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Super real closed rings

by

Marcus Tressl (Passau)

Abstract. A super real closed ring is a commutative ring equipped with the operation
of all continuous functions Rn

→ R. Examples are rings of continuous functions and super
real fields attached to z-prime ideals in the sense of Dales and Woodin. We prove that super
real closed rings which are fields are an elementary class of real closed fields which carry all
o-minimal expansions of the real field in a natural way. The main part of the paper develops
the commutative algebra of super real closed rings, by showing that many constructions of
lattice ordered rings can be performed inside super real closed rings; the most important
are: residue rings, complete and classical quotients, convex hulls, valuations, Prüfer hulls
and real closures over proconstructible subsets. We also give a counterexample to the
conjecture that the first order theory of (pure) rings of continuous functions is the theory
of real closed rings, which says in addition that a semi-local model is a product of fields.
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1. Introduction. A super real field (cf. [Da-Wo]) is the quotient field
of the ring C(X) of continuous, real-valued functions on a topological space
X divided by a prime ideal p of C(X). The ideal p is called a prime z-ideal if
f ∈ p whenever f vanishes on a zero set of some g ∈ p. Take a prime z-ideal
p of C(X) and let K := qf(C(X)/p) be the corresponding super real field.

The initial motivation for this paper was to prove that for every o-
minimal expansion R of the real field (cf. [vdD]) in a first order language L

extending the language for ordered unital rings, there is a natural expansion
M of the field K to an L -structure such that M is an elementary extension
of R.

This is indeed true (cf. (8.5)(ii)) and it turns out that a commutative
algebra lies behind this fact, namely the algebra of super real closed rings:
A super real closed ring is a commutative unital ring A together with maps
FA : An → A for each continuous function F : Rn → R (n ∈ N) such that
the composition rules for the functions FA are the same as for the original
functions F , i.e.

(∗) FA ◦ (G1,A, . . . , Gn,A) = (F ◦ (G1, . . . , Gn))A.

Moreover, addition, multiplication and the identity of R have to be in-
terpreted as addition, multiplication and the identity of A.

Obviously, super real closed rings are precisely the models of a first
order theory TΥ in a language LΥ extending the language of rings, which
has function symbols for each continuous F : Rn → R. Examples are:

(i) Every ring of real-valued continuous functions has a natural expan-
sion to a super real closed ring.

(ii) Every super real field at a z-prime ideal as described above has a
natural expansion to a super real closed field (cf. (8.5)(i)).

The answer to the motivating question is given in Theorem (8.5)(ii),
which says that every super real closed ring which is a field carries all o-
minimal expansions of R (in the sense described above). Hence TΥ+“fields”
is a theory of real closed fields, which act as resplendent structures inside
the class of all o-minimal expansions of fields, stemming from R.

A real closed ring is a commutative unital ring A together with maps
FA : An → A for each semi-algebraic continuous function F : Rn → R
(n ∈ N), defined over Q, such that (∗) holds for these functions and addition,
multiplication and the identity of R are interpreted as addition, multiplica-
tion and the identity of A, respectively. This notion has been introduced by
N. Schwartz in [Schw1]. The original definition is purely ring-theoretic, i.e.
there is no mention of the FA. The formulation above is in part implicitly
contained in [Schw-Ma, Section 12]. We introduce real closed rings in this
way and we show that the functions FA are definable in the pure real closed
ring (by an existential Horn formula, cf. Theorem (2.12)).
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Real closed rings provide a very flexible category of rings in which the
algebra of the rings C(X) can be studied. One purpose of this article is to
show that most of this flexibility is also present in the category of super
real closed rings. The axioms of super real closed rings, which imply that
the class of models of TΥ together with LΥ -morphisms is a variety in the
sense of universal algebra, promise this: we get many basic constructions like
direct and inverse limits, fibre sums and fibre products, free objects, inside
this variety for free (cf. end of Section 5).

In Sections 6, 7 and 9–13, classical manipulations of commutative rings,
or better, of lattice ordered rings, are established inside the category of super
real closed rings. The motor which makes the theory work is a Nullstellen-
satz for rings of continuous functions, which expresses an algebraic relation
between continuous functions that have the same zero set (cf. Section 3,
which reviews parts of [Tr1]).

By classical manipulations we initially mean “developing a theory of
ideals and localizations” for super real closed rings (see Sections 6 and 7).
The appropriate notion of an ideal in a super real closed ring is of course
“the kernel of a ring homomorphism into a super real closed ring, which
respects all the FA”. These ideals are called Υ -ideals; the name is explained
in Section 6.

The set Υ -SpecA of all Υ -ideals of a super real closed ring which are
prime forms a spectral space (cf. [Hoc]), more precisely, a spectral subspace
of SpecA. As in the case of real closed rings, the analysis of the ring is
intimately connected with this topological space, as well as with the full
spectrum of A. In Section 14, a principal geometric difference between the
spectrum of super real closed rings and that of real closed rings of semi-
algebraic functions is proved. We explain this intuitively as follows (the
details can be found in Section 14): If A is a super real closed ring and V ⊆
SpecA is the set of prime ideals containing a given element a ∈ A, then the
only way to enter this variety from the outside is by walking through generic
points of V . But in the semi-algebraic context, say when V corresponds to
the closed unit disc in Rn, V can only be entered by passing through the
boundary of V , and this boundary is not generic in V .

It is not clear if the difference above can be described in a purely ring-
theoretic manner and the question arises if “real closed rings” is the first
order theory of super real closed rings, when viewed as pure rings. In Sec-
tion 4 we show that the ring of continuous semi-algebraic functions R → R
satisfies a sentence in the language of rings which is not satisfied by any
ring of continuous functions C(X). The sentence “almost” says that the
pure field R is o-minimal. I do not know whether a super real closed ring
is a model of that sentence. The result in Section 4 says that either “real
closed rings” is not the intersection of the theory of super real closed rings
with the sentences in the language of rings, or super real closed rings are
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not the first order description of the class of rings of continuous functions
in the language LΥ .

2. Real closed rings—a model-theoretic tour. Let R be a real
closed field and let Λ ⊆ R be a subring. Recall that a Λ-semi-algebraic
subset of Rn is a boolean combination of sets of the form {P ≥ 0} := {x ∈
Rn | P (x) ≥ 0}, where P is a polynomial over Λ in n variables. A map
f : Rn → Rm is called Λ-semi-algebraic if the graph of f is a Λ-semi-
algebraic subset of Rn × Rm. If Λ = R, then we say semi-algebraic instead
of “Λ-semi-algebraic”.

(2.1) Definition. Let R be a real closed field. For n, r ∈ N0, let

CrRn := {f : Rn → R | f is semi-algebraic and

r-times continuously differentiable}.
Moreover we set

C−1
Rn := {f : Rn → R | f is semi-algebraic}.

Given r ∈ N0 ∪{−1}, an R-real closed ring of class Cr is a commutative
unitary ring A together with a collection of functions (fA)n∈N, f∈Cr

Rn
, where

fA : An → A, with the following properties:

1. If f is constantly 0 or constantly 1, then so is fA; if f : R → R is
the identity, then so is fA : A → A; if f : R2 → R is addition or
multiplication, then so is fA : A2 → A.

2. If k ∈ N and fi ∈ Cr
Rk (1 ≤ i ≤ n), then

[f ◦ (f1, . . . , fn)]A = fA ◦ (f1,A, . . . , fn,A).

If r=0, then we say R-real closed instead of “R-real closed of class Cr”.
If R is the field Ralg of real algebraic numbers, then we say real closed of
class Cr instead of “R-real closed of class Cr”. If r = 0 and R = Ralg, then
we simply say real closed.

Note. We do not require that 1 6= 0. Hence the null ring is also consid-
ered to be R-real closed of class Cr.

(2.2) Observation. Every real closed ring is reduced.

Proof. Let a ∈ A be such that a3 = 0. Let f : Ralg → Ralg be defined
by f(x) = 3

√
x. Then f is continuous and semi-algebraic with f ◦ g = idRalg

,

where g(x) = x3. By definition we have fA ◦ gA(b) = b and gA(b) = b3 for
all b ∈ A. Hence a = fA ◦ gA(a) = fA(0) = 0.

If r > 0, then a real closed ring of class Cr is not necessarily reduced
(cf. (2.14)). Many properties of real closed rings below come for free also for
r > 0 provided the ring is reduced.
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In this paper we are mainly interested in the case r = 0, which is covered
by the reduced case as we have just observed. The general (nonreduced) case
r > 0 will be the subject of another paper ([Tr2]). However, in order not to
repeat arguments we include the case r > 0 in this article whenever it is not
substantially different from the case r = 0.

The pure rings underlying real closed rings in our sense are precisely
the real closed rings in the sense of Schwartz [Schw1]. This is contained in
[Schw-Ma, Section 12], and at first sight our definition seems to be only of
theoretical use. The opposite is the case. We shall prove that

(a) If A is a reduced, real closed ring of class Cr, then there is exactly one
collection (fA) of functions as in Definition (2.1) and each function
fA is definable in A in the language of rings by an existential Horn
formula (cf. [Ho, 9.4]). This is proved in (2.12). (Warning : in general
there is no quantifier free formula in the language of rings which
defines the graph of fA: in particular, a formula which defines the
graph of f will not define the graph of fA in general.)

(b) Every ring homomorphism between reduced R-real closed rings of
class Cr respects the unique (by (a)) additional structures. This is
proved in (2.16).

Items (a) and (b) say that the category of reduced real closed rings of
class Cr (and ring homomorphisms respecting the new symbols) is a full
subcategory of the category of rings (and ring homomorphisms). Our def-
inition easily allows generalizations of well known functorial constructions
from commutative algebra to the category of real closed rings of class Cr

which are reduced, e.g. direct limits and fibre sums. The reason is that the
category of real closed rings of class Cr (reduced or not) together with ring
homomorphisms respecting the new symbols is—by definition—a variety in
the sense of universal algebra; item (b) above implies that many functo-
rial constructions inside the category of rings can be performed inside the
category of real closed rings of class Cr.

We occasionally work with the natural first order language of real closed
rings of class Cr. Throughout we shall work with the language L :=
{+,−, · , 0, 1} of unital rings.

(2.3) Definition. Let L (RCRr) be the language L together with an
n-ary function symbol f for every semi-algebraic, function f : Rn

alg → Ralg of
class Cr. Let RCRr be the L (RCRr)-theory which has the following axioms:

1. The axioms of a commutative unital ring in the language {+,−, ·, 0, 1}.
2. ∀xy +(x, y) = x + y ∧ ·(x, y) = x · y ∧ id(x) = x ∧ −(x) = −x ∧

1(x) = 1. Hence the symbols from the language of rings have the
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same meaning as the corresponding symbols when reintroduced in
L (RCRr) as symbols naming semi-algebraic Cr-functions.

3. All the sentences

∀x f(f1(x), . . . , fn(x)) = f ◦ (f1, . . . , fn)(x),

with f ∈ Cr
Rn

alg
and f1, . . . , fn ∈ Cr

Rx

alg

.

Clearly the models of RCRr are exactly the real closed rings of class Cr,
where the symbols f are interpreted as fA. Observe again that the null ring
is a model of RCRr.

(2.4) Remark. The partial order on a real closed ring A of class Cr

is given by x ≤ y ⇔ y − x = n(y − x), where n ∈ Cr
Ralg

is defined by

n(t) := |t|r+1. Hence x ≤ y is definable by a positive atomic L (RCRr)-
formula and we may view it as an abbreviation for this formula.

(2.5) Lemma. Let R be a real closed field and let X ⊆ Rn be Λ-semi-
algebraic for a subring Λ of R. Then X is defined by a formula ∃u P (x, u)
= 0 for some polynomial P (x, u) ∈ Λ[x, u]. Applying this to the complement
of X shows that X is also defined by a formula ∀u P (x, u) 6= 0 for some
polynomial P (x, u) ∈ Λ[x, u].

Proof. By quantifier elimination, X is defined by
∨
i(Pi(x) = 0 ∧∧

j Qij(x) > 0) for some polynomials Pi, Qij ∈ Λ[x]. Then X is defined
by ∃u P (x, u) = 0 with

P (x, u) :=
∏

i

(
Pi(x)

2 +
∑

j

(Qij(x) · u2
ij − 1)2

)
.

(2.6) Proposition. Let r ∈ N0 and let R be a real closed field (or
more generally an o-minimal structure, cf. [vdD]). If ε ∈ R, ε > 0 and
f : (−ε, ε) → R is continuous, definable in R with f(0) = 0, which is of
class Cr on (−ε, ε) \ {0}, then f(x) · xr is of class Cr on (−ε, ε).

Proof. This is folklore; we sketch the proof. Firstly, o-minimality implies
that for everyR-definable g : R→ R there is some r such that g : (r,∞) → R
is differentiable and limx→∞ x · g′(x) = 0 if limx→∞ g(x) = 0. Using this
property one shows the assertion by induction on r.

(2.7) Lemma and Definition. Let r ∈ N0. Let X ⊆ Rn be Λ-semi-
algebraic for a subring Λ of R. Then X is closed if and only if X is defined
by a formula ∃u P (x, u) = 0 for some polynomial P (x, u) ∈ Λ[x, u] such that
there is a Λ-semi-algebraic map s : Rx → Ru of class Cr with

R |= ∀x ∈ X P (x, s(x)) = 0.

Here and below we write Rv instead of Rlength(v) if v is a tuple of variables.
We call such a polynomial a Cr-representation of X and the map s a Cr-
section of P .
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Proof. If X is defined by a formula as indicated, then X = f−1(0) for
the map f : Rx → R, f(x) := P (x, s(x)). Since f is continuous, X is closed.

Conversely, suppose X is closed. By the finiteness theorem (cf. [BCR,
Thm. 2.7.2]), X is defined by a formula

∨

i

∧

j

Pij(x) ≥ 0

for some polynomials Pij(x) ∈ Λ[x]. Take

P (x, u) :=
∏

i

∑

j

(Pij(x)
2r+1 − u2

ij)
2.

Clearly X is defined by ∃u P (x, u) = 0. Let sij : Rx → R be defined by

sij(x) :=
√
|Pij(x)|

2r+1

.

Let s := (sij). Then s is a Λ-semi-algebraic map Rx → Ru with

R |= ∀x ∈ X P (x, s(x)) = 0.

It is of class Cr, since the function
√
|x|2r+1

= (sign(xr) ·
√

|x|) · xr is of
class Cr by (2.6).

We extend the notation to r = −1 and arbitrary, definable X ⊆ Rn:
Every polynomial P (x, u) ∈ Λ[x, u] such that X is defined by ∃u P (x, u) = 0
is called a C−1-representation of X. Observe that in this case, there is a
C−1-map s : Rx → Ru with R |= ∀x ∈ X P (x, s(x)) = 0, since the theory
RCF of real closed fields has definable Skolem functions.

(2.8) Definition. Let X be a set, let R be a real closed field and let
Λ be a subring of R. If S is a set of functions X → R and r ∈ N0 ∪{−1} we
define

csarΛ(S) := {f ◦ (a1, . . . , an) | n ∈ N, a1, . . . , an ∈ S and

f ∈ CrRn , Λ-semi-algebraic}.
The notation is correct, since by quantifier elimination for real closed

fields, the ring csarΛ(S) does not depend on R, but only on the ordered
ring Λ.

If r = −1 then we also write saΛ(S) instead of csa−1
Λ (S). If Λ = Z then

we suppress the subscript Λ.

Observe that Λ, viewed as a subring of constant functions of RX , is con-
tained in csarΛ(S). Moreover it is obvious that csarΛ(S) is a ring of functions
X → R and csarΛ(csarΛ(S)) = csarΛ(S).

(2.9) Lemma. Let A be a ring of functions X → R, let Λ be a subring
of R, and assume A = csarΛ(A). Let Z ⊆ Rz be closed and Λ-semi-algebraic
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with Cr-representation P (z, u) ∈ Λ[z, u]. Then

ZA := {a ∈ Az | for all x ∈ X, a(x) ∈ Z}
is definable in A with parameters from Λ by ∃u P (z, u) = 0.

Proof. If A |= ∃u P (a, u) = 0, then clearly a ∈ ZA, since Z is defined
by ∃u P (z, u) = 0. Conversely if a ∈ ZA, then take a Λ-semi-algebraic map
s : Rz → Ru of class Cr with

R |= ∀z ∈ Z P (z, s(z)) = 0

and let c := s(a) ∈ Au. Then A |= P (a, c) = 0, since for each x ∈ X we have
a(x) ∈ Z, hence R |= P (a(x), s(a(x))) = 0.

(2.10) Lemma. Let A be a ring of functions X → R from a set X to
a real closed field R and let Λ be a subring of R and A. Let f : Rn → R
be semi-algebraic, let P (v, y, u) ∈ Λ[v, y, u] be such that the graph of f is
defined by the formula ϕ(v, y) = ∃u P (v, y, u) = 0, and let s : Rv → Ru be
a semi-algebraic map with

R |= ∀v P (v, f(v), s(v)) = 0.

(i) If a ∈ An and b ∈ A with A |= ϕ(a, b), then b = f ◦ a.
(ii) If A |= ∀v ∃y ϕ(v, y) then for every a ∈ An we have f ◦ a ∈ A and

ϕ(v, y) defines the graph of the map fA : An → A, fA(a) := f ◦ a.
(iii) If f ◦ a, s ◦ a ∈ Au for all a ∈ An, then A |= ∀v ∃y ϕ(v, y).

Proof. (i) Take (a, b) ∈ An × A with A |= ϕ(a, b). We have to show
that b = f ◦ a. Pick x ∈ X. Since A |= ϕ(a, b), there is some c ∈ Au with
P (a, b, c) = 0 in A. Thus P (a(x), b(x), c(x)) = 0 and R |= ∃u P (a(x), b(x), u)
= 0. This means b(x) = f(a(x)).

(ii) is an immediate consequence of (i).
(iii) Let a ∈ An and take b := f◦a. Then b ∈ A and A |= ∃u P (a, b, u) = 0

as c := s ◦ a ∈ Au satisfies P (a, b, c) = 0.

(2.11) Proposition. Let r ∈ N0∪{−1} and let A be a ring of functions
X → R from a set X to a real closed field R. Let Λ be a subring of R
and A. Then A = csarΛ(A) if and only if for every n ∈ N0 and every Λ-
semi-algebraic map f : Rn → R of class Cr, there is a Cr-representation
P (v, y, u) ∈ K[v, y, u] of the graph of f with

A |= ∀v ∃yu P (v, y, u) = 0.

If this is the case, then for every Λ-semi-algebraic map f : Rn → R of
class Cr, and every Cr-representation P (v, y, u) ∈ Λ[v, y, u] of the graph
of f , the formula ∃u P (v, y, u) = 0 defines the graph of the map

fA : An → A, fA(a) := f ◦ a.
Proof. By (2.10) and (2.7).
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(2.12) Theorem. Let r ∈ N0 ∪{−1}, let R be a real closed field and let
Λ be a subring of R such that R is the real closure of the ordered ring Λ.
Let A be a commutative unital Λ-algebra.

(i) Suppose A can be expanded to an R-real closed ring A of class Cr.
Then

(a) For each Λ-semi-algebraic map f : Rn → R of class Cr, every
Cr-representation P (v, y, u) ∈ Λ[v, y, u] of the graph of f and
all Cr-sections s of P we have A |= ∀v P (v, fA(v), sA(v, fA(v)))
= 0. In particular A |= ∀v ∃yu P (v, y, u) = 0.

