Homotopy decompositions of orbit spaces and the Webb conjecture

by

Jolanta Słomińska (Warszawa)

Abstract. Let p be a prime number. We prove that if G is a compact Lie group with a non-trivial p-subgroup, then the orbit space $(B\mathcal{A}_p(G))/G$ of the classifying space of the category associated to the G-poset $\mathcal{A}_p(G)$ of all non-trivial elementary abelian p-subgroups of G is contractible. This gives, for every G-CW-complex X each of whose isotropy groups contains a non-trivial p-subgroup, a decomposition of X/G as a homotopy colimit of the functor $X^{E_n}/(NE_0\cap\ldots\cap NE_n)$ defined over the poset $(\mathrm{sd}\,\mathcal{A}_p(G))/G$, where sd is the barycentric subdivision. We also investigate some other equivariant homotopy and homology decompositions of X and prove that if G is a compact Lie group with a non-trivial p-subgroup, then the map $EG \times_G B\mathcal{A}_p(G) \to BG$ induced by the G-map $B\mathcal{A}_p(G) \to *$ is a mod p homology isomorphism.

Introduction. In this paper we will study homotopy and homology decompositions which are associated to the equivariant structure of a G-CW-complex X where G is a Lie group. We will try to generalize and streamline techniques of such decompositions.

Let \mathcal{C} be a small topological category and let $F: \mathcal{C} \to G$ -CW be a functor such that, for every $c \in \mathcal{C}$, $F(c) = G \times_{H(c)} X^{H'(c)}$ where H(c), H'(c) are closed subgroups of G and H(c) is a subgroup of the normalizer NH'(c) = $N_GH'(c)$ of H'(c) in G. Suppose also that there is a natural transformation from F to the constant functor X induced by the inclusions $X^{H'(c)} \to X$. G-maps

 $u : \operatorname{hocolim}_{c \in \mathcal{C}} G \times_{H(c)} X^{H'(c)} \to X$

induced by such natural transformations can be used in constructing different homotopy and homology decompositions. If u is a G-homotopy equivalence then it will be called a G-homotopy decomposition of X.

In Section 0 we will introduce a "universal" category \mathcal{C}_G and, for every G-CW-complex X, a functor $\widehat{X} : \mathcal{C}_G \to G$ -CW and a natural transformation

²⁰⁰⁰ Mathematics Subject Classification: 55P91, 55U40, 18G10, 18G40.

Supported by Polish KBN Grants 2 P03A 011 13 and 2P03A 002 018.

of functors $\widehat{X} \to X$. We will study the decompositions induced by functors F which are compositions $\widehat{X}F'$, where $F' : \mathcal{C} \to \mathcal{C}_G$.

For a given G-CW-complex K, we will investigate homotopy decompositions of the orbit space $K \times_G X$, i.e. homotopy equivalences of the form

 $\operatorname{id} \times_G u : \operatorname{hocolim}_{c \in \mathcal{C}} K \times_{H(c)} X^{H'(c)} \simeq K \times_G X.$

We will also study mod p homology decompositions. In this case the map id $\times_G u$ is an F_p -equivalence. We will show how the known examples of decompositions of $K \times_G X$ can be described using \mathcal{C}_G .

The best known examples of homology decompositions are the cases where K = EG is a universal free *G*-space and X = * is a one-point space ([JM2], [JMO]).

Let p be a prime number and let $\mathcal{A}_p(G)$ be the G-poset of all elementary abelian non-trivial p-subgroups of G. If G does not contain a p-subgroup, then the set $\mathcal{A}_p(G)$ is empty. Let $\mathcal{A}_p(G)$ be the category whose objects are elements of $\mathcal{A}_p(G)$ and whose morphisms are homomorphisms which are restrictions of inner automorphisms of G. Let $C_G(E)$ be the centralizer of E in G. There is a contravariant functor $F : \mathcal{A}_p(G) \to G$ -CW such that $F(E) = G \times_{C_G E} X^E$. In the case where X = * and G is a compact Lie group which contains a non-trivial p-subgroup, there is a mod p homology decomposition (Theorem 1.3 of [JM2])

$$\operatorname{hocolim}_{E \in A_n(G)} BC_G(E) \to BG.$$

Using this fact it is proved in [H1] that if the isotropy groups of X are compact and contain a non-trivial p-group, then the map

$$\operatorname{hocolim}_{E \in A_p(G)} EG \times_{C_G(E)} X^E \to EG \times_G X$$

is a mod p homology isomorphism.

We will prove that one can take instead of EG any F_p -acyclic complex K. We will also construct, for such K, another mod p homology decomposition

$$\operatorname{hocolim}_{[(E_0,\ldots,E_n)]\in (\operatorname{sd}\mathcal{A}_p(G))/G} K \times_{NE_0\cap\ldots\cap NE_n} X^{E_n} \to K \times_G X.$$

Here we take \mathcal{C} equal to the poset $(\operatorname{sd} \mathcal{A}_p(G))/G$ of the orbits of the G-action on the barycentric subdivision of $\mathcal{A}_p(G)$. (Recall that the elements of $\operatorname{sd} \mathcal{A}_p(G)$ are the increasing sequences $(E_0 < \ldots < E_n)$ of elements of $\mathcal{A}_p(G)$.) If G is a compact Lie group, then in the special case when X = * and K = EG, we obtain a mod p homology isomorphism

$$\operatorname{hocolim}_{[(E_0,\ldots,E_n)]\in(\operatorname{sd}\mathcal{A}_p(G))/G}B(NE_0\cap\ldots\cap NE_n)\to BG,$$

which is in fact equal to the mod p isomorphism

$$EG \times_G B(\mathcal{A}_p(G)) \to BG.$$

This last fact is well known in the finite case and can be obtained using 1.3 of [JM2]. The compact case is more complicated because of the topological structure of $\mathcal{A}_p(G)$.

If K = * then we obtain not only a homology but also a homotopy decomposition of X/G (Theorem 0.1). In the case when G is a compact Lie group and X = * this means that the space $(B\mathcal{A}_p(G))/G$ is contractible. For finite groups this was conjectured in [We]. A combinatorial proof of this fact in the finite case was given in [Sy]. Our proof is a generalization of an equivariant approach described for finite groups in [S1].

We will also study h_G^* decompositions, where h_G^* is a generalized equivariant cohomology theory, i.e. maps u which induce isomorphisms

$$h_G^*(u) : h_G^*(X) \to h_G^*(\operatorname{hocolim}_{c \in \mathcal{C}} G \times_{H(c)} X^{H'(c)}).$$

We will use the fact that such a decomposition gives a spectral sequence

$$H^m(\mathcal{C}, h^n_{H(-)}(X^{H'(-)})) \Rightarrow h^{m+n}_G(X),$$

where $h_H^*(-) = h_G^*(G \times_H -)$ and $H^m(\mathcal{C}, -) = \lim_{\mathcal{C}} (-) = \operatorname{Ext}_{\mathcal{C}}^m(\mathbb{Z}, -)$ are the cohomology groups of the category \mathcal{C} (Ch. XII of [BK], Section 5 of [DF1]).

0. The main results. Let G be a Lie group. Let \mathcal{O}_G be the orbit category of G whose objects are the orbits G/H, where H is a closed subgroup of G. The morphisms of \mathcal{O}_G are the equivariant continuous maps. Every morphism $f: G/H \to G/H_1$ corresponds to a class $[g] \in (G/H_1)^H$ such that $f([g']) = g'gH_1$. It follows from the definitions that $[g] \in (G/H_1)^H$ if and only if $H \subseteq gH_1g^{-1}$. The topology of the morphism space $\operatorname{Mor}_{\mathcal{O}_G}(G/H, G/H_1) = (G/H_1)^H$ is induced from G/H_1 . The category \mathcal{O}_G is a topological category in the sense of [HV], i.e. a small category \mathcal{C} with topological morphism sets such that the composition is continuous and the structural map $\operatorname{Ob} \mathcal{C} \to \operatorname{Mor} \mathcal{C}$ is a closed cofibration. Similarly to [HV] we will work in the category Top of compactly generated spaces. We will consider \mathcal{O}_G as a full subcategory of the category is described, for example, in [Wi] and [JMO].

We introduce another topological category \mathcal{C}_G which plays a crucial role in our considerations concerning equivariant decompositions. Its object set $\mathcal{W}(G)$ consists of all pairs (H, H') of closed subgroups of G such that His a subgroup of NH'. The morphisms $(H, H') \to (H_1, H'_1)$ of \mathcal{C}_G are all morphisms $f = [g] : G/H \to G/H_1$ of \mathcal{O}_G such that $H'_1 \subseteq g^{-1}H'g$. If $f' = [g'] : (H_1, H'_1) \to (H_2, H'_2)$ is a morphism of \mathcal{C}_G , then the condition $H'_2 \subseteq g'^{-1}H'_1g'$ implies that $H'_2 \subseteq g'^{-1}g^{-1}H'gg'$ so f'f = [gg'] is a morphism of \mathcal{C}_G . The topology of the morphism spaces is induced from the morphism space topology in \mathcal{O}_G . There is an inclusion of categories $i : \mathcal{O}_G \to \mathcal{C}_G$ such that i(H) = (H, e). The category \mathcal{C}_G has a final object (G, e). Let X be a G-CW-complex. Let $\widehat{X} : \mathcal{C}_G \to G$ -CW be the functor defined by $\widehat{X}(H, H') = G \times_H X^{H'}, \ \widehat{X}([g])([g', x]) = [g'g, g^{-1}x]$. Hence $\widehat{X}(G, e) = G \times_G X = X$. The equivariant maps

$$\alpha(H, H') = \widehat{X}([e]) : G \times_H X^{H'} \to X$$

such that $\alpha(H, H')[g', x] = g'x$ form a natural transformation of functors $\alpha : \widehat{X} \to X$ where X is the constant functor. Let \mathcal{C} be a topological category. Suppose that we have a functor $(H(-), H'(-)) : \mathcal{C} \to \mathcal{C}_G$. Then α induces a G-map

$$u : \operatorname{hocolim}_{c \in \mathcal{C}} G \times_{H(c)} X^{H'(c)} \to X.$$

Many examples of decompositions induced by such maps will be described and studied in Sections 3 and 4. For example, let V be a G-set of closed subgroups of G and let \mathcal{O}_V be the full subcategory of \mathcal{O}_G such that G/H is an object of \mathcal{O}_V if and only if $H \in V$. Let $\mathcal{C}(V)$ be the full subcategory of \mathcal{C}_G whose objects are pairs (H, H') where H is a subgroup of H'and $H' \in V$. We will prove the following result in Section 3.

0.0. PROPOSITION. Assume that all isotropy groups of X are in V. Then:

(i) The map

$$u : \operatorname{hocolim}_{\mathcal{C}(V)} \widehat{X} \to X$$

is a G-homotopy decomposition.

(ii) The map u/G gives a homotopy decomposition

 $\operatorname{hocolim}_{G/H \in \mathcal{O}_V} X^H \simeq X/G.$

The homotopy decomposition from (ii) is well known. It appears in [E] and [DF2].

In Sections 1 and 2 we will consider the case where \mathcal{C} is the orbit category of the barycentric subdivision of a poset of subgroups of G. In order to describe this case we need the following notation. Let W be a topological G-poset. This means that W is a topological poset in the sense of $[\check{Z}]$ (i.e. the order relation is a closed subset of W^2) together with a continuous and order preserving action of G on W. Let $d_n W$ denote the G-subspace of W^{n+1} consisting of all non-decreasing sequences $w_{n+1} = (w_0, \ldots, w_n)$. The G-subspace of $d_n W$ consisting of all w. such that $w_i \neq w_{i+1}$ for all i will be denoted by $\operatorname{sd}_n W$. The disjoint union $\operatorname{sd} W = \bigsqcup_{n \in \mathbb{N}} \operatorname{sd}_n W$ is a topological G-poset such that $(w_0, \ldots, w_n) \leq (w'_0, \ldots, w'_m)$ if and only if $\{w'_0, \ldots, w'_m\} \subseteq \{w_0, \ldots, w_n\}$. There are two *G*-poset maps $p_0 : \mathrm{sd} W \to W$ and $p_1: (\operatorname{sd} W)^{\operatorname{op}} \to W$ such that $p_0(w_1) = w_0, p_1(w_2) = w_n$. We will assume that as a topological space, W is equal to the disjoint union of its G-orbits $Gw = G/G_w$ with the topology induced from the topology of G. In this case the topological space W/G is discrete. If W satisfies the condition that $w \leq gw$ implies that w = gw then W/G is a poset such that $[w] \leq [w']$

if and only if $w \leq gw'$ for some $g \in G$. The *G*-poset sd *W* satisfies this condition.

Let $\mathcal{S}(G)$ denote the poset of all closed subgroups of G. The group G acts on $\mathcal{S}(G)$ by conjugation. If $H \in \mathcal{S}(G)$, then the isotropy group of this action at H is equal to NH. We will assume that $\mathcal{S}(G)$ is a topological space equal to the disjoint union of its G-orbits Gx with topology induced from the topology of G. Let W be a G-subposet of $\mathcal{S}(G)$ satisfying the condition that $w \leq gw$ implies that w = gw. Suppose that $(\mathrm{sd} W)/G$ is also a discrete space. Then the space $\mathrm{sd} W$ is equal to the disjoint union of its G-orbits $G/(Nw_0 \cap \ldots \cap Nw_n)$. There is a functor $F : (\mathrm{sd} W)/G \to \mathcal{C}_G$ such that

$$F([w_0,\ldots,w_n]) = (Nw_0 \cap \ldots \cap Nw_n,w_n).$$

If $[w_0, \ldots, w_n] \leq [w'_0, \ldots, w'_m]$, then there exists exactly one element [g] of $G/(Nw'_0 \cap \ldots \cap Nw'_m)$ such that $(w_0, \ldots, w_n) \leq (gw'_0g^{-1}, \ldots, gw_mg^{-1})$. This implies that $gw'_mg^{-1} \subseteq w_n$ and $F([w_0, \ldots, w_n] \leq [w_0, \ldots, w'_m])$ is the morphism of \mathcal{C}_G defined by [g].

