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Homotopy decompositions of orbit spaces
and the Webb conjecture

by

Jolanta Słomińska (Warszawa)

Abstract. Let p be a prime number. We prove that if G is a compact Lie group
with a non-trivial p-subgroup, then the orbit space (BAp(G))/G of the classifying space
of the category associated to the G-poset Ap(G) of all non-trivial elementary abelian
p-subgroups of G is contractible. This gives, for every G-CW-complex X each of whose
isotropy groups contains a non-trivial p-subgroup, a decomposition of X/G as a homotopy
colimit of the functor XEn/(NE0∩. . .∩NEn) defined over the poset (sdAp(G))/G, where
sd is the barycentric subdivision. We also investigate some other equivariant homotopy
and homology decompositions of X and prove that if G is a compact Lie group with
a non-trivial p-subgroup, then the map EG ×G BAp(G) → BG induced by the G-map
BAp(G)→ ∗ is a mod p homology isomorphism.

Introduction. In this paper we will study homotopy and homology
decompositions which are associated to the equivariant structure of aG-CW-
complex X where G is a Lie group. We will try to generalize and streamline
techniques of such decompositions.

Let C be a small topological category and let F : C → G-CW be a functor
such that, for every c ∈ C, F (c) = G ×H(c) X

H′(c) where H(c),H ′(c) are
closed subgroups of G and H(c) is a subgroup of the normalizer NH ′(c) =
NGH

′(c) of H ′(c) in G. Suppose also that there is a natural transformation
from F to the constant functor X induced by the inclusions XH′(c) → X.
G-maps

u : hocolimc∈C G×H(c) X
H′(c) → X

induced by such natural transformations can be used in constructing
different homotopy and homology decompositions. If u is a G-homotopy
equivalence then it will be called a G-homotopy decomposition of X.

In Section 0 we will introduce a “universal” category CG and, for every
G-CW-complex X, a functor X̂ : CG → G-CW and a natural transformation
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of functors X̂ → X. We will study the decompositions induced by functors
F which are compositions X̂F ′, where F ′ : C → CG.

For a given G-CW-complex K, we will investigate homotopy decompo-
sitions of the orbit space K ×G X, i.e. homotopy equivalences of the form

id×Gu : hocolimc∈C K ×H(c) X
H′(c) ' K ×G X.

We will also study mod p homology decompositions. In this case the map
id×Gu is an Fp-equivalence. We will show how the known examples of de-
compositions of K ×G X can be described using CG.

The best known examples of homology decompositions are the cases
where K = EG is a universal free G-space and X = ∗ is a one-point space
([JM2], [JMO]).

Let p be a prime number and let Ap(G) be the G-poset of all elementary
abelian non-trivial p-subgroups of G. If G does not contain a p-subgroup,
then the set Ap(G) is empty. Let Ap(G) be the category whose objects are
elements of Ap(G) and whose morphisms are homomorphisms which are
restrictions of inner automorphisms of G. Let CG(E) be the centralizer of
E in G. There is a contravariant functor F : Ap(G) → G-CW such that
F (E) = G ×CGE XE. In the case where X = ∗ and G is a compact Lie
group which contains a non-trivial p-subgroup, there is a mod p homology
decomposition (Theorem 1.3 of [JM2])

hocolimE∈Ap(G)BCG(E)→ BG.

Using this fact it is proved in [H1] that if the isotropy groups of X are
compact and contain a non-trivial p-group, then the map

hocolimE∈Ap(G)EG×CG(E) X
E → EG×G X

is a mod p homology isomorphism.
We will prove that one can take instead of EG any Fp-acyclic complex K.

We will also construct, for such K, another mod p homology decomposition

hocolim[(E0,...,En)]∈(sdAp(G))/GK ×NE0∩...∩NEn X
En → K ×G X.

Here we take C equal to the poset (sdAp(G))/G of the orbits of the
G-action on the barycentric subdivision of Ap(G). (Recall that the elements
of sdAp(G) are the increasing sequences (E0 < . . . < En) of elements of
Ap(G).) If G is a compact Lie group, then in the special case when X = ∗
and K = EG, we obtain a mod p homology isomorphism

hocolim[(E0,...,En)]∈(sdAp(G))/GB(NE0 ∩ . . . ∩NEn)→ BG,

which is in fact equal to the mod p isomorphism

EG×G B(Ap(G))→ BG.
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This last fact is well known in the finite case and can be obtained using 1.3
of [JM2]. The compact case is more complicated because of the topological
structure of Ap(G).

If K = ∗ then we obtain not only a homology but also a homotopy
decomposition of X/G (Theorem 0.1). In the case when G is a compact Lie
group and X = ∗ this means that the space (BAp(G))/G is contractible.
For finite groups this was conjectured in [We]. A combinatorial proof of this
fact in the finite case was given in [Sy]. Our proof is a generalization of an
equivariant approach described for finite groups in [S1].

We will also study h∗G decompositions, where h∗G is a generalized equiv-
ariant cohomology theory, i.e. maps u which induce isomorphisms

h∗G(u) : h∗G(X)→ h∗G(hocolimc∈C G×H(c) X
H′(c)).

We will use the fact that such a decomposition gives a spectral sequence

Hm(C, hnH(−)(X
H′(−)))⇒ hm+n

G (X),

where h∗H(−) = h∗G(G ×H −) and Hm(C,−) = limm
C (−) = ExtmC (Z,−) are

the cohomology groups of the category C (Ch. XII of [BK], Section 5 of
[DF1]).

0. The main results. Let G be a Lie group. Let OG be the orbit
category of G whose objects are the orbits G/H, where H is a closed
subgroup of G. The morphisms of OG are the equivariant continuous maps.
Every morphism f : G/H → G/H1 corresponds to a class [g] ∈ (G/H1)H

such that f([g′]) = g′gH1. It follows from the definitions that [g] ∈ (G/H1)H

if and only ifH⊆gH1g
−1. The topology of the morphism space MorOG(G/H,

G/H1) = (G/H1)H is induced from G/H1. The category OG is a topological
category in the sense of [HV], i.e. a small category C with topological mor-
phism sets such that the composition is continuous and the structural map
Ob C →Mor C is a closed cofibration. Similarly to [HV] we will work in the
category Top of compactly generated spaces. We will consider OG as a full
subcategory of the category G-CW of all G-CW-complexes and equivariant
cellular maps. This category is described, for example, in [Wi] and [JMO].

We introduce another topological category CG which plays a crucial role
in our considerations concerning equivariant decompositions. Its object set
W(G) consists of all pairs (H,H ′) of closed subgroups of G such that H
is a subgroup of NH ′. The morphisms (H,H ′) → (H1,H

′
1) of CG are all

morphisms f = [g] : G/H → G/H1 of OG such that H ′1 ⊆ g−1H ′g. If
f ′ = [g′] : (H1,H

′
1) → (H2,H

′
2) is a morphism of CG, then the condition

H ′2 ⊆ g′−1H ′1g
′ implies thatH ′2 ⊆ g′−1g−1H ′gg′ so f ′f = [gg′] is a morphism

of CG. The topology of the morphism spaces is induced from the morphism
space topology in OG. There is an inclusion of categories i : OG → CG such
that i(H) = (H, e). The category CG has a final object (G, e).
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Let X be a G-CW-complex. Let X̂ : CG → G-CW be the functor defined
by X̂(H,H ′) = G ×H XH′ , X̂([g])([g′, x]) = [g′g, g−1x]. Hence X̂(G, e) =
G×G X = X. The equivariant maps

α(H,H ′) = X̂([e]) : G×H XH′ → X

such that α(H,H ′)[g′, x] = g′x form a natural transformation of functors
α : X̂ → X where X is the constant functor. Let C be a topological category.
Suppose that we have a functor (H(−),H ′(−)) : C → CG. Then α induces a
G-map

u : hocolimc∈C G×H(c) X
H′(c) → X.

Many examples of decompositions induced by such maps will be de-
scribed and studied in Sections 3 and 4. For example, let V be a G-set of
closed subgroups of G and let OV be the full subcategory of OG such that
G/H is an object of OV if and only if H ∈ V . Let C(V ) be the full subcat-
egory of CG whose objects are pairs (H,H ′) where H is a subgroup of H ′

and H ′ ∈ V . We will prove the following result in Section 3.

0.0. Proposition. Assume that all isotropy groups of X are in V . Then:

(i) The map
u : hocolimC(V ) X̂ → X

is a G-homotopy decomposition.
(ii) The map u/G gives a homotopy decomposition

hocolimG/H∈OV X
H ' X/G.

The homotopy decomposition from (ii) is well known. It appears in [E]
and [DF2].

In Sections 1 and 2 we will consider the case where C is the orbit cate-
gory of the barycentric subdivision of a poset of subgroups of G. In order
to describe this case we need the following notation. Let W be a topolog-
ical G-poset. This means that W is a topological poset in the sense of [Ž]
(i.e. the order relation is a closed subset of W 2) together with a continuous
and order preserving action of G on W . Let dnW denote the G-subspace of
Wn+1 consisting of all non-decreasing sequences w. = (w0, . . . , wn). The
G-subspace of dnW consisting of all w. such that wi 6= wi+1 for all i
will be denoted by sdnW . The disjoint union sdW =

⊔
n∈N sdnW is a

topological G-poset such that (w0, . . . , wn) ≤ (w′0, . . . , w
′
m) if and only if

{w′0, . . . , w′m} ⊆ {w0, . . . , wn}. There are two G-poset maps p0 : sdW →W
and p1 : (sdW )op → W such that p0(w.) = w0, p1(w.) = wn. We will as-
sume that as a topological space, W is equal to the disjoint union of its
G-orbits Gw = G/Gw with the topology induced from the topology of G. In
this case the topological space W/G is discrete. If W satisfies the condition
that w ≤ gw implies that w = gw then W/G is a poset such that [w] ≤ [w′]
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if and only if w ≤ gw′ for some g ∈ G. The G-poset sdW satisfies this
condition.

Let S(G) denote the poset of all closed subgroups of G. The group G
acts on S(G) by conjugation. If H ∈ S(G), then the isotropy group of this
action at H is equal to NH. We will assume that S(G) is a topological space
equal to the disjoint union of its G-orbits Gx with topology induced from
the topology of G. Let W be a G-subposet of S(G) satisfying the condition
that w ≤ gw implies that w = gw. Suppose that (sdW )/G is also a discrete
space. Then the space sdW is equal to the disjoint union of its G-orbits
G/(Nw0 ∩ . . . ∩Nwn). There is a functor F : (sdW )/G→ CG such that

F ([w0, . . . , wn]) = (Nw0 ∩ . . . ∩Nwn, wn).