(b) A/Nil(A) is real reduced , i.e. a2
1 + · · · + a2

n ∈ Nil(A) implies
a1, . . . , an ∈ Nil(A) for all a1, . . . , an ∈ A. Here Nil(A) denotes
the nilradical of A.

(c) If A is reduced , then for each Λ-semi-algebraic map f : Rn → R
of class Cr and all Cr-representations P (v, y, u) ∈ Λ[v, y, u]
of the graph of f , the function fA : An → A is defined by
∃u P (v, y, u) = 0. In particular A is the unique expansion of
A to an R-real closed ring A of class Cr.

(ii) Suppose A is reduced and for all n ∈ N, each Λ-semi-algebraic map
f : Rn → R of class Cr and every Cr-representation P (v, y, u) ∈
Λ[v, y, u] of the graph of f we have

A |= ∀v ∃yu P (v, y, u) = 0.

Then A can be expanded to an R-real closed ring of class Cr.

Proof. (i)(a) If f : Rn → R is Λ-semi-algebraic of class Cr and P (v, y, u)
∈ Λ[v, y, u] is a Cr-representation of the graph of f with Cr-section s :
Rv ×R→ Ru, then R |= ∀v P (v, f(v), s(v, f(v))) = 0. Hence the axioms of
“R-real closed ring of class Cr” imply A |= ∀v P (v, fA(v), sA(v, fA(v))) = 0.

(i)(b) Take a1, . . . , an ∈ A such that a2
1 + · · ·+ a2

n is nilpotent. We must
show that each ai is nilpotent. By the division property for semi-algebraic
Cr-functions there is some p ∈ N and a Z-semi-algebraic Cr-function d :
Rn → R such that xpi = (x2

1 + · · ·+ x2
n) · d(x1, . . . , xn) on Rn

alg (alternatively

one can directly show by induction on r that xpi with p = 2r+1+1 is divisible
by x2

1 + · · ·+x2
n in CrR). Again the axioms of “R-real closed ring of class Cr”

imply api = (a2
1 + · · · + a2

n) · dA(a1, . . . , an), which is nilpotent. This shows
that A/Nil(A) is real reduced.

(i)(c) If A is reduced, then by (i)(b), A is real reduced, hence isomorphic
to a ring of functions X → R′ from a set X to a real closed field R′ ⊇ R.
We may assume that A is this ring of functions X → R′. But then (i)(c)
holds by (2.11) and (i)(a).

(ii) It is enough to show that A is real reduced; then (ii) follows from
(2.11) as in the proof of (i)(c). Let a1, . . . , an ∈ A with a2

1 + · · · + a2
n = 0.
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We must show that ai = 0 for all i. Take p ∈ N and a Z-semi-algebraic
Cr-function d : Rn → R such that xpi = (x2

1 + · · · + x2
n) · d(x1, . . . , xn)

on Rn
alg. Then the polynomial P (v, y) := (v2

1 + · · ·+ vn)
2 · y − vpi ∈ Λ[v, y] is

a Cr-representation of the graph of d. By assumption (ii) we have

A |= ∀v ∃y P (v, y) = 0.

Hence by specializing vi to ai, there is some b ∈ A such that api = (a2
1 + · · ·

+ an)
2 · b = 0. Since A is assumed to be reduced, we get ai = 0 as desired.

(2.13) Corollary. Let r ∈ N0 ∪{−1}, let R be a real closed field , and
let Λ be a subring of R such that R is the real closure of the ordered ring Λ.
Then for every reduced , commutative unital Λ-algebra A the following are
equivalent :

(i) A can be expanded to an R-real closed ring of class Cr.
(ii) For all n ∈ N, each Λ-semi-algebraic map f : Rn → R of class Cr

and every Cr-representation P (v, y, u) ∈ Λ[v, y, u] of the graph of f
we have

A |= ∀v ∃yu P (v, y, u) = 0.

If this is the case, then there is a unique expansion A of A to an R-real
closed ring of class Cr and the functions fA : An → A are defined by
∃u P (v, y, u) = 0 whenever f ∈ CrRn and P (v, y, u) ∈ Λ[v, y, u] is a Cr-
representation of the graph of f .

Proof. Directly from (2.12).

By (2.2) every real closed ring is reduced (and therefore real reduced by
(2.12)(i)(b)). For r > 0 this is not true any more:

(2.14) Example. Here is an example of an R-real closed ring of class
C1 which is not reduced.

Let R be a real closed field. Recall that by o-minimality, every semi-
algebraic function R→ R which is differentiable at a point is of class C1 in
a neighbourhood of that point. Let B be the ring of all f ∈ C0

R which are
differentiable in R \ {0}. For q ∈ Q, q > 0, let Iq be the principal ideal of B
generated by x · (x2)q, hence

Iq := x · (x2)q ·B.
Claim 1. For q1, q2 ∈ Q with 0 < q2 < q1 we have Iq1 ⊆ Iq2 ⊆ C1

R, in
particular

I :=
⋃

q>0

Iq

is an ideal of C1
R.

Proof. By (2.6) we have Iq ⊆ C1
R for all q > 0.
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If 0 < q2 < q1, then x · (x2)q1 = x · (x2)q2 · (x2)q1−q2 . As xq1−q2 ∈ B this
shows that x · (x2)q1 ∈ Iq2 ·B = Iq2 , thus Iq1 ⊆ Iq2 and Claim 1 is proved.

Our example now is A := C1
R/I, which is not a reduced ring since x3 ∈ I

and x 6∈ I. We have to define the operation of definable functions Rn → R
of class C1 on A:

Take F ∈ C1
Rn and f1, . . . , fn ∈ C1

R. We define

FA(f1 mod I, . . . , fn mod I) := F (f1, . . . , fn) mod I

and we need only show that FA is well defined. Take g1, . . . , gn ∈ C1
R with

hi := fi − gi ∈ I (1 ≤ i ≤ n). We must show that F (f) − F (g) is divisible
by some x · (x2)q in B. By replacing F with F (x1 + f1(0), . . . , xn + fn(0))
and fi with fi − fi(0) we may assume that fi(0) = 0 for all i.

Since F is differentiable at 0 we have

(∗) F (x) = F (0) +
n∑

i=1

∂F

∂xi
(0) · xi + |x| ·ψ(x),

where ψ : Rn → R is a function with limx→0 ψ(x) = 0. Since F is semi-alge-
braic and differentiable on Rn, ψ is semi-algebraic, differentiable on Rn \{0}
and continuous on Rn.

Claim 2. For every semi-algebraic curve s : R → Rn of class C1 with
s(0) = 0 the function |s(x)| ·ψ(s(x)) is in I.

Proof. Since ψ(s(x)) is semi-algebraic and continuous on R with ψ(s(0))
= 0, there are q ∈ Q, q > 0, such that a := limx→0 ψ(s(x))/(x2)q exists in R.
Since s is differentiable at 0 with s(0) = 0, also b := limx→0 |s(x)|/x exists
in R. Hence

t(x) :=
|s(x)| ·ψ(s(x))

x · (x2)q
(x 6= 0), t(0) = a · b,

defines a continuous semi-algebraic function. By (∗) and since s is differen-
tiable, |s(x)| ·ψ(s(x)) is differentiable on R. Hence t is differentiable at all
points x 6= 0, in other words t ∈ B. Thus |s(x)| ·ψ(s(x)) = x · (x2)q · t(x)
∈ I, which shows Claim 2.

Now we can show that F (f(x)) − F (g(x)) ∈ I. We have

F (f(x)) − F (g(x)) =
n∑

i=1

∂F

∂xi
(0) · hi + |f(x)| ·ψ(f(x)) − |g(x)| ·ψ(g(x)).

By Claim 2, |f(x)| ·ψ(f(x)) − |g(x)| ·ψ(g(x)) ∈ I and as hi ∈ I, also∑n
i=1

∂F
∂xi

(0) · hi ∈ I. This finishes the example.

In the example above we have:
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(i) C1
R/I

∼= R+ x ·R and after identification

FA(a1 + xb1, . . . , an + xbn) = F (a) +

n∑

i=1

∂F

∂xi
(a) · bi.

This follows from Claim 2 in the example above.
(ii) The assertion in (i)(c) of (2.12) does not hold for the real closed

ring A = C/I of class C1, i.e. there is a representation P (v, y, u) of
a definable C1-function such that the function fA : An → A is not
defined by ∃u P (v, y, u) = 0. Take f(x) = x · 3

√
x and P (v, y, u) =

y3 − v4. In A, the formula y3 − v4 = 0 does not define the graph of a
function since the equation y3 = 0 = x4 mod I has infinitely many
solutions in A: all elements r · x mod I, r ∈ R.

We state other consequences of (2.12):

(2.15) Corollary. Let r ∈ N and let R be a real closed field. Let A be
an R-real closed ring of class Cr and let I ⊆ A be a radical ideal. Then there
is a unique expansion of A/I to an R-real closed ring of class Cr and the
residue map A→ A/I is an L r

R-homomorphism. This applies in particular
to I = Nil(A).

Proof. By (2.12)(i)(a), the pure ring A satisfies all sentences ∀v ∃yu
P (v, y, u) = 0, where P runs through the Cr-representations of Λ-semi-
algebraic Cr-functions. Since these sentences are positive, and the residue
map A → A/I is surjective, also A/I satisfies all these sentences (without
any assumption on the ideal I). Since A/I is reduced, there is a unique
expansion of A/I to an R-real closed ring of class Cr (cf. (2.12)(ii)) and it
remains to show that the residue map respects the fA. But this follows from
(2.12)(i)(a) and (i)(c).

(2.16) Corollary. Let ϕ : A → B be a ring homomorphism between
real closed rings of class Cr. If B is reduced , then ϕ is an L (RCRr)-homo-
morphism.

Proof. We must show that ϕ(fA(a1, . . . , an)) = fB(ϕ(a1), . . . , ϕ(an)) for
all a1, . . . , an ∈ A and each semi-algebraic map f : Rn

alg → Ralg of class Cr.
Let P (v, y, u) ∈ Z[v, y, u] be a Cr-representation of the graph of f . Let
a0 := fA(a1, . . . , an). By (2.12)(i)(a), A |= ∃u P (a1, . . . , an, a0, u) = 0.
Since P is a polynomial with coefficients in Z it follows that B |= ∃u
P (ϕ(a1), . . . , ϕ(an), ϕ(a0), u) = 0. Since B is reduced we have fB(ϕ(a1), . . . ,
ϕ(an)) = ϕ(a0) by (2.12)(i)(c).

(2.17) Theorem and Definition. Every commutative ring A has a
(reduced) real Cr-closure (B, f), i.e. B is a (reduced) real closed ring of
class Cr, f is a ring homomorphism f : A → B and for every ring homo-
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morphism g : A→ B′ with values in a (reduced) real closed ring of class Cr

there is a unique L (RCRr)-homomorphism h : B → B′ such that g = h◦ f .
We write ̺r(A) for the real Cr-closure of A.

Proof. The theory RCRr as well as the theory red-RCRr of reduced real
closed rings of class Cr in the language L (RCRr) is strict universal Horn,
i.e. axiomatized by sentences of the form

∀x ϕ1 ∧ · · · ∧ ϕd → ψ,

where ϕi and ψ are positive atomic (cf. [Ho, 9.1]). This follows from the
shape of the axioms of RCRr and since reducedness is expressed by the strict
universal formula ∀x x2 = 0 → x = 0. Let T be RCRr or red-RCRr. By the
general theory of presentations (cf. [Ho, 9.2]), we know that for every set of
positive atomic L (RCRr)(C)-sentences, where C is a set of new constants,
the term algebra (cf. [Ho, 1.2]) of T ∪ Φ is again a model of T .

We take C = A and Φ to be the set of positive atomic L (A)-sentences,
valid in A (recall that L is the language of rings). Then the term algebra of
red-RCRr ∪ Φ can be viewed as a ring homomorphism f : A→ B, where B
is a model of red-RCRr. By the correspondence between models of diagrams
and morphisms (cf. [Ho, 1.4]), this gives the assertion.

(2.18) Corollary. Let A be a ring and let B := ̺r(A)/Nil(̺r(A)).

(i) The composition f of the natural map f : A → ̺r(A) with the
residue map ̺r(A) → B is the reduced real Cr-closure of A.

(ii) If A is real reduced , then f is injective.
(iii) The reduced real Cr-closure can be entirely defined inside the cate-

gory of rings: B is the commutative ring which can be expanded to
a reduced , real closed ring of class Cr, f is a ring homomorphism
A→ B and for every ring homomorphism g : A→ B′ into a ring B′

which can also be expanded to a reduced real closed ring of class Cr,
there is a unique ring homomorphism h : B → B′ with g = h ◦ f .

(iv) If A = ̺r(A) and I is a radical ideal of A, then also A/I is a real
closed ring of class Cr.

Proof. (i) By (2.16), the residue map ̺r(A) → ̺r(A)/Nil(̺r(A)) is an
L (RCRr)-homomorphism. Hence (i) follows from the functorial definition
of both closures in (2.17).

(ii) If A is real reduced, then A can be embedded into a product of real
closed fields. This product is a real closed ring and since the embedding
factors through f , f must be injective.

Item (iii) is straightforward from (i) and (2.16), (2.12), and item (iv) is
straightforward from (ii) and (2.16), (2.12).
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3. Computation of the z-radical in C(X). First we recall standard
notions for rings of continuous functions (cf. [Gil-Jer]). Let X be a Tikhonov
space, i.e. a completely regular Hausdorff space. Let C(X) be the ring of
continuous functionsX → R. Then C(X) is a subring and a sublattice of the
distributive lattice RX . Recall that for every topological space Y there is a
Tikhonov space X such that C(X) is isomorphic to C(Y ) (cf. [Gil-Jer, 3.9]).
Moreover, Tikhonov spaces are precisely the subspaces of compact spaces.

A zero set of X is a set of the form {f = 0} := {x ∈ X | f(x) = 0},
with f ∈ C(X). A cozero set of X is a set of the form {f 6= 0} := {x ∈ X |
f(x) 6= 0} with f ∈ C(X). Observe that any set of the form {f ≥ 0} with
f ∈ C(X) is a zero set, since {f ≥ 0} = {f ∧ 0 = 0}.

An ideal a of C(X) is a z-ideal if f ∈ a whenever f vanishes on a zero
set of a function from a. The z-radical z

√
a of an arbitrary ideal a of C(X)

is the smallest z-ideal of C(X) containing a.

Let

Υ := {s : R → R | s is continuous and s−1(0) = {0}}.
(3.1) Definition. An ideal a of C(X) is called Υ -radical if s◦f ∈ a for

all f ∈ a and all s ∈ Υ . Since the intersection of Υ -radical ideals is obviously
again Υ -radical, we may define the Υ -radical Υ

√
a of an ideal a of C(X) as

the smallest Υ -radical ideal of C(X) containing a.

Clearly Υ -radical ideals are radical and every z-radical ideal of C(X) is
Υ -radical.

(3.2) Definition. A subset Υ0 of Υ is called a set of generalized root
functions if for all s ∈ Υ , there are s0 ∈ Υ0 and ε ∈ R with ε > 0 and
|s| ≤ |s0| on (0, ε).

A subset Υ0 of Υ is called a set of generalized power functions if for all
s ∈ Υ , there are s0 ∈ Υ0 and ε ∈ R with ε > 0 and |s0| ≤ |s| on (0, ε).

(3.3) Proposition ([Tr1, (5.12)]). Let a be an ideal of C(X). Then

(i) For every set Υ0 ⊆ Υ of generalized root functions we have

Υ
√

a = {g · (s ◦ f) | g ∈ C(X), f ∈ a, f ≥ 0, s ∈ Υ0}.
(ii) For every set Υ0 ⊆ Υ of generalized power functions we have

Υ
√

a = {f ∈ C(X) | s ◦ |f | ∈ a for some s ∈ Υ0}.
(3.4) Proposition ([Tr1, (5.7)]). If a is an ideal of C(X), then there is

a largest Υ -radical aΥ contained in a and for every set Υ0 ⊆ Υ of generalized
root functions we have

aΥ = {F ∈ a | s0 ◦ F, s0 ◦ (−F ) ∈ a for all s0 ∈ Υ0}.
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The foregoing propositions imply functoriality of the Υ -radical:

(3.5) Proposition ([Tr1, (5.13)]). If τ : X → Y is a continuous map
between Tikhonov spaces X, Y and ϕ : C(Y ) → C(X) is the corresponding
ring homomorphism (so ϕ(g) = g ◦ τ) then for every ideal a of C(X) we
have

Υ
√
ϕ−1(a) = ϕ−1( Υ

√
a) and ϕ−1(a)Υ = ϕ−1(aΥ ).

(3.6) Definition. A Tikhonov space X has computable z-radicals if
Υ
√

a = z
√

a for all ideals a of C(X).

(3.7) Theorem ([Tr1, (8.9) and (8.15)]). A cozero set X of a compact
space has computable z-radicals. A subset X of Rn has computable z-radicals
if and only if X is locally closed.

4. A sentence in the language of rings separating continuous

semi-algebraic from arbitrary continuous functions. The first order
theory of the pure ring C(X) is undecidable if X is a nondiscrete metric
space. This has been shown by Cherlin in [Che]. This section contributes (in
a negative way) to the problem what the theory T of the class of all C(X)
in the language of rings is. It was conjectured that this theory is “almost
equal” to the theory of real closed rings (more precisely, that T is RCR0 plus
the set of sentences which asserts that a semi-local ring which is a model of
T is a product of fields). We disprove this conjecture by showing that rings
of semi-algebraic functions are not a model of T . Explicitly:

LetM be an o-minimal structure expanding a real closed field (cf. [vdD]).
Let CM be the ring of M -definable, continuous maps M →M . Then CM is
not a model of the theory of all C(X), more precisely we construct a first
order sentence in the language of rings which holds in each CM and in no
C(X).

This will also disprove the conjecture that the theory of the class of
all rings C(X) together with all the quotients C(X)/p (p ∈ SpecC(X)) is
the theory of real closed rings (cf. [PS]); otherwise CM can be elementarily
embedded into an ultraproduct of rings of the form C(X) or C(X)/p—since
CM is not a domain, we may assume that it is actually an ultraproduct of
rings of the form C(X); but then the above mentioned formula must hold
in at least one C(X).

We now construct this sentence. First we construct several auxiliary
sentences and formulas in the language of rings. The notation CM below
always means the ring of M -definable, continuous maps M → M for an
o-minimal expansion of a real closed field. X always denotes a Tikhonov
space.
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1. Let x ≺ y be an abbreviation for the formula

∀u ∃vw 1 = w · y + v · (1 + u · x).
Then for every ring A and all a, b ∈ A we have a ≺ b ⇔ a is in the
Jacobson radical max

√
b ·A :=

⋂
m∈(SpecA)max, b∈m

m (this is well known by

basic commutative algebra).
If a, b ∈ A then we write a≻≺ b if a ≻ b and a ≺ b.

2. Let A be a ring of functions from a set S to a field K. We say that
S is weakly represented in A if for all f, g ∈ A we have f ≺ g ⇔ {g = 0} ⊆
{f = 0}. In this case f ∈ A is a unit in A if and only if f has no zeros in S.

