Descriptive set theoretical complexity of randomness notions

by

Liang Yu (Nanjing)

Abstract

We study the descriptive set theoretical complexity of various randomness notions.

1. Introduction. The original motivation of this paper is to characterize weakly 2 -random reals by prefix-free Kolmogorov complexity. Since Schnorr characterized Martin-Löf randomness by prefix-free Kolmogorov complexity, many people thought that every randomness notion should have a characterization by initial segment complexity. For example, Miller and others obtained a very successful characterization of 2-randomness.

Theorem 1.1 (Miller [8, [9]; Nies, Stephan and Terwijn [12]). A real x is 2 -random if and only if

$$
\exists c \forall n \exists m(C(x \upharpoonright m) \geq m-c)
$$

if and only if

$$
\exists c \forall n \exists m>n(K(x\lceil m) \geq m+K(m)-c)
$$

Recently, Miller and Yu [10] obtained the following result.
Theorem 1.2 (Miller and Yu [10]). $x \oplus y$ is random if and only if

$$
\exists c \forall n(K(x \upharpoonright n)+C(y \upharpoonright n) \geq 2 n-c)
$$

This theorem gives almost all the "relativizable" randomness notions stronger than Martin-Löf randomness unrelativized Kolmogorov complexity characterizations. An important question remaining open is whether there is a Kolmogorov complexity characterization for weak 2-randomness. This question has been approached in many ways. For example, one way is to ask whether there is a sequence $\left\{f_{n}\right\}_{n \in \omega}$ of functions such that for every real x, x is weakly 2 -random if and only if $\exists n \forall m \exists k \geq m\left(K(x \uparrow k) \geq k+f_{n}(k)\right)$. Most of these attempts aimed at some kind of $\boldsymbol{\Sigma}_{3}^{0}$-characterizations for weak

[^0]Key words and phrases: randomness, forcing.

2-randomness. But all of the ways (of course) failed. So people suspected that the collection of weakly 2-random reals is not $\boldsymbol{\Sigma}_{3}^{0}$. We confirm this in this paper.

Then we also study the descriptive set theoretical complexity of some other classical randomness notions. Many results have been obtained in [5] by using Wadge reductions. Given two sets of reals A and B, A is Wadge reducible to B, written $A \leq_{W} B$, if there is a continuous function $f: 2^{\omega} \rightarrow 2^{\omega}$ such that for every $x, x \in A$ if and only if $f(x) \in B$. The authors of [5] prove, for example, that the collection of Schnorr random reals is $\boldsymbol{\Pi}_{3}^{0}$-complete (and so non- $\boldsymbol{\Sigma}_{3}^{0}$). Here we give another more direct way, by using forcing arguments, to prove that result. One might think that the results in 5] are stronger since it is proved that the collection of Schnorr random reals is $\boldsymbol{\Pi}_{3}^{0}$-complete. Actually they are not by the following well known descriptive set theory result.

Theorem 1.3 (Folklore). For any $\xi<\omega_{1}$ and each $\boldsymbol{\Sigma}_{\xi}^{0}\left(\right.$ or $\left.\boldsymbol{\Pi}_{\xi}^{0}\right)$ set A, if A is not $\boldsymbol{\Pi}_{\xi}^{0}\left(\right.$ or $\left.\boldsymbol{\Sigma}_{\xi}^{0}\right)$, then every $\boldsymbol{\Sigma}_{\xi}^{0}$ set is Wadge reducible to A.

Theorem 1.3 is an immediate consequence of Borel determinacy. Moreover, our technique yields results of independent interest. For example, we prove that the forcing notion of Π_{1}^{0}-classes with computable positive measures does not produce a Martin-Löf random real.

We also study the complexity of the collection of Δ_{1}^{1}-random reals. Sacks [13] essentially proves that the collection of Δ_{1}^{1}-random reals is $\boldsymbol{\Pi}_{3}^{0}$. Hjorth and Nies [6] introduced Π_{1}^{1}-Martin-Löf randomness, which is an analog to the classical Martin-Löf randomness in higher recursion theory. But a difficult question was whether Π_{1}^{1}-Martin-Löf randomness is different from Δ_{1}^{1}-randomness. The separation of Π_{1}^{1}-Martin-Löf randomness from Δ_{1}^{1}-randomness was given in [2]. The proof in that paper was rather involved, and only a sketch was presented. Here we give a full proof by a simpler argument. Furthermore, we have a total characterization of where Δ_{1}^{1}-randomness is different from Π_{1}^{1}-Martin-Löf randomness.

The paper is organized as follows: In Section 2, we give some basic definitions. In Section 3, we present some easy facts about the descriptive set theoretical complexity of various randomness notions. Most of them are probably known. In Section 4, we prove that the collection of weakly 2-random reals is not $\boldsymbol{\Sigma}_{3}^{0}$. In Section 5, we prove that the collection of Schnorr random reals is not $\boldsymbol{\Sigma}_{3}^{0}$. In Section 6, we prove that the collection of Δ_{1}^{1}-random reals is not $\boldsymbol{\Sigma}_{3}^{0}$. In Section 7, we raise some questions.
2. Preliminaries. A real is Kurtz random if it does not belong to any Π_{1}^{0} null set. Since every co-null open Σ_{1}^{0} set is dense, every weakly 1-generic real is Kurtz random.

A Schnorr test is a uniformly c.e. sequence $\left\{U_{n}\right\}_{n \in \omega}$ of open sets such that $\mu\left(U_{n}\right)=2^{-n}$ for every n. A real x is Schnorr random if for every Schnorr test $\left\{U_{n}\right\}_{n \in \omega}, x \notin \bigcap_{n \in \omega} U_{n}$. This is equivalent to saying that $x \notin$ $\bigcap_{n \in \omega} U_{n}$ for any c.e. sequence $\left\{U_{n}\right\}_{n \in \omega}$ of open sets such that $\mu\left(U_{n}\right)=2^{-f(n)}$ for every n where f is a computable function from ω to $[0,1]$ such that $\lim _{n \rightarrow \infty} f(n)=0$.