If X is a G-CW-complex then there is a functor $\widetilde{X}:(\mathrm{sd}\,W)/G\to G\text{-}\mathrm{CW}$ such that

$$X([w_0,\ldots,w_n]) = G \times_{Nw_0 \cap \ldots \cap Nw_n} X^{w_n}.$$

In Section 2 of this paper we will prove the following result which in the case when G is a finite group was proved in [S1] (2.10.iv and 2.11).

0.1. THEOREM. Let X be a G-CW-complex such that all its isotropy groups are compact and contain a non-trivial p-subgroup. Then there is a homotopy equivalence

$$\operatorname{hocolim}_{[(E_0,\ldots,E_n)]\in(\operatorname{sd}\mathcal{A}_p(G))/G} X^{E_n}/(NE_0\cap\ldots\cap NE_n)\simeq X/G.$$

If X = * is a one-point *G*-CW-complex, then

$$\widetilde{\ast}([w_0,\ldots,w_n]) = G/(Nw_0\cap\ldots\cap Nw_n)$$

and 0.1 specializes to the fact that, in the case when G is a compact Lie group, the classifying space $B((\operatorname{sd} \mathcal{A}_p(G))/G)$ of the category associated to the poset $(\operatorname{sd} \mathcal{A}_p(G))/G$ is contractible.

If W is a poset (discrete as topological space), then the geometrical realization |W| of the simplicial complex associated to W is equal to the classifying space BW of the category associated to W. An action of G on W induces a G-action on |W|. Then there are homotopy equivalences $|\operatorname{sd} W|/G \simeq |W|/G$ and $|\operatorname{sd} W|/G \simeq |(\operatorname{sd} W)/G|$. Let G be a finite group. Let $\mathcal{S}_p(G)$ be the G-poset of all non-trivial p-subgroups of G. Then the spaces $|\mathcal{S}_p(G)|$ and $|\mathcal{A}_p(G)|$ are G-homotopy equivalent (Theorem 2 of [TW]). It is proved in [We] (2.6.1) that $|\mathcal{S}_p(G)|/G$ is F_p -acyclic and conjectured that $|\mathcal{S}_p(G)|/G$ is contractible. It is also proved in [We] (2.1.2) that $|\mathcal{S}_p(G)|^H$ is contractible whenever H is a subgroup of G which contains a normal nontrivial p-subgroup. In [S1] a proof of the Webb conjecture was presented which uses this fact and methods introduced in [O1]. We will generalize this proof to the case of a compact Lie group.

If W is a topological poset then the morphism space of the topological category associated to the poset W has topology induced from the topology of $W \times W$ and the classifying space BW of this category is equal to $\bigcup_{n \in \mathbb{N}} \Delta_n \times d_n W/\sim$ where Δ_n is the standard *n*-dimensional simplex and \sim is an appropriate equivalence relation (3.6 of [Ž]).

Let W be a topological G-poset such that the condition that $w \leq gw$ implies that w = gw. Then W/G is a topological poset. Suppose that the topological space W/G is discrete and that, for every $n \in \mathbb{N}$, $(d_n W)/G$ is discrete. (This holds for example if W is a subposet of $\mathcal{S}(G)$ and all subgroups in W are finite. Indeed, let $p: (d_n W)/G \to W/G$ be the projection such that $p([w_0, \ldots, w_n]) = [w_n]$. Then, for every $[w] \in W/G$, the preimage $p^{-1}([w])$ is a finite space.) The topological space sd W/G = (sd W)/G is also discrete in this case and $BW = \bigsqcup_{n \in \mathbb{N}} \Delta_n \times \text{sd}_n W/\sim$. There is a natural G-CW-complex structure on BW such that the poset sd W/G is equal to the poset of the G-cells of BW. We will show in Section 2 (cf. the proof of 2.3) that

$$(BW)/G = \bigsqcup_{n \in \mathbb{N}} \Delta_n \times (\operatorname{sd}_n W)/G/\sim$$

is a classifying space $B((\operatorname{sd} W)/G)$ of the category associated to the poset $\operatorname{sd} W/G$. We will also show that there are G-homotopy equivalences

hocolim_{[($w_0,...,w_n$)] \in sd W/G $G/(Nw_0 \cap ... \cap Nw_n) \simeq B$ sd $W \simeq BW$.}

In Section 1 we will prove that if G is a compact Lie group and contains a non-trivial p-subgroup, then the space $B\mathcal{A}_p(G)/G$ is contractible. The proof consists of several steps which will be described below. Recall that P is a *p-toral group* if its identity component P_0 is a torus and $\pi_0(P) = P/P_0$ is a finite p-group. The following result is an immediate consequence of 0.1 but in the proof of 0.1 we will use 0.2 in the case when X has finitely many orbit types. We will prove this fact in Section 1.

0.2. THEOREM. Let G be a compact Lie group. Let X be a G-CWcomplex such that all its isotropy groups contain a non-trivial p-subgroup. Suppose that X^P/H is contractible whenever P is a non-trivial p-toral subgroup of G and H is a closed subgroup of the normalizer NP of P in G. Then X/G is contractible.

To prove 0.1 we will also need the following result.

0.3. PROPOSITION. Let R be a commutative ring. Let X and Y be G-CW-complexes such that all their isotropy groups are compact and contain a non-trivial p-subgroup. Let $f : X \to Y$ be a cellular G-map of G-CW-complexes. Then:

(i) If, for every compact subgroup H of G containing a non-trivial normal p-toral subgroup, $f^H: X^H \to Y^H$ is a homotopy equivalence, then so is $f/G: X/G \to Y/G$.

(ii) If, for every compact subgroup H of G containing a non-trivial normal p-toral subgroup, $f^H : X^H \to Y^H$ is an R-equivalence, then so is $f/G : X/G \to Y/G$.

If G is a compact Lie group and Y = * then 0.3 is a consequence of 0.2 and the well known decomposition described in 0.0(ii). This result will be proved in Section 1 in the case when X has finitely many orbit types. We will show that the map $B\mathcal{A}_p(G) \to *$ satisfies the assumptions of 0.3(i). Hence $B\mathcal{A}_p(G)/G$ is contractible and using this we will infer 0.1. We will also prove 0.3 for an arbitrary Lie group G.

Let W be a poset of closed subgroups of G. In Section 4 we will describe a condition on W which ensures that $h_G^*(Y) \to h_G^*(X)$ is an isomorphism if $X^H \to Y^H$ is an R-homology isomorphism for all $H \in W$. As an example we will consider the case when

$$h_G^*(X) = H^*(K \times_G X, R).$$

In particular, we will show how 0.3(ii) and the results of [JMO] and [JO] concerning the mod p decomposition

$$\operatorname{hocolim}_{G/P \in \mathcal{O}_{B_p(G)}} BP \to BG,$$

where $R_p(G)$ is a certain poset of *p*-toral subgroups of *G*, imply the following result.

0.4. PROPOSITION. Let X and Y be G-CW-complexes such that all their isotropy groups are compact and contain non-trivial p-subgroups. Let K be an F_p -acyclic G-CW-complex. If, for every non-trivial p-toral subgroup H of G, $f^H: X^H \to Y^H$ is an F_p -equivalence, then so is $\mathrm{id}_K \times_G f: K \times_G X \to K \times_G Y$.

If G is a compact Lie group with a non-trivial p-subgroup, then from the fact (cf. the proof of 1.5) that all isotropy groups of $B\mathcal{A}_p(G)$ contain non-trivial normal p-subgroups and that, for every subgroup H of G containing a non-trivial normal p-subgroup, the space $B\mathcal{A}_p(G)^H$ is contractible, we obtain the following result.

0.5. COROLLARY. Let G be a compact Lie group with a non-trivial psubgroup. Then the map $EG \times_G B\mathcal{A}_p(G) \to BG$ induced by the G-map $B\mathcal{A}_p(G) \to *$ is an F_p -equivalence. The following posets of subgroups will be defined and used in the paper.

 $List \ of \ posets \ of \ subgroups \ of \ G$

• $\mathcal{A}_p(G)$ — the set of all elementary abelian non-trivial *p*-subgroups,

• $\mathcal{A}'_p(G)$ — the set of all elementary abelian *p*-subgroups,

• $\dot{\mathcal{K}}_p(G)$ — the set of all compact subgroups H such that, for every $P \in \mathcal{M}_p(G), H \cap Z(P)$ contains a non-trivial p-subgroup,

• $\mathcal{M}_p(G)$ — the set of all maximal non-trivial *p*-toral subgroups,

• $\mathcal{N}_p(G)$ — the set of all compact subgroups containing a non-trivial normal *p*-toral subgroup,

• $\mathcal{S}(G)$ — the set of all closed subgroups,

• $\mathcal{S}(G, X)$ — the set of all isotropy groups of X,

• $\mathcal{S}_0(G, X) = \mathcal{S}(G, X) \cup \mathcal{S}(G, *),$

• $\mathcal{S}'_{c}(G)$ — the set of all compact subgroups,

• $\mathcal{S}_{c}(G)$ — the set of all compact subgroups which contain a non-trivial *p*-subgroup,

• $\mathcal{S}'_p(G)$ — the set of all subtoral *p*-subgroups,

• $\mathcal{S}_p(G)$ — the set of all subtoral *p*-subgroups which contain a non-trivial *p*-subgroup,

• $\mathcal{T}'_p(G)$ — the set of all *p*-toral subgroups,

• $\mathcal{T}_p(G)$ — the set of all non-trivial *p*-toral subgroups,

• $\mathcal{T}_p(G, X)$ — the set of all maximal *p*-toral subgroups of isotropy groups of X,

• $\mathcal{Z}_p(G)$ — the set of all compact subgroups containing a non-trivial central *p*-subgroup.

1. Orbit spaces of compact Lie group actions. Let G be a Lie group. The set of all compact subgroups of G will be denoted by $\mathcal{S}'_{c}(G)$. The set of all elements of $\mathcal{S}'_{c}(G)$ which contain a non-trivial p-subgroup will be denoted by $\mathcal{S}_{c}(G)$. The set of all closed p-toral subgroups of G will be denoted by $\mathcal{T}'_{p}(G)$. The set of all non-trivial p-toral subgroups of G will be denoted by $\mathcal{T}_{p}(G)$. The set of all compact subgroups of G containing a non-trivial normal p-toral subgroup will be denoted by $\mathcal{N}_{p}(G)$.

If G is a compact Lie group, T is a maximal torus of G and N_pT/T is a Sylow p-subgroup of NT/T, then N_pT is a maximal p-toral subgroup of G. All maximal p-toral subgroups of G are conjugate to N_pT (Lemma A.1 of [JMO]). The set of all maximal p-toral subgroups of G will be denoted by $\mathcal{M}_p(G)$ and the set of all maximal p-toral subgroups of isotropy groups of X by $\mathcal{T}_p(G, X)$.

Let \mathcal{S} be a subset of the set of compact subgroups of G. We will use the notation

$$\mathcal{W}_{\mathcal{S}} = \{ (H, H') : H' \subseteq H \subseteq NH', \ H' \in \mathcal{S}, \ H \in \mathcal{S}'_{c}(G). \}$$

A non-empty G-poset \mathcal{P} of p-toral subgroups of G will be called *concave* if, for any p-toral subgroups P and P' the condition that $P \subseteq P'$ and $P \in \mathcal{P}$ implies that $P' \in \mathcal{P}$. If G is a compact Lie group and \mathcal{P} is concave, then $\mathcal{M}_p(G) \subseteq \mathcal{P}$ because all maximal p-toral subgroups are conjugate by elements of G.

Let \mathcal{CW} denote the category of spaces having the homotopy type of CW-complexes and let \mathcal{CW}_0 be the subcategory of \mathcal{CW} consisting of the connected spaces. We will say that a class \mathcal{A} of objects of \mathcal{CW} is *thick* if it is closed under homotopy equivalences and taking homotopy pushouts.

In this section we will assume that G is a compact Lie group with a non-trivial *p*-subgroup and that X is a *G*-CW-complex with finitely many orbit types.

1.1. THEOREM. Let \mathcal{A} be thick. Let \mathcal{P} be a concave G-poset of p-toral subgroups of G containing all maximal p-toral subgroups of the isotropy groups of X. If $X^P/H \in \mathcal{A}$ whenever $P \in \mathcal{P}$ and $P \subseteq H \subseteq NP$, then $X/G \in \mathcal{A}$.

Proof. If $(e) \in \mathcal{P}$, then the assumptions imply that $X/G \in \mathcal{A}$. Let k(G, X) denote the number of elements of $\mathcal{T}_p(G, X)/G$.

If k(G, X) = 1, then $\mathcal{T}_p(G, X) = (P) = \{gPg^{-1} : g \in G\}$, where P is, up to conjugacy, the unique maximal p-toral group of an isotropy group of X. Hence $X = X^{(P)} = \bigcup_{P' \in (P)} X^{P'}$. It is proved in [O1] (in the proof of Proposition 3) that the map $X^P/NP \to X^{(P)}/G$ is a homeomorphism. (This is a consequence of the fact that, if G' is a closed subgroup of G and P is a maximal p-toral subgroup of G', then NP acts transitively on $(G/G')^P$. Indeed, let $aG', bG' \in (G/G')^P$. Then $a^{-1}Pa, b^{-1}Pb$ are maximal p-toral subgroups of G' so they are conjugate in G' and there is $c \in G'$ such that $bca^{-1} \in NP$.) If the assumptions hold, then P is a maximal toral p-subgroup of G. Hence, in this case, $X/G = X^P/NP \in \mathcal{A}$.

We use induction on the dimension of G and then on the order of $\pi_0(G) = G/G_0$, where G_0 is the identity component of G. Assume that the result is true for all proper closed Lie subgroups of G. Now we use induction on k(G, X). Let k(G, X) = k + 1 > 1. Suppose that the result is true for all G-CW-complexes X' such that $k(G, X') \leq k$. Let P be a minimal element of $\mathcal{T}_p(G, X)$. As P is not a maximal p-toral group, it follows that NP/P contains a non-trivial p-toral subgroup (cf. [O1], Lemma 2). Let X' be a G-CW-subcomplex of X such that $x \in X \setminus X'$ if and only if maximal p-toral subgroups of the isotropy group G_x are conjugate to P. The induction assumption implies that $X'/G \in \mathcal{A}$ because $k(G, X') \leq k$. Indeed, let $\mathcal{P}_o = \mathcal{P} \setminus (P)$. Then, for every $(H, P') \in \mathcal{W}_{\mathcal{P}_o}$, $X'^{P'}/H = X^{P'}/H$.