Indeed, if f is a unit in A, then clearly f does not have zeros in S.
Conversely, if f is a nonunit in A, then 1 6≺ f , hence {f = 0} 6⊆ {1 = 0} = ∅.

For exampleM is weakly represented in CM and X is weakly represented
in C(X).

3. Let A be ring of functions from a set S to a field K. We say that S is
represented in A if S is weakly represented in A and if for all s, t ∈ S there
is some f ∈ A with f(s) = 0 and f(t) 6= 0.

For example M is represented in CM and X is represented in C(X).

From now on, A denotes a real closed ring of functions S → K for
some set S and some real closed field K.

4. Let pt(x) be the formula

pt(x) := ∀u ux 6= 1 ∧ [∀y (∀u uy 6= 1) ∧ x ≺ y → y ≺ x].

Then for each a ∈ A we have A |= pt(a) ⇔ a is a maximal element in the
set of nonunits of A, with respect to the relation ≺. We write pt(A) for the
realizations of pt(x) in A and call these realizations point functions.

For each f ∈ A we have A |= pt(f) if and only if the Jacobson radical of
f is a maximal ideal, i.e. there is a unique maximal ideal of A containing f .

We define

Maxpt(A) := {m ∈ MaxA | ∃f ∈ A : m = max
√
f ·A}

and we call the elements of Maxpt(A) the points of A. Hence there is a 1-1
correspondence between Maxpt(A) and the realizations of pt(x) in A modulo
the relation ≻≺ (which is equal to ≺ on pt(A)). For short, Maxpt(A) =
pt(A)/≻≺.

5. If S is represented by A, then for each f ∈ A we have

A |= pt(f) ⇔ f has exactly one zero in S.

Indeed, clearly A |= pt(f) if f has exactly one zero in S. Conversely,
suppose A |= pt(f). Then f has zeros in S. Suppose s, t are two such zeros.
Since S is represented in A there is g ∈ A with g(s) = 0 6= g(t). But then
f ≺ g2 + f2 and g2 + f2 6≺ f , a contradiction to A |= pt(f).
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6. Let DENSE and DENSEcon be the following sentences in the language
of rings:

DENSE := ∀x x 6= 0 → ∃z pt(z) ∧ x 6≺ z,

DENSEcon := ∀x, y ¬x ≺ y → ∃z pt(z) ∧ y ≺ z ∧ ¬x ≺ z.

Then A |= DENSE ⇔ Maxpt(A) is dense in SpecA and A |= DENSEcon ⇔
Maxpt(A) is dense in (SpecA)con, i.e. in SpecA equipped with the con-
structible topology.

7. Let

P := {s ∈ S | {s} is a zero set of A}.
If S is represented in A, then

A |= DENSE ⇔ P is dense in S with respect to

the cozero-topology induced by A,

i.e. with respect to the topology on S which has the sets {f 6= 0} (f ∈ A)
as a basis of open sets. In particular, if A = C(X), then A |= DENSE ⇔
P is dense in X.

Moreover

A |= DENSEcon ⇔ P is dense in S with respect to

the constructible topology induced by A,

i.e. with respect to the topology on S which has the sets {f 6= 0} ∩ {g = 0}
(f, g ∈ A) as a basis of open sets.

Hence CM |= DENSEcon, in particular CM |= DENSE.

8. Let

pt∗(x) := pt(x) ∧ ∀y x 6= y2 ∧ x 6= −y2.

Hence, as A is a real closed ring, a point function f of A is in pt∗(A) if and
only if f is neither everywhere positive nor everywhere negative. We call
the elements of pt∗(A) the sign changing point functions. Let LINE be the
sentence

LINE := ∀x (pt(x) → ∃y x≻≺ y ∧ pt∗(y)).

Hence by definition, A satisfies LINE if and only if each point of A is the
Jacobson radical of a point function which changes sign. This for example
holds in the ring CM and resembles the shape of M as a line. Note that
in the ring of continuous semi-algebraic maps M2 → M no point function
changes sign.

9. For f, g ∈ A we define f ‖ g if and only if f, g ∈ pt∗(A) and both
f+ + g+, f− + g− are zero-divisors. Since pt∗(A) is defined by the same
formula for all real closed rings, there is a first order formula ϕ(x, y) in the
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language of rings such that for every real closed ring A and all f, g ∈ A we
have

f ‖ g ⇔ A |= ϕ(f, g).

Let f, g ∈ CM be point functions which change sign. Then a straightfor-
ward calculation shows that f ‖ g if and only if f is strictly increasing in a
neighbourhood of its zero and g is strictly increasing in a neighbourhood of
its zero, or f is strictly decreasing in a neighbourhood of its zero and g is
strictly decreasing in a neighbourhood of its zero.

10. Let f ∈ pt∗(CM ). Then for every g ∈ pt∗(CM ) we have f ‖ g ⇔
f 6 ‖ −g, hence there is a unique ε(f, g) ∈ {±1} ⊆ CM such that f ‖ ε(f, g) · g
and there is a first order formula in the language of rings which defines the
graph of ε in C3

M . We define a preorder ⊑f on pt∗(CM ) as follows. We say
g ⊑f h if and only if (ε(f, h) · h)+ + (−ε(f, g) · g)+ is a non-zero-divisor.

It turns out that g≻≺ h if and only if g ⊑f h and h ⊑f g. Moreover
pt∗(CM )/≻≺ (which is “equal” to Maxpt(CM )) equipped with the induced
order of ⊑f is order isomorphic to M or to Mopp (according as f is strictly
increasing or strictly decreasing in a neighbourhood of its zero).

Moreover there is a first order formula ψ(x, y, z) in the language of rings
such that for all f, g, h ∈ CM we have

g ⊑f h ⇔ CM |= ψ(f, g, h).

We write y ⊑x z for this formula and we write y ⊏x z for y ⊑x z∧¬(z ⊑x y).

11. The sentence

∀x pt∗(x) →
[
[∀u, v, w pt∗(u) ∧ pt∗(v) ∧ pt∗(w) →

(u ⊑x v ∧ v ⊑x w → u ⊑x w) ∧ (u ⊑x v ∨ v ⊑x u)]

∧ [∀u, v pt∗(u) ∧ pt∗(v) → u≻≺ v ↔ (u ⊑x v ∧ v ⊑x u)]
]

holds in CM ; it says that for each sign changing point function f , the relation
⊑f defines a total semi-order on the set of sign changing point functions,
and the induced total order is in 1-1 correspondence with those points that
are generated by a sign changing point function.

Clearly there is also a sentence DLO in the language of rings which says
that all these total orderings are dense without endpoints.

12. Suppose C(X) |= DENSE ∧ LINE ∧ DLO. Let f ∈ pt∗(X). Let
S := {x ∈ X | {x} is a zero set}. Then S is dense in X and the formula
y ⊑f z defines a total semi-order on the set of sign changing point functions
of C(X). Moreover, the underlying set of the induced total order is in 1-1
correspondence with S.

Hence if we identify an element s of S with the set of point functions
that vanish at s, then S is totally ordered by ⊑f and this order is dense
without endpoints.
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13. Let BUMPS be the sentence in the language of rings which says the
following: “For all sign changing point functions f, g, h1, h2 with h1 ⊏f g
⊏f h2 there is F such that

(i) 0 ≤ F ≤ 1,
(ii) F 6≺ g,
(iii) for all sign changing point functions h′ with F 6≺ h′ we have h1 ⊏f

h′ ⊏f h2.”

Intuitively, BUMPS says that with respect to ⊑f , for every point (given as
the zero of g) in an open interval (whose endpoints are given by the zeros of
h1 and h2), there is some F , 0 ≤ F ≤ 1, which vanishes outside this interval
and which does not vanish at the given point. Clearly BUMPS holds in CM .

14. Let DEFCOMPLETE1(F, f, h) be the formula in the language of
rings which says the following: “f is a sign changing point function and h is
the smallest sign changing point function with respect to ⊑f such that

(i) f ⊑f h,
(ii) either F ≺ h′ for all sign changing point functions h′ with h ⊑f h

′,
or F 6≺ h′ for all such h′.”

Intuitively, DEFCOMPLETE1(F, f, h) says that with respect to ⊑f , the
zero of h is the supremum of all points greater than or equal to the zero
of f for which F changes sign from 0 to 6= 0 or from 6= 0 to 0. In CM ,
DEFCOMPLETE1(F, f, h) in fact says precisely this.

Let

DEFCOMPLETE := ∀F, f pt∗(f) → ∃!h DEFCOMPLETE1(F, f, h).

Then CM |= DEFCOMPLETE, by o-minimality of M .

15. We now encode in CM the fact that in an o-minimal structure M ,
unary functions do not change sign close to the left hand side of any given
point.

Let NOSIGNCHANGE1(F, f, h0, h) be the formula in the language of
rings which says the following: “f, h, h0 are sign changing point functions
with h0 ⊏f h, and either F ≺ h′ for all sign changing point functions h′

with h0 ⊑f h
′
⊏f h, or F 6≺ h′ for all such h′.”

Hence NOSIGNCHANGE1(F, f, h0, h) says that the function F either is
constantly zero on the half open interval [h0, h) with respect to ⊑f , or does
not have any zeros in that interval.

Let NOSIGNCHANGE be the sentence

∀F, f, h [pt∗(f) ∧ pt∗(h) → ∃h0 NOSIGNCHANGE1(F, f, h0, h)].

Again, by o-minimality of M , CM |= NOSIGNCHANGE.



140 M. Tressl

16. The sentence

DENSE∧LINE∧DLO∧BUMPS∧DEFCOMPLETE∧NOSIGNCHANGE

holds in every ring CM but in no ring C(X).

Indeed, we have already seen during the definitions of the subsentences
that CM satisfies this conjunction. Let X be a Tikhonov space and suppose
the sentence

DENSE ∧ LINE ∧ DLO ∧ BUMPS ∧ DEFCOMPLETE

holds in C(X). We shall construct functions F, f, h in C(X) which violate
the property stated in the definition of NOSIGNCHANGE.

Since C(X) |= DENSE ∧ LINE there is a sign changing point function
f ∈ C(X). Let gi ∈ C(X) (i ∈ N) be sign changing point functions with
f ⊏f g1 ⊏f g2 ⊏f · · · such that the sequence (gi) is bounded in the preorder
⊑f defined on pt∗(C(X)); such gi exist since C(X) |= DLO. Since C(X) |=
BUMPS there are Fi ∈ C(X) with 0 ≤ Fi ≤ 1 such that Fi 6≺ g2i and such
that for all h ∈ pt∗(C(X)) with Fi 6≺ h we have g2i−1 ⊏f h ⊏f g2i+1.

Intuitively, (gi) is a strictly increasing sequence of (representatives of)
points (with respect to ⊑f ) and the Fi are functions from C(X) which are
nonzero in g2i so that every nonzero point of Fi is in the open interval
(g2i−1, g2i+1) (in particular, each Fi vanishes on each g2k+1).

Since each Fi satisfies 0 ≤ Fi ≤ 1, the function F :=
∑

i∈N
2−iFi is

continuous on X. Moreover, by the choice of the Fi, for every h ∈ pt∗(C(X))
with gj ⊑f h (j ∈ N) we have Fi ≺ h. Thus Fi(x) = 0, where x is the zero
of h (cf. item 12). Thus also F (x) = 0, which in turn means F ≺ h.

Since C(X) |= DEFCOMPLETE and (gi) is a bounded sequence with
respect to ⊑f , there is a minimal h ∈ pt∗(C(X)) such that F ≺ h′ for
all h ⊑f h

′ ∈ pt∗(C(X)). By construction of F , h is the supremum of the
sequence (gi) with respect to ⊑f .

Therefore, if pt∗(C(X)) ∋ h0 ⊏f h, then there is some i ∈ N with
h0 ⊑f g2i ⊑f h, hence also h0 ⊑f g2i+1 ⊑f h.

But F 6≺ g2i and F ≺ g2i+1, and this shows that F, f, h violate NOSIGN-
CHANGE.

Hence the sentence stated in item 16 has the property described at the
beginning of this section. Actually one can show that there is a sentence ϕ
in the language of rings which holds in every ring A of continuous definable
functions X → M for every o-minimal expansion of a real closed field M
and every definable subset X of dimension > 0, but which does not hold in
any C(X) (the reason is that each such set contains a definable curve germ
and then it is possible to interpret CM in A and with this interpretation we
can code the sentence in item 16).
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5. Super real closed rings: Definition and basic properties

(5.1) Definition.

(a) Let LΥ be the first order language extending the language {+,−, ·,
0, 1} of rings which has in addition an n-ary function symbol F for
every continuous function F : Rn → R and every n ∈ N0.

(b) Let TΥ be the LΥ -theory with the following axioms:

1. The axioms of a commutative unital ring (with 1) in the language
{+,−, ·, 0, 1}.

2. The axiom ∀xy (+(x, y) = x + y ∧ ·(x, y) = x · y ∧ id(x) = x ∧
−(x) = −x ∧ 1(x) = 1 ∧ 0(x) = 1). Hence the symbols from the
language of rings have the same meaning as the corresponding
symbols when reintroduced in LΥ as symbols naming continuous
functions.

3. All the sentences

∀x F (f1(x), . . . , fn(x)) = F ◦ (f1, . . . , fn)(x)

for F ∈ C(Rn) and f1, . . . , fn ∈ C(Rx).

The models of TΥ are called super real closed rings. We shall denote the
functions FA of a super real closed ring by FA (F ∈ C(Rn)); one might
think of FA as the scalar extension of F to A. If it is clear how the FA are
defined we even drop the subscript A and write F again for FA.

If A is a super real closed ring and a local ring, a domain, a field, etc.
then A is called a super real closed local ring , a super real closed domain, a
super real closed field , etc.

Observe that the null ring is also considered as a super real closed ring.

Note that if F ∈ C(Rn) is considered as the function G ∈ C(Rn ×
Rk) defined by G(x, y) := F (x), then TΥ ⊢ ∀x1, . . . , xn, y1, . . . , yk F (x) =
G(x, y), since G = F ◦ p for the projection p : Rn × Rk → Rn.

The natural examples of super real closed rings are rings of continuous
functions:

(5.2) Definition. If X is a Tikhonov space, then we expand C(X) to
a super real closed ring, denoted by C(X)Υ , via

FC(X)Υ (f1, . . . , fn) := F ◦ (f1, . . . , fn).

In particular RΥ is the super real closed field expanding the ring R, where
FRΥ = F .

(5.3) Definition. A homomorphism between LΥ -structures is called
a super homomorphism. An LΥ -substructure of an LΥ -structure is called a
super substructure.



142 M. Tressl

(5.4) Definition. Since TΥ is axiomatized by sentences of the form
∀x t1(x) = t2(x) for LΥ -terms t1, t2, TΥ has term models over any set
of constants C (cf. [Ho, Section 9], where term models are called “term
algebras”). We write tmΥ (C) for the term model of super real closed rings
over a set C of constants.

Recall that tmΥ (C) is the following structure: Let L ∗ be the language
LΥ together with a new constant for every element in C. Then the universe
of tmΥ (C) is the set of all constant terms in the language L ∗ modulo the
equivalence relation t ∼ t′ ⇔ TΥ ⊢ t = t′. The function symbols F from LΥ

are interpreted as F tmΥ (C)(t1/∼, . . . , tn/∼) := F (t1, . . . , tn)/∼.

Also recall that tmΥ (C) is characterized by the following property: for
every super real closed ring A and every map f : C → A, there is a
unique super homomorphism tmΥ (C) → A extending f . In other words,
HomΥ (tmΥ (C), A) = AC . In particular tmΥ (C) is uniquely determined up
to an LΥ -isomorphism by the cardinality of C.

(5.5) Theorem.

(i) TΥ is axiomatized by sentences of the form ∀x t1(x) = t2(x), where
t1, t2 are LΥ -terms. Moreover , for every LΥ -term t(x), there is
some F ∈ C(Rx) with TΥ ⊢ ∀x t(x) = F (x). In particular the
category of all models of TΥ together with super homomorphisms is
a variety in the sense of universal algebra.

(ii) RΥ is the term model of TΥ , in particular for every super real closed
ring A, there is a unique super homomorphism RΥ → A.

(iii) TΥ is an extension of RCR, hence every model of TΥ is a real closed
ring (cf. (2.1)).

(iv) TΥ ⊢ ∀x F (x) = 0 → G(x) = 0 for all F,G ∈ C(Rn) with {F =
0} ⊆ {G = 0}.

(v) TΥ ∪ “domains” is the universal theory Th(RΥ )∀ of RΥ .

Proof. (i) and (ii) hold by definition of TΥ .

(iii) holds by (our) definition of real closed rings.

(iv) By (3.7), Rn has computable z-radicals. Hence {F = 0} ⊆ {G = 0}
implies G = g · s ◦ (F · f) for some f, g ∈ C(Rn) and some s ∈ Υ . Therefore
TΥ ⊢ ∀x G(x) = g · s(F (x) · f(x)). Since TΥ ⊢ s(0) = 0 we get the claim.

(v) Since RΥ is a domain and a model of TΥ we have TΥ ∪ “domains” ⊆
Th(RΥ )∀. Conversely, let ϕ(x) be a quantifier free LΥ -formula such that
RΥ |= ∀x ϕ(x). We have to show that in every super real closed ring A
which is a domain we have A |= ∀x ϕ(x). Let a ∈ Ax. We have to show
A |= ϕ(a). Now ϕ is a finite conjunction of finite disjunctions of formulas of
the form t1(x) = t2(x) or t1(x) 6= t2(x), where t1, t2 are LΥ -terms. By (i) we
may assume that these atomic parts are of the form F (x) = 0 or F (x) 6= 0
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for some F ∈ C(Rx). So in order to prove A |= ϕ(a) we may assume that
ϕ is of the form

∨
i Fi(x) = 0 ∨ ∨

j Gj(x) 6= 0. Since A is a domain it is

enough to show A |= ∏
i Fi(a) = 0 ∨ ∑

j Gj
2(a) 6= 0. Since RΥ |= ∀x ϕ(x)

we know RΥ |= ∀x ∑
j Gj

2(x) = 0 → ∏
i Fi(x) = 0. So by (iv) we have

TΥ ⊢ ∀x ∑
j Gj

2(x) = 0 → ∏
i Fi(x) = 0 as desired.

(5.6) Corollary. If A is a super real closed domain, then the super
real closed ring RΥ is existentially closed in A.

Proof. This is a reformulation of (5.5)(v).

By (5.5)(i), a super substructure A of a super real closed ring B is again
a super real closed ring. We then call A a super real closed subring .

(5.7) Lemma. Let f : A → B be an injective super homomorphism
between super real closed rings. Then f is an LΥ -embedding , i.e. for every
quantifier free LΥ -formula ϕ(x) and all a ∈ Ax we have A |= ϕ(a) ⇔ B |=
ϕ(f(a)). In particular f is an LΥ -isomorphism if f is bijective.

Proof. We may assume that ϕ(x) is of the form F (x) = 0 for some
F ∈ C(Rx). If A |= F (a) = 0, then B |= F (f(a)) = 0, since f is a super
homomorphism. Conversely, if A |= F (a) 6= 0, then as f is injective we have
f(F (a)) 6= 0. Since f(F (a)) = F (f(a)) we get the lemma.