If [w0, . . . , wn] ≤ [w′0, . . . , w
′
m], then there exists exactly one element [g] of

G/(Nw′0 ∩ . . . ∩ Nw′m) such that (w0, . . . , wn) ≤ (gw′0g
−1, . . . , gwmg

−1).
This implies that gw′mg

−1 ⊆ wn and F ([w0, . . . , wn] ≤ [w0, . . . , w
′
m]) is the

morphism of CG defined by [g].
If X is a G-CW-complex then there is a functor X̃ : (sdW )/G→ G-CW

such that
X̃([w0, . . . , wn]) = G×Nw0∩...∩Nwn X

wn .

In Section 2 of this paper we will prove the following result which in the
case when G is a finite group was proved in [S1] (2.10.iv and 2.11).

0.1. Theorem. Let X be a G-CW-complex such that all its isotropy
groups are compact and contain a non-trivial p-subgroup. Then there is a
homotopy equivalence

hocolim[(E0,...,En)]∈(sdAp(G))/GX
En/(NE0 ∩ . . . ∩NEn) ' X/G.

If X = ∗ is a one-point G-CW-complex, then

∗̃([w0, . . . , wn]) = G/(Nw0 ∩ . . . ∩Nwn)

and 0.1 specializes to the fact that, in the case when G is a compact Lie
group, the classifying space B((sdAp(G))/G) of the category associated to
the poset (sdAp(G))/G is contractible.

If W is a poset (discrete as topological space), then the geometrical
realization |W | of the simplicial complex associated to W is equal to the
classifying space BW of the category associated to W . An action of G
on W induces a G-action on |W |. Then there are homotopy equivalences
|sdW |/G ' |W |/G and |sdW |/G ' |(sdW )/G|. Let G be a finite group.
Let Sp(G) be theG-poset of all non-trivial p-subgroups ofG. Then the spaces
|Sp(G)| and |Ap(G)| are G-homotopy equivalent (Theorem 2 of [TW]). It
is proved in [We] (2.6.1) that |Sp(G)|/G is Fp-acyclic and conjectured that
|Sp(G)|/G is contractible. It is also proved in [We] (2.1.2) that |Sp(G)|H is
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contractible whenever H is a subgroup of G which contains a normal non-
trivial p-subgroup. In [S1] a proof of the Webb conjecture was presented
which uses this fact and methods introduced in [O1]. We will generalize this
proof to the case of a compact Lie group.

If W is a topological poset then the morphism space of the topological
category associated to the poset W has topology induced from the topol-
ogy of W ×W and the classifying space BW of this category is equal to⊔
n∈N∆n× dnW/∼ where ∆n is the standard n-dimensional simplex and ∼

is an appropriate equivalence relation (3.6 of [Ž]).
Let W be a topological G-poset such that the condition that w ≤ gw

implies that w = gw. Then W/G is a topological poset. Suppose that the
topological space W/G is discrete and that, for every n ∈ N, (dnW )/G is
discrete. (This holds for example if W is a subposet of S(G) and all sub-
groups in W are finite. Indeed, let p : (dnW )/G → W/G be the projection
such that p([w0, . . . , wn]) = [wn]. Then, for every [w] ∈ W/G, the preimage
p−1([w]) is a finite space.) The topological space sdW/G = (sdW )/G is
also discrete in this case and BW =

⊔
n∈N∆n × sdnW/∼. There is a nat-

ural G-CW-complex structure on BW such that the poset sdW/G is equal
to the poset of the G-cells of BW . We will show in Section 2 (cf. the proof
of 2.3) that

(BW )/G =
⊔

n∈N
∆n × (sdnW )/G

/
∼

is a classifying space B((sdW )/G) of the category associated to the poset
sdW/G. We will also show that there are G-homotopy equivalences

hocolim[(w0,...,wn)]∈sdW/GG/(Nw0 ∩ . . . ∩Nwn) ' B sdW ' BW.

In Section 1 we will prove that if G is a compact Lie group and contains a
non-trivial p-subgroup, then the space BAp(G)/G is contractible. The proof
consists of several steps which will be described below. Recall that P is a
p-toral group if its identity component P0 is a torus and π0(P ) = P/P0 is a
finite p-group. The following result is an immediate consequence of 0.1 but
in the proof of 0.1 we will use 0.2 in the case when X has finitely many orbit
types. We will prove this fact in Section 1.

0.2. Theorem. Let G be a compact Lie group. Let X be a G-CW-
complex such that all its isotropy groups contain a non-trivial p-subgroup.
Suppose that XP /H is contractible whenever P is a non-trivial p-toral sub-
group of G and H is a closed subgroup of the normalizer NP of P in G.
Then X/G is contractible.

To prove 0.1 we will also need the following result.
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0.3. Proposition. Let R be a commutative ring. Let X and Y be G-
CW-complexes such that all their isotropy groups are compact and contain
a non-trivial p-subgroup. Let f : X → Y be a cellular G-map of G-CW-
complexes. Then:

(i) If , for every compact subgroup H of G containing a non-trivial nor-
mal p-toral subgroup, fH : XH → Y H is a homotopy equivalence, then so is
f/G : X/G→ Y/G.

(ii) If , for every compact subgroup H of G containing a non-trivial
normal p-toral subgroup, fH : XH → Y H is an R-equivalence, then so
is f/G : X/G→ Y/G.

If G is a compact Lie group and Y = ∗ then 0.3 is a consequence of
0.2 and the well known decomposition described in 0.0(ii). This result will
be proved in Section 1 in the case when X has finitely many orbit types.
We will show that the map BAp(G)→ ∗ satisfies the assumptions of 0.3(i).
Hence BAp(G)/G is contractible and using this we will infer 0.1. We will
also prove 0.3 for an arbitrary Lie group G.

Let W be a poset of closed subgroups of G. In Section 4 we will describe
a condition on W which ensures that h∗G(Y )→ h∗G(X) is an isomorphism if
XH → Y H is an R-homology isomorphism for all H ∈ W . As an example
we will consider the case when

h∗G(X) = H∗(K ×G X,R).

In particular, we will show how 0.3(ii) and the results of [JMO] and [JO]
concerning the mod p decomposition

hocolimG/P∈ORp(G)
BP → BG,

where Rp(G) is a certain poset of p-toral subgroups of G, imply the following
result.

0.4. Proposition. Let X and Y be G-CW-complexes such that all their
isotropy groups are compact and contain non-trivial p-subgroups. Let K be
an Fp-acyclic G-CW-complex. If , for every non-trivial p-toral subgroup H
of G, fH : XH → Y H is an Fp-equivalence, then so is idK ×Gf : K×GX →
K ×G Y .

If G is a compact Lie group with a non-trivial p-subgroup, then from the
fact (cf. the proof of 1.5) that all isotropy groups of BAp(G) contain non-
trivial normal p-subgroups and that, for every subgroup H of G containing
a non-trivial normal p-subgroup, the space BAp(G)H is contractible, we
obtain the following result.

0.5. Corollary. Let G be a compact Lie group with a non-trivial p-
subgroup. Then the map EG ×G BAp(G) → BG induced by the G-map
BAp(G)→ ∗ is an Fp-equivalence.
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The following posets of subgroups will be defined and used in the paper.

List of posets of subgroups of G

• Ap(G) — the set of all elementary abelian non-trivial p-subgroups,
• A′p(G) — the set of all elementary abelian p-subgroups,
• Kp(G) — the set of all compact subgroups H such that, for every

P ∈Mp(G), H ∩ Z(P ) contains a non-trivial p-subgroup,
• Mp(G) — the set of all maximal non-trivial p-toral subgroups,
• Np(G) — the set of all compact subgroups containing a non-trivial

normal p-toral subgroup,
• S(G) — the set of all closed subgroups,
• S(G,X) — the set of all isotropy groups of X,
• S0(G,X) = S(G,X) ∪ S(G, ∗),
• S ′c(G) — the set of all compact subgroups,
• Sc(G) — the set of all compact subgroups which contain a non-trivial

p-subgroup,
• S ′p(G) — the set of all subtoral p-subgroups,
• Sp(G) — the set of all subtoral p-subgroups which contain a non-trivial

p-subgroup,
• T ′p (G) — the set of all p-toral subgroups,
• Tp(G) — the set of all non-trivial p-toral subgroups,
• Tp(G,X) — the set of all maximal p-toral subgroups of isotropy groups

of X,
• Zp(G) — the set of all compact subgroups containing a non-trivial

central p-subgroup.

1. Orbit spaces of compact Lie group actions. Let G be a Lie
group. The set of all compact subgroups of G will be denoted by S ′c(G).
The set of all elements of S ′c(G) which contain a non-trivial p-subgroup will
be denoted by Sc(G). The set of all closed p-toral subgroups of G will be
denoted by T ′p (G). The set of all non-trivial p-toral subgroups of G will
be denoted by Tp(G). The set of all compact subgroups of G containing a
non-trivial normal p-toral subgroup will be denoted by Np(G).

If G is a compact Lie group, T is a maximal torus of G and NpT/T is a
Sylow p-subgroup of NT/T , then NpT is a maximal p-toral subgroup of G.
All maximal p-toral subgroups of G are conjugate to NpT (Lemma A.1 of
[JMO]). The set of all maximal p-toral subgroups of G will be denoted by
Mp(G) and the set of all maximal p-toral subgroups of isotropy groups of
X by Tp(G,X).

Let S be a subset of the set of compact subgroups of G. We will use the
notation

WS = {(H,H ′) : H ′ ⊆ H ⊆ NH ′, H ′ ∈ S, H ∈ S ′c(G).}
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A non-empty G-poset P of p-toral subgroups of G will be called concave
if, for any p-toral subgroups P and P ′ the condition that P ⊆ P ′ and
P ∈ P implies that P ′ ∈ P. If G is a compact Lie group and P is concave,
then Mp(G) ⊆ P because all maximal p-toral subgroups are conjugate by
elements of G.

Let CW denote the category of spaces having the homotopy type of
CW-complexes and let CW0 be the subcategory of CW consisting of the
connected spaces. We will say that a class A of objects of CW is thick if it
is closed under homotopy equivalences and taking homotopy pushouts.

In this section we will assume that G is a compact Lie group with a
non-trivial p-subgroup and that X is a G-CW-complex with finitely many
orbit types.

1.1. Theorem. Let A be thick. Let P be a concave G-poset of p-toral
subgroups of G containing all maximal p-toral subgroups of the isotropy
groups of X. If XP /H ∈ A whenever P ∈ P and P ⊆ H ⊆ NP , then
X/G ∈ A.

Proof. If (e) ∈ P, then the assumptions imply that X/G ∈ A. Let
k(G,X) denote the number of elements of Tp(G,X)/G.