It follows from the definition that $X = X' \cup X^{(P)}$ and that X/G is equal to the pushout of the diagram

$$X^{(P)}/G \leftarrow X'^{(P)}/G \to X'/G.$$

If $x \in X \setminus X'$, then $\mathcal{M}_p(G_x)$ is a subset of (P) and NP acts transitively on $(Gx)^P = (G/G_x)^P$. Hence X/G is the pushout of the diagram

$$X^P/NP \leftarrow X'^P/NP \rightarrow X'/G.$$

Since $X'^P/NP \to X^P/NP$ is a cofibration, X/G is the homotopy pushout of this diagram.

The space X'^P , which has the structure of an NP-CW complex, satisfies the assumptions of the proposition. It is of finite orbit type because, for every closed subgroup G' of G, $(G/G')^P/NP$ is finite (II.5.7 of [Br1]). Let $\mathcal{P}' = \{P' \in \mathcal{P} : P \subset P' \subseteq NP, P' \neq P\}$. From the fact that, for every $x \in X'^P$, $P \subseteq G_x \cap NP$ and P is not a maximal p-toral subgroup of G_x , it follows that P is not a maximal p-toral subgroup of $G_x \cap NP$ (Lemma 2 of [O1]). Hence

$$\mathcal{T}_p(NP, X'^P) = \bigcup_{x \in X'} \mathcal{M}_p(G_x \cap NP) \subseteq \mathcal{P}'$$

and $X'^{P'}/H = X^{P'}/H \in \mathcal{A}$ whenever $(H, P') \in \mathcal{W}_{\mathcal{P}'}$.

If P is a normal subgroup of G, then NP = G but $k(X'^P, G) \leq k$, because $P \notin \mathcal{T}_p(G, X'^P) \subseteq \mathcal{T}_p(G, X)$. If P is not a normal subgroup of G, then NP < G and we can use the induction assumption. In both cases we find that $X'^P/NP \in \mathcal{A}$. Hence $X/G \in \mathcal{A}$.

In particular, if $\mathcal{P} = \mathcal{T}_p(G)$ and \mathcal{A} is the class of all contractible objects of \mathcal{CW}_0 then 1.1 specializes to 0.2.

In what follows let \mathcal{A} be a thick category. We now define three conditions for thick categories.

A1: For every compact Lie group H and for every H-CW-complex X, if $X^{H'} \in \mathcal{A}$ for every closed subgroup H' of H, then $X/H \in \mathcal{A}$.

A2: For every compact Lie group H and for every H-CW-complex X, if dim $X < \infty$ and $X \in \mathcal{A}$, then $X/H \in \mathcal{A}$.

A3: For every compact Lie group H and for every H-CW-complex X, if $X/P \in \mathcal{A}$ for every $P \in \mathcal{M}_p(H)$, then $X/H \in \mathcal{A}$.

Let H' be a closed subgroup of G and let \mathcal{P} be a set of subgroups of G. We use the notation

$$\mathcal{N}_{H'} = \{ H \in \mathcal{S}(G) : H' \subseteq H \subseteq NH' \},$$

$$\mathcal{N}_{\mathcal{P}} = \{ H \in \mathcal{S}(G) : H' \subseteq H \subseteq NH', H' \in \mathcal{P} \},$$

$$\mathcal{S}_{\mathcal{P}} = \bigcup_{P, P' \in \mathcal{P}} \{ H \in \mathcal{S}(G) : P \subseteq H \subseteq P' \subseteq NP \},$$

$$\mathcal{S}'_{p}(G) = \mathcal{S}_{\mathcal{T}'_{p}(G)}, \qquad \mathcal{S}_{p}(G) = \mathcal{S}_{\mathcal{T}_{p}(G)}.$$

1.2. COROLLARY. Let \mathcal{P} be a concave G-poset of p-toral subgroups of G. Let X be a G-CW-complex such that maximal p-toral subgroups of isotropy groups of X are in \mathcal{P} . Suppose that \mathcal{A} is thick and that one of the following conditions holds:

(i) \mathcal{A} satisfies A3 and $X^P/P' \in \mathcal{A}$ whenever $(P', P) \in \mathcal{W}_{\mathcal{P}}$ and $P' \in \mathcal{P}$.

(ii) \mathcal{A} satisfies A1 and $X^H \in \mathcal{A}$ whenever $H \in \mathcal{N}_{\mathcal{P}}$.

(iii) \mathcal{A} satisfies A1 and A3 and $X^H \in \mathcal{A}$ whenever $H \in \mathcal{S}_{\mathcal{P}}$.

(iv) \mathcal{A} satisfies A2, dim $X < \infty$ and $X^H \in \mathcal{A}$ whenever $H \in \mathcal{P}$.

Then $X/G \in \mathcal{A}$.

Proof. The result is a consequence of 1.1. Suppose that $(H, P') \in \mathcal{W}_{\mathcal{P}}$.

If (i) holds, then $X^{P'}/P'' \in \mathcal{A}$ whenever $P'' \in \mathcal{M}_p(H)$. Since \mathcal{A} satisfies **A3**, it follows that $X^{P'}/H \in \mathcal{A}$.

Assume that (ii) holds. Let H' = H/P' and let $Y = X^{P'}$. We can consider Y as an H'-CW-complex. If H'_0 is a subgroup of H', then $H'_0 = H_0/P'$, where $P' \subseteq H_0 \subseteq H$, and $Y^{H'_0} = X^{H_0} \in \mathcal{A}$ because $H_0 \in \mathcal{N}_{\mathcal{P}}$. Hence $X^{P'}/H = Y/H' \in \mathcal{A}$.

If \mathcal{A} satisfies **A1** and $X^{G'} \in \mathcal{A}$ whenever $G' \in \mathcal{S}_{\mathcal{P}}$ then $X^{P}/P' \in \mathcal{A}$ whenever $P, P' \in \mathcal{P}, P' \in \mathcal{N}_{P}$. Now we can use part (ii) of this result to obtain (iii).

If (iv) holds, then $X^{P'}/H \in \mathcal{A}$ by the definitions.

1.3. EXAMPLES. Let

$$\mathcal{C} = \{ X \in \mathcal{CW}_0 : X \text{ is contractible} \},\$$
$$\mathcal{D}(R) = \{ X \in \mathcal{CW}_0 : X \text{ is } R\text{-acyclic} \},\$$
$$B_k(R) = \{ X \in \mathcal{CW}_0 : H^i(X, R) = 0 \text{ for } i = 1, \dots, k \}.$$

(i) The well known decomposition from 0.0(ii) implies that all these classes satisfy A1.

(ii) The classes $\mathcal{D}(F_p)$ and $B_k(F_p)$ satisfy **A3**. This is a consequence of the existence of an appropriate transfer. Let H be a closed subgroup of G and let $\pi_X : X/H \to X/G$ be the projection to the orbit space. It is proved in [O2], [LMM], [LMS] that there exists a natural transfer map

$$t_X: H^*(X/H, R) \to H^*(X/G, R)$$

such that the composition $H^*(\pi_X)t_X$ is the multiplication by the Euler characteristic $\chi(G/H)$ of G/H. If H is a maximal p-toral subgroup of G, then $\chi(G/H)$ is prime to p. Hence, if $H^n(X/H, F_p) = 0$, then $H^n(X/G, F_p) = 0$.

(iii) The classes $\mathcal{D}(\mathbb{Z})$ and $\mathcal{D}(F_p)$ satisfy **A2**. This follows from Theorems 1 and 2 of [O1].

The next result describes the case when $\mathcal{P} = \mathcal{T}_p(G)$ and \mathcal{A} is one of the classes from 1.3. The statement (i) is a special case of 0.3. For a finite group G, this result is proved in 2.11 of [S1]. The statement (iii), for finite groups, finite G-CW-complexes and F_p -acyclic spaces, is proved in [We].

1.4. PROPOSITION. Let X be a G-CW-complex such that all its isotropy groups contain a non-trivial p-subgroup. Then:

(i) X/G is contractible (resp. R-acyclic) if X^H is contractible (resp. R-acyclic) for all closed subgroups H containing a non-trivial normal p-toral subgroup.

(ii) X/G is F_p -acyclic if, for every $H \in \mathcal{S}_p(G)$, X^H is F_p -acyclic.

(iii) If dim $X < \infty$ and, for every non-trivial p-toral subgroup H of G, X^{H} is \mathbb{Z} -acyclic (resp. F_{p} -acyclic), then X/G is \mathbb{Z} -acyclic (resp. F_{p} -acyclic).

Proof. $\mathcal{T}_p(G)$ is a concave set of *p*-subgroups of *G*. By 1.2(ii), $\mathcal{N}_{\mathcal{T}_p(G)} = \mathcal{N}_p(G)$ so (i) follows. The statement (ii) is a consequence of 1.2(iii) because $\mathcal{S}_{\mathcal{T}_p(G)} = \mathcal{S}_p(G)$, and (iii) follows from 1.2(iv).

1.5. COROLLARY. If G is a compact Lie group with a non-trivial psubgroup, then the space $B\mathcal{A}_p(G)/G$ is contractible.

Proof. It is proved in 6.1 of [JM2] that there are only finitely many conjugacy classes of elementary abelian p-subgroups in G. If $x \in B\mathcal{A}_p(G)$, then $G_x = NE_0 \cap \ldots \cap NE_k$, where $E_i \in \mathcal{A}_p(G)$ and $E_0 < \ldots < E_k$, so $E_0 \subseteq$ $G_x \subseteq NE_0$. For every $H \in \mathcal{N}_p(G)$, the space $(B\mathcal{A}_p(G))^H = B(\mathcal{A}_p(G)^H)$ is contractible. For G finite this follows from 2.1.2 of [We]. The proof for any compact Lie group is similar. The space $\mathcal{A}_p(G)^H$ is a disjoint union of its NH/H-orbits. Let

$$\mathcal{A}_p(G)_{\geq E} = \{ E' \in \mathcal{A}_p(G) : E \subseteq E' \}.$$

There exists a non-trivial normal p-toral subgroup P of H such that NH is a subgroup of NP. Indeed, let Q be the intersection of all maximal p-toral subgroups of H. Then NH is a subgroup of NQ. Let Q_0 be the component of the identity of Q. We can take $P = Q_0$ if Q_0 is non-trivial. If $Q_0 = e$, then we can take as P the intersection of all Sylow p-subgroups of Q. In this case P is the maximal normal p-toral subgroup of H. It follows from A3 of [JMO] and 7.6 of [JM1] that if $P' \in \mathcal{T}_p(G)$, then the center Z(P') of P' is also in $\mathcal{T}_p(G)$. Let E be the maximal elementary abelian p-subgroup of Z(P). Then $E \subset H \subset NH \subset NE$, $NH \subset NCE$ and, for every $E' \in \mathcal{A}_p(G)^H$, $E' \cap CE = E'^E$ is a non-trivial group. The poset map $h_E : \mathcal{A}_p(G)^H \to (\mathcal{A}_p(G)^H \cap \mathcal{A}_p(CE))_{\geq E}$ such that $h_E(E') = (E' \cap CE)E$ whenever $E' \in \mathcal{A}_p(G)^H$, is continuous because it is an NH/H-poset map. The map Bh_E is the composition of the homotopy equivalences $\mathcal{B}\mathcal{A}_p(G)^H \to \mathcal{B}(\mathcal{A}_p(G)^H \cap \mathcal{A}_p(CE))$ and $\mathcal{B}(\mathcal{A}_p(G)^H \cap \mathcal{A}_p(CE)) \to \mathcal{B}((\mathcal{A}_p(G)^H \cap \mathcal{A}_p(CE))_{\geq E})$. The space $\mathcal{B}((\mathcal{A}_p(G)^H \cap \mathcal{A}_p(CE))_{\geq E})$ is contractible because $\mathcal{A}_p(G)_{\geq E}^H$ has the final object E. Now we can apply 1.4(i).

If G is finite and a normal subgroup H of G contains a non-trivial psubgroup then it was proved in [Dw] that the space $B\mathcal{A}_p(G)/H$ is F_p -acyclic. In 1.6 we will prove that this space is contractible.

Let $\mathcal{K}_p(G)$ denote the set of all subgroups H of G satisfying the condition that, for every maximal p-toral subgroup P in G, $H \cap Z(P)$ contains a nontrivial p-subgroup. If $H \in \mathcal{K}_p(G)$ and $H \subseteq H'$, then $H' \in \mathcal{K}_p(G)$. If H is a normal subgroup of G which, for every maximal p-toral subgroup P of G, contains a non-trivial normal p-toral subgroup P' of P, then $H \in \mathcal{K}_p(G)$. Indeed, $H \cap ZP$ contains P'^P , hence it contains a non-trivial p-group. If Gis finite and a normal subgroup H of G contains a non-trivial p-subgroup, then H belongs to $\mathcal{K}_p(G)$. It was proved in [Dw] that in this case $H \cap P$ is a normal subgroup of P and a Sylow p-subgroup of H so $H \cap Z(P)$ contains a non-trivial p-subgroup. The following result is a generalization of 1.5.

1.6. PROPOSITION. Let G be compact Lie group with a non-trivial psubgroup. If $H \in \mathcal{K}_p(G)$ then the space $B\mathcal{A}_p(G)/H$ is contractible.

Proof. The result is a consequence of 1.4(i). It follows from the definition that $\mathcal{N}_p(H) \subseteq \mathcal{N}_p(G)$, hence, as in the proof of 1.5, for every $H_0 \in \mathcal{N}_p(H)$, $B\mathcal{A}_p(G)^{H_0}$ is contractible. If $x \in B\mathcal{A}_p(G)$, then H_x contains a non-trivial *p*-subgroup. Indeed, let $G_x = NE_0 \cap \ldots \cap NE_k$, where $E_i \in \mathcal{A}_p(G)$ and $E_0 < \ldots < E_k$. Let *P* be a maximal *p*-toral subgroup of *G* such that $E_k \subseteq P$. It follows from the definitions that $H \cap ZP \subseteq H \cap NE_0 \cap \ldots \cap NE_k = H_x$. The assumption that $H \in \mathcal{K}_p(G)$ now implies that H_x contains a non-trivial *p*-subgroup.

