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Lusin sequences under CH and under Martin’s Axiom

by

Uri Abraham (Beer-Sheva) and Saharon Shelah (Jerusalem)

Abstract. Assuming the continuum hypothesis there is an inseparable sequence of
length ω1 that contains no Lusin subsequence, while if Martin’s Axiom and ¬CH are
assumed then every inseparable sequence (of length ω1) is a union of countably many
Lusin subsequences.

1. Introduction. We first fix some notations and definitions. The set of
natural numbers is denoted by ω, and for A,B ⊆ ω we write A ⊆∗ B iff A\B
is finite, and A ⊥ B iff A∩B is finite (almost inclusion, almost disjointness).
Let A = 〈Aζ | ζ ∈ ω1〉 be a sequence of pairwise almost disjoint, infinite
subsets of ω. So Aζ ⊂ ω and Aζ1 ⊥ Aζ2 for ζ1 6= ζ2. We say that B ⊆ ω
separates A if {ξ ∈ ω1 | Aξ ⊆∗ B} and {ξ ∈ ω1 | Aξ ⊆∗ ω \ B} are both
uncountable. If no B separates A then A is said to be inseparable. That is,
A is inseparable if it is an almost disjoint family of infinite subsets of ω such
that there is no B ⊂ ω for which

(∃ℵ1A ∈ A)(A ⊆∗ B) & (∃ℵ1A ∈ A)(A ⊆∗ ω \B).

An inseparable family of size ℵ1 can be constructed in ZFC alone (Lusin
[1], cited by [2]). We say that A is a Lusin sequence if for every i < ω1 and
n ∈ ω,

{j < i | Ai ∩ Aj ⊆ n} is finite.

A seemingly stronger property is the following. We say that A is a Lusin*
family if for every i < ω1 and n ∈ ω,

{j < i | |Ai ∩ Aj | < n}
is finite.
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It is not difficult to prove that every Lusin sequence is inseparable, and
Lusin constructed a Lusin sequence in ZFC. Is this the only way to build
inseparable families? The answer depends on set-theoretical assumptions
as the following two results show (obtained by the first and second author
respectively).

Theorem 1.1. (1) CH implies that there is an inseparable family which
contains no Lusin subsequence. (2) “Martin’s Axiom + ¬CH” implies that
every inseparable sequence is a countable union of Lusin* sequences.

2. Proofs

2.1. CH gives an inseparable non-Lusin sequence. Assume the contin-
uum hypothesis (CH) throughout this subsection. We shall define a sequence
A = 〈Aα | α ∈ ω1〉 of almost disjoint subsets of ω which is inseparable by
virtue of the following property P.

For every infinite X ⊆ ω one of the following three possibilities holds:

P1 X is finitely covered byA (which means that for some finite set u ⊂ ω1,
X ⊆∗ ⋃{Aα | α ∈ u}).

P2 ω \X is finitely covered by A.

P3 For some α0 < ω1 for all α0 ≤ α < ω1, X splits Aα (which means that
both X ∩ Aα and Aα \X are infinite).

It is quite obvious that if A has this property then it is inseparable,
and so we describe the construction, assuming CH, of a sequence that has
property P, but does not contain any Lusin subsequence.

Let 〈Xξ | ξ ∈ ω1〉 be an enumeration of all infinite subsets of ω, and let
〈ei | i ∈ ω1〉 be an enumeration of all countable subsets of ω1 of order-type
a limit ordinal. The sequence A = 〈Aα | α ∈ ω1〉 is defined by induction on
α. First 〈Ai | i ∈ ω〉 are defined as some almost disjoint family of infinite
subsets of ω. Each Aα, for α ≥ ω, is required to satisfy the following three
conditions.

C1 Aα ⊆ ω is infinite and Aβ ⊥ Aα for all β < α.

C2 For every ξ < α one of the following possibilities holds:

p1 Xξ is finitely covered by 〈Aβ | β < α〉, or
p2 ω \Xξ is finitely covered by 〈Aβ | β < α〉, or else
p3 Xξ splits Aα (i.e. both Xξ ∩ Aα and Aα \Xξ are infinite).

C3 For every i < α such that ei ⊆ α there are two possibilities:

1. For some m ∈ ω, Aα ∩Aξ ⊆ m+ 1 for an infinite number of indices
ξ ∈ ei. (This is the “good” possibility.)
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2. For some m ∈ Aα there is ξ0 < sup(ei) such that for every ξ with
ξ0 < ξ ∈ ei,

min(Aξ \m+ 1) < min(Aα \m+ 1).

