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Descriptive set theoretical complexity of randomness notions

by

Liang Yu (Nanjing)

Abstract. We study the descriptive set theoretical complexity of various randomness
notions.

1. Introduction. The original motivation of this paper is to charac-
terize weakly 2-random reals by prefix-free Kolmogorov complexity. Since
Schnorr characterized Martin–Löf randomness by prefix-free Kolmogorov
complexity, many people thought that every randomness notion should have
a characterization by initial segment complexity. For example, Miller and
others obtained a very successful characterization of 2-randomness.

Theorem 1.1 (Miller [8], [9]; Nies, Stephan and Terwijn [12]). A real x
is 2-random if and only if

∃c∀n ∃m (C(x�m) ≥ m− c)
if and only if

∃c∀n ∃m > n (K(x�m) ≥ m+K(m)− c).
Recently, Miller and Yu [10] obtained the following result.

Theorem 1.2 (Miller and Yu [10]). x⊕ y is random if and only if

∃c∀n (K(x�n) + C(y�n) ≥ 2n− c).
This theorem gives almost all the “relativizable” randomness notions

stronger than Martin–Löf randomness unrelativized Kolmogorov complexity
characterizations. An important question remaining open is whether there
is a Kolmogorov complexity characterization for weak 2-randomness. This
question has been approached in many ways. For example, one way is to ask
whether there is a sequence {fn}n∈ω of functions such that for every real x,
x is weakly 2-random if and only if ∃n ∀m ∃k ≥ m (K(x�k) ≥ k + fn(k)).
Most of these attempts aimed at some kind of Σ0

3-characterizations for weak
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2-randomness. But all of the ways (of course) failed. So people suspected
that the collection of weakly 2-random reals is not Σ0

3. We confirm this in
this paper.

Then we also study the descriptive set theoretical complexity of some
other classical randomness notions. Many results have been obtained in [5]
by using Wadge reductions. Given two sets of reals A and B, A is Wadge
reducible to B, written A ≤W B, if there is a continuous function f : 2ω → 2ω

such that for every x, x ∈ A if and only if f(x) ∈ B. The authors of [5] prove,
for example, that the collection of Schnorr random reals is Π0

3-complete
(and so non-Σ0

3). Here we give another more direct way, by using forcing
arguments, to prove that result. One might think that the results in [5] are
stronger since it is proved that the collection of Schnorr random reals is
Π0

3-complete. Actually they are not by the following well known descriptive
set theory result.

Theorem 1.3 (Folklore). For any ξ < ω1 and each Σ0
ξ (or Π0

ξ) set A,
if A is not Π0

ξ (or Σ0
ξ), then every Σ0

ξ set is Wadge reducible to A.

Theorem 1.3 is an immediate consequence of Borel determinacy. More-
over, our technique yields results of independent interest. For example, we
prove that the forcing notion of Π0

1-classes with computable positive mea-
sures does not produce a Martin–Löf random real.

We also study the complexity of the collection of ∆1
1-random reals.

Sacks [13] essentially proves that the collection of ∆1
1-random reals is Π0

3.
Hjorth and Nies [6] introduced Π1

1-Martin–Löf randomness, which is an
analog to the classical Martin–Löf randomness in higher recursion theory.
But a difficult question was whether Π1

1-Martin–Löf randomness is different
from ∆1

1-randomness. The separation of Π1
1-Martin–Löf randomness from

∆1
1-randomness was given in [2]. The proof in that paper was rather in-

volved, and only a sketch was presented. Here we give a full proof by a
simpler argument. Furthermore, we have a total characterization of where
∆1

1-randomness is different from Π1
1-Martin–Löf randomness.

The paper is organized as follows: In Section 2, we give some basic defini-
tions. In Section 3, we present some easy facts about the descriptive set theo-
retical complexity of various randomness notions. Most of them are probably
known. In Section 4, we prove that the collection of weakly 2-random reals
is not Σ0

3. In Section 5, we prove that the collection of Schnorr random reals
is not Σ0

3. In Section 6, we prove that the collection of ∆1
1-random reals is

not Σ0
3. In Section 7, we raise some questions.