2. Homotopy decompositions over $(\operatorname{sd} W)/G$. Let \mathcal{C} be a topological category. For any two functors $Y : \mathcal{C} \to \operatorname{Top}$ and $Y' : \mathcal{C}^{\operatorname{op}} \to \operatorname{Top}$, the topological space $Y' \times_{\mathcal{C}} Y$ is the coequalizer of the two natural maps

$$p_0, p_1 : \prod_{\alpha: c \to c'} Y(c) \times Y'(c') \to \prod_{c \in C} Y(c) \times Y'(c)$$

induced by the maps

 $p_0(\alpha)(y,y') = (Y(\alpha)y,y'), \quad p_1(\alpha)(y,y') = (y,Y'(\alpha)y').$

In particular hocolim_C $Y = B(-\downarrow C) \times_{C} Y$, where $c \downarrow C$ is the "under" category of the morphisms $c \rightarrow c'$ of C.

If G_1 and G_2 are groups and $Y : \mathcal{C} \to G_1$ -Top, $Y' : \mathcal{C}^{\text{op}} \to G_2$ -Top, then $G_1 \times G_2$ acts in a natural way on $Y' \times_{\mathcal{C}} Y$. If $G_1 = e$ then we obtain a G_2 -action.

Let G be a Lie group and let X be a G-CW-complex. Let $\mathcal{S}(G, X)$ denote the set of isotropy groups of X and $\mathcal{S}_0(G, X) = \mathcal{S}(G, X) \cup \{G\}$. The full subcategory of \mathcal{O}_G whose objects are the orbit spaces G/H, where $H \in \mathcal{S}(G, X)$, is denoted by $\mathcal{O}(G, X)$. The G-map spaces will be denoted by $\operatorname{Map}_G(-, -)$.

Let $F_1, F_2: G\text{-}\mathrm{CW} \to G\text{-}\mathrm{CW}$ be functors such that

 $F_i(X) = \operatorname{Map}_G(-, X) \times_{\mathcal{O}_G} F_i, \quad F_i(f) = \operatorname{Map}_G(-, f) \times_{\mathcal{O}_G} F_i$

whenever $f: X \to X'$. In the formulas above the restriction of F_i to the subcategory \mathcal{O}_G of G-CW is denoted by the same letter. We will need the following fact.

2.1. PROPOSITION. Let $\tau : F_1 \to F_2$ be a natural transformation of functors induced by its restriction to \mathcal{O}_G . If, for every $G/H \in \mathcal{O}(G, X), \tau(G/H)$ is a G-homotopy equivalence, then so is $\tau(X) : F_1(X) \to F_2(X)$.

Proof. Since the \mathcal{O}_G -orbits of the functor $\operatorname{Map}_G(-, X)$ have the form $\operatorname{Map}_G(-, G/G_x)$, where $x \in X$, the restriction of $\operatorname{Map}_G(-, X)$ to $\mathcal{O}(G, X)$ is a free functor in the sense of [DF1] and

$$F_i(X) = \operatorname{Map}_G(-, X) \times_{\mathcal{O}(G, X)} F_i.$$

This can be proved by induction on the dimension of X. Assume that the n-skeleton of X, denoted by X_n , is equal to the pushout

$$D^n \times T_n \leftarrow S^{n-1} \times T_n \to X_{n-1}$$

where T_n is a disjoint union of *G*-orbits from $\mathcal{O}(G, X)$ and the left arrow is the cofibration induced by the natural inclusion $S^{n-1} \to D^n$. Then $F_i(X_n)$ is equal to the homotopy pushout

$$D^n \times F_i(T_n) \leftarrow S^n \times F_i(T_n) \to F_i(X_{n-1}).$$

This implies that, if $\tau(X_{n-1})$ is a homotopy equivalence then so is $\tau(X_n)$. Now one can use the fact that $\tau(X) = \text{hocolim}_{n \in \mathbb{N}} \tau(X_n)$.

2.2. EXAMPLES. (i) Let K be a G-CW-complex. Let F = (H(-), H'(-)): $\mathcal{C} \to \mathcal{C}_G$ be a functor such that, for every isotropy group G' of X, the map

$$\operatorname{hocolim}_{c \in \mathcal{C}} K \times_{H(c)} (G/G')^{H'(c)} \to K/G'$$

is a homotopy equivalence. Then so is the map

$$\operatorname{hocolim}_{c \in \mathcal{C}} K \times_{H(c)} X^{H'(c)} \to K \times_G X.$$

(ii) Let $f: K_1 \to K_2$ be a cellular map of *G*-CW-complexes. If, for every isotropy group *H* of *X*, $f/H: K_1/H \to K_2/H$ is a homotopy equivalence, then so is $f \times_G X: K_1 \times_G X \to K_2 \times_G X$.

(iii) Let V be a G-subposet of
$$\mathcal{S}(G)$$
. Using the fact that for every $G' \in V$,
hocolim _{$G/H \in \mathcal{O}_V$} $(G/G')^H = B(G/G' \downarrow \mathcal{O}_V) \simeq *$,

we obtain the decomposition described in 0.0(ii).

(iv) Let $F = (H(-), H'(-)) : \mathcal{C} \to \mathcal{C}_G$ be a functor such that, for every isotropy group G' of X, the map

$$\operatorname{hocolim}_{c\in\mathcal{C}}G\times_{H(c)}(G/G')^{H'(c)}\to G/G'$$

is a G-homotopy equivalence. Then so is the map

 $\operatorname{hocolim}_{c \in \mathcal{C}} G \times_{H(c)} X^{H'(c)} \to X.$

In this section we will assume that W is a topological G-subposet of $\mathcal{S}(G)$ and that all elements of W are finite subgroups of G. This implies that the orbit spaces $d_n W/G$ are discrete and that W satisfies the condition that $w \leq gw$, where $g \in G$, implies that w = gw.

Let H be a closed subgroup of G. We will use the notation

$$W_H = \{ H' \in W : H' \subseteq H \}.$$

If H is a compact Lie group then the topology on W_H induced from W is equal to the topology induced from $\mathcal{S}(H)$. This follows from the fact that $(G/H)^{H'}/NH'$ is discrete (cf. the proof of II.5.7 in [Br2]).

2.3. PROPOSITION. Let X be a G-CW-complex such that all its isotropy groups are compact.

(i) If, for every $x \in X$, the map $K \times_{G_x} B(W_{G_x}) \to K/G_x$ is a homotopy equivalence, then there is a homotopy decomposition

 $\operatorname{hocolim}_{[(H_0,\ldots,H_n)]\in \operatorname{sd} W/G} K \times_{NH_0\cap\ldots\cap NH_n} X^{H_n} \simeq K \times_G X.$

(ii) If, for every $x \in X$, the map $G \times_{G_x} B(W_{G_x}) \to G/G_x$ is a G-homotopy equivalence, then there is a G-homotopy decomposition

$$\operatorname{hocolim}_{[(H_0,\ldots,H_n)]\in\operatorname{sd} W/G} G \times_{NH_0\cap\ldots\cap NH_n} X^{H_n} \simeq X.$$

Proof. Let

$$F'_K(X) = \operatorname{hocolim}_{[(H_0, \dots, H_n)] \in \operatorname{sd} W/G} K \times_{NH_0 \cap \dots \cap NH_n} X^{H_n}$$

It follows from the definitions that $F'_K(X) = K \times_G F'_G(X)$.

If X = * = G/G, then there is a G-homotopy equivalence

 $F'_G(*) = \operatorname{hocolim}_{[(H_0,\ldots,H_n)] \in \operatorname{sd} W/G} G/(NH_0 \cap \ldots \cap NH_n) \simeq BW.$

Indeed, $F'_G(*)$ is the classifying space of the category W[G] whose objects are the pairs ([w.], [g]), where $[w.] \in \operatorname{sd} W/G$, $[g] \in G/(NH_0 \cap \ldots \cap NH_n)$, $w. = (H_0, \ldots, H_n)$. The category W[G] is a topological poset with an action of G defined by the action of G on G/G_w and there is an equivariant isomorphism of topological G-posets $F : W[G] \to \operatorname{sd} W$ such that F([w.], [g]) = gw. Hence we have equivariant homotopy equivalences

119

J. Słomińska

 $F'_G(*) \simeq BW[G] \simeq B \operatorname{sd} W$. Let \mathcal{N} be the category whose objects are finite posets $[n] = \{0 \leq 1 \leq \ldots \leq n\}$ and whose morphisms are the injective poset maps. Let $F_W : \mathcal{N} \to G$ -Top be the functor such that $F_W([n]) = \operatorname{sd}_n W$ consists of all injective poset maps $[n] \to W$. Let Δ_n be the standard *n*dimensional simplex. Then $\Delta_{(-)}$ is a free functor on the category \mathcal{N} . This implies that there are equivariant homotopy equivalences

$$B \operatorname{sd} W \simeq \operatorname{hocolim}_{\mathcal{N}} F_W \simeq \Delta_{(-)} \times_{\mathcal{N}} \operatorname{sd}_{(-)} W \simeq BW.$$

There is a natural G-CW-complex structure on BW such that the poset $\operatorname{sd} W/G = (\operatorname{sd} W)/G$ is equal to the poset of the G-cells of BW. For K = * we obtain homotopy equivalences

$$B((\operatorname{sd} W)/G) = F'_*(*) = F'_G(*)/G \simeq B(\operatorname{sd} W)/G \simeq (BW)/G.$$

The inclusions $X^{H_n} \to X$ induce a map $p_K(X) : F'_K(X) \to K \times_G X$. The map $p_G(X)$ is a *G*-map and $p_K(X) = K \times_G p_G(X)$. Let $\pi_X : F'_G(X) \to F'_G(*) \simeq BW$ be the natural *G*-projection. To obtain the result it is sufficient to prove that, for every $x \in X$, the map $p_K(G/G_x)$ is a homotopy equivalence. This follows from the fact that, for every closed subgroup *H* of G, π_X induces an *H*-homotopy equivalence $p_G^{-1}(G/H)(H) \to BW_H$. Indeed, consider the natural projection $f_{w.} : G \times_{NH_0 \cap \ldots \cap NH_n} (G/H)^{H_n} \to G/H$. Then $G \times_{NH_0 \cap \ldots \cap NH_n} (G/H)^{H_n} = G \times_H f_{w.}^{-1}(H)$. Let

$$Y(w,H) = \{g \in G : gH_ng^{-1} \subseteq H\}/(NH_0 \cap \ldots \cap NH_n)$$
$$\subseteq G/(NH_0 \cap \ldots \cap NH_n).$$

Then there is an H-isomorphism $\mu: Y(w, H) \to f_{w.}^{-1}(H)$ such that $\mu([g]) = [g, g^{-1}H]$. The space

$$p_G^{-1}(G/H)(H) \simeq \operatorname{hocolim}_{[w] \in \operatorname{sd} W/G} Y(w, H)$$

is the classifying space of the category W[H] whose objects are the pairs ([w.], [g]), where $[w.] \in \operatorname{sd} W/G$, $[g] \in Y(w., H)$. W[H] is a topological subposet of W[G] and the restriction of F_W gives us an H-poset isomorphism $W[H] \to \operatorname{sd} W_H$. Now we can use the H-homotopy equivalence $B \operatorname{sd} W_H \simeq BW_H$ to conclude that $p_K(G/H)$ is homotopy equivalent to the projection $K \times_H BW_H \to K/H$ (which implies (i)) and that $p_G(G/H)$ is G-homotopy equivalent to the projection $G \times_H BW_H \to G/H$ (which implies (ii)).

The following result is an immediate consequence of 2.3.

2.4. COROLLARY. Let X be a G-CW-complex such that all its isotropy groups are compact. Let W be a G-poset of finite subgroups of G such that the space $B \operatorname{sd} W/G$ is contractible. Suppose that A is thick and satisfies the condition A1. (i) Suppose that, for every $x \in X$, the map $K \times_{G_x} B(W_{G_x}) \to K/G_x$ is a homotopy equivalence and that, for every $(H_0, \ldots, H_n) \in \operatorname{sd} W$, we have $K \times_{NH_0 \cap \ldots \cap NH_n} X^{H_n} \in \mathcal{A}$. Then $K \times_G X \in \mathcal{A}$.

(ii) Suppose that, for every $x \in X$, the space

$$B(W_{G_x})/G_x = B \operatorname{sd} W_{G_x}/G_x$$

is contractible and that $X^H \in \mathcal{A}$ whenever

$$H \in \{ NH_0 \cap \ldots \cap NH_n \cap G' : (H_0, \ldots, H_n) \in \mathrm{sd}\,W, G' \in \mathcal{S}_0(G, X), \ H_n \subseteq G' \}.$$

Then $X/G \in \mathcal{A}$.

2.5. EXAMPLES. (i) Let X be a G-CW-complex such that all its isotropy groups are finite. Then there exists a G-homotopy decomposition

$$\operatorname{hocolim}_{[(H_0,\ldots,H_n)]\in \operatorname{sd}\mathcal{S}(G,X)/G} G \times_{NH_0\cap\ldots\cap NH_n} X^{H_n} \simeq X$$

because, for every $x \in X$, the space $BS(G, X)_{G_x}$ is G_x -contractible.

(ii) Suppose that, for every $x \in X$, $y \in K$, $G_x \in S_c(G)$ and $G_x \cap G_y \in \mathcal{K}_p(G_x)$. Then there is a homotopy equivalence

 $\operatorname{hocolim}_{[(E_0,\ldots,E_n)]\in \operatorname{sd}\mathcal{A}_p(G)/G} K \times_{NE_0\cap\ldots\cap NE_n} X^{E_n} \simeq K \times_G X.$

This is a consequence of 2.3, 2.2(ii) and 1.6. In particular, for K = * we obtain 0.1.

(iii) Let G be compact Lie group with a non-trivial p-subgroup. Let \mathcal{P} be the poset of all non-trivial finite p-subgroups of G. Then the space $(B\mathcal{P})/G$ is contractible. This follows from (ii) and from the fact that, for every $(E_0, \ldots, E_n) \in \operatorname{sd} \mathcal{A}_p(G)$, the space $B(\mathcal{P})^H$ is contractible whenever $E_n \leq H \leq NE_0 \cap \ldots \cap NE_n$ because $P'E_n \in \mathcal{P}^H$ if $P' \in \mathcal{P}^H$.