If k(G,X) = 1, then Tp(G,X) = (P ) = {gPg−1 : g ∈ G}, where P
is, up to conjugacy, the unique maximal p-toral group of an isotropy group
of X. Hence X = X(P ) =

⋃
P ′∈(P )X

P ′ . It is proved in [O1] (in the proof

of Proposition 3) that the map XP /NP → X(P )/G is a homeomorphism.
(This is a consequence of the fact that, if G′ is a closed subgroup of G
and P is a maximal p-toral subgroup of G′, then NP acts transitively on
(G/G′)P . Indeed, let aG′, bG′ ∈ (G/G′)P . Then a−1Pa, b−1Pb are maximal
p-toral subgroups of G′ so they are conjugate in G′ and there is c ∈ G′

such that bca−1 ∈ NP .) If the assumptions hold, then P is a maximal toral
p-subgroup of G. Hence, in this case, X/G = XP /NP ∈ A.

We use induction on the dimension of G and then on the order of
π0(G) = G/G0, where G0 is the identity component of G. Assume that
the result is true for all proper closed Lie subgroups of G. Now we use
induction on k(G,X). Let k(G,X) = k + 1 > 1. Suppose that the re-
sult is true for all G-CW-complexes X ′ such that k(G,X ′) ≤ k. Let P
be a minimal element of Tp(G,X). As P is not a maximal p-toral group,
it follows that NP/P contains a non-trivial p-toral subgroup (cf. [O1],
Lemma 2). Let X ′ be a G-CW-subcomplex of X such that x ∈ X \ X ′
if and only if maximal p-toral subgroups of the isotropy group Gx are con-
jugate to P . The induction assumption implies that X ′/G ∈ A because
k(G,X ′) ≤ k. Indeed, let Po = P \ (P ). Then, for every (H,P ′) ∈ WPo ,
X ′P

′
/H = XP ′/H.
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It follows from the definition that X = X ′∪X(P ) and that X/G is equal
to the pushout of the diagram

X(P )/G← X ′(P )/G→ X ′/G.

If x ∈ X \X ′, thenMp(Gx) is a subset of (P ) and NP acts transitively on
(Gx)P = (G/Gx)P . Hence X/G is the pushout of the diagram

XP /NP ← X ′P /NP → X ′/G.

Since X ′P /NP → XP /NP is a cofibration, X/G is the homotopy pushout
of this diagram.

The space X ′P , which has the structure of an NP -CW complex, satisfies
the assumptions of the proposition. It is of finite orbit type because, for
every closed subgroup G′ of G, (G/G′)P /NP is finite (II.5.7 of [Br1]). Let
P ′ = {P ′ ∈ P : P ⊂ P ′ ⊆ NP,P ′ 6= P}. From the fact that, for every
x ∈ X ′P , P ⊆ Gx ∩NP and P is not a maximal p-toral subgroup of Gx, it
follows that P is not a maximal p-toral subgroup of Gx ∩NP (Lemma 2 of
[O1]). Hence

Tp(NP,X ′P ) =
⋃

x∈X′
Mp(Gx ∩NP ) ⊆ P ′

and X ′P
′
/H = XP ′/H ∈ A whenever (H,P ′) ∈ WP′ .

If P is a normal subgroup of G, then NP = G but k(X ′P , G) ≤ k,
because P 6∈ Tp(G,X ′P ) ⊆ Tp(G,X). If P is not a normal subgroup of G,
then NP < G and we can use the induction assumption. In both cases we
find that X ′P /NP ∈ A. Hence X/G ∈ A.

In particular, if P = Tp(G) and A is the class of all contractible objects
of CW0 then 1.1 specializes to 0.2.

In what follows let A be a thick category. We now define three conditions
for thick categories.

A1: For every compact Lie group H and for every H-CW-complex X,
if XH′ ∈ A for every closed subgroup H ′ of H, then X/H ∈ A.

A2: For every compact Lie group H and for every H-CW-complex X,
if dimX <∞ and X ∈ A, then X/H ∈ A.

A3: For every compact Lie group H and for every H-CW-complex X,
if X/P ∈ A for every P ∈ Mp(H), then X/H ∈ A.

Let H ′ be a closed subgroup of G and let P be a set of subgroups of G.
We use the notation
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NH′ = {H ∈ S(G) : H ′ ⊆ H ⊆ NH ′},
NP = {H ∈ S(G) : H ′ ⊆ H ⊆ NH ′, H ′ ∈ P},
SP =

⋃

P,P ′∈P
{H ∈ S(G) : P ⊆ H ⊆ P ′ ⊆ NP},

S ′p(G) = ST ′p(G), Sp(G) = STp(G).

1.2. Corollary. Let P be a concave G-poset of p-toral subgroups of G.
Let X be a G-CW-complex such that maximal p-toral subgroups of isotropy
groups of X are in P. Suppose that A is thick and that one of the following
conditions holds:

(i) A satisfies A3 and XP /P ′ ∈ A whenever (P ′, P ) ∈ WP and P ′ ∈ P.
(ii) A satisfies A1 and XH ∈ A whenever H ∈ NP .
(iii) A satisfies A1 and A3 and XH ∈ A whenever H ∈ SP .
(iv) A satisfies A2, dimX <∞ and XH ∈ A whenever H ∈ P.

Then X/G ∈ A.

Proof. The result is a consequence of 1.1. Suppose that (H,P ′) ∈ WP .
If (i) holds, then XP ′/P ′′ ∈ A whenever P ′′ ∈Mp(H). Since A satisfies

A3, it follows that XP ′/H ∈ A.
Assume that (ii) holds. Let H ′ = H/P ′ and let Y = XP ′ . We can

consider Y as an H ′-CW-complex. If H ′0 is a subgroup of H ′, then H ′0 =
H0/P

′, where P ′ ⊆ H0 ⊆ H, and Y H
′
0 = XH0 ∈ A because H0 ∈ NP .

Hence XP ′/H = Y/H ′ ∈ A.
If A satisfies A1 and XG′ ∈ A whenever G′ ∈ SP then XP /P ′ ∈ A

whenever P,P ′ ∈ P, P ′ ∈ NP . Now we can use part (ii) of this result to
obtain (iii).

If (iv) holds, then XP ′/H ∈ A by the definitions.

1.3. Examples. Let

C = {X ∈ CW0 : X is contractible},
D(R) = {X ∈ CW0 : X is R-acyclic},
Bk(R) = {X ∈ CW0 : Hi(X,R) = 0 for i = 1, . . . , k}.

(i) The well known decomposition from 0.0(ii) implies that all these
classes satisfy A1.

(ii) The classes D(Fp) and Bk(Fp) satisfy A3. This is a consequence of
the existence of an appropriate transfer. Let H be a closed subgroup of G
and let πX : X/H → X/G be the projection to the orbit space. It is proved
in [O2], [LMM], [LMS] that there exists a natural transfer map

tX : H∗(X/H,R)→ H∗(X/G,R)



116 J. Słomińska

such that the composition H∗(πX)tX is the multiplication by the Euler
characteristic χ(G/H) ofG/H. IfH is a maximal p-toral subgroup ofG, then
χ(G/H) is prime to p. Hence, if Hn(X/H,Fp) = 0, then Hn(X/G,Fp) = 0.

(iii) The classes D(Z) and D(Fp) satisfy A2. This follows from Theo-
rems 1 and 2 of [O1].

The next result describes the case when P = Tp(G) and A is one of the
classes from 1.3. The statement (i) is a special case of 0.3. For a finite group
G, this result is proved in 2.11 of [S1]. The statement (iii), for finite groups,
finite G-CW-complexes and Fp-acyclic spaces, is proved in [We].

1.4. Proposition. Let X be a G-CW-complex such that all its isotropy
groups contain a non-trivial p-subgroup. Then:

(i) X/G is contractible (resp. R-acyclic) if XH is contractible (resp. R-
acyclic) for all closed subgroups H containing a non-trivial normal p-toral
subgroup.

(ii) X/G is Fp-acyclic if , for every H ∈ Sp(G), XH is Fp-acyclic.
(iii) If dimX < ∞ and , for every non-trivial p-toral subgroup H of G,

XH is Z-acyclic (resp. Fp-acyclic), then X/G is Z-acyclic (resp. Fp-acyclic).

Proof. Tp(G) is a concave set of p-subgroups of G. By 1.2(ii), NTp(G) =
Np(G) so (i) follows. The statement (ii) is a consequence of 1.2(iii) because
STp(G) = Sp(G), and (iii) follows from 1.2(iv).

1.5. Corollary. If G is a compact Lie group with a non-trivial p-
subgroup, then the space BAp(G)/G is contractible.

Proof. It is proved in 6.1 of [JM2] that there are only finitely many
conjugacy classes of elementary abelian p-subgroups in G. If x ∈ BAp(G),
then Gx = NE0∩ . . .∩NEk, where Ei ∈ Ap(G) and E0 < . . . < Ek, so E0 ⊆
Gx ⊆ NE0. For every H ∈ Np(G), the space (BAp(G))H = B(Ap(G)H) is
contractible. For G finite this follows from 2.1.2 of [We]. The proof for any
compact Lie group is similar. The space Ap(G)H is a disjoint union of its
NH/H-orbits. Let

Ap(G)≥E = {E′ ∈ Ap(G) : E ⊆ E′}.
There exists a non-trivial normal p-toral subgroup P of H such that NH is
a subgroup of NP . Indeed, let Q be the intersection of all maximal p-toral
subgroups of H. Then NH is a subgroup of NQ. Let Q0 be the component
of the identity of Q. We can take P = Q0 if Q0 is non-trivial. If Q0 = e,
then we can take as P the intersection of all Sylow p-subgroups of Q. In this
case P is the maximal normal p-toral subgroup of H. It follows from A3 of
[JMO] and 7.6 of [JM1] that if P ′ ∈ Tp(G), then the center Z(P ′) of P ′ is
also in Tp(G). Let E be the maximal elementary abelian p-subgroup of Z(P ).
Then E ⊂ H ⊂ NH ⊂ NE, NH ⊂ NCE and, for every E′ ∈ Ap(G)H ,
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E′ ∩ CE = E′E is a non-trivial group. The poset map hE : Ap(G)H →
(Ap(G)H ∩ Ap(CE))≥E such that hE(E′) = (E′ ∩ CE)E whenever E′ ∈
Ap(G)H , is continuous because it is an NH/H-poset map. The map BhE
is the composition of the homotopy equivalences BAp(G)H → B(Ap(G)H ∩
Ap(CE)) and B(Ap(G)H ∩ Ap(CE)) → B((Ap(G)H ∩ Ap(CE))≥E). The
space B((Ap(G)H ∩ Ap(CE))≥E) is contractible because Ap(G)H≥E has the
final object E. Now we can apply 1.4(i).