2. Preliminaries. A real is Kurtz random if it does not belong to any
Π0

1 null set. Since every co-null open Σ0
1 set is dense, every weakly 1-generic

real is Kurtz random.
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A Schnorr test is a uniformly c.e. sequence {Un}n∈ω of open sets such
that µ(Un) = 2−n for every n. A real x is Schnorr random if for every
Schnorr test {Un}n∈ω, x 6∈

⋂
n∈ω Un. This is equivalent to saying that x 6∈⋂

n∈ω Un for any c.e. sequence {Un}n∈ω of open sets such that µ(Un) = 2−f(n)

for every n where f is a computable function from ω to [0, 1] such that
limn→∞ f(n) = 0.

A Martin–Löf test is a uniformly c.e. sequence {Un}n∈ω of open sets such
that µ(Un) < 2−n for every n. A real x is Martin–Löf random (or 1-random)
if for every Martin–Löf test {Un}n∈ω, x 6∈

⋂
n∈ω Un. There exists a universal

Martin–Löf test, i.e. a Martin–Löf test covering all the Martin–Löf tests.
A generalized Martin–Löf test is a uniformly c.e. sequence {Un}n∈ω of

open sets such that limn→∞ µ(Un) = 0. A real x is weakly 2-random if
for every generalized Martin–Löf test {Un}n∈ω, x 6∈

⋂
n∈ω Un. There is no

universal Martin–Löf test. We have the following nice result.

Theorem 2.1 (Downey, Nies, Weber and Yu [4]; Hirschfeldt and Mil-
ler [4]). A real x is weakly 2-random if and only if x is 1-random and does
not Turing-compute any non-computable ∆0

2-real.

For some information about higher randomness, see [13], [6] and [2].
A real is ∆1

1-random if and only if it does not belong to any ∆1
1 null set.

It is essentially due to Sacks [13] that a real x is ∆1
1-random if and only if

for any ∆1
1-sequence of ∆1

1 open sets {Un}n∈ω for which limn→∞ µ(Un) = 0,
x 6∈

⋂
n Un. So the collection of ∆1

1-random reals is Π0
3.

A Π1
1-Martin–Löf test is a Π1

1-sequence of Π1
1-coded open sets {Un}n∈ω

(i.e. the set {(n, σ) | σ ∈ Un} is Π1
1) so that µ(Un) < 2−n for every n. Hjorth

and Nies [6] proved that there is a universal Π1
1-Martin–Löf test. A real is

Π1
1-Martin–Löf random if it does not belong to any Π1

1-Martin–Löf test. We
have the following result.

Theorem 2.2 (Chong, Nies and Yu [2]). If ωx1 = ωCK
1 , then x is ∆1

1-
random if and only if x is Π1

1-Martin–Löf random.

We identify an open set U with a set of finite strings. For any finite string
σ ∈ 2<ω, we use [σ] to denote the open set {x | x � σ}. For any tree T , we
write [T ] for the closed set {x | ∀n (x�n ∈ T )}.

For more information about randomness and computability theory,
see [11] and [3].

3. Some basic facts. The following facts are immediate and probably
known. Many of them can be found in [5].

Proposition 3.1.

(1) The collection of Kurtz random reals is Π0
2 but not Π0

2.
(2) The collection of Schnorr random reals is Π0

3.
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(3) The collection of 1-random reals is Σ0
2.

(4) The collection of weakly 2-random reals is Π0
3 but not Π0

3.
(5) The collection of ∆1

1-random reals is Π0
3.

Proof. (1) Obviously the collection K of Kurtz random reals is Π0
2.

Suppose that K is Π0
2. Then there is a recursive set R ⊆ ω × ω × 2<ω

so that x ∈ K if and only if ∀n ∃mR(n, x�m). For each n, let Kn =
{x | ∃mR(n, x�m)}. Then Kn is Σ0

1, co-null and K ⊆ Kn for every n.
Hence it would be easy to computably construct a sequence of finite strings
σ0 ≺ σ1 ≺ · · · so that [σn] ⊆ Kn for every n. Then the computable real
x =

⋃
n∈ω σn ∈

⋂
n∈ωKn = K would be Kurtz random, a contradiction.