(iv) Let X be a G-CW-complex such that all its isotropy groups are compact and contain a non-trivial normal p-subgroup. Then there exists a G-homotopy decomposition

$$\operatorname{hocolim}_{[(E_0,\ldots,E_n)]\in\operatorname{sd}\mathcal{A}_p(G)/G}G\times_{NE_0\cap\ldots\cap NE_n}X^{E_n}\simeq X$$

because, for every $x \in X$, the space $B\mathcal{A}_p(G_x)$ is G_x contractible. This follows from the fact that the poset $\mathcal{A}_p(G_x)^{G_x}$ is non-empty (cf. the proof of 1.5), and that, for every isotropy group H of $B\mathcal{A}_p(G_x)$, the map $B\mathcal{A}_p(G_x)^H \to *$ is a homotopy equivalence because all isotropy groups of $B\mathcal{A}_p(G_x)$ contain non-trivial normal p-subgroups.

One can prove this fact using similar methods to those in 1.5. Let E be a non-trivial, normal, elementary abelian *p*-subgroup of G_x . Let W be the G-poset of all subgroups of G_x of the form E'E'' where $E' \in \mathcal{A}_p(G_x)$ and E'' is a subgroup of E. Then BW is G_x -contractible. Let G be a finite group. If \mathcal{P} is a concave G-poset of p-subgroups of G, then \mathcal{P}^o is the G-subposet of \mathcal{P} such that $P \in \mathcal{P}^o$ if and only if $P \in \mathcal{P}$ and $\Phi(P) \notin \mathcal{P}$. Here $\Phi(P)$ denotes the Frattini subgroup of P. If $\mathcal{P} = \mathcal{T}_p(G)$, then $\mathcal{P}^o = \mathcal{A}_p(G)$.

2.6. PROPOSITION. Let G be a finite group. Let \mathcal{P}' be a concave G-poset of p-subgroups of G. Let X be a G-CW-complex such that all Sylow psubgroups of its isotropy groups are in \mathcal{P}' . Suppose that \mathcal{P} is a G-poset of p-subgroups of G such that $\mathcal{P}'^{\circ} \subseteq \mathcal{P} \subseteq \mathcal{P}'$. Then there is a homotopy equivalence

 $\operatorname{hocolim}_{[(P_0,\ldots,P_n)]\in \operatorname{sd} \mathcal{P}/G} X^{P_n}/(NP_0\cap\ldots\cap NP_n)\simeq X/G.$

Proof. The space $B(\mathcal{P}')/G$ is contractible. (This is a generalization of Corollary 2.6.1 of [We], which states that $B(\mathcal{P}')/G$ is F_p -acyclic.) Indeed, if $x \in B(\mathcal{P}')$, then $G_x = NP_0 \cap \ldots \cap NP_k$, where $P_i \in \mathcal{P}'$ and $P_0 < \ldots < P_k$, so Sylow *p*-subgroups of G_x are in \mathcal{P}' . It is proved in [We] (2.1.2) that, for every $H \in \mathcal{N}_{\mathcal{P}'}$, the space $B(\mathcal{P}')^H$ is contractible. Thus we can apply 1.2(ii) to the class \mathcal{C} . Proposition 1.7 of [TW] implies that the *H*-map $B(\mathcal{P}_H) \to B(\mathcal{P}'_H)$, induced by the inclusion of *H*-posets of subgroups, is an *H*-homotopy equivalence. The proof of this fact is similar to the proof of 2.1(i) of [TW]. Hence $B(\mathcal{P}_H)/H \simeq B(\mathcal{P}'_H)/H$ and the space $B(\mathcal{P}_H)/H$ is contractible. Now we can use 2.1.

The following result is an immediate consequence of 2.6. It is stronger than 1.2.

2.7. COROLLARY. Let G be a finite group. Let \mathcal{P} and X satisfy the assumptions of 2.6. Suppose that \mathcal{A} is thick and satisfies the condition A1 and that one of the following conditions holds:

(i) $X^{P_n}/(NP_0 \cap \ldots \cap NP_n) \in \mathcal{A}$ whenever $(P_0, \ldots, P_n) \in \mathrm{sd} \mathcal{P}$, (ii) $X^H \in \mathcal{A}$ whenever $H \in \{NP_0 \cap \ldots \cap NP_n \cap G' : (P_0, \ldots, P_n) \in \mathrm{sd} \mathcal{P}$,

 $G' \in \mathcal{S}_0(G, X), \ P_n \subseteq G'\}.$

Then $X/G \in \mathcal{A}$.

2.8. COROLLARY. Let G be a finite group. Let \mathcal{P} be a G-poset of psubgroups of G such that $\mathcal{A}_p(G) \subseteq \mathcal{P}$. If, for every $x \in X$ and $y \in K$, G_x contains a non-trivial p-subgroup and $G_x \cap G_y \in \mathcal{K}_p(G_x)$, then there is a homotopy equivalence

 $\operatorname{hocolim}_{[(P_0,\ldots,P_n)]\in\operatorname{sd}\mathcal{P}/G} K \times_{NP_0\cap\ldots\cap NP_n} X^{P_n} \simeq K \times_G X.$

Proof. This result is a consequence of 2.5(ii). Let P be a non-trivial p-subgroup of G. It follows from [TW], 1.7 and 2.1, that there is an H-

homotopy equivalence $B(\mathcal{A}_p(G)_H) \to B(\mathcal{P}_H)$ whenever H is a subgroup of G and contains a non-trivial p-subgroup. Now we can use 2.1 and 2.3.

3. Categories associated to *G*-posets. Let *K* be a *G*-CW-complex. Every equivariant cellular map $f : X_1 \to X_2$ of *G*-CW-complexes induces maps $f(H, H') : K \times_H X_1^{H'} \to K \times_H X_2^{H'}$ where $(H, H') \in \mathcal{W}(G)$, i.e. $H, H' \in \mathcal{S}(G)$ and $H \subseteq NH'$.

For every functor $F = (H(-), H'(-)) : \mathcal{C} \to \mathcal{C}_G$ we have maps

$$\phi_i : \operatorname{hocolim}_{c \in \mathcal{C}} K \times_{H(c)} X_i^{H'(c)} \to K \times_G X_i,$$

$$f_F : \operatorname{hocolim}_{c \in \mathcal{C}} K \times_{H(c)} X_1^{H'(c)} \to \operatorname{hocolim}_{c \in \mathcal{C}} K \times_{H(c)} X_2^{H'(c)}$$

such that $f_F = \text{hocolim}_{c \in \mathcal{C}} f(H(c), H'(c))$ and $f(G, e)\phi_1 = \phi_2 f_F$. It follows from general homotopy colimit theory that, if f(H(c), H'(c)) are homotopy equivalences for all $c \in \mathcal{C}$, then the map $f(G, e) : K \times_G X_1 \to K \times_G X_2$ is a homotopy equivalence. This motivates the following definition.

3.0. DEFINITION. Let S be a G-poset of closed subgroups of G. A G-subposet W of W(G) is (S, K)-essential if, for every equivariant cellular map $f : X \to Y$ of G-CW-complexes with all isotropy groups in S, the condition that $K \times_H X^{H'} \to K \times_H Y^{H'}$ is a homotopy equivalence for every $(H, H') \in W$ implies that $K \times_G X \to K \times_G Y$ is a homotopy equivalence.

In particular, if W is $(\mathcal{S}_0(G, X), K)$ -essential and $K \times_H X^{H'} \to K/H$ is a homotopy equivalence whenever $(H, H') \in W$, then $K \times_G X \to K/G$ is a homotopy equivalence.

The results of previous sections enable us to exhibit many non-trivial examples of essential posets. Our main tool will be the following consequence of 2.2(i).

3.1. PROPOSITION. Suppose that

 $F = (H(-), H'(-)) : \mathcal{C} \to \mathcal{C}_G(W, d_{\mathcal{W}(G)})$

is a functor such that for every $G' \in S$, the map

 $\operatorname{hocolim}_{c \in \mathcal{C}} K \times_{H(c)} (G/G')^{H'(c)} \to K/G'$

is a homotopy equivalence. Then the poset W is (\mathcal{S}, K) -essential.

3.2. EXAMPLES. (i) Let \mathcal{P} be a concave *G*-subposet of *p*-toral subgroups of *G* such that all maximal *p*-toral subgroups of elements of \mathcal{S} are in \mathcal{P} . Then it follows from 1.1 that the poset $\mathcal{W}_{\mathcal{P}} = \{(H, P) : P \subseteq H \subseteq NP, P \in \mathcal{P}, H \in \mathcal{S}'_{c}(G)\}$ is $(\mathcal{S}, *)$ -essential.

(ii) The poset $\mathcal{W}_{\mathcal{A}_p(G)} = \{(H, E) : E \subseteq H \subseteq NE, E \in \mathcal{S}, H \in \mathcal{S}'_c(G)\}$ is $(\mathcal{S}_c(G), *)$ -essential. Let $\mathcal{S}_K(G)$ be the poset of all compact subgroups H of G with non-trivial p-subgroups and such that $H \cap G_k \in \mathcal{K}_p(H)$ for every $k \in K$. Then the poset $\mathcal{W}_{\mathcal{A}_p(G)}$ is also $(\mathcal{S}_K(G), K)$ -essential. This is a consequence of 2.5(ii).

(iii) Let $f: X \to Y$ be an equivariant cellular map of *G*-CW-complexes such that, for every compact subgroup *H* of *G* with a non-trivial normal *p*-toral subgroup, the map $f^H: X^H \to Y^H$ is a homotopy equivalence. This implies that, for every $(H, H') \in \mathcal{W}_{\mathcal{A}_p(G)}$, the map $f^{H'}$ is an *H*-homotopy equivalence so the map $K \times_H X^{H'} \to K \times_H Y^{H'}$ is a homotopy equivalence. If all isotropy groups of points of *X* and *Y* are in $\mathcal{S}_K(G)$, then, by (ii), the map $F_K(f): K \times_G X \to K \times_G Y$ is also a homotopy equivalence. In the case when K = * we obtain 0.3(i).

Now we describe a construction of topological categories \mathcal{C} associated to topological *G*-posets and some examples of functors $\mathcal{C} \to \mathcal{C}_G$ defined on such categories. We show that the known homotopy and homology decompositions can be obtained using this construction.

Let W be a topological G-poset such that W/G is a discrete topological space. Let $d: W \to S(G)$ be a G-poset map such that, for every $w \in W$, dwis a subgroup of G_w . It follows that dw is a closed normal subgroup of G_w . The G-poset maps with the above property will be called *admissible maps*. Let $\mathcal{C}_G(W, d)$ be the topological category whose objects are the elements of W and whose morphism spaces are defined by

$$\operatorname{Mor}_{\mathcal{C}_G(W,d)}(w,w') = \{g \in G : w \le gw'\}/dw' \subseteq G/dw'.$$

The composition of $[g]: w \to w'$ and $[g']: w' \to w''$ is $[gg']: w \to w''$. The categories $\mathcal{C}_G(W, d)$, for discrete groups G, are studied in [S1-3], [JS].

3.3. EXAMPLES. (i) Let W(G) denote the *G*-subposet of $\mathcal{S}(G) \times W$ whose elements are all pairs (H, w) where $w \in W$ and $H \subseteq G_w$. Let $d_{W(G)}$ be the admissible map $W(G) \to \mathcal{S}(G)$ such that $d_{W(G)}(H, w) = H$. Let $\mathcal{C}_G(W(G), d_{W(G)}) = \mathcal{C}_G(W)$. It follows from the definitions that $\mathcal{C}_G(*) = \mathcal{O}_G$. If $p_W : W(G)/G \to \mathcal{S}(G)/G$ is the map induced by the natural projection, then, for every closed subgroup H of G, $p_W^{-1}([H]) = W^H/NH$. (In the notation of $[T], \mathcal{C}_G(W) = \int_{H \in \mathcal{O}_G} W^H$.) The space W(G)/G is discrete if, for every $H \in \mathcal{S}(G), W^H/NH$ is discrete. Hence if, for every $w \in W$, $(G/G_w)^H/NH$ is discrete then W(G)/G is a discrete space. This is, in particular, the case when, for every $w \in W, G_w$ is compact (cf. II.5.7 of [Br2]).

(ii) Let $d: W \to \mathcal{S}(G)$ be an arbitrary admissible function. Then there exists an inclusion $j_d: \mathcal{C}_G(W, d) \to \mathcal{C}_G(W)$ such that $j_d(w) = (dw, w)$ and the image of j_d is a full subcategory of $\mathcal{C}_G(W)$.

(iii) For $W = \mathcal{S}(G)^{\text{op}}$, $W(G) = \mathcal{W}(G)$ and $\mathcal{C}_G(W) = \mathcal{C}_G$. Let V be a G-set of subgroups of G. Denote by $\mathcal{W}(V)$ the G-subposet of $\mathcal{W}(G)$ such that $(H, H') \in \mathcal{W}(V)$ if and only if $H, H' \in V$ and $H \subseteq H'$. The full subcategory of \mathcal{C}_G whose object set is $\mathcal{W}(V)$ will be denoted by $\mathcal{C}(V)$. If

 $p: \mathcal{W}(V)/G \to \mathcal{S}(G)/G$ is induced by the natural projection, then, for every closed subgroup H of G, $p^{-1}([H]) = V(\geq H)/NH$, where $V(\geq H)$ is the set of all elements of V which contain H. (That is, $\mathcal{C}(V) = \int_{H \in \mathcal{O}_V} V(\geq H)$.) Hence the space $\mathcal{W}(V)$ is discrete if, for every $H, H' \in V, H \subseteq H'$ implies that $(NH' \setminus (G/H')^H)/NH$ is discrete. In particular, if V is a G-poset of compact subgroups of G, then $\mathcal{W}(V)/G$ is discrete (II.5.7 of [Br2]).

(iv) Let U be a G-space and let W be a G-poset of non-empty finite subsets of U. There exists an admissible function d_U such that, for every $w \in W$, $d_U w = \bigcap_{u \in w} G_u$.