A Martin-Löf test is a uniformly c.e. sequence $\left\{U_{n}\right\}_{n \in \omega}$ of open sets such that $\mu\left(U_{n}\right)<2^{-n}$ for every n. A real x is Martin-Löf random (or 1-random) if for every Martin-Löf test $\left\{U_{n}\right\}_{n \in \omega}, x \notin \bigcap_{n \in \omega} U_{n}$. There exists a universal Martin-Löf test, i.e. a Martin-Löf test covering all the Martin-Löf tests.

A generalized Martin-Löf test is a uniformly c.e. sequence $\left\{U_{n}\right\}_{n \in \omega}$ of open sets such that $\lim _{n \rightarrow \infty} \mu\left(U_{n}\right)=0$. A real x is weakly 2 -random if for every generalized Martin-Löf test $\left\{U_{n}\right\}_{n \in \omega}, x \notin \bigcap_{n \in \omega} U_{n}$. There is no universal Martin-Löf test. We have the following nice result.

Theorem 2.1 (Downey, Nies, Weber and Yu [4]; Hirschfeldt and Miller [4]). A real x is weakly 2 -random if and only if x is 1 -random and does not Turing-compute any non-computable Δ_{2}^{0}-real.

For some information about higher randomness, see [13], 6] and [2]. A real is Δ_{1}^{1}-random if and only if it does not belong to any Δ_{1}^{1} null set. It is essentially due to Sacks [13] that a real x is Δ_{1}^{1}-random if and only if for any Δ_{1}^{1}-sequence of Δ_{1}^{1} open sets $\left\{U_{n}\right\}_{n \in \omega}$ for which $\lim _{n \rightarrow \infty} \mu\left(U_{n}\right)=0$, $x \notin \bigcap_{n} U_{n}$. So the collection of Δ_{1}^{1}-random reals is $\boldsymbol{\Pi}_{3}^{0}$.

A Π_{1}^{1}-Martin-Löf test is a Π_{1}^{1}-sequence of Π_{1}^{1}-coded open sets $\left\{U_{n}\right\}_{n \in \omega}$ (i.e. the set $\left\{(n, \sigma) \mid \sigma \in U_{n}\right\}$ is $\left.\Pi_{1}^{1}\right)$ so that $\mu\left(U_{n}\right)<2^{-n}$ for every n. Hjorth and Nies [6] proved that there is a universal Π_{1}^{1}-Martin-Löf test. A real is Π_{1}^{1}-Martin-Löf random if it does not belong to any Π_{1}^{1}-Martin-Löf test. We have the following result.

Theorem 2.2 (Chong, Nies and Yu [2]). If $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$, then x is Δ_{1}^{1} random if and only if x is Π_{1}^{1}-Martin-Löf random.

We identify an open set U with a set of finite strings. For any finite string $\sigma \in 2^{<\omega}$, we use $[\sigma]$ to denote the open set $\{x \mid x \succ \sigma\}$. For any tree T, we write $[T]$ for the closed set $\{x \mid \forall n(x \mid n \in T)\}$.

For more information about randomness and computability theory, see 11 and [3].
3. Some basic facts. The following facts are immediate and probably known. Many of them can be found in [5].

Proposition 3.1.
(1) The collection of Kurtz random reals is Π_{2}^{0} but not Π_{2}^{0}.
(2) The collection of Schnorr random reals is Π_{3}^{0}.
(3) The collection of 1-random reals is Σ_{2}^{0}.
(4) The collection of weakly 2-random reals is $\boldsymbol{\Pi}_{3}^{0}$ but not Π_{3}^{0}.
(5) The collection of Δ_{1}^{1}-random reals is $\boldsymbol{\Pi}_{3}^{0}$.

Proof. (1) Obviously the collection K of Kurtz random reals is Π_{2}^{0}. Suppose that K is Π_{2}^{0}. Then there is a recursive set $R \subseteq \omega \times \omega \times 2^{<\omega}$ so that $x \in K$ if and only if $\forall n \exists m R(n, x \upharpoonright m)$. For each n, let $K_{n}=$ $\left\{x \mid \exists m R(n, x\lceil m)\}\right.$. Then K_{n} is Σ_{1}^{0}, co-null and $K \subseteq K_{n}$ for every n. Hence it would be easy to computably construct a sequence of finite strings $\sigma_{0} \prec \sigma_{1} \prec \cdots$ so that $\left[\sigma_{n}\right] \subseteq K_{n}$ for every n. Then the computable real $x=\bigcup_{n \in \omega} \sigma_{n} \in \bigcap_{n \in \omega} K_{n}=K$ would be Kurtz random, a contradiction.
(2) Obvious (see [5]).
(3) Obvious.
(4) Obviously the collection of weakly 2-random reals W is $\boldsymbol{\Pi}_{3}^{0}$. Suppose that K is Π_{3}^{0}. Then there is a computable set $R \subseteq \omega \times \omega \times \omega \times 2^{<\omega}$ such that $x \in W$ if and only if $\forall n \exists m \forall j R(n, m, x \upharpoonright j)$. For each n, let $W_{n}=$ $\left\{x \mid \exists m \forall j R(n, m, x\lceil j)\}\right.$ and $W_{n, m}=\{x \mid \forall j R(n, m, x \upharpoonright j)\}$. Then K_{n} is Σ_{2}^{0}, co-null and $W \subseteq W_{n}$ for every n. We \emptyset^{\prime}-computably construct a sequence of finite strings $\sigma_{0} \prec \sigma_{1} \prec \cdots$ and Π_{1}^{0} positive measure sets $T_{0} \supseteq T_{1} \supseteq \cdots$ so that $\sigma_{n} \in T_{n}$ as follows: $\sigma_{0}=\emptyset$ and $W_{0}=2^{\omega}$. Given σ_{n} and R_{n}, since W_{n+1} is co-null, we may \emptyset^{\prime}-computably find the least m such that $T_{n} \cap W_{n, m} \cap\left[\sigma_{n}\right]$ $=\left\{x \succ \sigma_{n} \mid x \in\left[T_{n}\right] \wedge \forall j R(n, m, x\lceil j)\}\right.$ has positive measure. Let $T_{n+1}=$ $T_{n} \cap W_{n, m} \cap\left[\sigma_{n}\right]$ and σ_{n+1} be a finite string in T_{n+1} extending σ_{n}. Then the \emptyset^{\prime}-computable real $x=\bigcup_{n \in \omega} \sigma_{n} \in \bigcap_{n \in \omega} W_{n}=W$ is weakly 2-random, a contradiction to Theorem 2.1.
(5) Obvious.