If G is finite and a normal subgroup H of G contains a non-trivial p-
subgroup then it was proved in [Dw] that the space BAp(G)/H is Fp-acyclic.
In 1.6 we will prove that this space is contractible.

Let Kp(G) denote the set of all subgroups H of G satisfying the condition
that, for every maximal p-toral subgroup P in G, H ∩Z(P ) contains a non-
trivial p-subgroup. If H ∈ Kp(G) and H ⊆ H ′, then H ′ ∈ Kp(G). If H is a
normal subgroup of G which, for every maximal p-toral subgroup P of G,
contains a non-trivial normal p-toral subgroup P ′ of P , then H ∈ Kp(G).
Indeed, H ∩ ZP contains P ′P , hence it contains a non-trivial p-group. If G
is finite and a normal subgroup H of G contains a non-trivial p-subgroup,
then H belongs to Kp(G). It was proved in [Dw] that in this case H ∩P is a
normal subgroup of P and a Sylow p-subgroup of H so H ∩ Z(P ) contains
a non-trivial p-subgroup. The following result is a generalization of 1.5.

1.6. Proposition. Let G be compact Lie group with a non-trivial p-
subgroup. If H ∈ Kp(G) then the space BAp(G)/H is contractible.

Proof. The result is a consequence of 1.4(i). It follows from the definition
that Np(H) ⊆ Np(G), hence, as in the proof of 1.5, for every H0 ∈ Np(H),
BAp(G)H0 is contractible. If x ∈ BAp(G), then Hx contains a non-trivial
p-subgroup. Indeed, let Gx = NE0 ∩ . . . ∩ NEk, where Ei ∈ Ap(G) and
E0 < . . . < Ek. Let P be a maximal p-toral subgroup of G such that Ek ⊆ P .
It follows from the definitions that H ∩ ZP ⊆ H ∩NE0 ∩ . . . ∩NEk = Hx.
The assumption that H ∈ Kp(G) now implies that Hx contains a non-trivial
p-subgroup.

2. Homotopy decompositions over (sdW )/G. Let C be a topological
category. For any two functors Y : C → Top and Y ′ : Cop → Top, the
topological space Y ′ ×C Y is the coequalizer of the two natural maps

p0, p1 :
∐

α:c→c′
Y (c)× Y ′(c′)→

∐

c∈C
Y (c)× Y ′(c)

induced by the maps

p0(α)(y, y′) = (Y (α)y, y′), p1(α)(y, y′) = (y, Y ′(α)y′).

In particular hocolimC Y = B(− ↓ C) ×C Y , where c ↓ C is the “under”
category of the morphisms c→ c′ of C.
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If G1 and G2 are groups and Y : C → G1-Top, Y ′ : Cop → G2-Top, then
G1 × G2 acts in a natural way on Y ′ ×C Y . If G1 = e then we obtain a
G2-action.

Let G be a Lie group and let X be a G-CW-complex. Let S(G,X)
denote the set of isotropy groups of X and S0(G,X) = S(G,X) ∪ {G}.
The full subcategory of OG whose objects are the orbit spaces G/H, where
H ∈ S(G,X), is denoted by O(G,X). The G-map spaces will be denoted
by MapG(−,−).

Let F1, F2 : G-CW→ G-CW be functors such that

Fi(X) = MapG(−,X)×OG Fi, Fi(f) = MapG(−, f)×OG Fi
whenever f : X → X ′. In the formulas above the restriction of Fi to the
subcategory OG of G-CW is denoted by the same letter. We will need the
following fact.

2.1. Proposition. Let τ : F1 → F2 be a natural transformation of func-
tors induced by its restriction to OG. If , for every G/H ∈ O(G,X), τ(G/H)
is a G-homotopy equivalence, then so is τ(X) : F1(X)→ F2(X).

Proof. Since the OG-orbits of the functor MapG(−,X) have the form
MapG(−, G/Gx), where x ∈ X, the restriction of MapG(−,X) to O(G,X)
is a free functor in the sense of [DF1] and

Fi(X) = MapG(−,X)×O(G,X) Fi.

This can be proved by induction on the dimension of X. Assume that the
n-skeleton of X, denoted by Xn, is equal to the pushout

Dn × Tn ← Sn−1 × Tn → Xn−1

where Tn is a disjoint union of G-orbits from O(G,X) and the left arrow is
the cofibration induced by the natural inclusion Sn−1 → Dn. Then Fi(Xn)
is equal to the homotopy pushout

Dn × Fi(Tn)← Sn × Fi(Tn)→ Fi(Xn−1).

This implies that, if τ(Xn−1) is a homotopy equivalence then so is τ(Xn).
Now one can use the fact that τ(X) = hocolimn∈N τ(Xn).

2.2. Examples. (i) LetK be aG-CW-complex. Let F =(H(−),H ′(−)) :
C → CG be a functor such that, for every isotropy group G′ of X, the map

hocolimc∈CK ×H(c) (G/G′)H
′(c) → K/G′

is a homotopy equivalence. Then so is the map

hocolimc∈C K ×H(c) X
H′(c) → K ×G X.

(ii) Let f : K1 → K2 be a cellular map of G-CW-complexes. If, for every
isotropy group H of X, f/H : K1/H → K2/H is a homotopy equivalence,
then so is f ×G X : K1 ×G X → K2 ×G X.
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(iii) Let V be a G-subposet of S(G). Using the fact that for every G′ ∈ V ,

hocolimG/H∈OV (G/G′)H = B(G/G′ ↓ OV ) ' ∗,
we obtain the decomposition described in 0.0(ii).

(iv) Let F = (H(−),H ′(−)) : C → CG be a functor such that, for every
isotropy group G′ of X, the map

hocolimc∈C G×H(c) (G/G′)H
′(c) → G/G′

is a G-homotopy equivalence. Then so is the map

hocolimc∈C G×H(c) X
H′(c) → X.

In this section we will assume that W is a topological G-subposet of
S(G) and that all elements of W are finite subgroups of G. This implies
that the orbit spaces dnW/G are discrete and that W satisfies the condition
that w ≤ gw, where g ∈ G, implies that w = gw.

Let H be a closed subgroup of G. We will use the notation

WH = {H ′ ∈W : H ′ ⊆ H}.
If H is a compact Lie group then the topology on WH induced from W is
equal to the topology induced from S(H). This follows from the fact that
(G/H)H

′
/NH ′ is discrete (cf. the proof of II.5.7 in [Br2]).

2.3. Proposition. Let X be a G-CW-complex such that all its isotropy
groups are compact.

(i) If , for every x ∈ X, the map K×GxB(WGx)→ K/Gx is a homotopy
equivalence, then there is a homotopy decomposition

hocolim[(H0,...,Hn)]∈sdW/GK ×NH0∩...∩NHn X
Hn ' K ×G X.

(ii) If , for every x ∈ X, the map G ×Gx B(WGx) → G/Gx is a G-
homotopy equivalence, then there is a G-homotopy decomposition

hocolim[(H0,...,Hn)]∈sdW/G G×NH0∩...∩NHn X
Hn ' X.

Proof. Let

F ′K(X) = hocolim[(H0,...,Hn)]∈sdW/GK ×NH0∩...∩NHn X
Hn .

It follows from the definitions that F ′K(X) = K ×G F ′G(X).
If X = ∗ = G/G, then there is a G-homotopy equivalence

F ′G(∗) = hocolim[(H0,...,Hn)]∈sdW/G G/(NH0 ∩ . . . ∩NHn) ' BW.
Indeed, F ′G(∗) is the classifying space of the category W [G] whose ob-
jects are the pairs ([w.], [g]), where [w.] ∈ sdW/G, [g] ∈ G/(NH0 ∩ . . . ∩
NHn), w. = (H0, . . . ,Hn). The category W [G] is a topological poset with
an action of G defined by the action of G on G/Gw. and there is an
equivariant isomorphism of topological G-posets F : W [G] → sdW such
that F ([w.], [g]) = gw.. Hence we have equivariant homotopy equivalences



120 J. Słomińska

F ′G(∗) ' BW [G] ' B sdW . Let N be the category whose objects are finite
posets [n] = {0 ≤ 1 ≤ . . . ≤ n} and whose morphisms are the injective poset
maps. Let FW : N → G- Top be the functor such that FW ([n]) = sdnW
consists of all injective poset maps [n] → W . Let ∆n be the standard n-
dimensional simplex. Then ∆(−) is a free functor on the category N . This
implies that there are equivariant homotopy equivalences

B sdW ' hocolimN FW ' ∆(−) ×N sd(−)W ' BW.

There is a natural G-CW-complex structure on BW such that the poset
sdW/G = (sdW )/G is equal to the poset of the G-cells of BW . For K = ∗
we obtain homotopy equivalences

B((sdW )/G) = F ′∗(∗) = F ′G(∗)/G ' B(sdW )/G ' (BW )/G.

The inclusions XHn → X induce a map pK(X) : F ′K(X) → K ×G X. The
map pG(X) is a G-map and pK(X) = K ×G pG(X). Let πX : F ′G(X) →
F ′G(∗) ' BW be the natural G-projection. To obtain the result it is suf-
ficient to prove that, for every x ∈ X, the map pK(G/Gx) is a homotopy
equivalence. This follows from the fact that, for every closed subgroup H of
G, πX induces an H-homotopy equivalence p−1

G (G/H)(H)→ BWH . Indeed,
consider the natural projection fw. : G ×NH0∩...∩NHn (G/H)Hn → G/H.
Then G×NH0∩...∩NHn (G/H)Hn = G×H f−1

w. (H). Let

Y (w.,H) = {g ∈ G : gHng
−1 ⊆ H}/(NH0 ∩ . . . ∩NHn)

⊆ G/(NH0 ∩ . . . ∩NHn).

Then there is an H-isomorphism µ : Y (w.,H)→ f−1
w. (H) such that µ([g]) =

[g, g−1H]. The space

p−1
G (G/H)(H) ' hocolim[w.]∈sdW/G Y (w.,H)

is the classifying space of the category W [H] whose objects are the pairs
([w.], [g]), where [w.] ∈ sdW/G, [g] ∈ Y (w.,H). W [H] is a topological sub-
poset of W [G] and the restriction of FW gives us an H-poset isomorphism
W [H] → sdWH . Now we can use the H-homotopy equivalence B sdWH '
BWH to conclude that pK(G/H) is homotopy equivalent to the projection
K ×H BWH → K/H (which implies (i)) and that pG(G/H) is G-homotopy
equivalent to the projection G×H BWH → G/H (which implies (ii)).

The following result is an immediate consequence of 2.3.