There exists a functor $O_d : \mathcal{C}_G(W, d) \to \mathcal{O}_G$ such that $O_d(w) = G/dw$ for every $w \in W$, and $O_d([g])(g'dw) = g'gdw'$ for every morphism $[g] : w \to w'$ of $\mathcal{C}_G(W, d)$. We will use the notation

 $E_G(W, d) = \operatorname{hocolim}_{w \in \mathcal{C}_G(W, d)} G/dw.$

Let $d': W^{\text{op}} \to \mathcal{S}(G)$ be a *G*-poset map. Then, for every $w \in W$, $dw \subseteq G_w \subseteq Nd'w$. Hence there exists a functor $(d, d'): \mathcal{C}_G(W, d) \to \mathcal{C}_G$ such that (d, d')(w) = (dw, d'w).

Let G' be a subgroup of G. We will use the notation

$$W_{d',G'} = \{ w \in W : d'w \subseteq G' \}.$$

 $W_{d',G'}$ will be considered as a G'-poset. The admissible function $d_{G'}$: $W_{d',G'} \to \mathcal{S}(G')$ will be defined in such a way that, for every $w \in W_{d',G'}$, $d_{G'}w = G' \cap dw$.

3.4. LEMMA. Let G' be a closed subgroup of G such that $W_{d',G'}/G'$ is a discrete space. Then there exists a G-homotopy equivalence

$$\operatorname{hocolim}_{w \in \mathcal{C}_G(W,d)} G \times_{dw} (G/G')^{d'w} \simeq G \times_{G'} E_{G'}(W_{d',G'}, d_{G'}).$$

Proof. Let

$$R_w = \operatorname{Mor}_{\mathcal{C}_G(W,d)}(-,w) = \bigsqcup_{[g] \in G/dw} \operatorname{Mor}_W(-,gw) = G \times_{dw} \operatorname{Mor}_W(-,w),$$

where $\bigsqcup_{[g]\in G/dw} \operatorname{Mor}_W(-, gw)$ is topologized as a subspace of G/dw. Then for every functor $T: \mathcal{C}_G(W, d) \to G$ -CW, $R_w \times_{\mathcal{C}_G(W, d)} T = T(w)$.

Hence

$$R_w \times_{\mathcal{C}_G(W,d)} G \times_{d(-)} (G/G')^{d'(-)} = G \times_{dw} (G/G')^{d'w}$$
$$= G \times_{dw} (\{g \in G : d'gw \subseteq G'\}/G') = G \times_{G'} Y$$

where $Y = \{g : d'gw \subseteq G'\}/dw$ is a G'-subspace of G/dw.

We will consider $\mathcal{C}_{G'}(W_{d',G'}, d_{G'})$ as a subcategory of $\mathcal{C}_G(W, d)$. Then

$$Y = R_w \times_{\mathcal{C}_{G'}(W_{d',G'},d_{G'})} G'/d_{G'}(-)$$

J. Słomińska

and R_w after restriction to $\mathcal{C}_{G'}(W_{d',G'}, d_{G'})$ is equal to

$$\bigsqcup_{[gdw]\in Y/G'} \operatorname{Mor}_{\mathcal{C}_{G'}(W_{d',G'},d_{G'})}(-,gw).$$

Let $E_d = B(-\downarrow C_G(W, d))$. Then E_d is a $C_G(W, d)$ -CW-complex whose orbits have the form R_w . Hence,

$$\begin{aligned} \operatorname{hocolim}_{w \in \mathcal{C}_G(W,d)} G \times_{dw} (G/G')^{d'w} &= E_d \times_{\mathcal{C}_G(W,d)} G \times_{d(-)} (G/G')^{d'(-)} \\ &= G \times_{G'} (E_d \times_{\mathcal{C}_{G'}(W_{d',G'},d_{G'})} G'/d_{G'}(-)). \end{aligned}$$

The functor E_d after restriction to the category $\mathcal{C}_{G'}(W_{d',G'}, d_{G'})$ remains free in the sense of [DF1]. Hence there exists a G'-homotopy equivalence

 $E_d \times_{\mathcal{C}_{G'}(W_{d',G'},d'_G)} G'/d_{G'}(-) \simeq \operatorname{hocolim}_{w \in \mathcal{C}_{G'}(W_{d',G'},d_{G'})} G'/d_{G'}w.$

3.5. PROPOSITION. Suppose that, for every $G' \in S$, $W_{d',G'}/G'$ is a discrete space and the map

 $\operatorname{hocolim}_{w \in \mathcal{C}_{G'}(W_{d',G'},d_{G'})} K/d_{G'}w \to K/G'$

is a homotopy equivalence. Then:

(i) The map

 $\operatorname{hocolim}_{w \in \mathcal{C}_G(W,d)} K \times_{dw} X^{d'w} \to K \times_G X$

is a homotopy equivalence if X is a G-CW-complex and the isotropy groups of X are in S.

(ii) The G-poset $\{(dw, d'w) : w \in W\}$ is (\mathcal{S}, K) -essential.

Proof. Let $F_{d'}: G\text{-}\mathrm{CW} \to G\text{-}\mathrm{CW}$ be a functor such that

 $F_{d'}(X) = \operatorname{hocolim}_{w \in \mathcal{C}_G(W,d)} G \times_{dw} X^{d'w}.$

It follows from 3.4 that, for every $G' \in \mathcal{S}$, there are homotopy equivalences

$$K \times_G F_{d'}(G/G') \simeq K \times_{G'} \operatorname{hocolim}_{w \in \mathcal{C}_{G'}(W_{d',G'},d_{G'})} G'/dw \cap G'$$

= $\operatorname{hocolim}_{w \in \mathcal{C}_{G'}(W_{d',G'},d_{G'})} K/d_{G'}w \simeq K/G' = K \times_G G/G'.$

Now, it is sufficient to apply 2.2(i) and 3.1.

We now describe some special cases of 3.5.

3.6. EXAMPLES. (i) Let W be a topological G-poset satisfying the condition that $w \leq gw$ implies w = gw. Assume that the spaces $d_n W/G$ are discrete. Let $d_s : \operatorname{sd} W \to \mathcal{S}(G)$ be an admissible function such that

$$d_s w_{\cdot} = G_{w_{\cdot}} = G_{w_0} \cap \ldots \cap G_{w_n}.$$

The natural projection $\operatorname{sd} W \to (\operatorname{sd} W)/G$ induces a natural equivalence of categories $\mathcal{C}_G(\operatorname{sd} W, d_s) \to (\operatorname{sd} W)/G$. It follows from the definitions that

126

there is a G-homotopy equivalence

 $\operatorname{hocolim}_{\mathcal{C}_G(\operatorname{sd} W, d_s)} G/d_s(-) \to BW.$

If W is a G-subset of $\mathcal{S}(G)$, then $d_s(H_0, \ldots, H_n) = NH_0 \cap \ldots \cap NH_n$ and $d'(H_0, \ldots, H_n) = H_n$. Hence 3.5 can be considered as a generalization of 2.3.

(ii) Let W be a G-subposet of $\mathcal{S}(G)$. Then $G_w = N_G w = Nw$. If $d: W^{\mathrm{op}} \to \mathcal{S}(G)$ is an arbitrary admissible function, then we can take d'w = w whenever $w \in W$. Let $d_c: W^{\mathrm{op}} \to \mathcal{S}(G)$ be an admissible map such that, for every $w \in W$, $d_c w = C_G w = Cw$. Then $\mathcal{C}_G(W^{\mathrm{op}}, d_c) = \mathcal{C}_W$ is the category whose objects are elements of W and whose morphisms are the group homomorphisms which are restrictions of inner automorphisms of G. Let X be a G-CW-complex such that all its isotropy groups are compact. If the space hocolim_{w \in \mathcal{C}_{W_H}} H/C_H w is H-contractible whenever H is an isotropy group of X, then the map

 $\operatorname{hocolim}_{w \in \mathcal{C}_W} G \times_{C_G w} X^w \to X$

is a G-homotopy equivalence. If the map

 $\operatorname{hocolim}_{w \in \mathcal{C}_{W_H}} K/C_H w \to K/H$

is a homotopy equivalence whenever H is an isotropy group of X, then the map

 $\operatorname{hocolim}_{w \in \mathcal{C}_W} K \times_{C_G w} X^w \to K \times_G X$

is also a homotopy equivalence.

(iii) Let $W = \mathcal{A}_p(G)$. Then $\mathcal{C}_G(\mathcal{A}_p(G)^{\mathrm{op}}, d_c) = \mathcal{A}_p(G)$. If H is a compact Lie group with a non-trivial p-subgroup, then there is an H-homotopy equivalence

$$\operatorname{hocolim}_{E \in A_p(H)} H/C_H E \simeq \mathcal{EO}_{\mathcal{Z}_p(H)}$$

where $\mathcal{Z}_p(G)$ is the poset of all compact subgroups of G with a non-trivial central p-subgroup and

$$\mathcal{EO}_{\mathcal{Z}_p(H)} = E_H(\mathcal{Z}_p(H), \mathrm{id}) = \mathrm{hocolim}_{H/H' \in \mathcal{O}_{\mathcal{Z}_p(H)}} H/H'.$$

Indeed, for every $H' \in \mathcal{Z}_p(H)$, the space $(\operatorname{hocolim}_{E \in A_p(H)} H/C_H E)^{H'} = B(H/H' \downarrow O_{d_c})$ is homotopy equivalent to $B(H' \downarrow d_c) = B(\mathcal{A}_p(C_H H'))$ and hence is contractible. This implies that there is a *G*-homotopy equivalence

$$\operatorname{hocolim}_{E \in A_p(G)} G \times_{C_G E} X^E \simeq X$$

whenever all isotropy groups of X are in $\mathcal{Z}_p(G)$.

3.7. EXAMPLE. Let V be a G-subset of $\mathcal{S}(G)$ such that $\mathcal{W}(V)/G$ is discrete. Let

$$r_V(X) = \operatorname{hocolim}_{(H,H')\in\mathcal{C}(V)} G \times_H X^{H'}.$$

This construction is natural in X and $\mathcal{S}(G, r_V(X)) \subseteq V$. The G-maps $G \times_H X^{H'} \to X$ define a natural transformation of functors $p_V : r_V \to \mathrm{Id}_{G-\mathrm{CW}}$.

There exists a G-homotopy equivalence (natural in X)

 $r_V(X) \to B(\operatorname{Map}_G(G/e, -), \mathcal{O}_V, \operatorname{Map}_G(-, X))$

where B(-, -, -) is the bar construction described in Section 3 of [HV] and in Section 4 of [Dw].

If $G' \in V$, then the map $p_V(X)^{G'} : r_V(X)^{G'} \to X^{G'}$ is a homotopy equivalence. Indeed, in this case we have homotopy equivalences

 $(\operatorname{hocolim}_{(H,H')\in\mathcal{C}(V)}G\times_H X^{H'})^{G'} \simeq \operatorname{hocolim}_{(H,H')\in\mathcal{W}(V(\geq G'))}X^{H'}\simeq X^{G'}.$ Suppose that all isotropy groups of X are in V. Then $p_V(X): r_V(X) \to X$ is a G-homotopy equivalence and gives us a G-homotopy decomposition of X

$$\operatorname{hocolim}_{(H,H')\in\mathcal{C}(V)}G\times_H X^{H'}\simeq X$$

from 0.0(i). If $f: X_1 \to X_2$ is an equivariant map of *G*-CW-complexes and, for every $H \in V$, $f^H: X_1^H \to X_2^H$ is a homotopy equivalence, then $r_V(f)$ is a *G*-homotopy equivalence because, for every $(H, H') \in \mathcal{W}(V)$, *H* acts trivially on $X^{H'}$. Hence, for every $K, \mathcal{W}(V)$ is (V, K)-essential.

It follows from the definitions that $p_V(X)/G$ gives us a homotopy decomposition of X/G from 0.0(ii):

$$\operatorname{hocolim}_{G/H' \in \mathcal{O}_V} X^{H'} \simeq \operatorname{hocolim}_{(H,H') \in \mathcal{C}(V)} X^{H'} \simeq X/G$$

and that

$$\mathcal{EO}_V = E_G(V, \mathrm{id}) = \operatorname{hocolim}_{G/H \in \mathcal{O}_V} G/H$$
$$= \operatorname{hocolim}_{(H, H') \in \mathcal{C}(V)} G/H = r_V(*).$$

Let G' be a closed subgroup of G and let V be a G-subposet of $\mathcal{S}(G)$ such that the spaces $\mathcal{W}(V)/G$ and $\mathcal{W}(V_{G'})/G'$ are discrete. The following two results are consequences of 3.5 and the fact that $\mathcal{C}(V) = \mathcal{C}_G(\mathcal{W}(V), d_{\mathcal{W}(G)})$ and $r_V(*) = E_G(\mathcal{W}(V_G), d_{\mathcal{W}(G)})$.

3.8. COROLLARY. There exists a G-homotopy equivalence

 $\operatorname{hocolim}_{(H,H')\in\mathcal{C}(V)}G\times_H (G/G')^{H'}\simeq G\times_{G'} E_{G'}(\mathcal{W}(V_{G'}), d_{\mathcal{W}(G')}).$

3.9. COROLLARY. Let $f : X_1 \to X_2$ be a G-cellular map such that, for every $H \in V$, f^H is a homotopy equivalence.

(i) If, for every isotropy group G' of X_i , the map $r_{V_{G'}}(*) \to *$ is a G'-homotopy equivalence, then the maps

 $\operatorname{hocolim}_{(H,H')\in \mathcal{C}(V)}G\times_H X_i^{H'}\to X_i$

and f are G-homotopy equivalences.

(ii) If, for every isotropy group G' of X_i , the map $K \times_{G'} r_{V_{G'}}(*) \to K/G'$ is a homotopy equivalence, then the maps

$$\operatorname{hocolim}_{(H,H')\in\mathcal{C}(V)}K\times_H X_i^{H'}\to K\times_G X_i$$

and $id_K \times_G f$ are also homotopy equivalences.