(5.8) Proposition. If C is a finite set of cardinality n, then the term
model tmΥ (C) is C(Rn). If C is infinite, then tmΥ (C) is the following subring
of C(RC): for each finite subset E ⊆ C let CE be the subring of C(RC) induced
by the projection RC → RE ; then tmΥ (C) =

⋃
E⊆C, finite CE .

Proof. Straightforward.

By the shape of the axioms of TΥ we get many constructions known
from commutative algebra for free also in the category of super real closed
rings and super homomorphisms. In order not to inflate the text we will
use them ad hoc whenever needed and refer to basic model theory for the
justification. For example, in (5.8) above, the free super real closed ring of
cardinality card C is introduced. Similarly, there is a free super real closed
ring of cardinality C over every given super real closed ring. Four other
constructions obtained from the axiomatization should be mentioned right
now:

The category of super real closed rings and super homomorphisms has
direct limits and fibre sums as well as inverse limits and fibre products.
Moreover the underlying ring of a direct limit, an inverse limit and a fibre
product of super real closed rings is also the direct limit, the inverse limit
and the fibre product in the category of commutative rings, respectively. All
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this follows via routine checking from the definitions of the constructions in
both categories.

On the other hand, the relation between the fibre sum of super real
closed rings and the tensor product of these rings is a subtle matter. For
example, given super real closed ring extensions A ⊆ B,C, it is an open
problem whether the natural ring homomorphism f from the real closure
(cf. (2.17)) of the tensor product B ⊗A C in the category of rings to the
fibre sum D of B,C over A in the category of super real closed rings is
injective (specializing A, B and C to super real closed fields, this question
asks whether super real closed fields have the amalgamation property). It is
also unclear whether the image of f generates the super real closed ring D.

6. Υ -ideals. Recall from (3.1) that an ideal a of C(X) is called Υ -radical
if s ◦ f ∈ a for all f ∈ a and all s ∈ Υ .

(6.1) Definition. An ideal a of a super real closed ring A is called an
Υ -ideal or an Υ -radical ideal if sA(a) ⊆ a for all s ∈ Υ .

We will show that Υ -radical ideals are precisely the kernels of super
homomorphisms in (6.3) below. As a preparation we need:

(6.2) Lemma. If F : Rn → R is continuous, then there is some s ∈ Υ
with

s(F (x1, . . . , xn) − F (y1, . . . , yn)) ∈ (x1 − y1, . . . , xn − yn),

where (x1−y1, . . . , xn−yn) denotes the ideal generated by x1−y1, . . . , xn−yn
in C(Rn × Rn).

Proof. Let G ∈ C(Rn×Rn) be defined by G(x, y) := |F (x)−F (y)|. Let
H ∈ C(Rn×Rn) be defined by H(x, y) :=

∑n
i=1(xi− yi)2. Then {H = 0} ⊆

{G = 0} and since Rn × Rn has computable z-radicals, there is some s ∈ Υ
such that H divides s ◦ G. Hence s ◦ G ∈ H ·C(Rn × Rn) ⊆ (x1 − y1, . . . ,
xn − yn).

(6.3) Theorem. Let a be an ideal of a super real closed ring A. Then a

is Υ -radical if and only if a is the kernel of a super homomorphism A→ B
for some super real closed ring B. In this case, there is a unique expansion of
the ring A/a to a super real closed ring such that the residue map A→ A/a
is a super homomorphism.

Proof. If there is a super homomorphism ϕ : A → B with a = Kerϕ,
then for f ∈ a and s ∈ Υ we have ϕ(sA(f)) = sB(ϕ(f)) = sB(0) = 0, so
sA(f) ∈ a. Thus a is Υ -radical.

Conversely, suppose sA(a) ⊆ a for all s ∈ Υ .

Claim. If F ∈ C(Rn) and f1, g1, . . . , fn, gn ∈ A with fi − gi ∈ a (1 ≤
i ≤ n) then FA(f1, . . . , fn) − FA(g1, . . . , gn) ∈ a.
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Proof. Let ϕ be the super homomorphism C(Rn × Rn) → A which
maps the projections xi to fi and yi to gi (1 ≤ i ≤ n). Let b := ϕ−1(a).
Then, as sA(a) ⊆ a for all s ∈ Υ , we also have s(b) ⊆ b for all s ∈ Υ .
By (6.2) there is some s ∈ Υ with s(F (x1, . . . , xn) − F (y1, . . . , yn)) ∈
(x1−y1, . . . , xn−yn). By assumption (x1−y1, . . . , xn−yn) ⊆ b. Since b is Υ -
radical we get F (x1, . . . , xn)−F (y1, . . . , yn) ∈ b = ϕ−1(a), so FA(f1, . . . , fn)
− FA(g1, . . . , gn) = ϕ(F (x1, . . . , xn) − F (y1, . . . , yn)) ∈ a.

This proves the claim and we may define, for all F ∈ C(Rn) and all
f1, . . . , fn ∈ a,

FA/a(f1 mod a, . . . , fn mod a) := FA(f1, . . . , fn) mod a.

With this interpretation of the function symbols from LΥ , A/a becomes
an LΥ -structure and the residue map A → A/a is a super homomorphism.
Clearly A/a is a super real closed ring and it is the unique expansion of A/a
to a super real closed ring such that the residue map A → A/a is a super
homomorphism.

(6.4) Definition. If a is an ideal of a super real closed ring, then the
smallest Υ -ideal containing a is called the Υ -radical of a. We denote the
Υ -radical of a by Υ

√
a.

(6.5) Remark. We shall now generalize results from [Tr1, Section 5] to
super real closed rings, in particular we compute the Υ -radical of an ideal
of a super real closed ring. In proving these generalizations we use mostly
the following strategy.

Any super real closed ring A is the union of the finitely generated super
real closed subrings of A. These are subrings B of A which are the LΥ -
substructures of A generated by a finite subset of A. Each of these subrings
is of the form C(Rn)/I for some Υ -radical ideal I of C(Rn) (since Rn has
computable z-radicals, I is even a z-ideal).

Therefore we proceed by proving our statements first for quotients of
rings C(X) by Υ -radical ideals, and then for unions of finitely generated
super real closed rings.

In doing this, we shall constantly use the observation that the preimage
of an Υ -radical ideal under a super homomorphism is again Υ -radical (which
follows immediately from the definition of Υ -radical ideal, cf. (6.1)). Here is
an example:

If a is an ideal of a super real closed ring A, then there is a largest
Υ -radical ideal contained in a.

Proof.

Claim. The assertion holds if A = C(X)/I for some Υ -radical ideal I
of C(X).
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By (6.3), the residue map C(X) → A induces a bijection between the
Υ -radical ideals of A and the Υ -radical ideals of C(X) containing I. Since
for every ideal b of C(X) there is a largest Υ -radical ideal of C(X) contained
in b (cf. [Tr1, (3.4)]) the same property also holds for all ideals of A. This
shows the claim.

Now we get the assertion as follows. A is the union of the finitely gener-
ated super real closed subrings of A. By the claim, for every ideal b of such
a ring B there is a largest Υ -radical ideal bΥ of B contained in b. Now we
see that ⋃

B⊆A,fin. gen.

(a ∩B)Υ

is the largest Υ -radical ideal of A contained in a.

So we may define

(6.6) Definition. Let a be an ideal of a super real closed ring A. Then
there is a largest Υ -radical ideal contained in a, which we denote by aΥ .

(6.7) Proposition. If a is an ideal of the super real closed ring A, then

aΥ = {f ∈ A | sA(f) ∈ a for all s ∈ Υ}.
If Υ0 ⊆ Υ is a set of generalized root functions (cf. (3.2)), then

aΥ = {f ∈ a | s0,A(f), s0,A(−f) ∈ a for all s0 ∈ Υ0}.
Proof. Follows from (3.4), using the strategy explained in (6.5).

(6.8) Proposition. For all ideals a, b of a super real closed ring A we
have Υ

√
a + b = Υ

√
a + Υ

√
b.

Proof. Follows from [Tr1, (5.8)], using the strategy explained in (6.5).

Recall that for any ring extension A ⊆ B, the induced map SpecB →
SpecA is dominant , i.e. the image is dense, in other words every minimal
prime ideal of A is in the image of this map.

(6.9) Proposition. If A is a super real closed ring and p is a prime
ideal of A, then pΥ is a prime ideal of A. In particular the minimal prime
ideals of A are Υ -radical.

Proof. First let A be a term model of super real closed rings (cf. (5.4)).
Then A is a super real closed subring of C(RT ) for some set T . Since
the minimal primes of C(RT ) are Υ -radical (they are even z-radical) and
SpecC(RT ) → SpecA is dominant, each minimal prime ideal of A is Υ -
radical. Therefore, if p is a prime ideal of the term model A, then p contains
an Υ -ideal q which is prime. Since q ⊆ pΥ and pΥ is a radical ideal of A, we
conclude that pΥ is prime as well.

Now let A be an arbitrary super real closed ring. Then A = B/I for
some term model B of super real closed rings and some Υ -radical ideal I
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of B. Since the residue map B → A induces a bijection between the Υ -
radical ideals of A and the Υ -radical ideals of B containing I, we get the
proposition.

(6.10) Proposition. Let a be an ideal of a super real closed ring A.
Then

(i) If Υ0 ⊆ Υ is a set of generalized root functions, then

Υ
√

a = {g · sA(f) | g ∈ A, f ∈ a, f ≥ 0, s ∈ Υ0}.
(ii) If Υ0 ⊆ Υ is a set of generalized power functions, then

Υ
√

a = {f ∈ A | sA(|f |) ∈ a for some s ∈ Υ0}.
Proof. Follows from (3.3), using the strategy explained in (6.5).

(6.11) Proposition. Let ϕ : A→ B be a super homomorphism between
super real closed rings and let b be an ideal of B. Then

Υ
√
ϕ−1(b) = ϕ−1(

Υ
√

b) and ϕ−1(b)Υ = ϕ−1(bΥ ).

Proof. Follows from (3.5), using the strategy explained in (6.5).

(6.12) Theorem. Let A be a super real closed ring. Then

Υ -SpecA := {p ∈ SpecA | p is Υ -radical}
is a proconstructible subset of SpecA containing the minimal and the max-
imal points of SpecA. If ϕ : A → B is a super homomorphism, then the
restriction Υ -Specϕ of the map Specϕ to Υ -SpecB induces a convex map

Υ -Specϕ : Υ -SpecB → Υ -SpecA.

Moreover Specϕ has going up if and only if Υ -Specϕ has going up, and
Specϕ has going down if and only if Υ -Specϕ has going down (see [Tr1,
Section 6] for the notions of “convex map”, “going up” and “going down”).

Proof. From (6.7), (6.10), (6.11) as in the proof of [Tr1, (6.5)].

7. Localization of super real closed rings. In this section we want
to extend the operation of continuous functions on a given super real closed
ring A to certain localizations S−1A of A. That is, we want to equip S−1A
with an LΥ -structure such that the localization map A → S−1A is a super
homomorphism. This is not possible for arbitrary multiplicatively closed
subsets S of A. We need the additional assumption that tA(f) ∈ S whenever
f ∈ S and t ∈ Υ (for example, if f ∈ A, then S = {tA(f) | t ∈ Υ} has this
property; also complements of Υ -radical prime ideals have this property).

In order to reach our goal we first look at the “generic situation” of
n+1 indeterminate elements X1, . . . , Xn, Y and we must apply a continuous
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function F ∈ C(Rn) to the n-tuple (X1/Y , . . . , Xn/Y ). In (7.2) below, we
show that there are t ∈ Υ and G(x, y) ∈ C(Rn × R) with

F

(
x1

y
, . . . ,

xn
y

)
=
G(x1, . . . , xn, y)

t(y)
((x, y) ∈ Rn × (R \ {0})).

This equation allows the localization of super real closed rings at multiplica-
tively closed subsets S of A with tA(S) ⊆ S (t ∈ Υ ).

(7.1) Proposition. Let ϕ : [0,∞) → (0,∞) be continuous and nonde-
creasing. Let s ∈ Υ with s(x) > 0 for x > 0. Let t : (0,∞) → (0,∞) be
defined by

t(x) :=
s(x)

ϕ
(

1
x · s(x)

)

and let q : (0,∞) × [0,∞) → (0,∞) be defined by

q(x, y) := ϕ

(
y

x

)
· t(x).

Then t has an extension to a function from Υ , and q has a continuous
extension q on [0,∞) × [0,∞) with q(0, y) = 0 for all y ≥ 0.

Proof. Since ϕ is nondecreasing we have, for every x ∈ (0, 1),

1

ϕ(1)
≤ 1

x ·ϕ(x)
and

1

ϕ
(

1
x · ϕ(x)

) ≤ 1

ϕ
(

1
ϕ(1)

) .

Hence limx→0 t(x) = 0, which implies that t has an extension to a function
from Υ . In order to show that q has a continuous extension onto [0,∞) ×
[0,∞) we first prove that the function

q0(x, y) :=
ϕ
( y
x

)

ϕ
(

1
x · s(x)

)

defined on Q := (0,∞) × [0,∞) is locally bounded in [0,∞)2, i.e. for all
x0, y0 ≥ 0 there is an open subset U of R2 containing (x0, y0) such that
q0|Q∩U is bounded. If x0 6= 0, then this holds true, since q0 is continuous. So
let x0 = 0. We take U := s−1(−∞, 1/(y0 + 1))× (0, y0 +1). Since s ∈ Υ and
s(x) > 0 for x > 0, we have (x0, y0) = (0, y0) ∈ U . Pick (x, y) ∈ [0,∞)2 ∩U ,
hence x > 0 and 0 < y < y0 + 1 < 1/s(x). Since ϕ is nondecreasing and
positive we get

0 < ϕ

(
y

x

)
≤ ϕ

( 1
s(x)

x

)
= ϕ

(
1

x · s(x)

)
.

Thus 0 < q0(x, y) ≤ 1 for all (x, y) ∈ (0,∞)2 ∩ U as desired.
Since q0 is locally bounded in [0,∞)2 and s(0) = 0, the function q(x, y) =

q0(x, y) · s(x) has a continuous extension q on [0,∞)2 with q(0, y) = 0 for
all y ≥ 0.
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The next theorem is the key tool for most of the algebra developed in
the rest of the paper:

(7.2) Theorem. Let F ∈ C(Rn). Then there are t ∈ Υ and a continuous
function G ∈ C(Rn × R) with

F (x1, . . . , xn) · t(y) = G(x1 · y, . . . , xn · y, y) ((x, y) ∈ Rn × R).

More precisely , we can choose t as follows:

(i) If ϕ : [0,∞) → (0,∞) is continuous, nondecreasing with |F (x)| ≤
ϕ(|x|), and s ∈ Υ with s(x) > 0 for x > 0, then we can take

t(x) :=





s(|x|)
ϕ
(

1
|x| · s(|x|)

) if x 6= 0,

0 if x = 0.

If in addition s is nondecreasing on (0,∞) with limx→∞ s(x) = ∞,
then also t is nondecreasing on (0,∞) with limx→∞ t(x) = ∞.

(ii) If there is a polynomial P (T ) ∈ R[T ], T = (T1, . . . , Tn), of total
degree d with |F | ≤ |P |, then for every s ∈ Υ we can choose t(y) =
yd · s(y). In particular , if F is bounded we can choose t(y) = y.

Proof. (i) The function F0(x) := F (x)/ϕ(|x|) is bounded. By (7.1),
t ∈ Υ and t(v) ·ϕ(|u|) = q(v · u, v) for some continuous function q ∈ C(R2)
with q(u, 0) = 0 (u ∈ R). Then F (x) · t(y) = F0(x) · q(|x| · y, y). Since F0 is
bounded and q(u, 0) = 0 (u ∈ R), the function F0(x1/y, . . . , xn/y) · q(|x|, y)
can be extended to a continuous function G ∈ C(Rn × R). So G(x1 · y, . . . ,
xn · y, y) = F0(x) · q(|x| · y, y) = F (x) · t(y) everywhere.

This shows that t and G have the required property. If s is nondecreasing
on (0,∞) and limx→∞ s(x) = ∞, then it is straightforward to see that t is
also nondecreasing on (0,∞) and limx→∞ t(x) = ∞.

(ii) Let G0 ∈ C(Rn × (R \ {0})) be defined by

G0(x1, . . . , xn, y) := F (x1/y, . . . , xn/y).

Then

|G0(x1, . . . , xn, y) · yd| =

∣∣∣∣F
(
x1

y
, . . . ,

xn
y

)
· yd

∣∣∣∣ ≤
∣∣∣∣P

(
x1

y
, . . . ,

xn
y

)
· yd

∣∣∣∣.

Since the total degree of P is d, P (x1/y, . . . , xn/y) · yd is a polynomial.
Hence G0(x1, . . . , xn, y) · yd is a continuous function on Rn×(R\{0}) whose
absolute value is bounded by a continuous function on Rn × R. Therefore,
and since s(0) = 0, G0 · yd · s(y) has a continuous extension G on Rn × R
defined by G(x, y) = 0 if y = 0.

Clearly G satisfies F (x1, . . . , xn) · yd+1 = G(x1 · y, . . . , xn · y, y) ((x, y) ∈
Rn × R).
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(7.3) Definition. Let A be a super real closed ring and let 1 ∈ S ⊆ A.
We say that S is Υ -multiplicatively closed if S · S ⊆ S and tA(S) ⊆ S for all
t ∈ Υ .

(7.4) Theorem (Localization of super real closed rings). Let A be a
super real closed ring and let 1 ∈ S ⊆ A be Υ -multiplicatively closed. Then
there is a unique expansion of the localization S−1A to a super real closed
ring such that the localization map A → S−1A is a super homomorphism.
The operation of F ∈ C(Rn) on (S−1A)n is given as follows: Pick t ∈ Υ
and a continuous function G ∈ C(Rn × R) with

F (x1, . . . , xn) · t(y) = G(x1 · y, . . . , xn · y, y) ((x, y) ∈ Rn × R).

Such functions exist by (7.2). Then for f1, . . . , fn ∈ A and g ∈ S,

FS−1A

(
f1

g
, . . . ,

fn
g

)
:=

GA(f1, . . . , fn, g)

tA(g)
.

Proof. First we show that the definition of FS−1A does not depend on
the choice of G and t. Let t∗ ∈ Υ and G∗ ∈ C(Rn × R) with

F (x1, . . . , xn) · t∗(y) = G∗(x1 · y, . . . , xn · y, y) ((x, y) ∈ Rn × R).

Then t∗(y) ·G(x1 · y, . . . , xn · y, y)=t(y) ·G∗(x1 · y, . . . , xn · y, y) for all (x, y)
∈ Rn × R. Hence for all y, z1, . . . , zn ∈ R with y 6= 0 and xi := zi/y we have

t∗(y) ·G(z1, . . . , zn, y) = t∗(y) ·G(x1 · y, . . . , xn · y, y)
= t(y) ·G∗(x1 · y, . . . , xn · y, y)
= t(y) ·G∗(z1, . . . , zn, y).