(2) Obvious (see [5]).
(3) Obvious.
(4) Obviously the collection of weakly 2-random reals W is Π0

3. Suppose
that K is Π0

3. Then there is a computable set R ⊆ ω × ω × ω × 2<ω such
that x ∈ W if and only if ∀n ∃m ∀j R(n,m, x�j). For each n, let Wn =
{x | ∃m∀j R(n,m, x�j)} and Wn,m = {x | ∀j R(n,m, x�j)}. Then Kn is Σ0

2,
co-null and W ⊆Wn for every n. We ∅′-computably construct a sequence of
finite strings σ0 ≺ σ1 ≺ · · · and Π0

1 positive measure sets T0 ⊇ T1 ⊇ · · · so
that σn ∈ Tn as follows: σ0 = ∅ and W0 = 2ω. Given σn and Rn, since Wn+1

is co-null, we may ∅′-computably find the least m such that Tn∩Wn,m∩ [σn]
= {x � σn | x ∈ [Tn] ∧ ∀j R(n,m, x�j)} has positive measure. Let Tn+1 =
Tn ∩Wn,m ∩ [σn] and σn+1 be a finite string in Tn+1 extending σn. Then
the ∅′-computable real x =

⋃
n∈ω σn ∈

⋂
n∈ωWn = W is weakly 2-random,

a contradiction to Theorem 2.1.
(5) Obvious.

The results above about descriptive complexity of the collections of Kurtz
random and 1-random reals are rigid.

Proposition 3.2.

(1) The collection of Kurtz random reals is not Σ0
2.

(2) The collection of 1-random reals is not Π0
2.

Proof. (1) Otherwise, there is a sequence {Pn}n∈ω of closed sets such that⋃
n Pn contains exactly all the Kurtz random reals. Since all the generic reals

are Kurtz random,
⋃
n Pn is comeager. Hence there must be some n such

that Pn is not meager. Then Pn must contain an interval and so contain a
computable real, a contradiction.

(2) Otherwise, there is a sequence {Un}n∈ω of open sets such that
⋂
n Un

contains exactly all the 1-random reals. Then for every n, µ(Un) = 1. So
every Un is dense. Hence every sufficiently generic real would belong to⋂
n Un. But no 1-generic real can be random, a contradiction.

The second result above can be found in [5].
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4. Weak 2-randomness. In this section, we prove that the collection
of weakly 2-random reals is not Σ0

3. We apply a forcing argument.

Definition 4.1. Define a forcing notion P = (P ,≤) as follows:

(1) P ∈ P if and only if P is a Π0
1-class with positive measure.

(2) For P,Q ∈ P , P ≤ Q if and only if P ⊆ Q.

Let {Fm}m∈ω be an increasing sequence of Π0
1 sets such that

⋃
m∈ω Fm

is of measure 1. Set C =
⋃
m∈ω Fm. Let DC = {P | P ∈ P ∧ P ⊆ C}.

Lemma 4.2. DC is dense.

Proof. Suppose that {Fm}m∈ω is an increasing sequence of Π0
1 sets such

that
⋃
m∈ω Fm is of measure 1 and C =

⋃
m∈ω Fm. Let P ∈ P . Then there

is some large enough m such that µ(Fm) > 1− µ(P )/2. So

µ(Fm∩P ) = µ(Fm)+µ(P )−µ(Fm∪P ) > 1−µ(P )/2+µ(P )−1 = µ(P )/2.

Thus Fm ∩ P ∈ DC .

The following lemma is a stronger version of Lemma 2.2 in [1].

Lemma 4.3. For every computable tree T , there is a generalized Martin–
Löf test {Vn}n∈ω such that for any σ, if [σ] ∩ [T ] is not empty, then [σ] ∩
[T ] ∩

⋂
n Vn is not empty.

Proof. The idea is to build a uniformly c.e. sequence {Vn}n∈ω of open
sets densely meeting [T ]. The method is just like building a null comeager
set. But we may make some mistakes since there is no effective way to predict
whether [σ] ∩ [T ] is not empty. So, at every step, we need to “correct” the
construction of the previous steps. But the measure of mistakes will become
very small whenever the step is large enough. This is the reason we can
ensure that {Vn}n∈ω is a generalized Martin–Löf test.

Fix a computable tree T . So there is a computable approximation to T
by computable trees {Ts}s∈ω such that

(1) T0 = T ;
(2) Ts+1 = {σ | σ ∈ T ∧ ∃τ ∈ 2s+1 ∩ T (τ is compatible with σ)}.