3.10. EXAMPLE. Let X be a G-CW-complex. It follows from 3.6(iii) and 2.5(iv) that there are G-homotopy equivalences

$$r_{\mathcal{Z}_p(G)}(X) \simeq \operatorname{hocolim}_{E \in A_p(G)} G \times_{C_G E} X^E,$$

$$r_{\mathcal{N}_p(G)}(X) \simeq \operatorname{hocolim}_{[(E_0, \dots, E_n)] \in \operatorname{sd} \mathcal{A}_p(G)/G} G \times_{NE_0 \cap \dots \cap NE_n} X^{E_n}.$$

3.11. EXAMPLE. Let G be a discrete group. Let V be a G-poset of subgroups of G satisfying the condition that $v \leq gv$ implies v = gv. Let $d: V^{\text{op}} \to \mathcal{S}(G)$ be an admissible function. It is proved in [JS] that, for every admissible function $d'': W \to \mathcal{S}(G)$, there exists a natural G-map $E_G(W, d'') \to BW$ which is a homotopy equivalence. This implies that if, for every isotropy group G' of X, the space $BV_{\leq G'}$ is contractible, then the G-maps

$$\operatorname{hocolim}_{(H,H')\in\mathcal{C}(V)}G\times_{H}X^{H'}\to X,$$
$$\operatorname{hocolim}_{H\in\mathcal{C}_{G}(V^{\operatorname{op}},d)}G\times_{dH}X^{H}\to X$$

are homotopy equivalences and that, for every free G-CW complex K, we have homotopy decompositions

 $\operatorname{hocolim}_{(H,H')\in\mathcal{C}(V)} K \times_H X^{H'} \simeq K \times_G X,$ $\operatorname{hocolim}_{H\in\mathcal{C}_G(V^{\operatorname{op}},d)} K \times_{dH} X^H \simeq K \times_G X.$

Here $V_{\leq G'} = \{ H \in V : H \leq G' \}.$

3.12. REMARK. One can generalize the above result of [JS] and construct G-maps (natural in X)

$$\operatorname{hocolim}_{(H,H')\in\mathcal{C}(V)}G\times_{H}X^{H'}\to Y,$$
$$\operatorname{hocolim}_{H\in\mathcal{C}_{G}(V^{\operatorname{op}},d)}G\times_{dH}X^{H}\to Y,$$

where

$$Y = \operatorname{hocolim}_{[(H_0, \dots, H_n)] \in \operatorname{sd} V/G} G \times_{NH_0 \cap \dots \cap NH_n} X^{H_n},$$

which are homotopy equivalences. Hence, for every free G-CW-complex K, we have homotopy equivalences

$$K \times_G r_V(X) \simeq \operatorname{hocolim}_{[(H_0,\dots,H_n)] \in \operatorname{sd} V/G} K \times_{NH_0 \cap \dots \cap NH_n} X^{H_n},$$

$$\operatorname{hocolim}_{H \in \mathcal{C}_G(V^{\operatorname{op}},d)} K \times_{dH} X^H$$

$$\simeq \operatorname{hocolim}_{[(H_0,\dots,H_n)] \in \operatorname{sd} V/G} K \times_{NH_0 \cap \dots \cap NH_n} X^{H_n}$$

4. h_G^* -decompositions of *G*-CW-complexes. Let *G* be a Lie group and let h_G^* be a generalized *G*-cohomology theory. Let $h\mathcal{O}_G$ be the category whose objects are the same as the objects of \mathcal{O}_G and whose morphisms are the *G*-homotopy classes of the morphisms of \mathcal{O}_G . Let *M* be a functor from the category $h\mathcal{O}_G^{\text{op}}$ to the category Ab of abelian groups. The ordinary equivariant cohomology of a *G*-CW-complex *Y* with coefficients in *M* will be denoted by $H_G^*(Y, M)$. These cohomology groups, in the case when G is a finite group, was defined in [Br1]. The case of a Lie group is described in [Wi] and in the appendix of [JMO]. For any generalized G-cohomology theory h_G^* on G-CW, there is a spectral sequence

$$H^m_G(Y, h^n_G(-)) \Rightarrow h^{m+n}_G(Y).$$

For every closed subgroup H of G, the H-cohomology theory such that $h_H^*(X') = h_G^*(G \times_H X')$ whenever X' is an H-CW-complex will be denoted by h_H^* . This gives us a functor $h_{H(-)}^*(X^{H'(-)})$ defined on the homotopy category $h\mathcal{C}$ associated to \mathcal{C} . This functor can be considered as coefficients of the generalized cohomology theory $h_G^*(-\times_{\mathcal{C}} (G \times_{H(-)} X^{H'(-)}))$ defined on the category of free \mathcal{C} -CW-complexes in the sense of [DF1], i.e. \mathcal{C} -CW-complexes with orbits of the form $\operatorname{Mor}_{\mathcal{C}}(-, c)$. For every contravariant functor $M : h\mathcal{C} \to \operatorname{Ab}, H^*(\mathcal{C}, M) = \operatorname{Tor}^*_{\mathcal{C}}(\mathbb{Z}, M)$ is equal to the Bredon cohomology groups $H^*_{\mathcal{C}}(B(-\downarrow \mathcal{C}), M)$ (Sections 4 and 5 of [DF1]). Recall that

$$\operatorname{hocolim}_{c\in\mathcal{C}}(G\times_H(-)X^{H'(-)}) = B(-\downarrow\mathcal{C})\times_{\mathcal{C}}G\times_{H(-)}X^{H'(-)}.$$

Let W be a G-subposet of $\mathcal{W}(G)$. Let $F = (H(-), H'(-)) : \mathcal{C} \to \mathcal{C}_G(W, d_{\mathcal{W}(G)})$ be a functor such that the map

 $p_F(X)$: hocolim_{$c \in \mathcal{C}$} $G \times_{H(c)} X^{H'(c)} \to X$

is an h_G^* -decomposition of X, i.e. the map

 $h_G^*(X) \to h_G^*(\operatorname{hocolim}_{c \in \mathcal{C}} G \times_{H(c)} X^{H'(c)})$

is an isomorphism. It follows from 5.3 of [DF1] that there exists a spectral sequence

$$H^m(\mathcal{C}, h^n_{H(-)}(X^{H'(-)})) \Rightarrow h^{m+n}_G(X).$$

The results of this section describe and use this spectral sequence in many examples.

We remark that if X = * and $F = G/H(-) : \mathcal{C} \to \mathcal{O}_G$, then we obtain the spectral sequence of the generalized cohomology theory h_G^* on Y =hocolim_{$c \in \mathcal{C}$} F(c).

Let $f: X_1 \to X_2$ be a *G*-CW-complex map and let $p_F(X_i)$ be an h_G^* decomposition of X_i for i = 1, 2. If, for every $c \in \mathcal{C}$, $h_{H(c)}^*(X_2^{H'(c)}) \to h_{H(c)}^*(X_1^{H'(c)})$ is an isomorphism then the map $h^*(f): h_G^*(X_2) \to h_G^*(X_1)$ is an isomorphism. This motivates the following definition.

4.0. DEFINITION. Let S be a G-subposet of S(G). Let W be a G-subposet of $\mathcal{W}(G)$. We will say that W is (S, h_G^*) -essential if, for every equivariant cellular map $f: X \to Y$ of G-CW-complexes whose isotropy groups

are all in \mathcal{S} , the condition that $h_H^*(Y^{H'}) \to h_H^*(X^{H'})$ is an isomorphism whenever $(H, H') \in W$ implies that $h_G^*(Y) \to h_G^*(X)$ is an isomorphism.

In particular, if W is $(\mathcal{S}_0(G, X), h_G^*)$ -essential and $h_H^*(*) \to h_H^*(X^{H'})$ is an isomorphism whenever $(H', H) \in W$, then $h_G^*(*) \to h_G^*(X)$ is an isomorphism.

The following result can be used to construct many non-trivial examples of h_G^* -essential posets.

4.1. PROPOSITION. Let $F = (H(-), H'(-)) : \mathcal{C} \to \mathcal{C}_G(W, d_{\mathcal{W}(G)})$ be a functor such that for every $G' \in \mathcal{S}$, the map

$$\operatorname{hocolim}_{c \in \mathcal{C}} G \times_{H(c)} (G/G')^{H'(c)} \to G/G'$$

is an h_G^* -equivalence. Then:

(i) The map $p_F(X)$ is an h_G^* -decomposition of X if all isotropy groups of X are in S.

(ii) The poset W is (\mathcal{S}, h_G^*) -essential.

Proof. Let

$$h'^*_G(X) = h^*_G(\operatorname{hocolim}_{c \in \mathcal{C}} G \times_{H(c)} X^{H'(c)}).$$

Then p_F induces a natural transformation $p^* : h_G^* \to h_G'^*$ of *G*-cohomology theories. If the assumption of the proposition holds, then $p^*(X)$ is an isomorphism. Hence $p_F(X)$ is an h_G^* -equivalence.

Let R be a commutative ring. The generalized G-cohomology theories from the category G-CW to the category R^* -Mod of graded R-modules will be called R-G-cohomology theories.

Let V be a G-poset of compact subgroups of G. Recall that $\mathcal{C}(V)$ is a full subcategory of \mathcal{C}_G whose objects are the elements of the poset $\mathcal{W}(V)$ of pairs (H, H') such that H is a subgroup of H' and $H' \in V$.

4.2. PROPOSITION. Let $h_G^* = \{h^n\}_{n \in \mathbb{N}}$ be an *R*-*G*-cohomology theory. Let S and V be *G*-posets of compact subgroups of *G* such that, for every $H \in S$, $h_H^*(*) \to h_H^*(r_{V_H}(*))$ is an isomorphism. Then:

(i) The G-poset $\mathcal{W}(V)$ is (\mathcal{S}, h_G^*) -essential.

(ii) Let $f: X \to Y$ be a map of G-CW-complexes whose isotropy groups are all in S. If, for every $H \in V$, the map $X^H \to Y^H$ is an R-equivalence, then $h^*_G(Y) \to h^*_G(X)$ is an isomorphism.

Proof. (i) is a consequence of 3.8 and 4.1(ii).

(ii) Propositions 4.1(i) and 3.8 imply that, for every G-CW-complex X whose isotropy groups are in \mathcal{S} , there exists a spectral sequence

$$H^m(\mathcal{C}(V), h^n_{H(-)}(X^{H'(-)})) \Rightarrow h^{m+n}_G(X).$$

This spectral sequence is natural in X. The assumption implies that, for every $(H, H') \in \mathcal{C}(V)$, the map $h_H^*(Y^{H'}) \to h_H^*(X^{H'})$ is an isomorphism because $H \subseteq H'$. Hence the map $X \to Y$ is an h_G^* -equivalence.

4.3. EXAMPLES. Let $h^*_G(X) = H^*(K \times_G X, R)$. Then $h^*_G(G/H) = H^*(K/H, R)$.

(i) Let K = *, $R = F_p$. It is proved in [JMO] (1.2, 2.2, 2.12) that, if H is a compact Lie group and dim H > 0, then the space $\mathcal{EO}_{\mathcal{T}_p(H)} = r_{\mathcal{T}_p(H)}(*)$ is F_p -acyclic. Let $\mathcal{S}_d(G)$ denote the set of all compact subgroups H of G such that dim H > 0. Let $f : X \to Y$ be a map of G-CW-complexes whose isotropy groups are all in $\mathcal{S}_d(G)$. If, for every non-trivial p-toral subgroup H of G, the map $f^H : X^H \to Y^H$ is an F_p -homology isomorphism, then so is f. In particular, let G be a compact Lie group. If all isotropy groups of X are in $\mathcal{S}_d(G)$ and, for every non-trivial p-toral subgroup H of G, X^H is F_p -acyclic, then X is F_p -acyclic.

(ii) Let $\mathcal{A}'_p(G) = \mathcal{A}_p(G) \cup \{e\}$. If $H \in \mathcal{Z}_p(G)$ and $E \in \mathcal{A}'_p(H)$, then the space $\mathcal{EO}_{\mathcal{A}_p(H)}/E = \mathcal{EO}_{\mathcal{A}'_p(H)}/E$ is contractible. Let $f: X \to Y$ be a map of G-CW-complexes whose isotropy groups are all in $\mathcal{Z}_p(G)$. Suppose that, for every $E \in \mathcal{A}_p(G)$, f^E is an R-homology isomorphism and that, for every $k \in K$ and $x \in X \cup Y$, $G_x \cap G_k$ is an elementary abelian p-subgroup of G_x . This implies that, for every $x \in X \cup Y$, the map $K \times_{G_x} \mathcal{EO}_{\mathcal{A}_p(G_x)} \to K/G_x$ is an R-homology isomorphism. Hence the map $K \times_G X \to K \times_G Y$ is an R-homology isomorphism.

(iii) Let K = *. Then we obtain 0.3(ii) as a consequence of 4.2 and 1.4.

Let
$$h_G^*(X) = H^*(K \times_G X, F_p)$$
. In this case there is a spectral sequence
 $H_G^m(K, H^n(X \times_G (-), F_p)) \Rightarrow h_G^{n+m}(X)$.

Hence if, for all maximal *p*-toral subgroups P of isotropy groups of K, X/P is F_p -acyclic, then $h^*_G(X) = H^*(K/G, F_p) = h^*_G(*)$. We will use this fact in the following examples.

4.4. EXAMPLES. Let $h_G^* = H^*(K \times_G -, F_p)$. Let $f : X \to Y$ be an equivariant cellular map of G-CW-complexes with compact isotropy groups.

(i) Let $S'_p(G)$ be the poset of all subgroups of p-toral subgroups of G, and let $S_p(G)$ be the subposet of $S'_p(G)$ consisting of all subgroups which contain a non-trivial p-subgroup. Let H be a compact subgroup of G. Then $h^*_H(*) = h^*_H(r_{S'_p(H)}(*))$ because, for every p-toral subgroup P of H, $r_{S'_p(H)}(*)/H$ is F_p -acyclic. It follows from Section 3 of [JO] that the maps $H^m_H(*, h^n_H) \to H^m_H(r_{S'_p(H)}(*), h^n_H)$, where m > 0, are isomorphisms. Hence so are the maps $H^0_H(*, h^n_H) \to H^0_H(r_{S'_p(H)}(*), h^n_H)$. From 3.3 of [JO] and 1.2 and 2.2 of [JMO], it follows that the map $r_{\mathcal{T}'_p(H)}(*) \to r_{S'_p(H)}(*)$ induces isomorphisms in h^*_H and $H^*_H(-, h^n_H)$. This implies that the maps $h^m_G(Y) \to h^*_G(X)$ and $H^*_G(Y, h^n_G) \to H^*_G(X, h^n_G)$ are isomorphisms if, for every *p*-toral subgroup *P* of *G*, f^P is a mod *p* homology isomorphism.