Or, equivalently, if n is the first member of Aα above m then
Aξ ∩ (m,n) 6= ∅.

If we succeed then C1 and C2 clearly imply that A is pairwise almost
disjoint and inseparable. We are going to show that C3 implies that A con-
tains no Lusin subsequences. Suppose that L = 〈Ai | i ∈ I〉 is a subsequence
of A, where I ⊆ ω1 is uncountable. We want to find some α ∈ I and m ∈ ω
for which {ξ ∈ I ∩ α | Aα ∩ Aξ ⊆ m} is infinite.

Consider the structure on ω ∪ I with predicates for ω, I, ∈, and the
binary relation m ∈ Ai (for m ∈ ω, i ∈ I). Let e ⊆ I be the universe of a
countable elementary substructure. Then e = ei for some i ∈ ω1. Let α ∈ I
be any ordinal such that α > i and α > sup(e). We want to prove that
possibility C3(1) holds for α. This shows that L is not a Lusin sequence.
Suppose instead that C3(2) holds. Then there are m ∈ Aα and ξ0 < sup(e)
as in C3(2). Namely, if n is the first member of Aα above m then

Aξ ∩ (m,n) 6= ∅(1)

for every ξ > ξ0 in e. However, since ei is an elementary substructure, we
actually have (1) for every ξ0 < ξ in I. But this is clearly impossible for
ξ = α itself!

Having shown the usefulness of the three conditions C1–C3, we now
return to the inductive construction. At the αth stage of this construction,
to construct Aα, it is convenient to define a poset P = (P,≤) and a countable
collection of dense subsets of P , and then to define a filter G ⊆ P such that
G intersects each of the dense sets in the countable collection. With this we
shall define Aα =

⋃{a | (∃E)((a,E) ∈ G)}, and Aα will satisfy all three
conditions because of the choice of the dense sets. In this fashion one does
not have to over-specify the construction.

A condition p = (a,E) ∈ P consists of:

1. A finite set a ⊆ ω (which will grow to become Aα).
2. A finite set E ⊆ α (p promises that Aβ ∩ Aα = Aβ ∩ a for all β ∈ E).

Following the tradition that p1 ≤ p2 means that p2 gives more information
than p1, the partial order on P is defined by

(a1, E1) ≥ (a0, E0) iff E0 ⊆ E1 and a1 is an end-extension of a0

such that, for every ξ ∈ E0, (a1 \ a0) ∩ Aξ = ∅.
We say that an end-extension a1 of a0 respects E (where E ⊆ ω1 is finite) if
(a1 \ a0) ∩ Aβ = ∅ for every β ∈ E. So (a1, E1) extends (a0, E0) if and only
if E0 ⊆ E1 and a1 is an end-extension of a0 that respects E0.
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Now we shall define a countable collection of dense subsets of P . First,
to ensure that Aα is infinite, for every k ∈ ω and p ∈ P observe that there
is an extension (a′, E′) of p with k < sup(a′). Then to ensure that Aα ⊥ Aβ
for all β < α observe that (a,E ∪{β}) extends (a,E). These dense sets take
care of C1.

For every X ⊆ ω such that neither X nor ω \X are finitely covered by
〈Aβ | β < α〉, and for every k ∈ ω, define DX,k ⊂ P by

DX,k = {(a,E) ∈ P | both a ∩X and a \X contain ≥ k members}.
Claim 2.1. DX,k is dense (open) in P .

Proof. Take any (a0, E0) ∈ P . Since neither X nor its complement are
⊆∗-included in A =

⋃{Aβ | β ∈ E0}, both X \A and (ω\X)\A are infinite.
We can find an end-extension a1 of a0 such that (a1 \ a0)∩A = ∅ and both
a1∩X and a1 \X contain ≥ k members. Thus (a0, E0) < (a1, E0) ∈ DX,k.

So add to the countable list of dense sets all sets DXξ,k for k ∈ ω and
ξ < α such that neither Xξ nor ω \Xξ are finitely covered by 〈Aβ | β < α〉.
This ensures C2.