The results above about descriptive complexity of the collections of Kurtz random and 1-random reals are rigid.

Proposition 3.2.
(1) The collection of Kurtz random reals is not $\boldsymbol{\Sigma}_{2}^{0}$.
(2) The collection of 1 -random reals is not $\boldsymbol{\Pi}_{2}^{0}$.

Proof. (1) Otherwise, there is a sequence $\left\{P_{n}\right\}_{n \in \omega}$ of closed sets such that $\bigcup_{n} P_{n}$ contains exactly all the Kurtz random reals. Since all the generic reals are Kurtz random, $\bigcup_{n} P_{n}$ is comeager. Hence there must be some n such that P_{n} is not meager. Then P_{n} must contain an interval and so contain a computable real, a contradiction.
(2) Otherwise, there is a sequence $\left\{U_{n}\right\}_{n \in \omega}$ of open sets such that $\bigcap_{n} U_{n}$ contains exactly all the 1-random reals. Then for every $n, \mu\left(U_{n}\right)=1$. So every U_{n} is dense. Hence every sufficiently generic real would belong to $\bigcap_{n} U_{n}$. But no 1-generic real can be random, a contradiction.

The second result above can be found in [5].
4. Weak 2-randomness. In this section, we prove that the collection of weakly 2 -random reals is not $\boldsymbol{\Sigma}_{3}^{0}$. We apply a forcing argument.

Definition 4.1. Define a forcing notion $\mathbb{P}=(\boldsymbol{P}, \leq)$ as follows:
(1) $P \in \boldsymbol{P}$ if and only if P is a Π_{1}^{0}-class with positive measure.
(2) For $P, Q \in \boldsymbol{P}, P \leq Q$ if and only if $P \subseteq Q$.

Let $\left\{F_{m}\right\}_{m \in \omega}$ be an increasing sequence of Π_{1}^{0} sets such that $\bigcup_{m \in \omega} F_{m}$ is of measure 1. Set $C=\bigcup_{m \in \omega} F_{m}$. Let $\mathcal{D}_{C}=\{P \mid P \in \boldsymbol{P} \wedge P \subseteq C\}$.

Lemma 4.2. \mathcal{D}_{C} is dense.
Proof. Suppose that $\left\{F_{m}\right\}_{m \in \omega}$ is an increasing sequence of Π_{1}^{0} sets such that $\bigcup_{m \in \omega} F_{m}$ is of measure 1 and $C=\bigcup_{m \in \omega} F_{m}$. Let $P \in \boldsymbol{P}$. Then there is some large enough m such that $\mu\left(F_{m}\right)>1-\mu(P) / 2$. So
$\mu\left(F_{m} \cap P\right)=\mu\left(F_{m}\right)+\mu(P)-\mu\left(F_{m} \cup P\right)>1-\mu(P) / 2+\mu(P)-1=\mu(P) / 2$. Thus $F_{m} \cap P \in \mathcal{D}_{C}$.

The following lemma is a stronger version of Lemma 2.2 in [1].
Lemma 4.3. For every computable tree T, there is a generalized MartinLöf test $\left\{V_{n}\right\}_{n \in \omega}$ such that for any σ, if $[\sigma] \cap[T]$ is not empty, then $[\sigma] \cap$ $[T] \cap \bigcap_{n} V_{n}$ is not empty.

Proof. The idea is to build a uniformly c.e. sequence $\left\{V_{n}\right\}_{n \in \omega}$ of open sets densely meeting $[T]$. The method is just like building a null comeager set. But we may make some mistakes since there is no effective way to predict whether $[\sigma] \cap[T]$ is not empty. So, at every step, we need to "correct" the construction of the previous steps. But the measure of mistakes will become very small whenever the step is large enough. This is the reason we can ensure that $\left\{V_{n}\right\}_{n \in \omega}$ is a generalized Martin-Löf test.

Fix a computable tree T. So there is a computable approximation to T by computable trees $\left\{T_{s}\right\}_{s \in \omega}$ such that
(1) $T_{0}=T$;
(2) $T_{s+1}=\left\{\sigma \mid \sigma \in T \wedge \exists \tau \in 2^{s+1} \cap T(\tau\right.$ is compatible with $\left.\sigma)\right\}$.

Then $T_{s+1} \subseteq T_{s}$ for every s.
Fix a computable enumeration $\left\{\sigma_{i}\right\}_{i \in \omega}$ of $2^{<\omega}$ and an enumeration $\left\{\sigma_{i}^{s+1}\right\}_{i \leq 2^{s+1}}$ of 2^{s+1} for each s.

We construct V_{n} for every n step by step.
Step 0: We put the empty string λ into V_{0}. So the open set V_{0} is 2^{ω}.
Step $s+1$:
Substep 1: We correct $\left\{V_{k}\right\}_{k \leq s}$ step by step.
SUBSTEP 1.0: Check whether there is a $\sigma \in T_{s+1} \cap 2^{s+1}$. If so, do nothing. Otherwise, stop the construction.

SUBSTEP 1. k : Check whether there is some $\tau \in V_{k}$ such that there is no $\nu \in T_{s+1} \cap 2^{s+1}$ with $\nu \succ \tau$. If so, check whether there is some $\tau^{\prime} \succ \tau \upharpoonright k$ in $2^{|\tau|}$ such that there is a $\nu \in T_{s+1} \cap 2^{s+1}$ with that $\nu \succ \tau^{\prime}$. If so, put τ^{\prime} into V_{j} for all $j \leq k$; otherwise, do nothing.

SUBSTEP 2: For every i, check whether there is some $\tau \in T_{s+1}$ extending σ_{i}^{s+1}. If not, go to $i+1$; otherwise, check whether there is some $\tau \in V_{s}$ such that $\tau \succ \sigma_{i}^{s+1}$. If yes, put τ into V_{s+1}; otherwise, check whether there is some very long $\tau \succ \sigma_{i}^{s+1}$ in T_{s+1} that is longer than any finite strings mentioned before. If yes, pick such a τ and put it into V_{s+1}; otherwise, do nothing. Now for every $k \leq s$, check whether there is some $\tau^{\prime} \in V_{k}$ compatible with τ. If yes, do nothing; otherwise, put τ into V_{k}.