If y = 0, then t∗(y) = t(y) = 0, and this shows that t∗(y) ·G(z1, . . . , zn, y) =
t∗(y) ·G(z1, . . . , zn, y) for all (z, y) ∈ Rn×R. Therefore t(g) ·G∗(f1, . . . , fn, g)
−t∗(g) ·G(f1, . . . , fn, g) = 0, in particularG(f1, . . . , fn, g)/t(g) = G∗(f1, . . . ,
fn, g)/t

∗(g) in S−1A.
Hence we know that FS−1A is well defined and we may consider S−1A

as an LΥ -structure with these definitions of the F ’s.
In order to see that S−1A is a super real closed ring, let F ∈ C(Rn)

and let F1, . . . , Fn ∈ C(Rk). Let F ∗ := F ◦ (F1, . . . , Fn) ∈ C(Rk). Take
t1, . . . , tn ∈ Υ and G1, . . . , Gn ∈ C(Rk × R) as in the definition of F1,S−1A,
. . . , Fn,S−1A. For x1, . . . , xk, y ∈ R with y 6= 0 we have

F ∗

(
x1

y
, . . . ,

xk
y

)
= F

(
F1

(
x1

y
, . . . ,

xk
y

)
, . . . , Fn

(
x1

y
, . . . ,

xk
y

))

= F

(
G1(x1, . . . , xk, y)

t1(y)
, . . . ,

Gn(x1, . . . , xk, y)

tn(y)

)

= F

(
G̃1(x1, . . . , xk, y)

t̃(y)
, . . . ,

G̃n(x1, . . . , xk, y)

t̃(y)

)
,
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where t̃ := t1 · · · tn ∈ Υ and

G̃i(x1, . . . , xk, y) = Gi(x1, . . . , xk, y) ·
n∏

j=1,j 6=i

tj(y) ∈ C(Rn × R).

Take t ∈ Υ and G ∈ C(Rn × R) as in the definition of FS−1A. Then

F ∗

(
x1

y
, . . . ,

xk
y

)
=
G(G̃1(x1, . . . , xk, y), . . . , G̃n(x1, . . . , xk, y), t̃(y))

t(t̃(y))
.

Hence G∗(x1, . . . , xk, y) := G(G̃1(x1, . . . , xk, y), . . . , G̃n(x1, . . . , xk, y), t̃(y))
∈ C(Rk × R) and t∗ := t ◦ t̃ ∈ Υ satisfy

F ∗(x1, . . . , xn) · t∗(y) = G∗(x1 · y, . . . , xn · y, y) ((x, y) ∈ Rk × R).

This shows that F ∗
S−1A = FS−1A(F1,S−1A, . . . , Fn,S−1A), so S−1A is a super

real closed ring.
Clearly the localization map A→ S−1A is a super homomorphism with

respect to the LΥ -structure provided by the FS−1A. It remains to show
that this structure is uniquely determined by the requirement that the lo-
calization map A → S−1A is a super homomorphism. Let B be another
expansion of S−1A to a super real closed ring such that the localization
map A → S−1A is a super homomorphism. If F ∈ C(Rn), then clearly
FB(f1, . . . , fn) = FS−1A(f1, . . . , fn) for all f1, . . . , fn ∈ A. If g ∈ S, then
take t ∈ Υ and a continuous function G ∈ C(Rn × R) with

F (x1, . . . , xn) · t(y) = G(x1 · y, . . . , xn · y, y) ((x, y) ∈ Rn × R).

Since g is a unit in B and B is a super real closed ring we have

FB

(
f1

g
, . . . ,

fn
g

)
· tB(g) = GB

(
f1

g
· g, . . . , fn

g
· g, g

)
= GS−1A(f1, . . . , fn, g).

Since also tB(g) = tS−1A(g) it follows that

FB

(
f1

g
, . . . ,

fn
g

)
=
GS−1A(f1, . . . , fn, g)

tS−1A(g)
= FS−1A

(
f1

g
, . . . ,

fn
g

)

as desired.

(7.5) Corollary. Let A be a super real closed ring and let P ⊆ A be
arbitrary. Let S be the smallest Υ -multiplicatively closed subset of A con-
taining P . If ϕ : A → B is a super homomorphism with ϕ(P ) ⊆ B∗, then
also ϕ(S) ⊆ B∗ and there is a unique super homomorphism ψ : S−1A → B
such that the diagram

S−1A
ψ

""E

E

E

E

E

E

E

E

A

OO

ϕ
// B

commutes (where A→ S−1A is the localization map).
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Proof. The set S is the closure of P under multiplication and the appli-
cation of elements from Υ . By (6.12) every maximal ideal of A is Υ -radical,
hence for every t ∈ Υ and b ∈ B, b is a unit in B if and only if t(b) is a
unit in B. Since ϕ is a super homomorphism, ϕ(S) ⊆ B∗ and the corollary
follows from (7.4).

(7.6) Proposition. Let A be a super real closed domain and let p ∈
Υ -SpecA be a proper , direct specialization of (0) in Υ -SpecA, i.e. there is
no q ∈ Υ -SpecA with (0) ( q ( p. Then p is convex in the quotient field
of A.

Proof. Let f, g, p ∈ A, f, g, p > 0 with f/g < p ∈ p. We must show that
f/g ∈ A. If g ≥ 1, then g is a unit in A and we are done. So we assume
that g < 1. Since p is a proper, direct specialization of (0), there is some
strictly increasing s ∈ Υ with 0 < s(p) ≤ g. Since p < 1 we may replace s
by a strictly increasing and bounded function from Υ . Since 0 < s(p) ≤ g
and f/g < p we have s(f/g) ≤ g. By (7.4) and since s is bounded, there
is F ∈ C(R2) with s(f/g) = F (f, g)/g. It follows that F (f, g) ≤ g2 and
the convexity condition for real closed rings implies that g divides F (f, g)
in A. Thus s(f/g) = F (f, g)/g ∈ A. Since s ∈ Υ is strictly increasing, there
is some ε ∈ R, ε > 0, such that s0 := s|(−ε,ε) : (−ε, ε) → s((−ε, ε)) is a

homeomorphism. Take t ∈ Υ with t|s((−ε,ε)) = s−1
0 .

Since 0 < f/g < p ∈ p, f/g is positive infinitesimal (with respect to R) in
qf(A). Then also s(f/g) is positive infinitesimal, hence 0 < f/g, s(f/g) < ε
and f/g = t(s0(f/g)) = t(s(f/g)) ∈ A.

8. Application: o-minimal structures on super real closed fields.

Throughout this section, T is an o-minimal extension of real closed fields in
the language L extending the language of ordered rings. We do not assume
that T is complete here. The reference on o-minimality is [vdD].

(8.1) Theorem. Let T be an o-minimal (not necessarily complete) the-
ory extending the theory of fields, in the language L extending the language
of ordered rings, and suppose L has function symbols for all bounded , con-
tinuous, T -definable functions. Then

(i) T has quantifier elimination.
(ii) Let M |= T and let A be an L -substructure of M . Then A is a do-

main and the quotient field of A in M is an elementary substructure
of M .

This is a folklore theorem in the case when T is complete. I am not aware
of a reference and I will give the proof for arbitrary T .

First the explanation of the term “T -definable function”.



Super real closed rings 153

(8.2) Definition. Let T be an L -theory. A T -definable function is an
L -formula ϕ(x1, . . . , xn, y) for some n ∈ N0 such that

T ⊢ ∀x ∃!y ϕ(x, y).

In other words, ϕ(x, y) is a T -definable function if and only if for every
model M of T , ϕ(x, y) defines the graph of a function Mx →M .

If M is a model of T and f : Mn → M is a map, then f is called
T -definable if the graph of f is defined by a T -definable function. Now let T
be an extension of an ordered abelian group. A T -definable function ϕ(x, y)
is continuous if

T ⊢ ∀x, y ∀ε > 0 ∃δ > 0 ∀u, v
ϕ(x, y) ∧ ϕ(u, v) ∧ max

i
{|xi − ui|} < δ → |y − v| < ε.

Again, a formula ϕ(x, y) is a continuous T -definable function if ϕ defines
a continuous function Mx →M in every model M of T .

(8.3) Definition. Let T be o-minimal (not necessarily complete) in
the language L expanding the language of ordered rings. We say that L

has function symbols for all (bounded) continuous, T -definable functions if
for every T -definable, continuous function ϕ(x, y) (such that there is some
n ∈ N with T ⊢ ∀x, y ϕ(x, y) → |y| ≤ n) there is a function symbol f(x) in
L with T ⊢ ∀x, y ϕ(x, y) ↔ y = f(x).

For each L -formula ϕ(x), x = (x1, . . . , xn), let Dϕ(z, y) be the L -for-
mula

y = inf{‖x− z‖ | ϕ(x) holds}.
So if M is a model of T , then Dϕ(z, y) is the graph of the distance function
dϕ(z) of the set of all realizations of ϕ(x).

Proof of Theorem (8.1)(i). If ϕ(x) is an L -formula defining a closed set
in every model of T , then there is a T -definable bounded continuous function
which defines the graph of dϕ(x)/(1 + dϕ(x)2) in every model of T . Since
the zero set of this function is the set of realizations of ϕ in every model
of T , it remains to show that every L -formula is T -equivalent to a boolean
combination of formulas, each defining a closed set in every model of T .

In order to prove this we use the following facts from o-minimality theory.
Let M be a model of T and let X ⊆Mn be definable. Then

1. The frontier ∂X := X\X ofX is of dimension strictly less than dimX
(cf. [vdD, IV, (1.8)]). We define ∂0X = X, ∂n+1(X) := ∂(∂n(X)).

2. Let L(X) := {x ∈ X | there is ε ∈ M, ε > 0, such that Bε(x) ∩X is
closed in Bε(x)}, where Bε(x) is the open ball of radius ε around x.
Then L(X) is a locally closed subset of Mn which is dense and open
in X. Moreover X \ L(X) = ∂2(X); this is straightforward from the
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observation that Bε(x) ∩X is closed in Bε(x) if and only if Bε(x) ∩
∂X = ∅.

It follows that

(∗) X = L(X) ∪ L(∂2(X)) ∪ L(∂4(X)) ∪ · · · ∪ L(∂2k(X)),

where k ∈ N is such that 2k ≥ n: by item 1, ∂2k(X) is a finite set, hence the
process stops at this index. We shall now formulate (∗) in terms of formulas.

For each L -formula ϕ(x), x = (x1, . . . , xn), let ψϕ(x) be the formula
which defines the closure ϕ[Mn] in models M of T . Let Oϕ(z) be the L -
formula

∃x, ε ‖x− z‖ < ε ∧ ϕ(x) ∧ “Bε(x) ∩ ϕ(x) is closed in Bε(x)”.

Hence in every model M of T , Oϕ(z) defines an open subset of Mn such that
L(ϕ[Mn]) = Oϕ[Mn]∩ϕ[Mn]. But then also L(ϕ[Mn]) = Oϕ[Mn]∩ψϕ[Mn].

Pick k ∈ N with 2k ≥ n. We define formulas ϕ0(x), ψ0(x), χ0(x), . . . ,
ϕk(x), ψk(x), χk(x) as follows: ϕ0 := ϕ, ψ0 := ψϕ, χ0 := ¬Oϕ and induc-
tively,

ϕi+1 = ϕi ∧ ¬((ψ0 ∧ ¬χ0) ∨ · · · ∨ (ψi ∧ ¬χi)),
ψi+1 = ψϕi+1

, χi+1 = ¬Oϕi+1
.

Inductively we see that (ψi∧¬χi)[Mn] defines L(∂2i(ϕ[Mn])) and ϕi defines
∂2i(ϕ[Mn]) in models M of T . Since all the ψi and χi define closed sets in
models of T , the representation (∗) shows:

(8.4) Proposition.

T ⊢ ∀x
[
ϕ(x) ↔

k∨

i=0

ψi(x) ∧ ¬χi(x)
]

and for every model M of T the sets ψi[M
n] and χi[M

n] are closed subsets
of Mn.

In particular T has quantifier elimination.

Proof of Theorem 8.1(ii). Of course, A is a domain. In order to prove
that the quotient field ofA is an elementary substructure ofM it is enough to
show that qf(A) is the definable closure of A in M (by o-minimality). Take a
function F : Mn → M , 0-definable in M , and let a1, . . . , an ∈ M . We must
show that F (a1, . . . , an) ∈ qf(A). Clearly, we may assume |F (a1, . . . , an)|
≤ 1 and that dim{a1, . . . , an} = n, where dim denotes the dimension in the
sense of Th(M). We may also assume that F is T -definable and less than or
equal to 1 everywhere. Suppose the graph of F is defined by γ0(x, y) in M ;
then the formula

γ(x, y) := [γ0(x, y)∧ ∃!z |z| ≤ 1∧ γ0(x, z)]∨ [y = 0∧¬∃!z |z| ≤ 1∧ γ0(x, z)]
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defines the graph of F and defines a function of absolute value ≤ 1 in every
L -structure.

We have to find T -definable, bounded, continuous functions ϕ(x, y),
ψ(x, y) such that for every model M of T we have M |= F (a) ·H(a) =
G(a) ∧ H(a) 6= 0, where G,H : Mn → M denote the functions defined by
ϕ, ψ in M respectively. Let δ(x) be the formula which says that F is con-
tinuous at x and of absolute value < 2:

δ(x) := |F (x)| < 2 ∧ ∀ε > 0 ∃δ > 0 ∀y ‖x− y‖ < δ → |F (x) − F (y)| < ε.

Let ψ(x, y) be the formula which defines the distance function to the
complement of δ(x), composed with the function y2

0/(1 + y2
0) if this comple-

ment is nonempty, and the constant function 1 otherwise. Hence

ψ(x, y) = [∀u δ(u) ∧ y = 1]

∨
[
∃u, y0 ¬δ(u) ∧ y =

y2
0

y2
0 + 1

∧ y0 = inf{z | ∃u ¬δ(u) ∧ ‖x− u‖ = z}
]
.

Clearly ψ(x, y) is a bounded, continuous, T -definable function. Finally, let

ϕ(x, y) := ∃y1, y2 y = y1 · y2 ∧ γ(x, y1) ∧ ψ(x, y2).

We claim that ϕ(x, y) is a bounded, continuous, T -definable function.
To see this, let N be a model of T and let f, h be the functions defined by
γ(x, y), ψ(x, y) in N respectively. By definition, ϕ(x, y) defines the graph of
the product g := f · h in N and we must show that g is continuous at every
c ∈ Nx. The formula δ(x) defines the set

S := {n ∈ Nx | f is continuous at n and |f(n)| < 2}.
If S = Nx, then by definition h = 1 and g = f is continuous of absolute

value ≤ 1. So we assume that S 6= Nx. Then h is the distance function to
Nx \ S composed with the function y2

0/(1 + y2
0), and by definition of S we

have |f | ≤ 2 on Nx.

If c ∈ S, then f is continuous at c, so g = f · h is also continuous at c.

If c 6∈ S, then h(c) = 0 and |g(x)| ≤ 2h(x) → 0 as x → c. This shows
that g is also continuous at c.

So we have defined bounded (by 2 ∈ N), continuous, T -definable func-
tions ϕ, ψ and we return to our initial data, M , A and a ∈ Ax. Let
G,H : Mn →M denote the functions defined by ϕ, ψ in M respectively. We
have assumed that |F (a)| ≤ 1 and that dim{a1, . . . , an} = n. Let P be the
definable closure of ∅ in M . By o-minimality, there is an open, 0-definable
subset U of Pn such that F is continuous and of absolute value < 2 in U ,
and a ∈ UM . Therefore, the function H defined by ψ(x, y) in M is not zero
at a. It follows that M |= F (a) ·H(a) = G(a) ∧H(a) 6= 0, as desired.
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(8.5) Theorem. Let A be a super real closed ring and let p be an Υ -
radical prime ideal of A.

(i) There is a unique expansion K of the quotient field of A at p such
that the residue map A→ K is a super homomorphism.

(ii) For every o-minimal expansion M of the field R in the language L

(consisting of function symbols for continuous definable functions
Rn → R), the restriction of K to L is an elementary extension
of M .

Proof. (i) holds by (6.3) and (7.4).

(ii) Let N be the restriction of K to L . Since the super real closed field
R is existentially closed in K by (5.6), M is also existentially closed in N .
Hence there is an L -embedding of N into an elementary extension M ′ of M .
By (8.1)(ii) applied to the theory of M , N is a model of that theory. From
(8.1)(i) it follows that M is an elementary substructure of N .

9. Convexity in super real closed rings. If F : Rn → R is continuous
with F (0) = 0, then there is some s ∈ Υ with

|F (x1, . . . , xn)| ≤ s(x1) + · · · + s(xn) (xi ∈ R).

For example the map s(t) := |t| ∨ max{|F (x)| | |x1|, . . . , |xn| ≤ |t|} has this
property. This observation generates the following super real closed rings:

(9.1) Proposition. Let B be a super real closed ring and let M be a
subgroup of (B,+) such that

1. M is absolutely convex in B, i.e. for all b,m ∈ B we have

|b| ≤ |m|, m ∈M ⇒ b ∈M.

2. M is closed under Υ , i.e. sB(M) ⊆M (s ∈ Υ ).

Then

(i) If A ⊆ B is a super real closed subring of B and M is an A-
submodule of B, then A+M is a super real closed subring of B.

(ii) The set C := {c ∈ B | c ·M ⊆M} is an absolutely convex super real
closed subring of B, and M is an ideal of C.

Proof. (i) Let F ∈ C(Rn), let a ∈ An and let µ ∈Mn. By assumption we
know that FB(a) ∈ A and it is enough to show that FB(a+µ)−FB(a) ∈M .

Let G(x, y) := F (x+ y) − F (x). Hence G : Rn × Rn → R is continuous.
Let H : Rn × Rn → R be defined by H(x, y) = y2

1 + · · · + y2
n. Then every

zero of H is a zero of G. Since Rn has computable z-radicals, there is a
homeomorphism s ∈ Υ and some Q ∈ C(Rn×Rn) such that s◦ |G| = Q ·H.
Take s̃ ∈ Υ such that |Q(t1, . . . , t2n)| ≤ |Q(0)|+ s̃(t1) + · · ·+ s̃(t2n) on R2n.
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Then

|sB ◦ |GB(a, µ)| |
≤ (µ2

1 + · · ·+ µ2
n) · (|Q(0)|+ s̃B(a1) + · · ·+ s̃B(an) + s̃B(µ1) + · · ·+ s̃B(µn)).

By assumption 2 and since M is an A-module and A is closed under Υ ,
the right hand side of this inequality is in M . By assumption 1, we get
sB ◦ |GB(a, µ)| ∈ M . Since s is a homeomorphism, assumption 2 implies
|GB(a, µ)| ∈M , hence by assumption 1 again, GB(a, µ) ∈M , as desired.

(ii) Clearly C is a subring of B, and M is a C-module. By assumptions
1 and 2, M ⊆ C, hence M is an ideal of C. If c ∈ C and b ∈ B with |b| ≤ |c|,
then b ·M ⊆M , since for m ∈M we have |b ·m| ≤ |c ·m| and c ·m ∈M ; so
by assumption 1, b ·m ∈M .

Hence C is an absolutely convex subring of B and it remains to show
that C is a super real closed subring of B. Since C is an absolutely convex
subring and every F ∈ C(Rn) can be bounded above by a natural number
plus the sum of s(xi) (1 ≤ i ≤ n) for some s ∈ Υ , it is enough to show that
C is closed under Υ .