Then Ts+1 ⊆ Ts for every s.
Fix a computable enumeration {σi}i∈ω of 2<ω and an enumeration

{σs+1
i }i≤2s+1 of 2s+1 for each s.
We construct Vn for every n step by step.

Step 0: We put the empty string λ into V0. So the open set V0 is 2ω.

Step s+ 1:

Substep 1: We correct {Vk}k≤s step by step.

Substep 1.0: Check whether there is a σ ∈ Ts+1∩2s+1. If so, do nothing.
Otherwise, stop the construction.
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Substep 1.k: Check whether there is some τ ∈ Vk such that there is no
ν ∈ Ts+1 ∩ 2s+1 with ν � τ . If so, check whether there is some τ ′ � τ�k
in 2|τ | such that there is a ν ∈ Ts+1 ∩ 2s+1 with that ν � τ ′. If so, put τ ′

into Vj for all j ≤ k; otherwise, do nothing.

Substep 2: For every i, check whether there is some τ ∈ Ts+1 extend-
ing σs+1

i . If not, go to i+ 1; otherwise, check whether there is some τ ∈ Vs
such that τ � σs+1

i . If yes, put τ into Vs+1; otherwise, check whether there
is some very long τ � σs+1

i in Ts+1 that is longer than any finite strings
mentioned before. If yes, pick such a τ and put it into Vs+1; otherwise, do
nothing. Now for every k ≤ s, check whether there is some τ ′ ∈ Vk compat-
ible with τ . If yes, do nothing; otherwise, put τ into Vk.

This finishes the construction.
By the construction, Vn+1 ⊆ Vn for any n.
If σ ∈ T and [σ] ∩ [T ] 6= ∅, then there is some stage s0 ≥ |σ| at which

we find some σ0 � σ such that σ0 ∈ T and [σ0] ∩ [T ] 6= ∅ and put it
into V|σ|. Then there is some larger stage s1 ≥ |σ0| at which we find some
σ1 � σ0 such that σ1 ∈ T and [σ1] ∩ [T ] 6= ∅ and put it into V|σ0|, etc. Since⋂
n∈ω Vn =

⋂
i∈ω V|σi|, the real x =

⋃
i∈ω σi is in (

⋂
n∈ω Vn) ∩ T . In other

words, [σ] ∩ [T ] ∩
⋂
n Vn is not empty.

To see that {Vn}n∈ω is a generalized Martin–Löf test, it is sufficient to
show limn→∞ µ(Vn) = 0. For any i, there is a large enough s > i+1 such that
the open set Es = {σ ∈ 2s | σ ∈ Ts} has measure less than µ([T ]) + 2−i−1.
Then from step s of the construction, except the correction substep, we
only put a prefix-free set of finite strings into Vs. Moreover, except those
strings put in at the correction substep, for different strings in Vs, they have
different lengths greater than or equal to s. But at the correction substep,
by the assumption on Es, we put into Vs a set of finite strings of measure
at most 2−i−1 . So

µ(Vs) ≤
∑
t≥s

2−t + 2−i−1 = 2−s+1 + 2−i−1 ≤ 2−i−1 + 2−i−1 = 2−i.

Thus limn→∞ µ(Vn) = 0.

For any Π0
2 set G, let DG = {P | P ∈ P ∧ P ∩G = ∅}.

Lemma 4.4. If G is a Π0
2 set only containing weakly 2-random reals,

then DG is dense in P.

Proof. Suppose that G is Π0
2 only containing weakly 2-random reals.

Let {Un}n∈ω be a sequence of open sets such that G =
⋂
n Un. Let P ∈ P .

Without loss of generality, we may assume that for any σ, if [σ] ∩ P 6= ∅,
then µ([σ] ∩ P ) > 0 (since we may assume that P only contains 1-random
reals). Then we claim that there is some σ such that P ∩ [σ] ∩ G = ∅ but
P ∩ [σ] 6= ∅.
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Suppose not. By Lemma 4.3, there is a generalized Martin–Löf test
{Vn}n∈ω such that for any σ, if [σ] ∩ P is not empty, then [σ] ∩ P ∩

⋂
n Vn

is not empty. Then we build a sequence of strings σ0 ≺ σ1 ≺ · · · as follows.
Let σ0 = ∅. Now suppose [σi] ∩ P 6= ∅. Let τ � σi with [τ ] ∩ P 6= ∅

and [τ ] ∩ P ⊆ Vi. By the property of {Vn}n, there exists such a τ . Then by
assumption, let σi+1 � τ be such that [σi+1] ∩ P ⊆ Ui.