This finishes the construction.
By the construction, $V_{n+1} \subseteq V_{n}$ for any n.
If $\sigma \in T$ and $[\sigma] \cap[T] \neq \emptyset$, then there is some stage $s_{0} \geq|\sigma|$ at which we find some $\sigma_{0} \succ \sigma$ such that $\sigma_{0} \in T$ and $\left[\sigma_{0}\right] \cap[T] \neq \emptyset$ and put it into $V_{|\sigma|}$. Then there is some larger stage $s_{1} \geq\left|\sigma_{0}\right|$ at which we find some $\sigma_{1} \succ \sigma_{0}$ such that $\sigma_{1} \in T$ and $\left[\sigma_{1}\right] \cap[T] \neq \emptyset$ and put it into $V_{\left|\sigma_{0}\right|}$, etc. Since $\bigcap_{n \in \omega} V_{n}=\bigcap_{i \in \omega} V_{\left|\sigma_{i}\right|}$, the real $x=\bigcup_{i \in \omega} \sigma_{i}$ is in $\left(\bigcap_{n \in \omega} V_{n}\right) \cap T$. In other words, $[\sigma] \cap[T] \cap \bigcap_{n} V_{n}$ is not empty.

To see that $\left\{V_{n}\right\}_{n \in \omega}$ is a generalized Martin-Löf test, it is sufficient to show $\lim _{n \rightarrow \infty} \mu\left(V_{n}\right)=0$. For any i, there is a large enough $s>i+1$ such that the open set $E_{s}=\left\{\sigma \in 2^{s} \mid \sigma \in T_{s}\right\}$ has measure less than $\mu([T])+2^{-i-1}$. Then from step s of the construction, except the correction substep, we only put a prefix-free set of finite strings into V_{s}. Moreover, except those strings put in at the correction substep, for different strings in V_{s}, they have different lengths greater than or equal to s. But at the correction substep, by the assumption on E_{s}, we put into V_{s} a set of finite strings of measure at most 2^{-i-1}. So

$$
\mu\left(V_{s}\right) \leq \sum_{t \geq s} 2^{-t}+2^{-i-1}=2^{-s+1}+2^{-i-1} \leq 2^{-i-1}+2^{-i-1}=2^{-i}
$$

Thus $\lim _{n \rightarrow \infty} \mu\left(V_{n}\right)=0$.
For any $\boldsymbol{\Pi}_{2}^{0}$ set G, let $\mathcal{D}_{G}=\{P \mid P \in \boldsymbol{P} \wedge P \cap G=\emptyset\}$.
Lemma 4.4. If G is a $\boldsymbol{\Pi}_{2}^{0}$ set only containing weakly 2 -random reals, then \mathcal{D}_{G} is dense in \mathbb{P}.

Proof. Suppose that G is $\boldsymbol{\Pi}_{2}^{0}$ only containing weakly 2-random reals. Let $\left\{U_{n}\right\}_{n \in \omega}$ be a sequence of open sets such that $G=\bigcap_{n} U_{n}$. Let $P \in \boldsymbol{P}$. Without loss of generality, we may assume that for any σ, if $[\sigma] \cap P \neq \emptyset$, then $\mu([\sigma] \cap P)>0$ (since we may assume that P only contains 1-random reals). Then we claim that there is some σ such that $P \cap[\sigma] \cap G=\emptyset$ but $P \cap[\sigma] \neq \emptyset$.

Suppose not. By Lemma 4.3, there is a generalized Martin-Löf test $\left\{V_{n}\right\}_{n \in \omega}$ such that for any σ, if $[\sigma] \cap P$ is not empty, then $[\sigma] \cap P \cap \bigcap_{n} V_{n}$ is not empty. Then we build a sequence of strings $\sigma_{0} \prec \sigma_{1} \prec \cdots$ as follows.

Let $\sigma_{0}=\emptyset$. Now suppose $\left[\sigma_{i}\right] \cap P \neq \emptyset$. Let $\tau \succ \sigma_{i}$ with $[\tau] \cap P \neq \emptyset$ and $[\tau] \cap P \subseteq V_{i}$. By the property of $\left\{V_{n}\right\}_{n}$, there exists such a τ. Then by assumption, let $\sigma_{i+1} \succ \tau$ be such that $\left[\sigma_{i+1}\right] \cap P \subseteq U_{i}$.

Let $x=\bigcup_{i \in \omega} \sigma_{i}$. Then $x \in P \cap\left(\bigcap_{n \in \omega} U_{n}\right) \cap\left(\bigcap_{n \in \omega} V_{n}\right)$. Since $x \in$ $\bigcap_{n \in \omega} V_{n}, x$ is not weakly 2-random, which contradicts the fact that G only contains weakly 2 -random reals.

So there is some σ such that $P \cap[\sigma] \cap G=\emptyset$ but $P \cap[\sigma] \neq \emptyset$. Let $Q=P \cap[\sigma]$. Then $Q \in \boldsymbol{P}$ and $Q \leq P$.

THEOREM 4.5. The collection of weakly 2-random reals is not $\boldsymbol{\Sigma}_{3}^{0}$.
Proof. Suppose otherwise. Then there is a countable sequence $\left\{G_{n}\right\}_{n}$ of Π_{2}^{0} sets such that $\bigcup_{n} G_{n}$ contains exactly all the weakly 2-random reals. So G_{n} only contains weakly 2 -random reals for every n. Then by Lemma 4.4, for any sufficiently generic real g over $\mathbb{P}, g \notin G_{n}$ for any n. By Lemma 4.2, for any sufficiently generic real g over \mathbb{P}, g is weakly 2 -random, a contradiction.
5. Schnorr randomness. In this section, we give another proof that the collection of Schnorr random reals is not $\boldsymbol{\Sigma}_{3}^{0}$. We use a similar method to the previous section with some modifications.

Definition 5.1. Define a forcing notion $\mathbb{Q}=(\boldsymbol{Q}, \leq)$ as follows:
(1) $Q \in \boldsymbol{Q}$ if and only if Q is a Π_{1}^{0}-class with some computable positive measure.
(2) For $P, Q \in \boldsymbol{Q}, P \leq Q$ if and only if $P \subseteq Q$.