Let s ∈ Υ . Since C is absolutely convex and there is an increasing hom-
eomorphism h ∈ Υ such that |s| ≤ |h| we may assume that s is an in-
creasing homeomorphism R → R. By (7.2) (i), there is some t ∈ Υ with
limx→∞ t(x) = ∞ and some continuous G : R2 → R such that s(x) · t(y) =
G(x · y, y). As limx→∞ t(x) = ∞, there is some t̃ ∈ Υ such that x ≤ t ◦ t̃(x)
for all x ≥ 0. Take c ∈ C and m ∈M . Then

|sB(c) ·m| ≤ |sB(c) · tB(t̃B(|m|))| = GB(c · t̃B(|m|), t̃B(|m|)).
Since t̃B(|m|) ∈M by assumption 2 and c ∈ C we know that also c · t̃B(|m|)
∈ M . Since |G(x, y)| ≤ s1(x) + s2(y) for some s1, s2 ∈ Υ (observe that
G(0, 0) = 0) we get |sB(c) ·m| ≤ s1,B(c · t̃B(|m|)) + s2,B(t̃B(|m|)) ∈ M . By
assumption 1 we get sB(c) ·m ∈M .

This shows that sB(c) ∈ C.

(9.2) Corollary. Let B be a super real closed ring and let A be a
subring of B, closed under Υ . Then

(i) The convex hull of A in B (defined as {b ∈ B | |b| ≤ |a| for some
a ∈ A}) is a super real closed subring of B.

(ii) If A is a super real closed subring of B and I is an Υ -radical ideal
of B, then A+ I is a super real closed subring of B.

(iii) If A is an Υ -subring of B, and I is an Υ -radical ideal of A, then
C := {b ∈ B | b · J ⊆ J} with J := {b ∈ B | |b| ≤ |a| for some a ∈ I}
is a convex super real closed subring of B, and J is an Υ -radical ideal
of C, lying over I.
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Proof. (i) holds, since the convex hull M of A in B satisfies conditions 1
and 2 of (9.1). Now apply (9.1) for M and the super real closed subring R
of B.

(ii) Let M := I. Since M is a radical ideal of B, it satisfies condition 1
of (9.1). Since M is Υ -radical, it also satisfies condition 2 of (9.1). Hence
A+ I = A+M is a super real closed subring of B.

(iii) By (9.1)(ii) it is enough to show that J satisfies conditions 1 and 2
of (9.1). By definition, J satisfies condition 1 of (9.1) and it remains to
show that J is closed under Υ . Let s ∈ Υ . Take some strictly increasing
homeomorphism t ∈ Υ with |s| ≤ |t|. Then for b ∈ J and a ∈ I with |b| ≤ |a|
we have |sB(b)| ≤ |tB(b)| ≤ |tB(a)|. Since tB(a) ∈ I we get sB(b) ∈ J as
desired.

10. An extended Gelfand–Kolmogorov theorem. Let A be a ring
with normal spectrum, i.e. every prime ideal of A is contained in a unique
maximal ideal of A. Let r : SpecA→ (SpecA)max be the map which sends a
prime ideal to the maximal ideal containing it. Then r is continuous and any
ring homomorphism ϕ : A→ B induces a continuous map ι : (SpecB)max →
(SpecA)max by mapping m to r(ϕ−1(m)) (in the proof of (10.1) below, this
is explained with references to proofs).

The Gelfand–Kolmogorov theorem says that this map is a homeomor-
phism if A = C∗(X), B = C(X) and ϕ is the inclusion.

We generalize this in (10.1) to arbitrary rings with normal spectrum by
calculating the fibres of ι. In (10.5) we apply (10.1) to convex subrings of
real closed rings (which then gives back the original statement). At the end
of this section we apply our results to rings of continuous functions. In the
next section we apply the results to super real closed rings.

First some notations. For a subset S of an arbitrary ring A, V (S) de-
notes the set of prime ideals of A containing S. Recall from [Tr1, Section
4], the ideal construction O(a) for an ideal a of a ring A. O(a) is the rad-
ical ideal which defines the Zariski closure of

⋂
V (a)⊆O,O openO in SpecA.

By [Tr1, (4.9)],

O(a) = {f ∈ A | there are a ∈ a and k ∈ N such that fk · (1 − a) = 0}
is the radical ideal generated by the kernel of the localization map A →
(1 + a)−1A.

(10.1) Theorem (Gelfand–Kolmogorov for rings with normal spec-
trum). Let A be a ring with normal spectrum and let ϕ : A → B be a
ring homomorphism. Then the map

ι : (SpecB)max → (SpecA)max, n 7→ max
√
ϕ−1(n),

is continuous and closed with image V (Kerϕ)max, and for each m in
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(SpecA)max the fibre of ι at m is

ι−1(m) = V (O(m) ·B)max.

Moreover the following are equivalent :

(i) ι is injective.
(ii) For every maximal ideal m of A the localization Bm of the A-algebra

B at m is a local ring.
(iii) For all f ∈ B the ideals ϕ−1(fB) and ϕ−1((1 − f)B) of A are

coprime.

Proof. ι is continuous, since ι is the composition of the continuous map
Specϕ with the retraction r : SpecA → (SpecA)max. That r is continuous
(and closed) can be found in [Kn-Sch, Kapitel III, §6, Satz 5], under the
additional assumption that SpecA is completely normal—but this proof
only needs the assumption that every prime ideal of A is contained in a
unique maximal ideal.

So we have a continuous map ι : (SpecB)max → (SpecA)max. Since
(SpecB)max is compact and (SpecA)max is Hausdorff (this follows again
from the assumption that every prime ideal of A is contained in a unique
maximal ideal, together with the separation lemma for spectral spaces, cf.
[Tr1, (2.6)]), we deduce that ι is closed.

We now prove that ι−1(m) = V (O(m) ·B)max. Let m ∈ (SpecA)max and
n ∈ (SpecB)max.

⊆: If ι(n) = m, thenO(m) ⊆ ϕ−1(n), by definition ofO(m). Consequently,
n ∈ V (O(m) ·B)max.

⊇: If O(m) ·B ⊆ n, then O(m) ⊆ ϕ−1(n), and since SpecA is normal we
get ι(n) = m.

Clearly, the image of ι is contained in V (Kerϕ)max. Conversely, if m in
(SpecA)max is not in the image of ι, then we already know that 1 ∈ O(m) ·B;
so take a1, . . . , an ∈ O(m) and b1, . . . , bn ∈ B with

(∗) 1 = ϕ(a1)b1 + · · · + ϕ(an)bn.

Since ai ∈ O(m) there are µ1, . . . , µn ∈ m and some k ∈ N with aki · (1 + µi)
= 0. By taking the (kn)th power of (∗) we may assume that k = 1. Take
a := (1 + µ1) · · · (1 + µn). Then a 6∈ m and from (∗) we get ϕ(a) = 0. This
shows that the image of ι is V (Kerϕ)max.

It remains to prove the characterizations of the injectivity of ι.
(i) is equivalent to (ii), since for every m ∈ (SpecA)max the natural map

SpecBm → SpecB is a homeomorphism onto the set of all prime ideals q of
B with ϕ−1(q) ⊆ m.

(i)⇒(iii). Suppose ι is injective and let f ∈ B. Suppose there is some
maximal ideal m of A containing ϕ−1(fB) + ϕ−1((1− f)B). Let b := f ·B.
We apply what we have already proved to the (A/ϕ−1(b))-algebra B/b. This
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shows that there is some n1 ∈ (SpecB)max containing f with ι(n1) = m. The
same argument applied to 1 − f shows that there is some n2 ∈ (SpecB)max

containing 1 − f with ι(n2) = m. Since ι is injective we must have n1 = n2,
which is impossible, as f ∈ n1 and 1 − f ∈ n2.

(iii)⇒(i). Suppose 1 ∈ ϕ−1(fB) + ϕ−1((1 − f)B) for all f ∈ B. Let
n1, n2 ∈ (SpecB)max with n1 6= n2. Then there are f ∈ n1 and g ∈ n2 with
f + g = 1. By assumption, there are af ∈ ϕ−1(n1) and ag ∈ ϕ−1(n1) with
1 = af + ag. So ι(n1) 6= ι(n2). This shows that ι is injective.

(10.2) Corollary. Let A be a ring with normal spectrum and let ϕ :
A→ B be an A-algebra. Let

ι : (SpecB)max → (SpecA)max, n 7→ max
√
ϕ−1(n),

and let b be an ideal of B. Then the restriction r of ι to V (b)max is a
surjective, continuous and closed map

r : V (b)max → V (ϕ−1(b))max.

If ι is injective, then r is a homeomorphism.

Proof. Let r denote the restriction of ι to V (b)max. Clearly r has values
in V (ϕ−1(b))max. Since A/ϕ−1(b) is again normal we may apply (10.1) to
the injective ring homomorphism A/ϕ−1(b) → B/b and we see that r is
onto V (ϕ−1(b))max. If ι is injective, then r is a continuous bijection from a
quasi-compact space onto a Hausdorff space, hence a homeomorphism.

Our main application of (10.1) will concern the case where B is a real
closed ring and A is squeezed between B and the holomorphy ring of B.
Recall that the holomorphy ring Hol(B) of a real closed ring B is the subring
of all elements f ∈ B such that |f | ≤ N for some N ∈ N. As a preparation
we need

(10.3) Lemma. Let A be a real closed ring. Then for all f ∈ A, f2 +
(1 − f)2 is a unit in A with f2 + (1 − f)2 ≥ 1/2.

Proof. We may consider A as a ring of functions X → R for some real
closed field R and some set X.

Let ϕ : Ralg → Ralg be the continuous semi-algebraic function defined
by ϕ(x) = 1/(x2 + (1 − x)2). As A is real closed, also ϕ ◦ f ∈ A. But
(ϕ ◦ f) · (f2 + (1 − f)2) = 1 as we see by evaluating at each x ∈ X. Since
x2 + (1 − x)2 ≥ 1/2 on R we have f2 + (1 − f)2 ≥ 1/2.

(10.4) Observation. Let a be an ideal of a real closed ring A and let
f ∈ A be such that 0 ≤ f ≤ 1 mod p for all p ∈ V (a). Then g := (f ∧ 1)∨ 0
satisfies f − g ∈ √

a and 0 ≤ g ≤ 1 mod p for all p ∈ SpecA.

Proof. We omit the easy proof.
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For a subset S of an arbitrary ring A, D(S) denotes the set of all prime
ideals p of A with p ∩ S = ∅ (hence D(S) is in general not the complement
of V (S)). The set D(S) is an inverse closed subset of SpecA, i.e. D(S)
is closed in the inverse topology of SpecA, which has the quasi-compact
open subsets of SpecA as a basis of closed sets. Moreover, if S is multi-
plicatively closed, then a straightforward calculation shows that the map
Specϕ : SpecS−1A → SpecA induced by the localization ϕ : A → S−1A
is a homeomorphism onto D(S) with inverse p 7→ p · (S−1 ·A). Hence if
A → S−1A is injective, then D(S) contains all minimal prime ideals of A
(as Specϕ is dominant).

(10.5) Theorem. Let A ⊆ B ⊆ R be rings such that R is real closed
and A contains the holomorphy ring of R. Then A and B are real closed ,
convex subrings of R, B = S−1 ·A with S := B∗ ∩ A, and for every ideal b

of B the map

ι : V (b)max → V (b ∩A)max, n 7→ max
√

n ∩A,
is a homeomorphism.

Proof. A is convex in R, since for all f ∈ R and a ∈ A with 0 ≤ f ≤ a
we have 1+a2 ∈ R∗ and f/(1 + a2) ∈ Hol(R), so f = (1+a2) · f/(1 + a2) ∈
A · Hol(R) ⊆ A. As a convex subring of a real closed ring, A is real closed.
Hence, also B is real closed and convex in R.

Let S := B∗ ∩ A. Clearly S is a multiplicatively closed set of non-zero-
divisors of A containing 1. If b ∈ B, then s := 1/(1 + b2) ∈ Hol(R) ⊆ A ⊆ B,
hence s ∈ B∗ ∩A. Since b = s−1 · b/(1 + b2) and b/(1 + b2) ∈ Hol(R) ⊆ A it
follows that B = S−1 ·A.

Since 1/(1 + f2) ∈ Hol(R) for all f ∈ B and |f/(1 + f2)|, 1/(1 + f2) ≤ 1
we have f/(1 + f2), 1/(1 + f2) ∈ A for all f ∈ B. Consequently, every ideal
b of B is generated by b ∩A.

Since SpecA is completely normal we can apply (10.2), and by (10.1) it
is enough to show that fB ∩A and (1− f)B ∩A are coprime for all f ∈ B.

Since B is real closed and Hol(B) ⊆ A we know from (10.3) that
1/(f2 + (1 − f)2) ∈ A for all f ∈ B. Consequently, for every f ∈ A we
have

f2

f2 + (1 − f)2
∈ fB ∩A, (1 − f)2

f2 + (1 − f)2
∈ (1 − f)B ∩A

and

1 =
f2

f2 + (1 − f)2
+

(1 − f)2

f2 + (1 − f)2
,

as required.

Observe that for a proper convex subring A of a real closed ring B, there
is some m ∈ (SpecA)max with m · B = B. To see this take some b ∈ B \ A.
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Then f := 1 + b2 6∈ A, since −f ≤ b ≤ f . Since f ∈ B∗ and f−1 ∈ A, any
maximal ideal of A containing f−1 satisfies m ·B = B.

Not every inverse closed subset of SpecA containing (SpecA)min is of
the form D(S), where S = B∗ ∩A and B is a real closed overring of A as in
(10.5). To see an example, let X := Rn. Then X is cozero complemented (cf.
[He-Wo]), i.e. Z := (SpecC(X))min is an inverse closed subset of SpecC(X).
On the other hand, if B is a real closed ring containing A := C(X) as a
convex subring, then by (10.5), (SpecB)max is homeomorphic to βX. Since
X = Rn, βX is not boolean, so (SpecB)max is not boolean and Z cannot
be the image of SpecB → SpecC(X). The same argument also works for
C∗(X) instead of C(X).

11. The convex closure of a super real closed ring

(11.1) Lemma. Let ϕ : A → B be a surjective ring homomorphism
between real closed rings (actually , lattice ordered rings are enough). Let
F ⊆ C ⊆ B be such that F is finite and C is countable. Suppose we have
a section ι : F → A such that ι : F → ιF is an order isomorphism. Then
ι can be extended to a section ι′ : C → A which is an order isomorphism
onto ι′(C).

Proof. Straightforward by induction on the cardinality of F .

(11.2) Proposition and Definition. Let A be a real closed ring. Let

S := {f ∈ A | f ≥ 0, f a non-zero-divisor and ∀a ∈ A : 0 ≤ a ≤ f ⇒ f | a}.
Then

(i) For all a, b ∈ A and f ∈ S with 0 ≤ a ≤ b and f | b we have f | a.
(ii) 1 ∈ S and S ·S ⊆ S.
(iii) The ring B := S−1A is the largest real closed ring so that A is

convex in B, more precisely: if C is a real closed overring of A such
that A is convex in C, then there is a unique A-embedding of C
into B.

B is called the convex closure of A.

(iv) For f ∈ A we have f ∈ B∗ if and only if |f | ∈ S if and only if
f2 ∈ S.

(v) For f ∈ S and f ≤ g ∈ A we have g ∈ S, in particular g | f .
Proof. (i) Let 0 ≤ a ≤ b and let b′ ∈ A with b = fb′. By replacing b′

with |b′| if necessary, we may assume that b′ ≥ 0. Let c := b′ ∨ 1 ∈ A. Then
fb′ ≤ fc and since c ≥ 1, c is a unit in A. Hence with a′ := a/c2 ∈ A we
have 0 ≤ a′ ≤ f . Since f ∈ S there is some a′′ ∈ A with a′ = fa′′. So
a = a′c2 = fa′′c2 and f | a.
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(ii) Clearly 1 ∈ S. Let f, g ∈ S and 0 ≤ a ≤ fg, a ∈ A. Since f ∈ S,
(i) says that there is a1 ∈ A with a = a1f . Hence 0 ≤ a1f ≤ fg and since f
is a non-zero-divisor, f ≥ 0 implies 0 ≤ a1 ≤ g. Since g ∈ S, there is some
a2 ∈ A with a1 = a2g. Thus a = a1f = a2gf , i.e. fg | a. This shows that
fg ∈ S, so S ·S ⊆ S.

Before we prove (iii), (iv) and (v) we need

Claim. Let C be a real closed overring of A such that A is convex in C.
If f ∈ C∗ ∩A, then |f | ∈ S.

Proof of the Claim. Since A ⊆ C, f is a non-zero-divisor of A, hence so
is |f |. Take a ∈ A with 0 ≤ a ≤ |f |. Then 0 ≤ a/|f | ≤ 1 in C, as f ∈ C∗.
Since A is convex in C we get |f | | a in A. This shows the claim.

(iii) A is convex in B = S−1A, since for 0 ≤ a/f ≤ a′, a, a′ ∈ A, f ∈ S
we have 0 ≤ a ≤ a′f , hence by (i), f | a in A and a/f ∈ A.

Now let C be a real closed overring of A such that A is convex in C. We
already know from (10.5) that C = T−1A with T = C∗ ∩ A. By the claim
we have T ′ := {t2 | t ∈ T} ⊆ S. Since a/t = at/t2 for all a ∈ A, t ∈ T , we
have C = T−1A = T ′−1A ⊆ S−1A = B.

(iv) If f ∈ B∗ ∩ A, then |f | ∈ S by the claim. If |f | ∈ S, then f2 = |f |2
∈ S. If f2 ∈ S, then f2 ∈ B∗ and f · (f · (f2)−1) = 1, that is, f ∈ B∗.

(v) Let S ∋ f ≤ g ∈ A. Then 0 ≤ f ∈ B∗ and therefore f ≤ g implies
g ∈ B∗. By (iv), g = |g| ∈ S.

Note that by [Kn-Zh2, Theorem 9.15], the convex closure of a real closed
ring is the Prüfer hull (cf. [Kn-Zh1]) of that ring.

Our next goal is to prove that the convex closure of a super real closed
ring is again a super real closed ring in a natural way. In order to carry
out this task we will prove that the set S from (11.2) is stable under the
application of s ∈ Υ .

First a characterization of the elements from S in the case of the super
real closed rings C(X)/a for a z-radical ideal a of C(X).

(11.3) Proposition. For f ∈ C(X), f ≥ 0, and every z-ideal a of
C(X) the following are equivalent :

(i) ∀g ∈ C(X) : 0 ≤ gmod a ≤ f mod a ⇒ f mod a | gmod a.
(ii) ∀g ∈ C(X) : 0 ≤ g ≤ f ⇒ f mod a | gmod a.
(iii) D := {f 6= 0} is C∗-embedded into X at f := {{a = 0} | a ∈ a}, i.e.

for every H ∈ C∗(D) there are Z ∈ f and an extension h ∈ C(X)
of H|Z∩D.

Proof. (iii)⇒(i). Let g ∈ C(X) with 0 ≤ g ≤ f modulo a. By (11.1) there
are g′, f ′ ∈ C(X) with g − g′, f − f ′ ∈ a and 0 ≤ g′ ≤ f ′. By replacing f by
f ′ and g by g′ we may assume that 0 ≤ g ≤ f . Let H := g|D/f |D ∈ C∗(D).
So by assumption there is Z ∈ f such that H|Z∩D can be extended to an
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h ∈ C(X). Then {h · f − g = 0} ⊇ Z ∩D. On Z \D we have 0 ≤ g ≤ f ≡ 0,
hence {h · f − g = 0} ⊇ Z and this shows that f mod a | gmod a.