Let x =
⋃
i∈ω σi. Then x ∈ P ∩ (

⋂
n∈ω Un) ∩ (

⋂
n∈ω Vn). Since x ∈⋂

n∈ω Vn, x is not weakly 2-random, which contradicts the fact that G only
contains weakly 2-random reals.

So there is some σ such that P ∩ [σ] ∩ G = ∅ but P ∩ [σ] 6= ∅. Let
Q = P ∩ [σ]. Then Q ∈ P and Q ≤ P .

Theorem 4.5. The collection of weakly 2-random reals is not Σ0
3.

Proof. Suppose otherwise. Then there is a countable sequence {Gn}n of
Π0

2 sets such that
⋃
nGn contains exactly all the weakly 2-random reals. So

Gn only contains weakly 2-random reals for every n. Then by Lemma 4.4, for
any sufficiently generic real g over P, g 6∈ Gn for any n. By Lemma 4.2, for
any sufficiently generic real g over P, g is weakly 2-random, a contradiction.

5. Schnorr randomness. In this section, we give another proof that
the collection of Schnorr random reals is not Σ0

3. We use a similar method
to the previous section with some modifications.

Definition 5.1. Define a forcing notion Q = (Q,≤) as follows:

(1) Q ∈ Q if and only if Q is a Π0
1-class with some computable positive

measure.
(2) For P,Q ∈ Q, P ≤ Q if and only if P ⊆ Q.

For any Schnorr test {Un}n∈ω with µ(Un) = 2−n for every n, set U =⋂
n Un. Let DU = {P | P ∈ Q ∧ P ∩ U = ∅}.

Lemma 5.2. DU is dense.

Proof. Suppose that {Un}n∈ω is a Schnorr test with µ(Un) = 2−n for
every n, U =

⋂
n Un and P ∈ Q. Then there is some large enough n such

that µ(Un) < µ(P )/2. Hence the complement P0 = 2ω − Un has measure
≥ 1−µ(P )/2. So P0 ∩P has measure ≥ µ(P )/2. We show that µ(P0 ∩P ) is
a computable real. Both P and P0 can be represented by computable trees
T and T 0 respectively. Since both P and P0 belong to Q, for any i we may
computably find some large enough si such that µ((

⋃
σ∈Esi

[σ])−P ) < 2−i−1

and µ((
⋃
σ∈E0

si
[σ]) − P0) < 2−i−1 where Esi = {σ ∈ 2si | σ ∈ T} and
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E0
si

= {σ ∈ 2si | σ ∈ T 0}. Then

µ
(( ⋃
σ∈Esi∩E0

si

[σ]
)
−(P∩P0)

)
= µ
((( ⋃

σ∈Esi∩E0
si

[σ]
)
−P
)
∪
(( ⋃
σ∈Esi∩E0

si

[σ]
)
−P0

))
≤ µ

(( ⋃
σ∈Esi∩E0

si

[σ]
)
−P

)
+µ
(( ⋃

σ∈Esi∩E0
si

[σ]
)
−P0

)
≤ 2−i−1 +2−i−1 = 2−i.

So
µ
( ⋃
σ∈Esi∩E0

si

[σ]
)
− 2−i ≤ µ(P ∩ P0) ≤ µ

( ⋃
σ∈Esi∩E0

si

[σ]
)
.

Thus µ(P ∩ P0) is computable. In other words, P ∩ P0 ∈ Q.

Now we want to mimic the proof of Lemma 4.4. But there is a problem:
in that proof we can ensure that, for any condition P ∈ P , µ([σ] ∩ P ) > 0
whenever [σ]∩P is not empty. The reason is that we can ensure that P only
contains 1-random reals. But every condition Q ∈ Q contains a computable
real. So we have to be more careful.

Lemma 5.3. For ever computable tree T for which µ([T ]) > 0 is com-
putable, there is a Schnorr test {Vn}n∈ω such that for any σ, if µ([σ] ∩ [T ])
> 0, then µ([σ] ∩ [T ] ∩ Vn) > 0 for each n.