The main issue of the proof is to take care of C3. What dense sets will do
the job? Fix e = ei for any i < α such that e ⊆ α. We say that a condition
p = (a,E) ∈ P is of type (a) for e if for some m ∈ a the following holds:

(2) For every end-extension a′ of a that respects E and for every ξ0 ∈ e
there is some ξ ∈ e, ξ0 ≤ ξ, such that Aξ ∩ a′ ⊆ m+ 1.

If p is of type (a) then the least m ∈ a that satisfies (2) is denoted by
mp. Observe that if p is of type (a) then any extension of p is also of type
(a) (and with the same m).

We say that p = (a,E) ∈ P is of type (b) for e if there are two adjacent
members of a, m and n (i.e. m,n ∈ a and (m,n) ∩ a = ∅), such that for
some ξ0 ∈ e for every ξ0 ≤ ξ ∈ e, Aξ ∩ (m,n) 6= ∅.

Claim 2.2. Any condition in P has an extension of type (a) or an ex-
tension of type (b).

Proof. Given p = (a,E) let m = max(a). Is p of type (a) by virtue of m?
If yes, we are done, and if not then there are

1. a′ an end-extension of a, respecting E, and
2. ξ0 ∈ e,

such that for every ξ ∈ e with ξ0 ≤ ξ, Aξ ∩a′ \m+ 1 6= ∅. Let n > max a′ be
such that n 6∈ ⋃{Aβ | β ∈ E} and consider the condition p′ = (a ∪ {n}, E)
extending p. Then for every ξ0 ≤ ξ ∈ e, Aξ ∩ (m,n) 6= ∅. That is, p′ is of
type (b).
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For every ξ0 ∈ e define Dξ0,e by p = (a,E) ∈ Dξ0,e iff either p is of
type (b), or p is of type (a) and there exists some ξ ∈ e ∩ E above ξ0 with
Aξ ∩ a ⊆ m+ 1 (where m = mp).

Claim 2.3. Dξ0,e is dense in P .

Proof. Suppose p0 ∈ P is given. If p0 is extendible into a condition of
type (b) then we are done. Otherwise there is p1 = (a1, E1) ≥ p0 of type
(a). By the definition of type (a), there is some ξ ∈ e with ξ0 ≤ ξ such that
Aξ ∩ a1 ⊆ m+ 1. Hence (a1, E1 ∪ {ξ}) ∈ Dξ0,e is as required.

Add to the countable list of dense sets all sets Dξ0,e where e = ei for
some i < α such that ei ⊆ α and ξ0 ∈ ei. We claim that if Aα is defined
from a filter G that intersects all the above dense sets, then condition C3
is ensured. Given i < α such that ei = e ⊆ α, we ask if there is (a,E) ∈ G
of type (b) for e. If yes, then possibility C3(2) holds for Aα.

So we assume that G contains no condition of type (b) for e. Since any
two conditions in G are compatible, it follows that if p, q ∈ G are of type
(a), then mp = mq. Let m denote this common value. We claim that there is
an unbounded set of ξ ∈ e such that Aξ ∩Aα ⊆ m+ 1. To see this, consider
any ξ0 ∈ e and pick p = (a,E) ∈ Dξ0,e∩G. Then p is of type (a) and there is
ξ ∈ E ∩ e above ξ0 with Aξ ∩ a ⊆ m+ 1. But then Aξ ∩Aα ⊆ m+ 1 follows.

2.2. Martin’s Axiom: Inseparable⇒ contains a Lusin* subsequence. As-
sume Martin’s Axiom + 2ℵ0 > ℵ0. Let A = 〈Aζ | ζ ∈ ω1〉 be an inseparable
sequence of length ω1 (any length below the continuum works). Define the
following poset:

Q = {(u, n) | u ⊆ ω1 is finite and n < ω}
ordered by

(u1, n1) ≤ (u2, n2) iff u1 ⊆ u2 & n1 ≤ n2 &

(∀i ∈ u1)(∀j ∈ u2 \ u1)(j < i⇒ |Ai ∩ Aj | > n1).

This relation is easily shown to be transitive. We intend to prove that Q is
a c.c.c. poset, and that for every α < ω1 and k < ω the set Dα,k of (u, n)
in Q for which sup(u) > α and n > k is dense. So if G ⊂ Q is a filter
provided by Martin’s Axiom which intersects each of these dense sets, then
U =

⋃{u | (∃n)((u, n) ∈ G)} is uncountable and 〈Aα | α ∈ U〉 is a Lusin*
sequence. Because if i ∈ U and k < ω then

{Aj | j ∈ U ∩ i and |Ai ∩ Aj | ≤ k}
is finite by the following argument. For some (u, n) ∈ G, i ∈ u and n ≥ k.
This implies that |Ai ∩ Aj | > k for every j < i such that j ∈ U \ u.