(i)⇒(ii) is a weakening.
(ii)⇒(iii). Suppose ∀g ∈ C(X) : 0 ≤ g ≤ f ⇒ f mod a | g mod a. Let

H ∈ C∗(D). We have to find some Z ∈ f such that H|Z∩D can be extended
to a continuous function on X. Since H = H+ −H− we may assume that
H ≥ 0 and of course also that H ≤ 1. Since D is the cozero set of f ,
f |D ·H has an extension g ∈ C(X) with g(x) = 0 for all x ∈ {f = 0}. Since
0 ≤ H ≤ 1 and f ≥ 0 we have 0 ≤ g ≤ f . By (ii), f mod a | gmod a and
there is some h ∈ C(X) with f · h− g ∈ a. So Z := {f · h − g = 0} is a set
from f such that h extends H|Z∩D.

(11.4) Corollary. If f ∈ C(X), f 6= 0, and D := {f 6= 0}, then the
following are equivalent :

(i) ∀g ∈ C(X) : 0 ≤ g ≤ f ⇒ f | g.
(ii) {f 6= 0} is C∗-embedded into X.

Proof. By (11.3) applied to the z-ideal a = {0}.
(11.5) Corollary. Let A be the super real closed ring C(X)/a for some

z-radical ideal a of C(X). Let a ∈ A, a ≥ 0, and let s ∈ Υ with s(t) ≥ 0
(t ≥ 0). Then

∀b ∈ A : 0 ≤ b ≤ a⇒ a | b ⇔ ∀b ∈ A : 0 ≤ b ≤ s(a) ⇒ s(a) | b.
Proof. Pick f ∈ C(X), f ≥ 0, with a = f mod a. By (11.3), ∀b ∈ A :

0 ≤ b ≤ a ⇒ a | b if and only if D := {f 6= 0} is C∗-embedded into X at
f := {{h = 0} | h ∈ a}. This latter property only depends on the cozero set
of f , hence it holds for f if and only if it holds for s ◦ f , and this shows the
corollary.

(11.6) Proposition. Let A be a real closed ring and let f ∈ A with
f ≥ 0. Then the following are equivalent :

(i) ∀a ∈ A : 0 ≤ a ≤ f ⇒ f |a.
(ii) The natural map between the holomorphy rings Hol(A) → Hol(Af )

is surjective.

Proof. First note that Hol(A) → A→ Af has indeed values in Hol(Af ).
To see this let a ∈ Hol(A). There is some N ∈ N with |a| ≤β N (β ∈ SperA,
the real spectrum of A). But then also |a/1| ≤α N for all α ∈ SperAf , hence
a/1 ∈ Hol(Af ).

(ii)⇒(i). Let 0 ≤ a ≤ f . Then 0 ≤ a/f ≤ 1 in Af , so by (ii) there is
some g ∈ A such that g/1 = a/f in Af . We claim that g · f = a in A. To
see this take a prime ideal p of A. If f ∈ p, then also a ∈ p, as 0 ≤ a ≤ f .
If f 6∈ p, then gf − a ∈ p, since g/1 = a/f in Af . Hence gf − a ∈ p for all
prime ideals p of A, and this shows gf = a in A.
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(i)⇒(ii). Let a ∈ A and N ∈ N be such that |a/fn| ≤α N for all
α ∈ SperAf . Then 0 ≤ a+/Nfn ≤α 1 and 0 ≤ a−/Nfn ≤α 1 for all
α ∈ SperAf . So in order to show that Hol(A) → Hol(Af ) is surjective we
may assume that a ≥ 0 and 0 ≤ a/fn ≤α 1 for all α ∈ SperAf . This
assumption implies 0 ≤ f · a ≤ fn+1 in A. By (i) there is some g ∈ A
with fn+1 · g = f · a. But this means that g is a preimage of a/fn in A.
Now, g need not be in Hol(A), but we can modify it in order to get this
property as well: Let g′ := (g ∧ 1) ∨ −1. Then |g′| ≤ 1 and for p ∈ SpecA
with f 6∈ p, 0 ≤ f · a ≤ fn+1 and the equation fn+1 · g = f · a shows that
fn+1 · g′ = f · a mod p.

(11.7) Corollary. Let B be the convex closure of C(X). Then the im-
age of (SpecB)max under SpecB → SpecC(X) is contained in z-SpecC(X).

Proof. B is the localization of C(X) at

S := {f ∈ C(X) | f ≥ 0, f a non-zero-divisor and

∀g ∈ C(X) : 0 ≤ g ≤ f ⇒ f | g}
by (11.2). If p ∈ SpecC(X) with p ∩ S = ∅, then also z

√
p ∩ S = ∅, since

membership in S only depends on the cozero set of a function by (11.4). Since
the image of (SpecB)max under SpecB → SpecC(X) is the set D(S)max,
this proves the corollary.

(11.8) Lemma. If A ⊆ B are real closed rings, then

Hol(A) = A ∩ Hol(B).

Proof. B is isomorphic to a ring of functions X → R for some set X and
some real closed field R. For such a ring, the assertion is obvious.

(11.9) Lemma. Let A be a super real closed ring and let f, a ∈ A and
r, s ∈ Υ be such that |a/s(f)| ≤ 1 in As(f). Then there is some g ∈ A with
|g| ≤ |r(f)| such that g = r(f) · (a/s(f)) in As(f).

Proof. First we reduce to the case where A is generated by f and a as a
super real closed ring. Let B be the Υ -subring of A generated by f and a.
Since |a/s(f)| ≤ 1 in As(f) we also have |a/s(f)| ≤ 1 in Bs(f) (cf. (11.8)). If
we find an element g ∈ B with |g| ≤ |r(f)| such that g = r(f) · (a/s(f)) in
Bs(f), then also g = r(f) · (a/s(f)) in As(f). This argument shows that we
may replace A by B, hence we may assume that A is generated by f and a
as a super real closed ring.

Let ϕ : C(R2) → A be the unique super homomorphism which sends x
to f and y to a. Since s(f)/1 = ϕ(s(x))/1 is a unit in As(f) we get a natural

map ψ : C(R2)s(x) → As(f), which is surjective, as ϕ is surjective. Since
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|a/s(f)| ≤ 1 in As(f), there is some F (x, y) ∈ C(R2) such that

ψ

(
F (x, y)

s(x)

)
=

a

s(f)
and

∣∣∣∣
F (x, y)

s(x)

∣∣∣∣ ≤ 1 in C(R2)s(x)

(cf. (11.1)). Let D := {(u, v) ∈ R2 | s(u) 6= 0}. Then F |D/s|D ∈ C(D) is of
absolute value less than 1. Therefore the function

G(u, v) :=




r(u) · F |D

s|D
(u, v) if u 6= 0,

0 if u = 0,

is continuous on R2, |G(u, v)| ≤ |r(u)| for all u, v ∈ R and G · s = r ·F
on R2. Thus G/1 = r(x) · (F/s) in C(R2)s(x).

We take g := ϕ(G) ∈ A. Then |g| ≤ |r(f)| and g = r(f) · (a/s(f))
in As(f).

(11.10) Proposition. Let A be a super real closed ring , let f ∈ A
and let r, s ∈ Υ . Then the natural map As(f) → Ar(f) · s(f) induces an iso-
morphism of the holomorphy rings

Hol(As(f)) → Hol(Ar(f) · s(f)).

Hence Hol(As(f)) is independent of s and equal to Hol(Af ).

Proof. First we show that the natural map As(f) → Ar(f) · s(f) is injec-

tive. Let a ∈ A be such that a/s(f)n = 0 in Ar(f) · s(f). Then (r(f) · s(f))k · a
= 0 for some k and we will show that s(f) · a = 0. This proves a/s(f)n = 0
in As(f) as desired. Let p be a minimal prime ideal of A. If a ∈ p, then

s(f) · a ∈ p. If a 6∈ p, then (r(f) · s(f))k · a = 0 implies r(f) ∈ p or s(f) ∈ p.
Since p is minimal, it is Υ -radical, hence f ∈ p in any case and so s(f) ∈ p

if a 6∈ p.
This shows that s(f) · a ∈ p for all p ∈ SpecA, hence s(f) · a = 0.
It remains to show that Hol(As(f)) → Hol(Ar(f) · s(f)) is surjective. Pick

a ∈ A such that a/(r(f) · s(f))n ∈ Hol(Ar(f) · s(f)). Clearly we may assume
that |a/(r(f) · s(f))n| ≤ 1 in Ar(f) · s(f). Now we apply (11.9) to s and (r · s)n
(instead of r, s). We get some g ∈ A with |g| ≤ |s(f)| such that

g = s(f) · a

(r(f) · s(f))n
in Ar(f) · s(f).

It follows that g/s(f) is a preimage of a/(r(f) · s(f))n in Hol(As(f)) under
Hol(As(f)) → Hol(Ar(f) · s(f)).

Remark. By (11.6), Proposition (11.10) says that As(f) is a convex
subring of Ar(f) · s(f) (note that at the beginning of the proof of Proposi-
tion (11.10) it is shown that r(f)/1 is a non-zero-divisor in As(f)).

(11.11) Corollary. Let A be a super real closed ring , let f ∈ A, f ≥ 0,
and let s ∈ Υ with s(u) ≥ 0 for u ≥ 0. Then with S := {f ∈ A | f ≥ 0
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and ∀a ∈ A : 0 ≤ a ≤ f ⇒ f | a} we have f ∈ S ⇔ s(f) ∈ S. In particular
D(S)max ⊆ Υ -SpecA.

Proof. By (11.6), f ∈ S if and only if Hol(A) → Hol(Af ) is an isomor-
phism. Since Hol(Af ) → Hol(Af · s(f)) and Hol(As(f)) → Hol(Af · s(f)) are
isomorphisms by (11.10), we get f ∈ S ⇔ s(f) ∈ S.

(11.12) Theorem. Let A be a super real closed ring and let B be the
convex closure of A. Then there is a unique expansion of B to a super real
closed ring having A as a super real closed subring.

Proof. By (11.2), B = S−1A with S := {f ∈ A | f ≥ 0, f a non-zero-
divisor and ∀a ∈ A : 0 ≤ a ≤ f ⇒ f | a}. By (11.11), S is Υ -multiplicatively
closed and by (7.4) the theorem follows from B = S−1A.

12. Real closures over proconstructible subsets of Υ -SpecA

(12.1) Proposition. Let I be an index set and let Mi be a super real
closed field for i ∈ I. Let A be a super real closed subring of R :=

∏
i∈IMi.

For every semi-algebraic function f : Rk
alg → Ralg and every a ∈ Rk let

fR(a) := (fMi(ai))i∈I ∈ R. Then

D := {fR(a) | k ∈ N, f : Rk
alg → Ralg semi-algebraic, a ∈ Ak}

is again a super real closed subring of R and this LΥ -structure is the only
one which expands the pure ring D to a super real closed ring having A as
a super real closed subring.

Proof. Let F ∈ C(Rn) and let f1, . . . , fn : Rk
alg → Ralg be semi-algebraic.

Let a ∈ Rk. We have to show that FR(fR1 (a), . . . , fRn (a)) ∈ D. By (7.2), there
are t ∈ Υ and G ∈ C(Rn × R) with

F (x1, . . . , xn) · t(y) = G(x1 · y, . . . , xn · y, y) ((x, y) ∈ Rn × R).

Recall that every semi-algebraic function Rk
alg → Ralg is of the form

l∑

i=1

gj
hj

·χj ,

where χj are semi-algebraic characteristic functions with Rk
alg =

⋃· j{χj = 1},
gj , hj are continuous semi-algebraic functions Rk

alg → Ralg and hj has no
zeros on {χj 6= 0} (by convention (gj/hj) ·χj(x) = 0 if hj(x) = 0).

Pick such functions χµj , gµj, hµj for each fµ. By selecting a common
refinement of the supports of the χµj, we may assume that the χµj do not
depend on µ ∈ {1, . . . , n}, so we write χj instead of χµj . Moreover, by
suitably changing the gµj ’s we may also assume that the hµj do not depend
on µ ∈ {1, . . . , n}, so we write hj instead of hµj .
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Let f : R2l+k
alg → Ralg be semi-algebraic, defined by

f(x1, y1, . . . , xl, yl, z)

:=

{ xj
yj

·χj(z) if yj ·χj(z) 6= 0 for some j ∈ {1, . . . , l},
0 if yj ·χj(z) = 0 for all j ∈ {1, . . . , l}.

Observe that f is well defined, since Rk
alg =

⋃· j{χj = 1}. It is enough to
show that

(∗) FR(fR1 (a), . . . , fRn (a)) = fR(c1, d1, . . . , cl, dl, a) ∈ D

with cj :=GR(gR1j(a), . . . , g
R
nj(a), h

R
j (a)) ∈ A, dj = tR(hj(a)) ∈ A (1 ≤ j ≤ l).

We prove (∗) coordinatewise. Let i ∈ I. There is a unique j with χMi

j (ai)

= 1. Then for each µ ∈ {1, . . . , n} we have fRµ (a)i = fMi

µ (ai) = gMi

µj (ai)/h
Mi

j (ai),
hence

FR(fR1 (a), . . . , fRn (a))i = FMi
(fMi

1 (ai), . . . , f
Mi

n (ai))(†)

= FMi

(
gMi

1j (ai)

hMi

j (ai)
, . . . ,

gMi

nj (ai)

hMi

j (ai)

)
.

By (7.4) we know that

FMi

(
gMi

1j (ai)

hMi

j (ai)
, . . . ,

gMi

nj (ai)

hMi

j (ai)

)
· tMi(hMi

j (ai))

= GMi
(gMi

1j (ai), . . . , g
Mi

nj (ai)), h
Mi

j (ai)),

in other words
FR(fR1 (a), . . . , fRn (a))i · dji = cji,

where dji, cji denote the ith components of dj, cj respectively. By the choice

of the hj and since χMi

j (ai) = 1, we know that dji 6= 0. Thus

FR(fR1 (a), . . . , fRn (a))i =
cji
dji
,

which is the ith component of fR(c1, d1, . . . , cl, dl, a), since the pure field Mi

is an elementary extension of Ralg.
Hence D is a super real closed subring of R. Now let E be another super

real closed ring expanding D such that A is a super real closed subring
of E. We must show that FD = FE for every F ∈ C(Rn), n ∈ N. Pick
i ∈ I. Let π : D → Mi be the projection and let M be the image of π.
Then M is the quotient field of the image of A → D → Mi, hence the
kernel of π is a maximal ideal, thus an Υ -radical ideal with respect to every
super real closed ring structure on D. Let N be the LΥ -structure of the
pure field M imposed by E according to (6.3). Then π : D → N is a super
homomorphism. Composing π with the inclusion A → D (which is a super
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homomorphism by assumption) shows that the natural map A → N is a
super homomorphism as well. By (6.3) and (7.4) we must have N = M .
Thus π : E →Mi is a super homomorphism, in other words we have

FE(fR1 (a), . . . , fRn (a))i = FMi
(fMi

1 (ai), . . . , f
Mi

n (ai))

for all F, f1, . . . , fn, a as in (†) above. Now the computation following (†)
and the fact that A is a super real closed subring of D force FD = FE .

We have two consequences of (12.1).

(12.2) Corollary. Let A be a super real closed ring and let E(A) be
the epimorphic hull of A (cf. [St, Definition 8.3]) in the category of commu-
tative, unital rings. Then there is a unique expansion of E(A) to a super
real closed ring such that the canonical homomorphism A→ E(A) is a super
homomorphism.

Proof. Let Z be the closure of (SpecA)min in the constructible topology.
Then E(A) is the ringB of constructible sections ofA above Z (the definition
of this ring can be found in [Schw1, Chapter I, Section 2]). This follows
easily from the characterization of epimorphisms [Schw-Ma, Theorem 5.2],
and basic results from [St]. By the characterization of the elements of B in
[Schw1], B is the ring D defined for A ⊆ ∏

p∈Z qf(A/p) in (12.1). Hence the
corollary is an instance of (12.1).

Note that by [Schw2, Theorem 1.2] the epimorphic hull of every real
closed ring in the category of commutative rings is real closed.

The second consequence of (12.1) concerns rings of abstract semi-al-
gebraic functions over proconstructible subsets of Υ -SpecA as defined in
[Schw1, Chapter I, Section 2]. We first recall some tools from [Schw1].

(12.3) Reminder. Let A be a ring. Let α, β ∈ SperA (the real spectrum
of A) and assume that β is a specialization of α. Then suppβ/suppα is
a convex prime ideal in A/suppα and there is a largest convex valuation
ring C of k(α) (the ordered residue field of the support of α) such that
m∩A/suppα = suppβ/suppα, where m is the maximal ideal of C. The set
m can be defined as

m = {y ∈ k(α) | yn ∈ the convex hull of suppβ/suppα}
and then

C = {c ∈ k(α) | c ·m ⊆ m}.
We write Cαβ for this valuation ring, mαβ for its maximal ideal and καβ
for the residue field of Cαβ. Observe that the map A/suppβ → καβ factors
through an embedding k(β) → καβ; we write λαβ for this map.

We will apply this construction to real closed rings exclusively. In this
case orderings of A are identified with their support, hence we write Cpq,
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mpq, . . . instead of Cαβ,mαβ, . . . where p = suppα and q = suppβ. Also
observe that in this case k(p) is real closed and

mpq = the convex hull of q/p.

(12.4) Lemma. If A is a super real closed ring and p, q ∈ Υ -SpecA with
p ⊆ q, then Cpq is a super real closed subring of k(p) with Υ -radical maximal
ideal and the map λpq is a super homomorphism.

Proof. This follows from (9.2) applied to the super real closed rings
A/p ⊆ k(p) and the Υ -radical ideal q/p of A/p.

Recall that for a real closed ring A and a proconstructible subset P of
SpecA the real closure of A above P is the following ring: Let Φ : A →∏

p∈P k(p) be the evaluation map and let A0 be the image of Φ. Let D be
the ring defined for A0 according to (12.1). Then the real closure of A above
P is the subring of all elements (sp)p∈P ∈ D which are compatible, i.e. for
all p, q ∈ P with p ⊆ q we have

sp mod(q/p) = λpq(sq).

(12.5) Theorem. Let A be a super real closed ring and let P ⊆ Υ -SpecA
be proconstructible. Let B be the real closure of A above P . Then there is a
unique expansion of B to a super real closed ring such that the natural map
A→ B is a super homomorphism.

Proof. Let Φ : A → ∏
p∈P k(p) be the evaluation map and let A0 be

the image of Φ. Since P ⊆ Υ -SpecA we know that Φ is a super homomor-
phism and A0 is a super real closed subring of

∏
p∈P k(p). Let D be the

ring defined for A0 according to (12.1). We claim that B is a super real
closed subring of D. Hence we must show that, for every F ∈ C(Rn), all
s1 := (s1p)p∈P , . . . , sn := (snp)p∈P ∈ B and each specialization p ⊆ q inside
P we have

(∗) Fk(p)(s1p, . . . , snp) mod(q/p) = λpq(Fk(q)(s1q, . . . , snq)).

Since q/p is an Υ -radical ideal of A/p we have

Fk(p)(s1p, . . . , snp) mod(q/p) = FA/q(s1p mod(q/p), . . . , snp mod(q/p)).