2.4. Corollary. Let X be a G-CW-complex such that all its isotropy
groups are compact. Let W be a G-poset of finite subgroups of G such that
the space B sdW/G is contractible. Suppose that A is thick and satisfies the
condition A1.
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(i) Suppose that , for every x ∈ X, the map K ×Gx B(WGx) → K/Gx
is a homotopy equivalence and that , for every (H0, . . . ,Hn) ∈ sdW , we have
K ×NH0∩...∩NHn X

Hn ∈ A. Then K ×G X ∈ A.
(ii) Suppose that , for every x ∈ X, the space

B(WGx)/Gx = B sdWGx/Gx

is contractible and that XH ∈ A whenever

H ∈ {NH0 ∩ . . . ∩NHn ∩G′ : (H0, . . . ,Hn) ∈ sdW,

G′ ∈ S0(G,X), Hn ⊆ G′}.
Then X/G ∈ A.

2.5. Examples. (i) Let X be a G-CW-complex such that all its isotropy
groups are finite. Then there exists a G-homotopy decomposition

hocolim[(H0,...,Hn)]∈sdS(G,X)/G G×NH0∩...∩NHn X
Hn ' X

because, for every x ∈ X, the space BS(G,X)Gx is Gx-contractible.
(ii) Suppose that, for every x ∈ X, y ∈ K, Gx ∈ Sc(G) and Gx ∩ Gy ∈

Kp(Gx). Then there is a homotopy equivalence

hocolim[(E0,...,En)]∈sdAp(G)/G K ×NE0∩...∩NEn X
En ' K ×G X.

This is a consequence of 2.3, 2.2(ii) and 1.6. In particular, for K = ∗ we
obtain 0.1.

(iii) Let G be compact Lie group with a non-trivial p-subgroup. Let
P be the poset of all non-trivial finite p-subgroups of G. Then the space
(BP)/G is contractible. This follows from (ii) and from the fact that, for
every (E0, . . . , En) ∈ sdAp(G), the space B(P)H is contractible whenever
En ≤ H ≤ NE0 ∩ . . . ∩NEn because P ′En ∈ PH if P ′ ∈ PH .

(iv) Let X be a G-CW-complex such that all its isotropy groups are
compact and contain a non-trivial normal p-subgroup. Then there exists a
G-homotopy decomposition

hocolim[(E0,...,En)]∈sdAp(G)/G G×NE0∩...∩NEn X
En ' X

because, for every x ∈ X, the spaceBAp(Gx) isGx contractible. This follows
from the fact that the poset Ap(Gx)Gx is non-empty (cf. the proof of 1.5),
and that, for every isotropy group H of BAp(Gx), the map BAp(Gx)H → ∗
is a homotopy equivalence because all isotropy groups of BAp(Gx) contain
non-trivial normal p-subgroups.

One can prove this fact using similar methods to those in 1.5. Let E be
a non-trivial, normal, elementary abelian p-subgroup of Gx. Let W be the
G-poset of all subgroups of Gx of the form E′E′′ where E′ ∈ Ap(Gx) and
E′′ is a subgroup of E. Then BW is Gx-contractible.
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Let G be a finite group. If P is a concave G-poset of p-subgroups of G,
then Po is the G-subposet of P such that P ∈ Po if and only if P ∈ P and
Φ(P ) 6∈ P. Here Φ(P ) denotes the Frattini subgroup of P . If P = Tp(G),
then Po = Ap(G).

2.6. Proposition. Let G be a finite group. Let P ′ be a concave G-poset
of p-subgroups of G. Let X be a G-CW-complex such that all Sylow p-
subgroups of its isotropy groups are in P ′. Suppose that P is a G-poset
of p-subgroups of G such that P ′o ⊆ P ⊆ P ′. Then there is a homotopy
equivalence

hocolim[(P0,...,Pn)]∈sdP/GX
Pn/(NP0 ∩ . . . ∩NPn) ' X/G.

Proof. The space B(P ′)/G is contractible. (This is a generalization of
Corollary 2.6.1 of [We], which states that B(P ′)/G is Fp-acyclic.) Indeed,
if x ∈ B(P ′), then Gx = NP0 ∩ . . . ∩ NPk, where Pi ∈ P ′ and P0 <
. . . < Pk, so Sylow p-subgroups of Gx are in P ′. It is proved in [We] (2.1.2)
that, for every H ∈ NP′ , the space B(P ′)H is contractible. Thus we can
apply 1.2(ii) to the class C. Proposition 1.7 of [TW] implies that the H-map
B(PH)→ B(P ′H), induced by the inclusion of H-posets of subgroups, is an
H-homotopy equivalence. The proof of this fact is similar to the proof of
2.1(i) of [TW]. Hence B(PH)/H ' B(P ′H)/H and the space B(PH)/H is
contractible. Now we can use 2.1.

The following result is an immediate consequence of 2.6. It is stronger
than 1.2.

2.7. Corollary. Let G be a finite group. Let P and X satisfy the as-
sumptions of 2.6. Suppose that A is thick and satisfies the condition A1
and that one of the following conditions holds:

(i) XPn/(NP0 ∩ . . . ∩NPn) ∈ A whenever (P0, . . . , Pn) ∈ sdP,
(ii) XH ∈ A whenever

H ∈ {NP0 ∩ . . . ∩NPn ∩G′ : (P0, . . . , Pn) ∈ sdP,
G′ ∈ S0(G,X), Pn ⊆ G′}.

Then X/G ∈ A.

2.8. Corollary. Let G be a finite group. Let P be a G-poset of p-
subgroups of G such that Ap(G) ⊆ P. If , for every x ∈ X and y ∈ K, Gx
contains a non-trivial p-subgroup and Gx ∩ Gy ∈ Kp(Gx), then there is a
homotopy equivalence

hocolim[(P0,...,Pn)]∈sdP/G K ×NP0∩...∩NPn X
Pn ' K ×G X.

Proof. This result is a consequence of 2.5(ii). Let P be a non-trivial
p-subgroup of G. It follows from [TW], 1.7 and 2.1, that there is an H-
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homotopy equivalence B(Ap(G)H)→ B(PH) whenever H is a subgroup of
G and contains a non-trivial p-subgroup. Now we can use 2.1 and 2.3.

3. Categories associated to G-posets. Let K be a G-CW-complex.
Every equivariant cellular map f : X1 → X2 of G-CW-complexes induces
maps f(H,H ′) : K ×H XH′

1 → K ×H XH′
2 where (H,H ′) ∈ W(G), i.e.

H,H ′ ∈ S(G) and H ⊆ NH ′.
For every functor F = (H(−),H ′(−)) : C → CG we have maps

φi : hocolimc∈C K ×H(c) X
H′(c)
i → K ×G Xi,

fF : hocolimc∈CK ×H(c) X
H′(c)
1 → hocolimc∈C K ×H(c) X

H′(c)
2

such that fF = hocolimc∈C f(H(c),H ′(c)) and f(G, e)φ1 = φ2fF . It follows
from general homotopy colimit theory that, if f(H(c),H ′(c)) are homotopy
equivalences for all c ∈ C, then the map f(G, e) : K ×GX1 → K ×GX2 is a
homotopy equivalence. This motivates the following definition.

3.0. Definition. Let S be a G-poset of closed subgroups of G. A G-
subposet W of W(G) is (S,K)-essential if, for every equivariant cellular
map f : X → Y of G-CW-complexes with all isotropy groups in S, the
condition that K×HXH′ → K×H Y H

′
is a homotopy equivalence for every

(H,H ′) ∈W implies that K ×G X → K ×G Y is a homotopy equivalence.

In particular, if W is (S0(G,X),K)-essential and K ×H XH′ → K/H is
a homotopy equivalence whenever (H,H ′) ∈W , then K ×G X → K/G is a
homotopy equivalence.

The results of previous sections enable us to exhibit many non-trivial
examples of essential posets. Our main tool will be the following consequence
of 2.2(i).

3.1. Proposition. Suppose that

F = (H(−),H ′(−)) : C → CG(W,dW(G))

is a functor such that for every G′ ∈ S, the map

hocolimc∈CK ×H(c) (G/G′)H
′(c) → K/G′

is a homotopy equivalence. Then the poset W is (S,K)-essential.

3.2. Examples. (i) Let P be a concave G-subposet of p-toral subgroups
of G such that all maximal p-toral subgroups of elements of S are in P.
Then it follows from 1.1 that the poset WP = {(H,P ) : P ⊆ H ⊆ NP ,
P ∈ P, H ∈ S ′c(G)} is (S, ∗)-essential.

(ii) The poset WAp(G) = {(H,E) : E ⊆ H ⊆ NE, E ∈ S, H ∈ S ′c(G)}
is (Sc(G), ∗)-essential. Let SK(G) be the poset of all compact subgroups
H of G with non-trivial p-subgroups and such that H ∩ Gk ∈ Kp(H) for
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every k ∈ K. Then the poset WAp(G) is also (SK(G),K)-essential. This is a
consequence of 2.5(ii).

(iii) Let f : X → Y be an equivariant cellular map of G-CW-complexes
such that, for every compact subgroup H of G with a non-trivial normal
p-toral subgroup, the map fH : XH → Y H is a homotopy equivalence. This
implies that, for every (H,H ′) ∈ WAp(G), the map fH

′
is an H-homotopy

equivalence so the map K×HXH′ → K×H Y H
′

is a homotopy equivalence.
If all isotropy groups of points of X and Y are in SK(G), then, by (ii), the
map FK(f) : K ×G X → K ×G Y is also a homotopy equivalence. In the
case when K = ∗ we obtain 0.3(i).

Now we describe a construction of topological categories C associated to
topological G-posets and some examples of functors C → CG defined on such
categories. We show that the known homotopy and homology decomposi-
tions can be obtained using this construction.

Let W be a topological G-poset such that W/G is a discrete topological
space. Let d : W → S(G) be a G-poset map such that, for every w ∈W , dw
is a subgroup of Gw. It follows that dw is a closed normal subgroup of Gw.
The G-poset maps with the above property will be called admissible maps.
Let CG(W,d) be the topological category whose objects are the elements of
W and whose morphism spaces are defined by

MorCG(W,d)(w,w
′) = {g ∈ G : w ≤ gw′}/dw′ ⊆ G/dw′.

The composition of [g] : w → w′ and [g′] : w′ → w′′ is [gg′] : w → w′′. The
categories CG(W,d), for discrete groups G, are studied in [S1-3], [JS].

