc(Γ
g
+). Moreover Fc(Γ+) = Fc(g1)∪Fc(g2), by

Theorem 4.1 of [10]. Thus, the condition supp(Gi) ⊆ Γ g+(gi), i = 1, 2, means
that `(v,Gi) > `(v, gi) for all v ∈ Fc(Γ

g
+). But this implies the desired result

as a consequence of Theorem 2.8.

To finish the paper, we indicate how to get an upper bound for the
minimum of those integers r such that (jrg)−1(0) = {0} and ind0(jrg) =
ind0(g), where g : (Rn, 0)→ (Rn, 0) is any analytic function germ such that
g−1(0) = {0} (see Lemma 3.9).

Let gC : (Cn, 0) → (Cn, 0) be the function germ obtained from g by
complexifying the variables x1, . . . , xn. Suppose that gC converges in some
neighbourhood of the origin in Cn. Let I(gC) denote the ideal of On gener-
ated by the components of gC; suppose that V (I(gC)) = {0}. Thus, by the
Nullstellensatz [17, p. 196], we can consider the number

r0(gC) = min{r ≥ 1 : mr
n,C ⊆ I(gC)},
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where I(gC) stands for the integral closure of I(gC) in On and mn,C is the
maximal ideal of On. If we define

r0(g) = min{r ≥ 1 : mr
n ⊆ I(g)},

where I(g) denotes the integral closure of I(g) in An, then r0(g) ≤ r0(gC),
by Definition 3.1. The number r0(g) is the minimum integer greater than
or equal to the Łojasiewicz exponent α0(g). Note that if g−1(0) = {0}, then
α0(g) always exists, by Theorem 3.2, hence r0(g) cannot be ∞ in this case,
although r0(gC) may be ∞ if we do not assume that V (I(gC)) = {0}. In [1],
the author shows an algorithm to compute r0(gC), assuming that V (I(gC))
= {0}, through the program Singular [11] (the number r0(gC) is related to
the notion of topological sufficiency of jets). We observe, by Remark 3.10,
that (jrg)−1(0) = {0} and ind0(g) = ind0(jrg) for all r ≥ r0(gC).

Example 4.11. Consider the analytic map g : (R2, 0) → (R2, 0) given
by g(x, y) = (x9 + y9 + x2y5 − x5y2, xy3 − x3y). We observe that g is a
degenerate map germ and that V (I(gC)) = {0}. Applying the algorithm
of [1], we find that r0(gC) = 9. Thus, any analytic map f : (R2, 0)→ (R2, 0)
such that j9f = j9g satisfies f−1(0) = {0} and ind0(g) = ind0(f).

Example 4.12. Let g : (R2, 0) → (R2, 0) be given by g(x, y) = (x3 +
xy2, x2y+y3). Since g−1(0) = {0}, the index of g is defined, and ind0(g) = 1.
The map g is non-degenerate, and therefore strongly non-degenerate (see
Remark 4.9). As a consequence, if we consider any analytic map germ
G = (G1, G2) : (R2, 0) → (R2, 0) such that k1 + k2 > 3 for all (k1, k2) ∈
supp(G1) ∪ supp(G2), then (g +G)−1(0) = {0} and ind0(g +G) = ind0(g),
by Corollary 4.10. This can also be concluded from Theorem 1.1, since g is
a homogeneous map.

We also observe that the ideal I(gC) of O2 does not have finite codi-
mension, that is, V (I(gC)) 6= {0}. Thus r0(gC) = ∞ but r0(g) = 3, by
Theorem 3.5.
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