For any Schnorr test $\left\{U_{n}\right\}_{n \in \omega}$ with $\mu\left(U_{n}\right)=2^{-n}$ for every n, set $U=$ $\bigcap_{n} U_{n}$. Let $\mathcal{D}_{U}=\{P \mid P \in \boldsymbol{Q} \wedge P \cap U=\emptyset\}$.

Lemma 5.2. \mathcal{D}_{U} is dense.
Proof. Suppose that $\left\{U_{n}\right\}_{n \in \omega}$ is a Schnorr test with $\mu\left(U_{n}\right)=2^{-n}$ for every $n, U=\bigcap_{n} U_{n}$ and $P \in \boldsymbol{Q}$. Then there is some large enough n such that $\mu\left(U_{n}\right)<\mu(P) / 2$. Hence the complement $P_{0}=2^{\omega}-U_{n}$ has measure $\geq 1-\mu(P) / 2$. So $P_{0} \cap P$ has measure $\geq \mu(P) / 2$. We show that $\mu\left(P_{0} \cap P\right)$ is a computable real. Both P and P_{0} can be represented by computable trees T and T^{0} respectively. Since both P and P_{0} belong to \boldsymbol{Q}, for any i we may computably find some large enough s_{i} such that $\mu\left(\left(\bigcup_{\sigma \in E_{s_{i}}}[\sigma]\right)-P\right)<2^{-i-1}$ and $\mu\left(\left(\bigcup_{\sigma \in E_{s_{i}}^{0}}[\sigma]\right)-P_{0}\right)<2^{-i-1}$ where $E_{s_{i}}=\left\{\sigma \in 2^{s_{i}} \mid \sigma \in T\right\}$ and

$$
\begin{aligned}
& E_{s_{i}}^{0}=\left\{\sigma \in 2^{s_{i}} \mid \sigma \in T^{0}\right\} . \text { Then } \\
& \mu\left(\left(\bigcup_{\sigma \in E_{s_{i}} \cap E_{s_{i}}^{0}}[\sigma]\right)-\left(P \cap P_{0}\right)\right)=\mu\left(\left(\left(\bigcup_{\sigma \in E_{s_{i}} \cap E_{s_{i}}^{0}}[\sigma]\right)-P\right) \cup\left(\left(\bigcup_{\sigma \in E_{s_{i}} \cap E_{s_{i}}^{0}}[\sigma]\right)-P_{0}\right)\right) \\
& \leq \mu\left(\left(\bigcup_{\sigma \in E_{s_{i}} \cap E_{s_{i}}^{0}}[\sigma]\right)-P\right)+\mu\left(\left(\bigcup_{\sigma \in E_{s_{i}} \cap E_{s_{i}}^{0}}[\sigma]\right)-P_{0}\right) \leq 2^{-i-1}+2^{-i-1}=2^{-i} .
\end{aligned}
$$

So

$$
\mu\left(\bigcup_{\sigma \in E_{s_{i}} \cap E_{s_{i}}^{0}}[\sigma]\right)-2^{-i} \leq \mu\left(P \cap P_{0}\right) \leq \mu\left(\bigcup_{\sigma \in E_{s_{i}} \cap E_{s_{i}}^{0}}[\sigma]\right)
$$

Thus $\mu\left(P \cap P_{0}\right)$ is computable. In other words, $P \cap P_{0} \in \boldsymbol{Q}$.
Now we want to mimic the proof of Lemma 4.4. But there is a problem: in that proof we can ensure that, for any condition $P \in \boldsymbol{P}, \mu([\sigma] \cap P)>0$ whenever $[\sigma] \cap P$ is not empty. The reason is that we can ensure that P only contains 1-random reals. But every condition $Q \in \boldsymbol{Q}$ contains a computable real. So we have to be more careful.

LEMMA 5.3. For ever computable tree T for which $\mu([T])>0$ is computable, there is a Schnorr test $\left\{V_{n}\right\}_{n \in \omega}$ such that for any σ, if $\mu([\sigma] \cap[T])$ >0, then $\mu\left([\sigma] \cap[T] \cap V_{n}\right)>0$ for each n.

Proof. Suppose that T is a computable tree such that $\mu([T])>0$ is computable. Then there is a computable function $f: \omega \rightarrow \omega$ such that for every $s,\left|E_{f(s)}\right| / 2^{f(s)}-\mu(T)<2^{-s}$ where $E_{t}=\left\{\sigma \in 2^{t} \mid \sigma \in T\right\}$. Fix a computable enumeration $\left\{\sigma_{i}\right\}_{i \in \omega}$ of $2^{<\omega}$ and an enumeration $\left\{\sigma_{i}^{s+1}\right\}_{i \leq 2^{s+1}}$ of 2^{s+1} for each s. We define $U_{0}=\bigcup_{s} U_{0}[s]$ as follows:

At step 0 , do nothing.
At step $s+1$, select the least index i such that
(1) There is no $\tau \succeq \sigma_{i}$ belonging to $U_{0}[s]$.
(2) $\left|\left[\sigma_{i}\right] \cap E_{f(s)}\right|>2^{f(s)-s+1}$.

Then pick any $2^{f(s)-s+1}$ finite strings in $\left[\sigma_{i}\right] \cap E_{f(s)}$ and put them into $U_{0}[s+1]$.

Then by the definition of $f, U_{0}[s+1] \cap\left[\sigma_{i}\right] \cap[T] \neq \emptyset$. Obviously at any stage $s+1, \mu\left(U_{0}[s+1]-U_{0}[s]\right)<2^{-s+2}$. So $\mu\left(U_{0}\right)$ is computable. Moreover, for any σ, if $\mu([\sigma] \cap[T])>0$, then $\mu\left([\sigma] \cap[T] \cap U_{0}\right)>0$. If not, pick the least index i such that $\mu\left(\left[\sigma_{i}\right] \cap[T]\right)>0$ but $\mu\left([\sigma] \cap[T] \cap U_{0}\right)=0$. Then there is a large enough stage s_{0} such that for each $j<i$, if $\mu\left(\left[\sigma_{j}\right] \cap[T]\right)>0$, then $\mu\left(\left[\sigma_{j}\right] \cap[T] \cap U_{0}\left[s_{0}\right]\right)>0$. Suppose that $\mu\left(\left[\sigma_{i}\right] \cap[T]\right)>2^{-k}$; then at any stage $t>s_{0}+k,\left|\left[\sigma_{i}\right] \cap E_{f(t)}\right|>2^{f(t)-k}>2^{f(t)-t+1}$. Then we pick any $2^{f(t)-t+1}$ finite strings in $\left[\sigma_{i}\right] \cap E_{f(t)}$ and put them into $U_{0}[t]$. Then $\mu\left(\left[\sigma_{i}\right] \cap[T] \cap U_{0}[t]\right)>2^{-t}$, a contradiction.