3.3. Examples. (i) LetW (G) denote theG-subposet of S(G)×W whose
elements are all pairs (H,w) where w ∈ W and H ⊆ Gw. Let dW (G)
be the admissible map W (G) → S(G) such that dW (G)(H,w) = H. Let
CG(W (G), dW (G)) = CG(W ). It follows from the definitions that CG(∗) =
OG. If pW : W (G)/G → S(G)/G is the map induced by the natural pro-
jection, then, for every closed subgroup H of G, p−1

W ([H]) = WH/NH. (In
the notation of [T], CG(W ) =

�
H∈OGW

H .) The space W (G)/G is discrete
if, for every H ∈ S(G), WH/NH is discrete. Hence if, for every w ∈ W ,
(G/Gw)H/NH is discrete then W (G)/G is a discrete space. This is, in par-
ticular, the case when, for every w ∈W , Gw is compact (cf. II.5.7 of [Br2]).

(ii) Let d : W → S(G) be an arbitrary admissible function. Then there
exists an inclusion jd : CG(W,d) → CG(W ) such that jd(w) = (dw,w) and
the image of jd is a full subcategory of CG(W ).

(iii) For W = S(G)op, W (G) = W(G) and CG(W ) = CG. Let V be a
G-set of subgroups of G. Denote by W(V ) the G-subposet of W(G) such
that (H,H ′) ∈ W(V ) if and only if H,H ′ ∈ V and H ⊆ H ′. The full
subcategory of CG whose object set is W(V ) will be denoted by C(V ). If
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p :W(V )/G→ S(G)/G is induced by the natural projection, then, for every
closed subgroup H of G, p−1([H]) = V (≥H)/NH, where V (≥ H) is the set
of all elements of V which contain H. (That is, C(V ) =

�
H∈OV V (≥H).)

Hence the space W(V ) is discrete if, for every H,H ′ ∈ V , H ⊆ H ′ implies
that (NH ′\(G/H ′)H)/NH is discrete. In particular, if V is a G-poset of
compact subgroups of G, then W(V )/G is discrete (II.5.7 of [Br2]).

(iv) Let U be a G-space and let W be a G-poset of non-empty finite
subsets of U . There exists an admissible function dU such that, for every
w ∈W , dUw =

⋂
u∈w Gu.

There exists a functor Od : CG(W,d)→ OG such that Od(w) = G/dw for
every w ∈ W , and Od([g])(g′dw) = g′gdw′ for every morphism [g] : w → w′

of CG(W,d). We will use the notation

EG(W,d) = hocolimw∈CG(W,d)G/dw.

Let d′ : W op → S(G) be a G-poset map. Then, for every w ∈ W ,
dw ⊆ Gw ⊆ Nd′w. Hence there exists a functor (d, d′) : CG(W,d) → CG
such that (d, d′)(w) = (dw, d′w).

Let G′ be a subgroup of G. We will use the notation

Wd′,G′ = {w ∈W : d′w ⊆ G′}.
Wd′,G′ will be considered as a G′-poset. The admissible function dG′ :
Wd′,G′ → S(G′) will be defined in such a way that, for every w ∈ Wd′,G′ ,
dG′w = G′ ∩ dw.

3.4. Lemma. Let G′ be a closed subgroup of G such that Wd′,G′/G
′ is a

discrete space. Then there exists a G-homotopy equivalence

hocolimw∈CG(W,d)G×dw (G/G′)d
′w ' G×G′ EG′(Wd′,G′ , dG′).

Proof. Let

Rw = MorCG(W,d)(−, w) =
⊔

[g]∈G/dw
MorW (−, gw) = G×dw MorW (−, w),

where
⊔

[g]∈G/dw MorW (−, gw) is topologized as a subspace of G/dw. Then
for every functor T : CG(W,d)→ G-CW, Rw ×CG(W,d) T = T (w).

Hence

Rw ×CG(W,d) G×d(−) (G/G′)d
′(−) = G×dw (G/G′)d

′w

= G×dw ({g ∈ G : d′gw ⊆ G′}/G′) = G×G′ Y
where Y = {g : d′gw ⊆ G′}/dw is a G′-subspace of G/dw.

We will consider CG′(Wd′,G′ , dG′) as a subcategory of CG(W,d). Then

Y = Rw ×CG′ (Wd′,G′ ,dG′ ) G
′/dG′(−)
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and Rw after restriction to CG′(Wd′,G′ , dG′) is equal to
⊔

[gdw]∈Y/G′
MorCG′ (Wd′,G′ ,dG′ )(−, gw).

Let Ed = B(− ↓ CG(W,d)). Then Ed is a CG(W,d)-CW-complex whose
orbits have the form Rw. Hence,

hocolimw∈CG(W,d)G×dw (G/G′)d
′w = Ed ×CG(W,d) G×d(−) (G/G′)d

′(−)

= G×G′ (Ed ×CG′ (Wd′,G′ ,dG′ ) G
′/dG′(−)).

The functor Ed after restriction to the category CG′(Wd′,G′ , dG′) remains
free in the sense of [DF1]. Hence there exists a G′-homotopy equivalence

Ed ×CG′ (Wd′,G′ ,d
′
G) G

′/dG′(−) ' hocolimw∈CG′ (Wd′,G′ ,dG′ )G
′/dG′w.

3.5. Proposition. Suppose that , for every G′ ∈ S, Wd′,G′/G
′ is a dis-

crete space and the map

hocolimw∈CG′ (Wd′,G′ ,dG′ )K/dG′w → K/G′

is a homotopy equivalence. Then:

(i) The map

hocolimw∈CG(W,d)K ×dw Xd′w → K ×G X
is a homotopy equivalence if X is a G-CW-complex and the isotropy groups
of X are in S.

(ii) The G-poset {(dw, d′w) : w ∈W} is (S,K)-essential.

Proof. Let Fd′ : G-CW→ G-CW be a functor such that

Fd′(X) = hocolimw∈CG(W,d)G×dw Xd′w.

It follows from 3.4 that, for every G′ ∈ S, there are homotopy equivalences

K ×G Fd′(G/G′) ' K ×G′ hocolimw∈CG′ (Wd′,G′ ,dG′ )G
′/dw ∩G′

= hocolimw∈CG′ (Wd′,G′ ,dG′ ) K/dG′w ' K/G
′ = K ×G G/G′.

Now, it is sufficient to apply 2.2(i) and 3.1.

We now describe some special cases of 3.5.

3.6. Examples. (i) Let W be a topological G-poset satisfying the con-
dition that w ≤ gw implies w = gw. Assume that the spaces dnW/G are
discrete. Let ds : sdW → S(G) be an admissible function such that

dsw. = Gw. = Gw0 ∩ . . . ∩Gwn .
The natural projection sdW → (sdW )/G induces a natural equivalence of
categories CG(sdW,ds) → (sdW )/G. It follows from the definitions that
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there is a G-homotopy equivalence

hocolimCG(sdW,ds) G/ds(−)→ BW.

If W is a G-subset of S(G), then ds(H0, . . . ,Hn) = NH0 ∩ . . . ∩ NHn and
d′(H0, . . . ,Hn) = Hn. Hence 3.5 can be considered as a generalization of 2.3.

(ii) Let W be a G-subposet of S(G). Then Gw = NGw = Nw. If
d : W op → S(G) is an arbitrary admissible function, then we can take
d′w = w whenever w ∈ W . Let dc : W op → S(G) be an admissible map
such that, for every w ∈ W , dcw = CGw = Cw. Then CG(W op, dc) = CW
is the category whose objects are elements of W and whose morphisms are
the group homomorphisms which are restrictions of inner automorphisms
of G. Let X be a G-CW-complex such that all its isotropy groups are com-
pact. If the space hocolimw∈CWH H/CHw is H-contractible whenever H is
an isotropy group of X, then the map

hocolimw∈CW G×CGw Xw → X

is a G-homotopy equivalence. If the map

hocolimw∈CWH K/CHw → K/H

is a homotopy equivalence whenever H is an isotropy group of X, then the
map

hocolimw∈CW K ×CGw Xw → K ×G X
is also a homotopy equivalence.

(iii) Let W = Ap(G). Then CG(Ap(G)op, dc) = Ap(G). If H is a com-
pact Lie group with a non-trivial p-subgroup, then there is an H-homotopy
equivalence

hocolimE∈Ap(H)H/CHE ' EOZp(H)

where Zp(G) is the poset of all compact subgroups of G with a non-trivial
central p-subgroup and

EOZp(H) = EH(Zp(H), id) = hocolimH/H′∈OZp(H)
H/H ′.

Indeed, for every H ′ ∈ Zp(H), the space (hocolimE∈Ap(H)H/CHE)H
′

=
B(H/H ′ ↓ Odc) is homotopy equivalent to B(H ′ ↓ dc) = B(Ap(CHH ′)) and
hence is contractible. This implies that there is a G-homotopy equivalence

hocolimE∈Ap(G) G×CGE XE ' X
whenever all isotropy groups of X are in Zp(G).

3.7. Example. Let V be a G-subset of S(G) such that W(V )/G is dis-
crete. Let

rV (X) = hocolim(H,H′)∈C(V )G×H XH′ .

This construction is natural in X and S(G, rV (X)) ⊆ V . The G-maps G×H
XH′ → X define a natural transformation of functors pV : rV → IdG-CW.
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There exists a G-homotopy equivalence (natural in X)

rV (X)→ B(MapG(G/e,−),OV ,MapG(−,X))

where B(−,−,−) is the bar construction described in Section 3 of [HV] and
in Section 4 of [Dw].

If G′ ∈ V , then the map pV (X)G
′

: rV (X)G
′ → XG′ is a homotopy

equivalence. Indeed, in this case we have homotopy equivalences

(hocolim(H,H′)∈C(V )G×H XH′)G
′ ' hocolim(H,H′)∈W(V (≥G′))X

H′ ' XG′ .

Suppose that all isotropy groups of X are in V . Then pV (X) : rV (X)→ X is
a G-homotopy equivalence and gives us a G-homotopy decomposition of X

hocolim(H,H′)∈C(V )G×H XH′ ' X
from 0.0(i). If f : X1 → X2 is an equivariant map of G-CW-complexes and,
for every H ∈ V , fH : XH

1 → XH
2 is a homotopy equivalence, then rV (f)

is a G-homotopy equivalence because, for every (H,H ′) ∈ W(V ), H acts
trivially on XH′ . Hence, for every K, W(V ) is (V,K)-essential.

It follows from the definitions that pV (X)/G gives us a homotopy de-
composition of X/G from 0.0(ii):

hocolimG/H′∈OV X
H′ ' hocolim(H,H′)∈C(V )X

H′ ' X/G
and that

EOV = EG(V, id) = hocolimG/H∈OV G/H

= hocolim(H,H′)∈C(V )G/H = rV (∗).
Let G′ be a closed subgroup of G and let V be a G-subposet of S(G) such

that the spaces W(V )/G and W(VG′)/G′ are discrete. The following two
results are consequences of 3.5 and the fact that C(V ) = CG(W(V ), dW(G))
and rV (∗) = EG(W(VG), dW(G)).