Proof. Suppose that T is a computable tree such that µ([T ]) > 0 is
computable. Then there is a computable function f : ω → ω such that for
every s, |Ef(s)|/2f(s) − µ(T ) < 2−s where Et = {σ ∈ 2t | σ ∈ T}. Fix a
computable enumeration {σi}i∈ω of 2<ω and an enumeration {σs+1

i }i≤2s+1

of 2s+1 for each s. We define U0 =
⋃
s U0[s] as follows:

At step 0, do nothing.
At step s+ 1, select the least index i such that

(1) There is no τ � σi belonging to U0[s].
(2) |[σi] ∩ Ef(s)| > 2f(s)−s+1.

Then pick any 2f(s)−s+1 finite strings in [σi] ∩ Ef(s) and put them into
U0[s+ 1].

Then by the definition of f , U0[s+ 1] ∩ [σi] ∩ [T ] 6= ∅. Obviously at any
stage s+1, µ(U0[s+1]−U0[s]) < 2−s+2. So µ(U0) is computable. Moreover,
for any σ, if µ([σ] ∩ [T ]) > 0, then µ([σ] ∩ [T ] ∩ U0) > 0. If not, pick the
least index i such that µ([σi] ∩ [T ]) > 0 but µ([σ] ∩ [T ] ∩ U0) = 0. Then
there is a large enough stage s0 such that for each j < i, if µ([σj ]∩ [T ]) > 0,
then µ([σj ] ∩ [T ] ∩ U0[s0]) > 0. Suppose that µ([σi] ∩ [T ]) > 2−k; then at
any stage t > s0 + k, |[σi] ∩ Ef(t)| > 2f(t)−k > 2f(t)−t+1. Then we pick
any 2f(t)−t+1 finite strings in [σi] ∩ Ef(t) and put them into U0[t]. Then
µ([σi] ∩ [T ] ∩ U0[t]) > 2−t, a contradiction.
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Generally, for each n, we define Un =
⋃
s Un[s] as follows:

At step 0, do nothing.
At step s+ 1, select the least index i such that

(1) There is no τ � σi belonging to U0[s].
(2) |[σi] ∩ Ef(s+n)| > 2f(s+n)−s−n+1.

Then pick any 2f(s+n)−s−n+1 finite strings in [σi]∩Ef(s+n) and put them
into Un[s+ 1].

By the same argument as above, for every s, µ(Un[s + 1] − Un[s]) <
2−s−n+2. So for any n, µ(Un) < 2−n+3 is computable. Moreover, for any σ,
if µ([σ] ∩ [T ]) > 0, then µ([σ] ∩ [T ] ∩ Un) > 0.

Now define Vn =
⋃
m≥n Um. Hence µ(Vn) < 2−n+4 for each n. Hence by

an easy calculation, {µ(Vn)}n∈ω is uniformly computable. Thus {Vn}n∈ω is a
Schnorr test. By the property of {Un}n∈ω, for any σ and n, if µ([σ]∩[T ]) > 0,
then µ([σ] ∩ [T ] ∩ Vn) > 0.

For any Π0
2 set G, let DG = {P | P ∈ Q ∧ P ∩G = ∅}.

Lemma 5.4. If G is a Π0
2 set only containing Schnorr random reals, then

DG is dense in Q.

Proof. Suppose that G is Π0
2 only containing Schnorr random reals. Let

{Un}n∈ω be a sequence of open sets such that G =
⋂
n Un. Let P ∈ Q. We

claim that there is some σ such that P ∩ [σ] ∩G = ∅ but µ(P ∩ [σ]) > 0.
Suppose not. By Lemma 5.3, there is a Schnorr test {Vn}n∈ω such that

for any σ, if µ([σ] ∩ P ) > 0, then µ([σ] ∩ P ∩ Vn) > 0 for each n. Then we
build a sequence of strings σ0 ≺ σ1 ≺ · · · as follows.

Let σ0 = ∅. Now suppose µ([σi] ∩ P ) > 0. Let τ � σi be such that
µ([τ ] ∩ P ) > 0 and [τ ] ∩ P ⊆ Vi. By the property of {Vn}n, there exists
such a τ . Then by assumption, let σi+1 � τ be such that [σi+1]∩P ∩G 6= ∅.
Since G only contains Schnorr random reals, µ([σi+1] ∩ P ∩ Ui) > 0. Then
we may assume that [σi+1] ∩ P ⊆ Ui and µ([σi+1 ∩ P ]) > 0.