Generally, for each n, we define $U_{n}=\bigcup_{s} U_{n}[s]$ as follows:
At step 0 , do nothing.
At step $s+1$, select the least index i such that
(1) There is no $\tau \succeq \sigma_{i}$ belonging to $U_{0}[s]$.
(2) $\left|\left[\sigma_{i}\right] \cap E_{f(s+n)}\right|>2^{f(s+n)-s-n+1}$.

Then pick any $2^{f(s+n)-s-n+1}$ finite strings in $\left[\sigma_{i}\right] \cap E_{f(s+n)}$ and put them into $U_{n}[s+1]$.

By the same argument as above, for every $s, \mu\left(U_{n}[s+1]-U_{n}[s]\right)<$ 2^{-s-n+2}. So for any $n, \mu\left(U_{n}\right)<2^{-n+3}$ is computable. Moreover, for any σ, if $\mu([\sigma] \cap[T])>0$, then $\mu\left([\sigma] \cap[T] \cap U_{n}\right)>0$.

Now define $V_{n}=\bigcup_{m \geq n} U_{m}$. Hence $\mu\left(V_{n}\right)<2^{-n+4}$ for each n. Hence by an easy calculation, $\left\{\mu\left(\bar{V}_{n}\right)\right\}_{n \in \omega}$ is uniformly computable. Thus $\left\{V_{n}\right\}_{n \in \omega}$ is a Schnorr test. By the property of $\left\{U_{n}\right\}_{n \in \omega}$, for any σ and n, if $\mu([\sigma] \cap[T])>0$, then $\mu\left([\sigma] \cap[T] \cap V_{n}\right)>0$.

For any $\boldsymbol{\Pi}_{2}^{0}$ set G, let $\mathcal{D}_{G}=\{P \mid P \in \boldsymbol{Q} \wedge P \cap G=\emptyset\}$.
Lemma 5.4. If G is a $\boldsymbol{\Pi}_{2}^{0}$ set only containing Schnorr random reals, then \mathcal{D}_{G} is dense in \mathbb{Q}.

Proof. Suppose that G is $\boldsymbol{\Pi}_{2}^{0}$ only containing Schnorr random reals. Let $\left\{U_{n}\right\}_{n \in \omega}$ be a sequence of open sets such that $G=\bigcap_{n} U_{n}$. Let $P \in \boldsymbol{Q}$. We claim that there is some σ such that $P \cap[\sigma] \cap G=\emptyset$ but $\mu(P \cap[\sigma])>0$.

Suppose not. By Lemma 5.3, there is a Schnorr test $\left\{V_{n}\right\}_{n \in \omega}$ such that for any σ, if $\mu([\sigma] \cap P)>0$, then $\mu\left([\sigma] \cap P \cap V_{n}\right)>0$ for each n. Then we build a sequence of strings $\sigma_{0} \prec \sigma_{1} \prec \cdots$ as follows.

Let $\sigma_{0}=\emptyset$. Now suppose $\mu\left(\left[\sigma_{i}\right] \cap P\right)>0$. Let $\tau \succ \sigma_{i}$ be such that $\mu([\tau] \cap P)>0$ and $[\tau] \cap P \subseteq V_{i}$. By the property of $\left\{V_{n}\right\}_{n}$, there exists such a τ. Then by assumption, let $\sigma_{i+1} \succ \tau$ be such that $\left[\sigma_{i+1}\right] \cap P \cap G \neq \emptyset$. Since G only contains Schnorr random reals, $\mu\left(\left[\sigma_{i+1}\right] \cap P \cap U_{i}\right)>0$. Then we may assume that $\left[\sigma_{i+1}\right] \cap P \subseteq U_{i}$ and $\mu\left(\left[\sigma_{i+1} \cap P\right]\right)>0$.

Let $x=\bigcup_{i \in \omega} \sigma_{i}$. Then $x \in P \cap\left(\bigcap_{n \in \omega} U_{n}\right) \cap\left(\bigcap_{n \in \omega} V_{n}\right)$. Since $x \in$ $\bigcap_{n \in \omega} V_{n}, x$ is not Schnorr random, which contradicts the assumption that G only contains Schnorr random reals.

So there is some σ such that $P \cap[\sigma] \cap G=\emptyset$ but $\mu(P \cap[\sigma])>0$. Let $Q=P \cap[\sigma]$. Then $Q \in \boldsymbol{Q}$ and $Q \leq P$.

Theorem 5.5 (Hitchcock, Lutz and Terwijn (5). The collection of Schnorr random reals is not $\boldsymbol{\Sigma}_{3}^{0}$.

Proof. Suppose otherwise. Then there is a countable sequence $\left\{G_{n}\right\}_{n}$ of Π_{2}^{0} sets such that $\bigcup_{n} G_{n}$ contains exactly the Schnorr random reals. Then by Lemmas 5.2 and 5.4, for any sufficiently generic real g over \mathbb{Q}, g is Schnorr random but $g \notin G_{n}$ for any n, a contradiction.

We want to point out that the forcing \mathbb{Q} does not produce a 1-random real. To see this, fix a universal Martin-Löf test $\left\{U_{n}\right\}_{n \in \omega}$. For each n, let $\mathcal{D}_{n}=\left\{P \in \mathbb{Q} \mid P \subseteq U_{n}\right\}$.