3.8. Corollary. There exists a G-homotopy equivalence

hocolim(H,H′)∈C(V )G×H (G/G′)H
′ ' G×G′ EG′(W(VG′), dW(G′)).

3.9. Corollary. Let f : X1 → X2 be a G-cellular map such that , for
every H ∈ V , fH is a homotopy equivalence.

(i) If , for every isotropy group G′ of Xi, the map rVG′ (∗) → ∗ is a
G′-homotopy equivalence, then the maps

hocolim(H,H′)∈C(V ) G×H XH′
i → Xi

and f are G-homotopy equivalences.
(ii) If , for every isotropy group G′ of Xi, the map K×G′ rVG′ (∗)→ K/G′

is a homotopy equivalence, then the maps

hocolim(H,H′)∈C(V )K ×H XH′
i → K ×G Xi

and idK ×Gf are also homotopy equivalences.
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3.10. Example. Let X be a G-CW-complex. It follows from 3.6(iii) and
2.5(iv) that there are G-homotopy equivalences

rZp(G)(X) ' hocolimE∈Ap(G)G×CGE XE ,

rNp(G)(X) ' hocolim[(E0,...,En)]∈sdAp(G)/GG×NE0∩...∩NEn X
En .

3.11. Example. Let G be a discrete group. Let V be a G-poset of sub-
groups of G satisfying the condition that v ≤ gv implies v = gv. Let
d : V op → S(G) be an admissible function. It is proved in [JS] that, for
every admissible function d′′ : W → S(G), there exists a natural G-map
EG(W,d′′) → BW which is a homotopy equivalence. This implies that if,
for every isotropy group G′ of X, the space BV≤G′ is contractible, then the
G-maps

hocolim(H,H′)∈C(V )G×H XH′ → X,

hocolimH∈CG(V op,d) G×dH XH → X

are homotopy equivalences and that, for every free G-CW complex K, we
have homotopy decompositions

hocolim(H,H′)∈C(V )K ×H XH′ ' K ×G X,
hocolimH∈CG(V op,d) K ×dH XH ' K ×G X.

Here V≤G′ = {H ∈ V : H ≤ G′}.
3.12. Remark. One can generalize the above result of [JS] and construct

G-maps (natural in X)

hocolim(H,H′)∈C(V ) G×H XH′ → Y,

hocolimH∈CG(V op,d)G×dH XH → Y,

where
Y = hocolim[(H0,...,Hn)]∈sdV/GG×NH0∩...∩NHn X

Hn ,

which are homotopy equivalences. Hence, for every free G-CW-complex K,
we have homotopy equivalences

K ×G rV (X) ' hocolim[(H0,...,Hn)]∈sdV/GK ×NH0∩...∩NHn X
Hn ,

hocolimH∈CG(V op,d)K ×dH XH

' hocolim[(H0,...,Hn)]∈sdV/GK ×NH0∩...∩NHn X
Hn .

4. h∗G-decompositions of G-CW-complexes. Let G be a Lie group
and let h∗G be a generalized G-cohomology theory. Let hOG be the category
whose objects are the same as the objects of OG and whose morphisms
are the G-homotopy classes of the morphisms of OG. Let M be a functor
from the category hOop

G to the category Ab of abelian groups. The ordinary
equivariant cohomology of a G-CW-complex Y with coefficients in M will
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be denoted by H∗G(Y,M). These cohomology groups, in the case when G
is a finite group, was defined in [Br1]. The case of a Lie group is described
in [Wi] and in the appendix of [JMO]. For any generalized G-cohomology
theory h∗G on G-CW, there is a spectral sequence

Hm
G (Y, hnG(−))⇒ hm+n

G (Y ).

For every closed subgroup H of G, the H-cohomology theory such that
h∗H(X ′) = h∗G(G ×H X ′) whenever X ′ is an H-CW-complex will be de-
noted by h∗H . This gives us a functor h∗H(−)(X

H′(−)) defined on the homo-
topy category hC associated to C. This functor can be considered as coef-
ficients of the generalized cohomology theory h∗G(− ×C (G ×H(−) X

H′(−)))
defined on the category of free C-CW-complexes in the sense of [DF1], i.e.
C-CW-complexes with orbits of the form MorC(−, c). For every contravari-
ant functor M : hC → Ab, H∗(C,M) = Tor∗C(Z,M) is equal to the Bredon
cohomology groups H∗C(B(− ↓ C),M) (Sections 4 and 5 of [DF1]). Recall
that

hocolimc∈C(G×H (−)XH′(−)) = B(− ↓ C)×C G×H(−) X
H′(−).

Let W be a G-subposet of W(G). Let F = (H(−),H ′(−)) : C →
CG(W,dW(G)) be a functor such that the map

pF (X) : hocolimc∈C G×H(c) X
H′(c) → X

is an h∗G-decomposition of X, i.e. the map

h∗G(X)→ h∗G(hocolimc∈C G×H(c) X
H′(c))

is an isomorphism. It follows from 5.3 of [DF1] that there exists a spectral
sequence

Hm(C, hnH(−)(X
H′(−)))⇒ hm+n

G (X).

The results of this section describe and use this spectral sequence in many
examples.

We remark that if X = ∗ and F = G/H(−) : C → OG, then we obtain
the spectral sequence of the generalized cohomology theory h∗G on Y =
hocolimc∈C F (c).

Let f : X1 → X2 be a G-CW-complex map and let pF (Xi) be an h∗G-

decomposition of Xi for i = 1, 2. If, for every c ∈ C, h∗H(c)(X
H′(c)
2 ) →

h∗H(c)(X
H′(c)
1 ) is an isomorphism then the map h∗(f) : h∗G(X2) → h∗G(X1)

is an isomorphism. This motivates the following definition.

4.0. Definition. Let S be a G-subposet of S(G). Let W be a G-sub-
poset of W(G). We will say that W is (S, h∗G)-essential if, for every equiv-
ariant cellular map f : X → Y of G-CW-complexes whose isotropy groups
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are all in S, the condition that h∗H(Y H
′
) → h∗H(XH′) is an isomorphism

whenever (H,H ′) ∈W implies that h∗G(Y )→ h∗G(X) is an isomorphism.

In particular, if W is (S0(G,X), h∗G)-essential and h∗H(∗) → h∗H(XH′)
is an isomorphism whenever (H ′,H) ∈ W , then h∗G(∗) → h∗G(X) is an
isomorphism.

The following result can be used to construct many non-trivial examples
of h∗G-essential posets.

4.1. Proposition. Let F = (H(−),H ′(−)) : C → CG(W,dW(G)) be a
functor such that for every G′ ∈ S, the map

hocolimc∈C G×H(c) (G/G′)H
′(c) → G/G′

is an h∗G-equivalence. Then:

(i) The map pF (X) is an h∗G-decomposition of X if all isotropy groups
of X are in S.

(ii) The poset W is (S, h∗G)-essential.

Proof. Let

h′∗G(X) = h∗G(hocolimc∈C G×H(c) X
H′(c)).

Then pF induces a natural transformation p∗ : h∗G → h′∗G of G-cohomology
theories. If the assumption of the proposition holds, then p∗(X) is an iso-
morphism. Hence pF (X) is an h∗G-equivalence.

Let R be a commutative ring. The generalized G-cohomology theories
from the category G-CW to the category R∗-Mod of graded R-modules will
be called R-G-cohomology theories.

Let V be a G-poset of compact subgroups of G. Recall that C(V ) is a
full subcategory of CG whose objects are the elements of the poset W(V ) of
pairs (H,H ′) such that H is a subgroup of H ′ and H ′ ∈ V .

4.2. Proposition. Let h∗G = {hn}n∈N be an R-G-cohomology theory.
Let S and V be G-posets of compact subgroups of G such that , for every
H ∈ S, h∗H(∗)→ h∗H(rVH (∗)) is an isomorphism. Then:

(i) The G-poset W(V ) is (S, h∗G)-essential.
(ii) Let f : X → Y be a map of G-CW-complexes whose isotropy groups

are all in S. If , for every H ∈ V , the map XH → Y H is an R-equivalence,
then h∗G(Y )→ h∗G(X) is an isomorphism.

Proof. (i) is a consequence of 3.8 and 4.1(ii).
(ii) Propositions 4.1(i) and 3.8 imply that, for every G-CW-complex X

whose isotropy groups are in S, there exists a spectral sequence

Hm(C(V ), hnH(−)(X
H′(−)))⇒ hm+n

G (X).
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This spectral sequence is natural in X. The assumption implies that, for
every (H,H ′) ∈ C(V ), the map h∗H(Y H

′
) → h∗H(XH′) is an isomorphism

because H ⊆ H ′. Hence the map X → Y is an h∗G-equivalence.

4.3. Examples. Let h∗G(X) = H∗(K ×G X,R). Then h∗G(G/H) =
H∗(K/H,R).

(i) Let K = ∗, R = Fp. It is proved in [JMO] (1.2, 2.2, 2.12) that, if H
is a compact Lie group and dimH > 0, then the space EOTp(H) = rTp(H)(∗)
is Fp-acyclic. Let Sd(G) denote the set of all compact subgroups H of G
such that dimH > 0. Let f : X → Y be a map of G-CW-complexes whose
isotropy groups are all in Sd(G). If, for every non-trivial p-toral subgroup
H of G, the map fH : XH → Y H is an Fp-homology isomorphism, then
so is f . In particular, let G be a compact Lie group. If all isotropy groups
of X are in Sd(G) and, for every non-trivial p-toral subgroup H of G, XH

is Fp-acyclic, then X is Fp-acyclic.
(ii) Let A′p(G) = Ap(G) ∪ {e}. If H ∈ Zp(G) and E ∈ A′p(H), then the

space EOAp(H)/E = EOA′p(H)/E is contractible. Let f : X → Y be a map
of G-CW-complexes whose isotropy groups are all in Zp(G). Suppose that,
for every E ∈ Ap(G), fE is an R-homology isomorphism and that, for every
k ∈ K and x ∈ X ∪ Y , Gx ∩Gk is an elementary abelian p-subgroup of Gx.
This implies that, for every x ∈ X ∪ Y , the map K ×Gx EOAp(Gx) → K/Gx
is an R-homology isomorphism. Hence the map K ×G X → K ×G Y is an
R-homology isomorphism.

(iii) Let K = ∗. Then we obtain 0.3(ii) as a consequence of 4.2 and 1.4.