Let x =
⋃
i∈ω σi. Then x ∈ P ∩ (

⋂
n∈ω Un) ∩ (

⋂
n∈ω Vn). Since x ∈⋂

n∈ω Vn, x is not Schnorr random, which contradicts the assumption that
G only contains Schnorr random reals.

So there is some σ such that P ∩ [σ] ∩ G = ∅ but µ(P ∩ [σ]) > 0. Let
Q = P ∩ [σ]. Then Q ∈ Q and Q ≤ P .

Theorem 5.5 (Hitchcock, Lutz and Terwijn [5]). The collection of
Schnorr random reals is not Σ0

3.

Proof. Suppose otherwise. Then there is a countable sequence {Gn}n of
Π0

2 sets such that
⋃
nGn contains exactly the Schnorr random reals. Then

by Lemmas 5.2 and 5.4, for any sufficiently generic real g over Q, g is Schnorr
random but g 6∈ Gn for any n, a contradiction.
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We want to point out that the forcing Q does not produce a 1-random
real. To see this, fix a universal Martin–Löf test {Un}n∈ω. For each n, let
Dn = {P ∈ Q | P ⊆ Un}.

Corollary 5.6. For each n, Dn is dense.

Proof. Let P ∈ Q and G = 2ω −Un. Then G is a Π0
1 class only contain-

ing 1-random reals. Then by Lemma 5.4, there is some Q ≤ P such that
Q ∈ Dn.

So if g is sufficiently generic over Q, then g is Schnorr random but not
1-random.

6. ∆1
1-randomness. In this section, we prove that the collection of ∆1

1-
random reals is not Σ0

3. Some basic facts in higher randomness theory can
be found in [13], [6] and [2].

Definition 6.1. Define a forcing notion D = (D,≤) as follows:

(1) P ∈ D if and only if P is a ∆1
1, closed set of reals with positive

measure.
(2) For P,Q ∈D, P ≤ Q if and only if P ⊆ Q.

For any ∆1
1-sequence of ∆1

1-open sets {Un}n∈ω with limn→∞ µ(Un) = 0,
set U =

⋂
n Un. Let DU = {P | P ∈D ∧ P ∩ U = ∅}.

Lemma 6.2. DU is dense.

Proof. Suppose that {Un}n∈ω is a ∆1
1-sequence of ∆1

1-open sets with
limn→∞ µ(Un) = 0, U =

⋂
n Un and P ∈ D. Then there is some large

enough n such that µ(Un) < µ(P )/2. Hence the complement P0 = 2ω − Un
has measure ≥ 1 − µ(P )/2. So P0 ∩ P is a ∆1

1, closed set and has measure
≥ µ(P )/2. Thus P ∩ P0 ∈D.

For any Π0
2 set G, let DG = {P | P ∈D ∧ P ∩G = ∅}.

Lemma 6.3. If G is a Π0
2 set only containing ∆1

1-random reals, then DG
is dense in D.

Proof. Suppose that G is Π0
2 only containing ∆1

1-random reals. Let
{Un}n∈ω be a sequence of open sets such that G =

⋂
n Un. Let P ∈ D.

Then there is a hyperarithmetic real x such that P is Π0
1(x). Without loss of

generality, we may assume that for any σ, if [σ]∩P 6= ∅, then µ([σ]∩P ) > 0
(since we may assume that P only contains 1-x-random reals). We claim
that there is some σ such that P ∩ [σ] ∩G = ∅ but P ∩ [σ] 6= ∅.

Suppose not. By Lemma 4.3 relativized to x, there is a generalized
x-Martin–Löf test {Vn}n∈ω such that for any σ, if [σ] ∩ P is not empty,
then [σ] ∩ P ∩

⋂
n Vn is not empty. Then we build a sequence of strings

σ0 ≺ σ1 ≺ · · · as follows.
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Let σ0 = ∅. Now suppose [σi]∩P 6= ∅. Let τ � σi be such that [τ ]∩P 6= ∅
and [τ ] ∩ P ⊆ Vi. By the property of {Vn}n, there exists such a τ . Then by
assumption, pick σi+1 � τ such that [σi+1] ∩ P ⊆ Ui.