Corollary 5.6. For each n, \mathcal{D}_{n} is dense.
Proof. Let $P \in \boldsymbol{Q}$ and $G=2^{\omega}-U_{n}$. Then G is a Π_{1}^{0} class only containing 1-random reals. Then by Lemma 5.4, there is some $Q \leq P$ such that $Q \in \mathcal{D}_{n}$.

So if g is sufficiently generic over \mathbb{Q}, then g is Schnorr random but not 1-random.
6. Δ_{1}^{1}-randomness. In this section, we prove that the collection of Δ_{1}^{1} random reals is not Σ_{3}^{0}. Some basic facts in higher randomness theory can be found in [13], 6] and [2].

Definition 6.1. Define a forcing notion $\mathbb{D}=(\boldsymbol{D}, \leq)$ as follows:
(1) $P \in \boldsymbol{D}$ if and only if P is a Δ_{1}^{1}, closed set of reals with positive measure.
(2) For $P, Q \in \boldsymbol{D}, P \leq Q$ if and only if $P \subseteq Q$.

For any Δ_{1}^{1}-sequence of Δ_{1}^{1}-open sets $\left\{U_{n}\right\}_{n \in \omega}$ with $\lim _{n \rightarrow \infty} \mu\left(U_{n}\right)=0$, set $U=\bigcap_{n} U_{n}$. Let $\mathcal{D}_{U}=\{P \mid P \in \boldsymbol{D} \wedge P \cap U=\emptyset\}$.

Lemma 6.2. \mathcal{D}_{U} is dense.
Proof. Suppose that $\left\{U_{n}\right\}_{n \in \omega}$ is a Δ_{1}^{1}-sequence of Δ_{1}^{1}-open sets with $\lim _{n \rightarrow \infty} \mu\left(U_{n}\right)=0, U=\bigcap_{n} U_{n}$ and $P \in \boldsymbol{D}$. Then there is some large enough n such that $\mu\left(U_{n}\right)<\mu(P) / 2$. Hence the complement $P_{0}=2^{\omega}-U_{n}$ has measure $\geq 1-\mu(P) / 2$. So $P_{0} \cap P$ is a Δ_{1}^{1}, closed set and has measure $\geq \mu(P) / 2$. Thus $P \cap P_{0} \in \boldsymbol{D}$.

For any $\boldsymbol{\Pi}_{2}^{0}$ set G, let $\mathcal{D}_{G}=\{P \mid P \in \boldsymbol{D} \wedge P \cap G=\emptyset\}$.
LEMMA 6.3. If G is a $\boldsymbol{\Pi}_{2}^{0}$ set only containing Δ_{1}^{1}-random reals, then \mathcal{D}_{G} is dense in \mathbb{D}.

Proof. Suppose that G is $\boldsymbol{\Pi}_{2}^{0}$ only containing Δ_{1}^{1}-random reals. Let $\left\{U_{n}\right\}_{n \in \omega}$ be a sequence of open sets such that $G=\bigcap_{n} U_{n}$. Let $P \in \boldsymbol{D}$. Then there is a hyperarithmetic real x such that P is $\Pi_{1}^{0}(x)$. Without loss of generality, we may assume that for any σ, if $[\sigma] \cap P \neq \emptyset$, then $\mu([\sigma] \cap P)>0$ (since we may assume that P only contains $1-x$-random reals). We claim that there is some σ such that $P \cap[\sigma] \cap G=\emptyset$ but $P \cap[\sigma] \neq \emptyset$.

Suppose not. By Lemma 4.3 relativized to x, there is a generalized x-Martin-Löf test $\left\{V_{n}\right\}_{n \in \omega}$ such that for any σ, if $[\sigma] \cap P$ is not empty, then $[\sigma] \cap P \cap \bigcap_{n} V_{n}$ is not empty. Then we build a sequence of strings $\sigma_{0} \prec \sigma_{1} \prec \cdots$ as follows.

Let $\sigma_{0}=\emptyset$. Now suppose $\left[\sigma_{i}\right] \cap P \neq \emptyset$. Let $\tau \succ \sigma_{i}$ be such that $[\tau] \cap P \neq \emptyset$ and $[\tau] \cap P \subseteq V_{i}$. By the property of $\left\{V_{n}\right\}_{n}$, there exists such a τ. Then by assumption, pick $\sigma_{i+1} \succ \tau$ such that $\left[\sigma_{i+1}\right] \cap P \subseteq U_{i}$.

Let $z=\bigcup_{i \in \omega} \sigma_{i}$. Then $z \in P \cap\left(\bigcap_{n \in \omega} U_{n}\right) \cap\left(\bigcap_{n \in \omega} V_{n}\right)$. Since $z \in \bigcap_{n \in \omega} V_{n}$, z is not weakly 2 - x-random. But x is hyperarithmetic, so z is not Δ_{1}^{1}-random, which contradicts the assumption that G only contains Δ_{1}^{1}-random reals.

So there is some σ such that $P \cap[\sigma] \cap G=\emptyset$ but $P \cap[\sigma] \neq \emptyset$. Let $Q=P \cap[\sigma]$. Then $Q \in \boldsymbol{D}$ and $Q \leq P$.

By the same proof as in the previous sections, we have the following result.

Proposition 6.4. The collection of Δ_{1}^{1}-random reals is not $\boldsymbol{\Sigma}_{3}^{0}$.
We give an application of Proposition 6.4.
It is difficult to separate Π_{1}^{1}-Martin-Löf randomness from Δ_{1}^{1}-randomness. The proof in [2] is rather involved and only sketched. Now we may apply the previous results to give a simpler proof (and even a stronger result).

Since the collection of Π_{1}^{1}-Martin-Löf random reals is Σ_{3}^{0}, an immediate consequence of Proposition 6.4 is:

Corollary 6.5 (Chong, Nies and Yu [2]). There is a Δ_{1}^{1}-random real z which is not Π_{1}^{1}-Martin-Löf random.

By analyzing the proof of Proposition 6.4, we can obtain a characterization of where these notions differ.

TheOrem 6.6. For each $x \geq_{h} \mathscr{O}$, there is a Δ_{1}^{1}-random real $z \equiv_{h} x$ which is not Π_{1}^{1}-Martin-Löf random.