Since λpq is a super homomorphism we know that

λpq(Fk(q)(s1q, . . . , snq)) = Fκpq
(λpq(s1q), . . . , λpq(snq)).

Finally, since A/q is a super real closed subring of κpq and sip mod(q/p) =
λpq(siq) we see that (∗) indeed holds.

Hence B can be expanded to a super real closed ring such that the
natural homomorphism A → B is a super homomorphism. The uniqueness
statement follows from the uniqueness statement in (12.1), since D is also
the ring obtained from B according to (12.1).
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13. The complete ring of quotients of a super real closed ring.

Recall that a subset of a ring A is called dense if it is not annihilated by
nonzero elements of A. For a ring extension A ⊆ B and any element b ∈ B
we define b−1 ·A := {a ∈ A | a · b ∈ A}. Clearly b−1 ·A is an ideal of A.
Recall from [FGL, Section 1.4] that B is called a rational extension (the
name “fractional extension” is also used in the literature) of A if b−1 ·A is
a dense subset of B for all b ∈ B.

By [FGL, 1.9], every commutative ring has a largest rational extension
Q(A), called the complete ring of quotients, which is uniquely determined up
to A-isomorphism. In this section we prove that for every super real closed
ring A there is a unique expansion of Q(A) to a super real closed ring having
A as a super real closed subring (see (13.5)).

(13.1) Lemma. Let A be a super real closed ring and let B be an overring
of A. Let b, b1, . . . , bn ∈ B be such that b does not annihilate (b−1

1 ·A)∩ · · · ∩
(b−1
n ·A). Then for every F ∈ C(Rn) there are a, a∗ ∈ A with a · b 6= 0 such

that whenever B is expanded to a super real closed ring having A as a super
real closed subring , we have

(∗) a ·FB(b1, . . . , bn) = a∗.

Proof. By assumption there is some a′ ∈ A with a′ · b 6= 0 such that
a′ · bi ∈ A for each i.

By (7.2) there are G ∈ C(Rn × R) and t ∈ Υ with F (x1, . . . , xn) · t(y) =
G(x1 · y, . . . , xn · y, y) for all (x1, . . . , xn, y) ∈ Rn × R. Now we take a :=
tA(a′) and a∗ := GA(a′ · b1, . . . , a′ · bn, a′) ∈ A.

First we show a · b = tA(a′) · b 6= 0. Since a′ · b 6= 0 there is a minimal
prime ideal p of B with a′ · b 6∈ p. Since p is minimal, p is Υ -radical. Since
a′ 6∈ p, also tA(a′) 6∈ p. As b 6∈ p we get tA(a′) · b 6∈ p as desired.

Finally, we prove (∗) for every expansion of B to a super real closed
ring having A as a super real closed subring: We have a ·FB(b1, . . . , bn) =
tA(a′) ·FB(b1, . . . , bn) = tB(a′) ·FB(b1, . . . , bn) = GB(b1 · a′, . . . , bn · a′, a′) =
GA(b1 · a′, . . . , bn · a′, a′) = a∗.

(13.2) Proposition. Let A be a super real closed subring of the super
real closed ring B. Let D be the set of all d ∈ B for which d−1 ·A is a dense
subset of B. Then D is a super real closed subring of B and the induced
LΥ -structure on D is the unique one for which D is a super real closed ring
having A as a super real closed subring.

Proof. First we show that D is a super real closed subring of B.
Let F ∈ C(Rn) and let b1, . . . , bn ∈ D. We must show that the ideal
FB(b1, . . . , bn)

−1 ·A of A is a dense subset of B. Pick b ∈ B, b 6= 0. Since each
b−1
i ·A is a dense subset of B, also (b−1

1 ·A)∩· · ·∩ (b−1
n ·A) is a dense subset

ofB. As b 6= 0, b is not in the annihilator of (b−1
1 ·A)∩· · ·∩(b−1

n ·A). Pick a, a∗
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according to b, b1, . . . , bn and F as in (13.1). Then (∗) of (13.1) shows a ∈
FB(b1, . . . , bn)

−1 ·A. Since a · b 6=0, b does not annihilate FB(b1, . . . , bn)
−1 ·A,

as desired.

Hence D is a super real closed subring of B. Let E be another expansion
of the pure ring D to a super real closed ring having A as a super real closed
subring. Let b1, . . . , bn ∈ D. We must show FD(b1, . . . , bn) = FE(b1, . . . , bn).
Otherwise b := FD(b1, . . . , bn)−FE(b1, . . . , bn) 6= 0. Since all bi are in D, b is
not in the annihilator of (b−1

1 ·A)∩· · ·∩(b−1
n ·A). Pick a, a∗ as in (13.1) with

respect to the ring D, the elements b, b1, . . . , bn ∈ D and the function F .
By (13.1) we have a · b 6= 0 and a ·FD(b1, . . . , bn) = a∗ = a ·FE(b1, . . . , bn),
which contradicts the definition of b.

(13.3) Reminder. Let A be a ring and let OSpecA be the sheaf of the
affine scheme of A. Hence the stalk of OSpecA at p is the localization Ap of
A at p and for every U ⊆ SpecA open,

OSpecA(U) =
{
f = (fp)p∈U ∈

∏

p∈U

Ap

∣∣∣ for all p ∈ U there are a, s ∈ A

with p ∈ D(s) ⊆ U and fq =
a

s
in Aq (q ∈ D(s))

}
.

Fix an open subset U ⊆ SpecA and let B := OSpecA(U). We shall consider
B as an A-module via the natural homomorphism ε : A → B. If p ∈ U ,
then the natural map Ap → Bp between the localizations of the A-modules
A and B is easily seen to be injective. If A is reduced, then this map is an
isomorphism, since the map Bp → Ap induced by the projection B → Ap is
injective.

(13.4) Proposition. Let A be a super real closed ring. If U ⊆ SpecA
is open and U ⊆ Υ -SpecA, then there is a unique Υ -structure on B :=
OSpecA(U) such that B is super real closed and the canonical map A → B
is a super homomorphism. Moreover B is a super real closed subring of the
super real closed ring C :=

∏
p∈U Ap.

Proof. Pick f1, . . . , fn ∈ B and F ∈ C(Rn). We have to show that
FC(f1, . . . , fn) ∈ B. Pick p ∈ U . Then there are ai, s ∈ A with p ∈ D(s) ⊆ U
such that (fi)q = ai/s in Aq for all q ∈ D(s). By (7.2) there are G ∈
C(Rn × R) and t ∈ Υ with F (x1, . . . , xn) · t(y) = G(x1 · y, . . . , xn · y, y) for
all (x1, . . . , xn, y) ∈ Rn×R. Since U ⊆ Υ -SpecA, every Aq with q ∈ D(s) is
super real and tA(s) 6∈ q for all q ∈ D(s). Thus we may apply (7.4) to get

FAq

(
a1

s
, . . . ,

an
s

)
=
GA(a1, . . . , an, s)

tA(s)
(q ∈ D(s)).

This proves FC(f1, . . . , fn) ∈ B. We equip B with this LΥ -structure and
denote the resulting super real closed ring by B.
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It remains to show the uniqueness statement. Fix a super structure on
B which turns B into a super real closed ring D such that the natural map
ε : A → D is a super homomorphism. Then ε(A \ p) is a Υ -multiplicatively
closed subset of D , hence D → Dp = ε(A \ p)−1 ·D is a super homomor-
phism. Hence the composite map A → Dp is also a super homomorphism.
By (13.3) the induced map Ap → Bp is an isomorphism. Since there is only
one superstructure on Ap such that A → Ap is a super homomorphism we
get Dp = Bp = Ap. Since D and B are super real closed subrings of C, also
D = B as super real closed rings.

(13.5) Theorem. Let A be a super real closed ring and let Q be the
complete ring of quotients as defined in [FGL, Section 1]. Then there is a
unique LΥ -structure on Q such that Q is a super real closed ring having A
as a super real closed subring.

Proof. Uniqueness follows from (13.2).

By [St, Satz 11.3], Q contains the epimorphic hull E of A. As explained
in [FGL, Section 1.4], Q is also the complete ring of quotients of E. Hence
by (12.2), we may replace A with E. In particular, we may assume that A
is a super real closed ring which is von Neumann regular.

It follows that SpecA = Υ -SpecA and by (13.4), we have a unique way
to expand the rings OSpecA(U) (U ⊆ SpecA open) to super real closed rings;
moreover for all V ⊆ U ⊆ SpecA open, the restriction map OSpecA(U) →
OSpecA(V ) preserves the LΥ -structure. Hence the filtered family of all the
OSpecA(U) with U ⊆ SpecA open and dense, together with the restriction
maps, is a filtered family in the category of super real closed rings with super
real homomorphisms. Since this category has direct limits, we may define
the super real closed ring

H(A) := lim−→{OSpecA(U) | U ⊆ SpecA open and dense}.
We can easily see that the underlying ring of H(A) is also the direct limit of
the OSpecA(U) (U ⊆ SpecA open and dense) in the category of commutative
rings. But, as A is reduced, this ring is A-isomorphic to Q. This last fact is
folklore, we sketch a proof:

For each b ∈ Q let Ub := SpecA \V (b−1A). Since b−1A is dense in A, Ub
is dense in SpecA and we may define an element θ(b) ∈ H(A) as the image
of the section

p 7→ bs

s
∈ Ap for some s ∈ b−1A \ p

of OSpecA(Ub) under the natural map OSpecA(Ub) → H(A). It is a routine
matter to check that θ : Q → H(A) defines an A-algebra homomorphism.
Since A is reduced and each b−1A is dense in B (b ∈ Q), it turns out that θ
is injective. Hence we may identify Q with a subring of H(A).
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On the other hand, H(A) is a rational extension of A, since each
OSpecA(U) with U ⊆ SpecA open and dense is a rational extension of A (as
follows from (13.3) with the help of the isomorphisms Ap → Bp, p ∈ U).

14. Entering varieties of Υ -SpecA. Here we prove a theorem ((14.5))
about the location of V (a) with respect to V (aΥ ) if a is a finitely generated
ideal of a super real closed ring A. By the general theory of real closed rings,
every point q of SpecA outside V (a) that specializes to some point in V (a)
has to enter V (a) at a first point, namely at q +

√
a. Theorem (14.5) says

that this entrance point is minimal in V (a). This is in strong contrast to the
semi-algebraic case (we assume some basic knowledge of real geometry for
this argument, cf. [BCR]): Let A be the ring of continuous semi-algebraic
functions Rn → R and let f ∈ A be the distance function to the closed unit
ball in Rn. Then for each prime ideal q of A outside V (f) that specializes

to a point in V (f), the point q +
√

(f) lies in S̃n−1 = V (g), where g is the
distance function to the sphere Sn−1. This point is not minimal in V (f) !

(14.1) Lemma. Let A be a super real closed ring and let p be a prime
ideal of A. If f ∈ A and

√
p + f ·A is a proper Υ -radical ideal , then f ∈ p.

Proof. First we show

(∗)
√

p + f ·A = {g ∈ A | |g|n ≤ |f | mod p for some n ∈ N}.
The inclusion ⊇ follows from the convexity condition for the real closed ring
A/p. Conversely, since 1 6∈ p + f ·A we have |f · h| < 1 mod p for all h ∈ A.
Therefore f2h2 < |f | mod p for all h ∈ A and it is straightforward to prove
that the set on the right hand side of (∗) is an ideal of A. This ideal is radical
and contains p and f . This shows (∗).

Now take a barrier function L : R → R (see [Tr1, (7.1)]). Since
√

p + f ·A
is Υ -radical we have LA(f) ∈ √

p + f ·A. LetA0 be a finitely generated super
real closed subring of A containing f such that LA(f) ∈ √

p ∩A0 + f ·A0.
By (∗) applied to A0 and p ∩A0, there is some n ∈ N such that |LA(f)n| ≤
|f | mod p∩A0. Let k ∈ N be such that A0 is of the form C(Rk)/I for some
Υ -radical ideal I of C(Rk) and let q ∈ SpecC(Rk) be such that q/I = p∩A0.
Take a preimage F of f in C(Rk). Then |LA(f)n| ≤ |f | mod p ∩ A0 means
|(L ◦ F )n| ≤ |f | mod q. By [Tr1, (7.2)] we get F ∈ q. This in turn implies
f ∈ p.

(14.2) Corollary. Let A be a super real closed ring , let a ⊆ A be
an ideal and let f1, . . . , fn ∈ A. If there is an Υ -radical prime ideal with
a ⊆ p ( p + (f1, . . . , fn) ( A, then

√
a + (f1, . . . , fn) is not Υ -radical.

Observe that in the case A = C(X), a might not be the largest z-radical
ideal contained in a+

√
(f1, . . . , fn), even if a = p is z-radical : take z-radical

prime ideals p ( p1 ( p2, a := p and f ∈ p2 \ p1.
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Proof. Suppose
√

a + (f1, . . . , fn) is Υ -radical. Then

Υ

√
p +

√
(f1, . . . , fn) =

Υ

√
p + a +

√
(f1, . . . , fn)

= Υ
√

p +
Υ

√
a +

√
(f1, . . . , fn)

= p +
Υ

√√
a + (f1, . . . , fn) = p +

√
a + (f1, . . . , fn)

= p +
√

a +
√

(f1, . . . , fn) = p +
√

(f1, . . . , fn),

hence p +
√

(f1, . . . , fn) =
√

p + (f2
1 + · · · + f2

n) is Υ -radical and by (14.1)
we get f2

1 + · · · + f2
n ∈ p, thus f1, . . . , fn ∈ p.

(14.3) Lemma. If a is an ideal of a super real closed ring A and q is
an Υ -radical prime ideal of A, then either q +

√
a ∈ V (a)min, or q +

√
a is

Υ -radical.

Proof. We may assume that q+
√

a is a proper ideal, hence q+
√

a ∈ V (a).
Take p ∈ V (a)min with a ⊆ p ⊆ q +

√
a. Then pΥ ⊆ p, (q +

√
a)Υ , so p

and (q +
√

a)Υ are comparable. If (q +
√

a)Υ ⊆ p, then, as q is Υ -radical,
q ⊆ (q +

√
a)Υ ⊆ p, so q +

√
a ⊆ p, which shows that q +

√
a = p ∈ V (a)min.

Now assume that p ( (q +
√

a)Υ . Then
√

a ⊆ p ⊆ (q +
√

a)Υ . Since q is
Υ -radical, also q ⊆ (q +

√
a)Υ , hence q +

√
a = (q +

√
a)Υ is Υ -radical.

(14.4) Remark. If A = C(X) and q is a z-radical prime ideal of C(X),
then the proof of (14.3), where “Υ -radical” is replaced by “z-radical” and
the ideal construction IΥ is replaced by the diamond construction I⋄ (cf.
[Tr1, (3.4)]), shows that either q +

√
a ∈ V (a)min, or q +

√
a is z-radical.

(14.5) Theorem. Let a be an ideal of a super real closed ring A and let
q be an Υ -radical prime ideal of A, not containing a and such that 1 6∈ a+q.
If q +

√
a = q +

√
(f1, . . . , fn) for some f1, . . . , fn, then q +

√
a ∈ V (a)min.

Proof. By (14.2), q +
√

a is not Υ -radical; then apply (14.3).

Recall from [Tr1, (4.5)] the tubular ideal O(a) attached to an ideal a of
a ring A with normal spectrum: O(a) is the intersection of all prime ideals p

of A with 1 6∈ a+p; we have O(a) ⊆ a and the set V (O(a)) of prime ideals of
SpecA containing O(a) is the set O(V (a)) of all q ∈ SpecA specializing to
some p ∈ V (a). All this is explained at the beginning of Section 4 in [Tr1].

(14.6) Corollary. Let a be an ideal of a super real closed ring A. If
b is an ideal of A with O(a) ⊆ b ⊆ a such that

√
a is finitely generated as a

radical ideal over b, then the map

V (b) → V (a), q 7→ q +
√

a,

maps minimal elements of V (b) to minimal elements of V (a).
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Proof. Let q ∈ V (b)min. If q ∈ V (a), then q +
√

a = q, and as b ⊆ a, q is
already minimal in V (a). So assume q ∈ V (b)min \ V (a). Since O(a) ⊆ b we

have q ∈ O(V (a)) \ V (a). By assumption
√

a =
√

b + (f1, . . . , fn) for some
f1, . . . , fn ∈ C(X), hence

q +
√

a = q +
√

b + (f1, . . . , fn) = q +
√

b +
√

(f1, . . . , fn)

= q +
√

b + (f1, . . . , fn),

since b ⊆ q. Thus we can apply (14.5) and get q +
√

a ∈ V (a)min.

In contrast to (14.6), the map V (a) → V ( Υ
√

a), p 7→ Υ
√

p, does not map
minimal elements of V (a) to minimal elements of V ( Υ

√
a), even if a is a

principal ideal and X is compact. Here is an example:

Example. Let I := [−1, 1] ⊆ R, let f ∈ C(I) be the function f(x) =
x ∨ 0, and let a := f ·C(I). Let h ∈ C(I) be defined by h(x) = 0 if x ≤ 0
and h(x) = (log(x/e))−1 if x > 0. Then x · h(x) = f(x) · h(x) ∈ a but no
power of x and no power of h(x) is divisible by f in C(I).

This shows that x mod
√

a is a zero divisor of C(I)/
√

a, thus there is a
prime ideal p of C(I) minimal over a, containing x. It follows that

Υ
√

p = z
√

p = {g ∈ C(I) | g(0) = 0},
which is not minimal over z

√
a: take q ∈ SpecC(I), z-radical, such that the

prime filter f of closed subsets of I corresponding to q contains [−1, 0], avoids
{0} and specializes to 0. Then z

√
a ⊆ q ( z

√
p.

Acknowledgements. I wish to thank Niels Schwartz for many valuable
discussions on real closed rings, and the anonymous referee for significant
help in improving an earlier version of the text.

References

[BCR] J. Bochnak, M. Coste and M.-F. Roy, Real Algebraic Geometry, Ergeb. Math.
Grenzgeb. 36, Springer, 1998.

[Che] G. Cherlin, Rings of continuous functions: decision problems, in: Model The-
ory of Algebra and Arithmetic (Karpacz, 1979), Lecture Notes in Math. 834,
Springer, Berlin, 1980, 44–91.

[Da-Wo] H. G. Dales and W. H. Woodin, Super-Real Fields, London Math. Soc.
Monogr. 14, Oxford Univ. Press, 1996.

[vdD] L. van den Dries, Tame Topology and o-Minimal Structures, London Math.
Soc. Lecture Note Ser. 248, Cambridge Univ. Press, 1998.

[FGL] N. J. Fine, L. Gillman and J. Lambek, Rings of Quotients of Rings of Func-

tions, McGill Univ. Press, Montreal, 1966.
[Gil-Jer] L. Gillman and M. Jerison, Rings of Continuous Functions, Grad. Texts in

Math. 43, Springer, 1960.



Super real closed rings 177

[He-Wo] M. Henriksen and R. G. Woods, Cozero complemented spaces; when the space

of minimal prime ideals of a C(X) is compact, Topology Appl. 141 (2004),
147–170.

[Hoc] M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math.
Soc. 142 (1969), 43–60.

[Ho] W. Hodges, Model Theory, Encyclopedia Math. Appl. 42, Cambridge Univ.
Press, 1993.

[Kn-Sch] M. Knebusch and C. Scheiderer, Einführung in die reelle Algebra, Vieweg,
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