Let h∗G(X) = H∗(K ×G X,Fp). In this case there is a spectral sequence

Hm
G (K,Hn(X ×G (−), Fp))⇒ hn+m

G (X).

Hence if, for all maximal p-toral subgroups P of isotropy groups of K, X/P
is Fp-acyclic, then h∗G(X) = H∗(K/G,Fp) = h∗G(∗). We will use this fact in
the following examples.

4.4. Examples. Let h∗G = H∗(K ×G −, Fp). Let f : X → Y be an
equivariant cellular map of G-CW-complexes with compact isotropy groups.

(i) Let S′p(G) be the poset of all subgroups of p-toral subgroups of G, and
let Sp(G) be the subposet of S′p(G) consisting of all subgroups which contain
a non-trivial p-subgroup. Let H be a compact subgroup of G. Then h∗H(∗) =
h∗H(rS′p(H)(∗)) because, for every p-toral subgroup P of H, rS′p(H)(∗)/H is
Fp-acyclic. It follows from Section 3 of [JO] that the maps Hm

H (∗, hnH) →
Hm
H (rS′p(H)(∗), hnH), where m > 0, are isomorphisms. Hence so are the maps

H0
H(∗, hnH) → H0

H(rS′p(H)(∗), hnH). From 3.3 of [JO] and 1.2 and 2.2 of
[JMO], it follows that the map rT ′p (H)(∗)→ rS′p(H)(∗) induces isomorphisms
in h∗H and H∗H(−, hnH). This implies that the maps h∗G(Y ) → h∗G(X) and
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H∗G(Y, hnG)→ H∗G(X,hnG) are isomorphisms if, for every p-toral subgroup P
of G, fP is a mod p homology isomorphism.

(ii) Suppose that, for all n > 0, Hn(K,Fp) = 0. Let n > 0. In this case
hnH(H/e) = 0 and (i) implies that the map H∗H(∗, hnH)→ H∗H(rTp(H)(∗), hnH)
is an isomorphism. Hence H∗G(Y, hnG) → H∗G(X,hnG) is an isomorphism if,
for every non-trivial p-toral subgroup P of G, fP is a mod p homology
isomorphism.

(iii) Suppose thatK is Fp-acyclic. Then, for everyH/H ′∈OH , h0
H(H/H ′)

= Fp and h0
H(−) is the constant functor after restriction to OH . It follows

from 1.2 and 2.2 of [JMO] and Proposition 2 and Theorem 3 of [O1] that
the map

H∗(rTp(H)(∗)/H,Fp)→ H∗(rT ′p(H)(∗)/H,Fp)
is an isomorphism. By (ii), so is h∗H(rTp(H)) → h∗H(rT ′p(H)(∗)). Suppose
that all isotropy groups of X and Y contain non-trivial p-subgroups. If,
for every non-trivial p-toral subgroup P of G, fP is a mod p homology
isomorphism, then, for all natural n, the maps H∗G(Y, hnG) → H∗G(X,hnG)
and Hn(K ×G Y, Fp) → Hn(K ×G X,Fp) are isomorphisms. In particular,
we obtain 0.4. If G is a compact Lie group, then we can take X = BAp(G),
Y = ∗ (cf. the proof of 1.5) to obtain 0.5.

(iv) Let K be a G-CW-complex such that, for every k ∈ K and for
every p-toral subgroup P of Gx, Gk ∩ P is an elementary abelian p-group.
Suppose that K is Fp-acyclic. (In particular, we can take K = EG.) If
all isotropy groups of X and Y contain non-trivial p-subgroups and, for
every E ∈ Ap(G), fE is a mod p homology isomorphism, then K ×G X →
K ×G Y is a mod p homology isomorphism. Indeed, it follows from 4.3(ii)
that K×G rTp(G)(X)→ K×G rTp(G)(Y ) is a mod p homology isomorphism.
Now we can use the fact that, by (iii), K×G rTp(G)(X)→ K×GX is a mod
p homology isomorphism.

4.5. Examples. Let G be a discrete group and A a Z(G)-module. We
will consider the Bredon cohomology theory h∗G=H∗G(−,MA), whereMA(−)
= HomZ(G)(Z(−), A). Hence

Hn
G(X,MA) = Hn(HomZ(G)(C∗(X), A))

where C∗(X) is the ordinary cellular chain complex of X. For every G/H ∈
OG, we have h∗G(G/H) = MA(G/H) = AH .

(i) Let G be a finite group. Suppose that there is a non-trivial p-subgroup
P of G such that every element of P acts trivially on A. Then

H∗G(|Sp(G)|,MA) = AG = H∗G(∗,MA).

Indeed, MA is a Hecke functor and it follows from the results of [Wa1]
that if A is an R(G)-module and, for every subgroup H of G, X/H is R-
acyclic, then H∗G(X,MA) = AG. Let H be a normal subgroup of G with
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a non-trivial p-subgroup and let G′ = G/H. If A′ is a Z(G′)-module, then
H∗G′(|Sp(G)|/H,MA′) = A′G

′
because, by 2.8, |Sp(G)|/H ′ is contractible

whenever H ⊆ H ′ ⊆ G.
(ii) Let G be a discrete group. Let SA(G) denote the set of all finite

subgroups H of G with a non-trivial p-subgroup P such that every element
of P acts as identity on A. Suppose that all isotropy groups of X and Y
are in SA(G). The map H∗G(Y,MA)→ H∗G(X,MA) is an isomorphism if, for
every compact subgroup H of G with a non-trivial normal p-toral subgroup,
fH is a homology isomorphism.

(iii) Let A be an Fp(G)-module. Let K be a G-CW-complex. Suppose
that all isotropy groups of points of X and Y are finite. In this case the
maps h∗G(K × Y )→ h∗G(K ×X) and

H∗G(Y, hnG(K × (−)))→ H∗G(X,hnG(K × (−)))

are isomorphisms if, for every p-subgroup P of G, fP is a mod p homology
isomorphism. This is a consequence of the fact that, for every Hecke functor
M : Oop

G → Fp-Mod, M(G/G) = H∗G(rT ′p(G),M) (1.29 of [S3]).

Let W be a topological G-poset satisfying the condition that w ≤ gw,
where g ∈ G, implies that w = gw. Let d : W → S(G) be an admissible
function and let d′ : W op → S(G) be a G-poset map. The next result follows
immediately from 3.4 and 4.1.

4.6. Proposition. Suppose that , for every isotropy group H of the ac-
tion of G on X, the space Wd′,H/H is discrete and the map

h∗H(∗)→ h∗H(hocolimw∈CH (Wd′,H ,dH)H/H ∩ dw)

is an isomorphism. Then so is the map

h∗G(X)→ h∗G(hocolimw∈CG(W,d)G×dw Xd′w)

and there is a spectral sequence

Hm(CG(W,d), hnd(−)(X
d′(−)))⇒ hm+n

G (X).

4.7. Example. Let K be a G-CW-complex. Suppose that, for every
x ∈ X, the map

H∗(K/Gx, R)→ H∗(hocolimw∈CGx (Wd′,Gx ,dGx ) K/Gx ∩ dw,R)

is an isomorphism. Then so is the map

H∗(K ×G X,R)→ H∗(hocolimw∈CG(W,d)K ×dw Xd′w, R)

and there is a spectral sequence

Hm(CG(W,d),Hn(K ×d(−) X
d′(−), R))⇒ Hm+n(K ×G X,R).
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In particular, if, for every isotropy group H of X, BCH(Wd′,H , dH) is R-
acyclic, then there is a spectral sequence

Hm(CG(W,d),Hn(Xd′w/dw,R))⇒ Hm+n(X/G,R).

4.8. Examples. Let W be a poset of closed subgroups of G satisfying
the condition that w ≤ gw implies w = gw and such that the spaces dnW/G
are discrete. Let d : W op → S(G) be an admissible function.

(i) Suppose that the map

h∗H(∗)→ h∗H(hocolimw∈CH (W op
H ,dH)H/dw)

is an isomorphism whenever H is an isotropy group of X. Then the map

h∗G(X)→ h∗G(hocolimw∈CG(W op,d)G×dw Xw)

is an isomorphism and there is a spectral sequence

Hm(CG(W op, d), hndw(Xw))⇒ hm+n
G (X).

(ii) Suppose that the map

h∗H(∗)→ h∗H(BWH)

is an isomorphism whenever H is an isotropy group of X. Then the map

h∗G(X)→ h∗G(hocolim[w.]∈sdW/GG×Gw. Xwn) = h∗G(hocolimw.∈sdW Xwn)

is an isomorphism and there is a spectral sequence

Hm(sdW/G, hnGw.(X
wn))⇒ hm+n

G (X).

(iii) Let G be a discrete group. Let K be a free G-CW-complex. Suppose
that the map

K ×H BWH → K/H

is a mod p homology isomorphism whenever H is an isotropy group of X.
Then, similarly to 3.11, the map

hocolimCG(W op,d)K ×dw Xw → K ×G X
is a mod p homology isomorphism.

4.9. Examples. Let W = Ap(G). Let X be a G-CW-complex such that
all its isotropy groups are compact and contain non-trivial p-subgroups. Let
K be an Fp-acyclic G-CW-complex.

(i) Let d = dc. Then CG(Ap(G)op, dc) = Ap(G). Suppose that, for every
isotropy group H of the action of G on X, the map h∗H(∗)→ h∗H(EOZp(H))
is an isomorphism. Then it follows from 3.6(iii) that the map

h∗G(X)→ h∗G(hocolimE∈Ap(G)G×CGE XE)

is an isomorphism and there is a spectral sequence

Hm(Ap(G), hnCGE(XE))⇒ hm+n
G (X).
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Let h∗G = H∗G(K ×G −, Fp). It follows from 4.4(iii) that if H is a com-
pact subgroup of G and contains a non-trivial p-subgroup, then h∗H(∗) =
h∗H(EOZp(H)). Hence there is a mod p homology isomorphism

hocolimw∈Ap(G) K ×CGw Xw → K ×G X,
and there exists a spectral sequence

Hn(Ap(G),Hm(K ×CGw Xw, Fp))⇒ Hn+m(K ×G X,Fp).
If K = EG, then we obtain the case investigated in [H1,2].

(ii) The map

hocolim[E.]∈sdAp(G)/GK ×GE. XEn → K ×G X
is a mod p homology isomorphism and there is a spectral sequence

Hm(sdAp(G)/G,Hn(K ×GE. XEn , Fp))⇒ Hm+n(K ×G X,Fp).
In particular, if A is one of the classes Bk(Fp) or D(Fp) described in 1.3

and, for every (E0, . . . , En) ∈ sdAp(G), K ×NE0∩...∩NEn X
En ∈ A, then

K ×G X ∈ A.
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