Proof. The collection of Π_{1}^{1}-Martin-Löf random reals is a $\Sigma_{2}^{0}(\mathscr{O})$-set. Moreover, there is an \mathscr{O}-computable enumeration of the conditions in \boldsymbol{D} (see Sacks [13]). Then hyperarithmetically in \mathscr{O}, by a finite extension argument, it is not difficult to construct a $\Delta_{1}^{1}(\mathscr{O})$-perfect tree T such that every infinite path in T is Δ_{1}^{1}-random but not Π_{1}^{1}-Martin-Löf random. By Theorem 2.2 , every real $x \in[T]$ is hyperarithmetically above \mathscr{O}. So for each $x \geq_{h} \mathscr{O}$, there is a Δ_{1}^{1}-random real $z \equiv_{h} x$ which is not Π_{1}^{1}-Martin-Löf random.

We want to make an observation here. In [13], Sacks does not use a forcing argument to study measure theoretic uniformity. Instead, he uses a model $\mathscr{M}\left(\omega_{1}^{\mathrm{CK}}, x\right)$. The advantage of his method is to show that $\mathscr{M}\left(\omega_{1}^{\mathrm{CK}}, x\right)$ satisfies $\Delta_{1}^{1}-C A$ (and so $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$) for almost all reals x. Now the reason that a forcing argument is avoided seems clear since the forcing notion with Δ_{1}^{1} sets with positive measures does not produce a generic real x with $\omega_{1}^{x}=\omega_{1}^{\mathrm{CK}}$.
7. Some remarks. We do not know the exact complexity of the collection of Π_{1}^{1}-random reals. We conjecture that it cannot be $\boldsymbol{\Sigma}_{\left\langle\omega_{1}^{\mathrm{CK}}\right.}^{0}$ $\left(=\bigcup_{\alpha<\omega_{1}^{\mathrm{CK}}} \boldsymbol{\Sigma}_{\alpha}^{0}\right)$.

For any cardinal κ and number n, we use κ - $\boldsymbol{\Sigma}_{n+1}^{0}$ to denote the class of sets which can be a union of less than κ-many $\boldsymbol{\Pi}_{n}^{0}$-sets. For example, $\aleph_{1}-$ $\boldsymbol{\Sigma}_{n+1}^{0}$ is exactly the same as $\boldsymbol{\Sigma}_{n+1}^{0}$. We can also define $\kappa-\boldsymbol{\Pi}_{n+1}^{0}$ in a similar way. Then the following is true.

Theorem 7.1. Assume ZFC + Martin's axiom. Then:
(1) The collection of Kurtz random reals is not $2^{\aleph_{0}} \boldsymbol{\Sigma}_{2}^{0}$.
(2) The collection of Schnorr random reals is not $2^{\aleph_{0}} \boldsymbol{\Sigma}_{3}^{0}$.
(3) The collection of 1 -random reals is not $2^{\aleph_{0}}-\Pi_{2}^{0}$.
(4) The collection of weakly 2 -random reals is not $2^{\aleph_{0}}-\Sigma_{3}^{0}$.
(5) The collection of Δ_{1}^{1}-random reals is not $2^{\aleph_{0}} \boldsymbol{\Sigma}_{3}^{0}$.

Proof. All the negative results in the previous sections were proved by c.c.c. forcings except (1) and (3). But it is a theorem under $Z F C+$ Martin's axiom that any set which is a union of less than $2^{\aleph_{0}}$-many meager sets is meager (see [7]). So under ZFC + Martin's axiom, (1)-(5) are all true.

We do not know whether the conclusions of Theorem 7.1 can be proved under $Z F C$. We do not know either whether the following is known.

Question 7.2. Is it consistent with $Z F C+\neg C H$ that every $\boldsymbol{\Pi}_{1}^{1}$ set is a union of \aleph_{1}-many closed sets?

Acknowledgments. The author is partially supported by NSF of China No. 11071114, China-US (NSFC-NSF) collaboration grants and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. We thank Lemmp, Miller and Ng for helpful discussions and the University of Wisconsin-Madison for its hospitality.

References

[1] G. Barmpalias, J. Miller, and A. Nies, Randomness notions and partial relativization, Israel J. Math., to appear.
[2] C. T. Chong, A. Nies, and L. Yu, Lowness of higher randomness notions, ibid. 66 (2008), 39-60.
[3] R. G. Downey and D. R. Hirschfeldt, Algorithmic Randomness and Complexity, Theory and Applications of Computability, Springer, New York, 2010.
[4] R. Downey, A. Nies, R. Weber, and L. Yu, Lowness and Π_{2}^{0} nullsets, J. Symbolic Logic 71 (2006), 1044-1052.
[5] J. M. Hitchcock, J. H. Lutz, and S. A. Terwijn, The arithmetical complexity of dimension and randomness, ACM Trans. Comput. Logic 8 (2007), no. 2, art. 13, 22 pp .
[6] G. Hjorth and A. Nies, Randomness in effective descriptive set theory, J. London Math. Soc. 75 (2007), 495-508.
[7] T. Jech, Set Theory, Springer Monogr. Math., Springer, Berlin, 2003.
[8] J. S. Miller, Every 2-random real is Kolmogorov random, J. Symbolic Logic 69 (2004), 907-913.
[9] -, The K-degrees, low for K-degrees, and weakly low for K sets, Notre Dame J. Formal Logic 50 (2009), 381-391.
[10] J. S. Miller and L. Yu, On initial segment complexity and degrees of randomness, Trans. Amer. Math. Soc. 360 (2008), 3193-3210.
[11] A. Nies, Computability and Randomness, Oxford Logic Guides 51, Oxford Univ. Press, Oxford, 2009.
[12] A. Nies, F. Stephan, and S. A. Terwijn, Randomness, relativization and Turing degrees, J. Symbolic Logic 70 (2005), 515-535.
[13] G. E. Sacks, Higher Recursion Theory, Perspectives in Math. Logic, Springer, Berlin, 1990.

Liang Yu
Institute of Mathematical Science
Nanjing University
Nanjing 210093, P.R. China
and
The State Key Lab for Novel Software Technology
Nanjing University
Nanjing 210093, P.R. China
E-mail: yuliang.nju@gmail.com

Received 7 December 2010;
in revised form 10 October 2011

[^0]: 2010 Mathematics Subject Classification: 03D32, 03E15, 54H05.