The full result, concerning the decomposition of A into countably many
Lusin* subsequences, follows from the fact that (under Martin’s Axiom) if
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Q is a c.c.c. poset, then Q is a countable union of filters (each intersects the
required dense sets). (Consider the finite support product of ω copies of Q,
and remember that |Q| = ℵ1.)

It is easy to see that if (u, n) ∈ Q and v is any end-extension of u then
(u, n) ≤ (v, n). Also, if n ≤ m then (u, n) ≤ (u,m). This shows that the
required sets Dα,k are indeed dense in Q, and so the main point of the proof
is to show that Q satisfies the countable chain condition.

Lemma 2.4. Q satisfies the c.c.c.

Proof. Let 〈(uζ , nζ) | ζ ∈ ω1〉 be an ω1-sequence of conditions in Q. We
may assume that for some fixed n and k, n = nζ and k = |uζ | for all ζ ∈ ω1,
and that the sets uζ form a ∆-system. That is, for some finite c0 ⊂ ω1,
c0 = uζ1 ∩ uζ2 for all ζ1 6= ζ2 and max(uζ1) < min(uζ2 \ c0) for ζ1 < ζ2.

We want to find ζ1 < ζ2 such that (uζ1 ∪ uζ2 , n) extends both (uζ1 , n)
and (uζ2 , n). It is evident that (uζ1 ∪uζ2 , n) extends (uζ1 , n) (the lower part)
but the problem is the possibility that |Ai ∩ Aj | ≤ n for some i ∈ uζ2 and
j ∈ uζ1 \ c0.

We shall find two uncountable sets K,L ⊆ ω1 such that for every ζ1 ∈
K and ζ2 ∈ L, (uζ1 , n) and (uζ2 , n) are compatible. We start with K0 =
L0 = ω1, and define Ki+1 ⊆ Ki and Li+1 ⊆ Li by induction, considering
in turn each pair 0 ≤ i, j ≤ |uζ \ c0| (any ζ can be taken, as these sets
have all the same size). The definition of Ki and Li depends on a finite
parameter set, and it is convenient to have a countable model in which the
definition is carried out. So let M ≺ 〈Hℵ1 ,A, Q, {(uζ , nζ) : ζ ∈ ω1}〉 be a
countable elementary submodel (where Hℵ1 is the collection of all sets that
are hereditarily countable). The following lemma is used.

Lemma 2.5. Let U, V ∈M be two uncountable subsets of ω1 and n < ω.
There are uncountable subsets U1 ⊆ U and V1 ⊆ V (definable in M) such
that |Aζ ∩ Aξ| > n for every ζ ∈ U1 and ξ ∈ V1 (and hence ({ζ}, n) and
({ξ}, n) are compatible in Q).

It should be obvious how successive applications of the lemma yield the
c.c.c., and so we turn to the proof of the lemma. Let δ = ω1 ∩M be the set
of countable ordinals in our countable structure M .

Case 1: |Aζ ∩ Aξ| > n for some ζ ∈ U \ δ and ξ ∈ V \ δ. In this case
pick a finite X ⊂ Aζ ∩ Aξ with |X| > n, and let U1 = {i ∈ U | X ⊂ Ai}
and V1 = {j ∈ V | X ⊂ Aj}. Both U1 and V1 are uncountable (for if U1 is
countable then it would be included in M , but Aζ shows that this is not the
case).

Case 2: not Case 1. So |Aζ∩Aξ| ≤ n for every ζ ∈ U\δ and ξ ∈ V \δ. Let
0 ≤ m0 ≤ n be the maximal size of some intersection F = Aζ∩Aξ for indices
ζ and ξ as above. Then U1 = {i ∈ U | F ⊂ Ai} and V1 = {j ∈ V | F ⊂ Aj}



Lusin sequences 103

are uncountable and Ai∩Aj = F for i ∈ U1\δ and j ∈ V1\δ (by maximality
of |F |). So the set B =

⋃{Ai | i ∈ U1} separates A (as B∩Aj = F for every
j ∈ V1), which is a contradiction.
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