Let z =
⋃
i∈ω σi. Then z ∈ P∩(

⋂
n∈ω Un)∩(

⋂
n∈ω Vn). Since z ∈

⋂
n∈ω Vn,

z is not weakly 2-x-random. But x is hyperarithmetic, so z is not ∆1
1-random,

which contradicts the assumption that G only contains ∆1
1-random reals.

So there is some σ such that P ∩ [σ] ∩ G = ∅ but P ∩ [σ] 6= ∅. Let
Q = P ∩ [σ]. Then Q ∈D and Q ≤ P .

By the same proof as in the previous sections, we have the following
result.

Proposition 6.4. The collection of ∆1
1-random reals is not Σ0

3.

We give an application of Proposition 6.4.
It is difficult to separate Π1

1-Martin–Löf randomness from ∆1
1-random-

ness. The proof in [2] is rather involved and only sketched. Now we may apply
the previous results to give a simpler proof (and even a stronger result).

Since the collection of Π1
1-Martin–Löf random reals is Σ0

3, an immediate
consequence of Proposition 6.4 is:

Corollary 6.5 (Chong, Nies and Yu [2]). There is a ∆1
1-random real

z which is not Π1
1-Martin–Löf random.

By analyzing the proof of Proposition 6.4, we can obtain a characteriza-
tion of where these notions differ.

Theorem 6.6. For each x ≥h O, there is a ∆1
1-random real z ≡h x

which is not Π1
1-Martin–Löf random.

Proof. The collection of Π1
1-Martin–Löf random reals is a Σ0

2(O)-set.
Moreover, there is an O-computable enumeration of the conditions in D (see
Sacks [13]). Then hyperarithmetically in O, by a finite extension argument,
it is not difficult to construct a ∆1

1(O)-perfect tree T such that every infinite
path in T is ∆1

1-random but not Π1
1-Martin–Löf random. By Theorem 2.2,

every real x ∈ [T ] is hyperarithmetically above O. So for each x ≥h O, there
is a ∆1

1-random real z ≡h x which is not Π1
1-Martin–Löf random.

We want to make an observation here. In [13], Sacks does not use a
forcing argument to study measure theoretic uniformity. Instead, he uses a
model M (ωCK

1 , x). The advantage of his method is to show that M (ωCK
1 , x)

satisfies ∆1
1-CA (and so ωx1 = ωCK

1 ) for almost all reals x. Now the rea-
son that a forcing argument is avoided seems clear since the forcing notion
with ∆1

1 sets with positive measures does not produce a generic real x with
ωx1 = ωCK

1 .
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7. Some remarks. We do not know the exact complexity of the
collection of Π1

1-random reals. We conjecture that it cannot be Σ0
<ωCK

1

(=
⋃
α<ωCK

1
Σ0
α).

For any cardinal κ and number n, we use κ-Σ0
n+1 to denote the class of

sets which can be a union of less than κ-many Π0
n-sets. For example, ℵ1-

Σ0
n+1 is exactly the same as Σ0

n+1. We can also define κ-Π0
n+1 in a similar

way. Then the following is true.

Theorem 7.1. Assume ZFC + Martin’s axiom. Then:

(1) The collection of Kurtz random reals is not 2ℵ0-Σ0
2.

(2) The collection of Schnorr random reals is not 2ℵ0-Σ0
3.

(3) The collection of 1-random reals is not 2ℵ0-Π0
2.

(4) The collection of weakly 2-random reals is not 2ℵ0-Σ0
3.

(5) The collection of ∆1
1-random reals is not 2ℵ0-Σ0

3.

Proof. All the negative results in the previous sections were proved by
c.c.c. forcings except (1) and (3). But it is a theorem under ZFC+Martin’s
axiom that any set which is a union of less than 2ℵ0-many meager sets is
meager (see [7]). So under ZFC + Martin’s axiom, (1)–(5) are all true.

We do not know whether the conclusions of Theorem 7.1 can be proved
under ZFC. We do not know either whether the following is known.

Question 7.2. Is it consistent with ZFC + ¬CH that every Π1
1 set is

a union of ℵ1-many closed sets?
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