(ii) Suppose that, for all n > 0, $H^n(K, F_p) = 0$. Let n > 0. In this case $h^n_H(H/e) = 0$ and (i) implies that the map $H^*_H(*, h^n_H) \to H^*_H(r_{\mathcal{T}_p(H)}(*), h^n_H)$ is an isomorphism. Hence $H^*_G(Y, h^n_G) \to H^*_G(X, h^n_G)$ is an isomorphism if, for every non-trivial *p*-toral subgroup *P* of *G*, f^P is a mod *p* homology isomorphism.

(iii) Suppose that K is F_p -acyclic. Then, for every $H/H' \in \mathcal{O}_H$, $h^0_H(H/H') = F_p$ and $h^0_H(-)$ is the constant functor after restriction to \mathcal{O}_H . It follows from 1.2 and 2.2 of [JMO] and Proposition 2 and Theorem 3 of [O1] that the map

$$H^*(r_{\mathcal{T}_p}(H)(*)/H, F_p) \to H^*(r_{\mathcal{T}'_p}(H)(*)/H, F_p)$$

is an isomorphism. By (ii), so is $h_H^*(r_{\mathcal{T}_p(H)}) \to h_H^*(r_{\mathcal{T}_p'(H)}(*))$. Suppose that all isotropy groups of X and Y contain non-trivial *p*-subgroups. If, for every non-trivial *p*-toral subgroup P of G, f^P is a mod p homology isomorphism, then, for all natural n, the maps $H_G^*(Y, h_G^n) \to H_G^*(X, h_G^n)$ and $H^n(K \times_G Y, F_p) \to H^n(K \times_G X, F_p)$ are isomorphisms. In particular, we obtain 0.4. If G is a compact Lie group, then we can take $X = B\mathcal{A}_p(G)$, Y = * (cf. the proof of 1.5) to obtain 0.5.

(iv) Let K be a G-CW-complex such that, for every $k \in K$ and for every p-toral subgroup P of G_x , $G_k \cap P$ is an elementary abelian p-group. Suppose that K is F_p -acyclic. (In particular, we can take K = EG.) If all isotropy groups of X and Y contain non-trivial p-subgroups and, for every $E \in \mathcal{A}_p(G)$, f^E is a mod p homology isomorphism, then $K \times_G X \to$ $K \times_G Y$ is a mod p homology isomorphism. Indeed, it follows from 4.3(ii) that $K \times_G r_{\mathcal{T}_p(G)}(X) \to K \times_G r_{\mathcal{T}_p(G)}(Y)$ is a mod p homology isomorphism. Now we can use the fact that, by (iii), $K \times_G r_{\mathcal{T}_p(G)}(X) \to K \times_G X$ is a mod p homology isomorphism.

4.5. EXAMPLES. Let G be a discrete group and A a $\mathbb{Z}(G)$ -module. We will consider the Bredon cohomology theory $h_G^* = H_G^*(-, M_A)$, where $M_A(-) = \operatorname{Hom}_{\mathbb{Z}(G)}(\mathbb{Z}(-), A)$. Hence

$$H^n_G(X, M_A) = H^n(\operatorname{Hom}_{\mathbb{Z}(G)}(C_*(X), A))$$

where $C_*(X)$ is the ordinary cellular chain complex of X. For every $G/H \in \mathcal{O}_G$, we have $h^*_G(G/H) = M_A(G/H) = A^H$.

(i) Let G be a finite group. Suppose that there is a non-trivial p-subgroup P of G such that every element of P acts trivially on A. Then

$$H_G^*(|\mathcal{S}_p(G)|, M_A) = A^G = H_G^*(*, M_A).$$

Indeed, M_A is a Hecke functor and it follows from the results of [Wa1] that if A is an R(G)-module and, for every subgroup H of G, X/H is R-acyclic, then $H^*_G(X, M_A) = A^G$. Let H be a normal subgroup of G with

a non-trivial *p*-subgroup and let G' = G/H. If A' is a $\mathbb{Z}(G')$ -module, then $H^*_{G'}(|\mathcal{S}_p(G)|/H, M_{A'}) = A'^{G'}$ because, by 2.8, $|\mathcal{S}_p(G)|/H'$ is contractible whenever $H \subseteq H' \subseteq G$.

(ii) Let G be a discrete group. Let $\mathcal{S}_A(G)$ denote the set of all finite subgroups H of G with a non-trivial p-subgroup P such that every element of P acts as identity on A. Suppose that all isotropy groups of X and Y are in $\mathcal{S}_A(G)$. The map $H^*_G(Y, M_A) \to H^*_G(X, M_A)$ is an isomorphism if, for every compact subgroup H of G with a non-trivial normal p-toral subgroup, f^H is a homology isomorphism.

(iii) Let A be an $F_p(G)$ -module. Let K be a G-CW-complex. Suppose that all isotropy groups of points of X and Y are finite. In this case the maps $h^*_G(K \times Y) \to h^*_G(K \times X)$ and

$$H^*_G(Y, h^n_G(K \times (-))) \to H^*_G(X, h^n_G(K \times (-)))$$

are isomorphisms if, for every *p*-subgroup P of G, f^P is a mod p homology isomorphism. This is a consequence of the fact that, for every Hecke functor $M: \mathcal{O}_G^{\mathrm{op}} \to F_p\text{-Mod}, M(G/G) = H^*_G(r_{\mathcal{T}'_p(G)}, M)$ (1.29 of [S3]).

Let W be a topological G-poset satisfying the condition that $w \leq gw$, where $g \in G$, implies that w = gw. Let $d : W \to \mathcal{S}(G)$ be an admissible function and let $d' : W^{\text{op}} \to \mathcal{S}(G)$ be a G-poset map. The next result follows immediately from 3.4 and 4.1.

4.6. PROPOSITION. Suppose that, for every isotropy group H of the action of G on X, the space $W_{d',H}/H$ is discrete and the map

 $h_H^*(*) \to h_H^*(\operatorname{hocolim}_{w \in \mathcal{C}_H(W_{d',H},d_H)} H/H \cap dw)$

is an isomorphism. Then so is the map

 $h_G^*(X) \to h_G^*(\operatorname{hocolim}_{w \in \mathcal{C}_G(W,d)} G \times_{dw} X^{d'w})$

and there is a spectral sequence

$$H^m(\mathcal{C}_G(W,d), h^n_{d(-)}(X^{d'(-)})) \Rightarrow h^{m+n}_G(X).$$

4.7. EXAMPLE. Let K be a G-CW-complex. Suppose that, for every $x \in X$, the map

$$H^*(K/G_x, R) \to H^*(\operatorname{hocolim}_{w \in \mathcal{C}_{G_x}(W_{d', G_x}, d_{G_x})} K/G_x \cap dw, R)$$

is an isomorphism. Then so is the map

$$H^*(K \times_G X, R) \to H^*(\operatorname{hocolim}_{w \in \mathcal{C}_G(W,d)} K \times_{dw} X^{d'w}, R)$$

and there is a spectral sequence

$$H^m(\mathcal{C}_G(W,d), H^n(K \times_{d(-)} X^{d'(-)}, R)) \Rightarrow H^{m+n}(K \times_G X, R).$$

In particular, if, for every isotropy group H of X, $BC_H(W_{d',H}, d_H)$ is R-acyclic, then there is a spectral sequence

$$H^m(\mathcal{C}_G(W,d), H^n(X^{d'w}/dw, R)) \Rightarrow H^{m+n}(X/G, R).$$

4.8. EXAMPLES. Let W be a poset of closed subgroups of G satisfying the condition that $w \leq gw$ implies w = gw and such that the spaces $d_n W/G$ are discrete. Let $d: W^{\text{op}} \to \mathcal{S}(G)$ be an admissible function.

(i) Suppose that the map

 $h_H^*(*) \to h_H^*(\operatorname{hocolim}_{w \in \mathcal{C}_H(W_H^{\operatorname{op}}, d_H)} H/dw)$

is an isomorphism whenever H is an isotropy group of X. Then the map

$$h_G^*(X) \to h_G^*(\operatorname{hocolim}_{w \in \mathcal{C}_G(W^{\operatorname{op}},d)} G \times_{dw} X^w)$$

is an isomorphism and there is a spectral sequence

$$H^m(\mathcal{C}_G(W^{\mathrm{op}}, d), h^n_{dw}(X^w)) \Rightarrow h^{m+n}_G(X).$$

(ii) Suppose that the map

$$h_H^*(*) \to h_H^*(BW_H)$$

is an isomorphism whenever H is an isotropy group of X. Then the map $h_G^*(X) \to h_G^*(\operatorname{hocolim}_{[w.] \in \operatorname{sd} W/G} G \times_{G_{w.}} X^{w_n}) = h_G^*(\operatorname{hocolim}_{w. \in \operatorname{sd} W} X^{w_n})$ is an isomorphism and there is a spectral sequence

$$H^m(\operatorname{sd} W/G, h^n_{G_w}(X^{w_n})) \Rightarrow h^{m+n}_G(X).$$

(iii) Let G be a discrete group. Let K be a free G-CW-complex. Suppose that the map

$$K \times_H BW_H \to K/H$$

is a mod p homology isomorphism whenever H is an isotropy group of X. Then, similarly to 3.11, the map

$$\operatorname{hocolim}_{\mathcal{C}_G(W^{\operatorname{op}},d)} K \times_{dw} X^w \to K \times_G X$$

is a mod p homology isomorphism.

4.9. EXAMPLES. Let $W = \mathcal{A}_p(G)$. Let X be a G-CW-complex such that all its isotropy groups are compact and contain non-trivial p-subgroups. Let K be an F_p -acyclic G-CW-complex.

(i) Let $d = d_c$. Then $\mathcal{C}_G(\mathcal{A}_p(G)^{\mathrm{op}}, d_c) = \mathcal{A}_p(G)$. Suppose that, for every isotropy group H of the action of G on X, the map $h_H^*(*) \to h_H^*(\mathcal{EO}_{\mathcal{Z}_p(H)})$ is an isomorphism. Then it follows from 3.6(iii) that the map

$$h_G^*(X) \to h_G^*(\operatorname{hocolim}_{E \in A_p(G)} G \times_{C_G E} X^E)$$

is an isomorphism and there is a spectral sequence

$$H^m(A_p(G), h^n_{C_G E}(X^E)) \Rightarrow h^{m+n}_G(X).$$

Let $h_G^* = H_G^*(K \times_G -, F_p)$. It follows from 4.4(iii) that if H is a compact subgroup of G and contains a non-trivial p-subgroup, then $h_H^*(*) = h_H^*(\mathcal{EO}_{\mathcal{Z}_p(H)})$. Hence there is a mod p homology isomorphism

 $\operatorname{hocolim}_{w \in A_p(G)} K \times_{C_G w} X^w \to K \times_G X,$

and there exists a spectral sequence

$$H^{n}(A_{p}(G), H^{m}(K \times_{C_{G}w} X^{w}, F_{p})) \Rightarrow H^{n+m}(K \times_{G} X, F_{p}).$$

If K = EG, then we obtain the case investigated in [H1,2].

(ii) The map

$$\operatorname{hocolim}_{[E]\in\operatorname{sd}\mathcal{A}_p(G)/G}K\times_{G_{E_*}}X^{E_n}\to K\times_GX$$

is a mod p homology isomorphism and there is a spectral sequence

 $H^{m}(\mathrm{sd}\,\mathcal{A}_{p}(G)/G, H^{n}(K\times_{G_{E}}X^{E_{n}}, F_{p})) \Rightarrow H^{m+n}(K\times_{G}X, F_{p}).$

In particular, if \mathcal{A} is one of the classes $\mathcal{B}_k(F_p)$ or $\mathcal{D}(F_p)$ described in 1.3 and, for every $(E_0, \ldots, E_n) \in \operatorname{sd} \mathcal{A}_p(G), K \times_{NE_0 \cap \ldots \cap NE_n} X^{E_n} \in \mathcal{A}$, then $K \times_G X \in \mathcal{A}$.

References

- [Br1] G. E. Bredon, Equivariant Cohomology Theory, Lecture Notes in Math. 34, Springer, 1967.
- [Br2] —, Introduction to Compact Transformation Groups, Academic Press, New York, 1972.
- [BK] A. K. Bousfield and D. M. Kan, Homotopy Limits, Completions and Localizations, Lecture Notes in Math. 304, Springer, Berlin, 1972.
- [DF1] E. Dror Farjoun, Homotopy and homology of diagrams of spaces, in: Lecture Notes in Math. 1286, Springer, 93–134.
- [DF2] —, Cellular Spaces, Null Spaces and Homotopy Localization, Lecture Notes in Math. 1622, Springer, 1995.
- [Dw] W. G. Dwyer, Homology approximations for classifying spaces of finite groups, Topology 36 (1997), 783–804.
- [DK] W. G. Dwyer and D. M. Kan, A classification theorem for diagrams of simplicial sets, Topology 23 (1984), 139–155.
- [E] A. D. Elmendorf, Systems of fixed point sets, Trans. Amer. Math. Soc. 277 (1983), 275–284.
- [H1] H. W. Henn, Centralizers of elementary abelian p-subgroups, the Borel construction of the singular locus and applications to the cohomology of discrete groups, Topology 36 (1997), 271–286.
- [H2] —, Commutative algebra of unstable K-modules, Lannes T-functor and the equivariant mod-p cohomology, J. Reine Angew. Math. 478 (1996), 189–215.
- [HV] J. Hollender and R. M. Vogt, Modules of topological spaces, applications to homotopy limits and E_{∞} stuctures, Arch. Math. (Basel) 59 (1992), 115–129.
- [JM1] S. Jackowski and J. McClure, Homotopy approximations for classifying spaces of compact Lie groups, in: Algebraic Topology (Arcata, 1986), Springer, 1989, 221–234.

- [JM2] S. Jackowski and J. McClure, Homotopy decomposition of classifying spaces via elementary abelian subgroups, Topology 31 (1992), 113–132.
- [JMO] S. Jackowski, J. McClure and B. Oliver, Homotopy classification of self-maps of BG via G-actions, Ann. of Math. 135 (1992), 183–270.
- [JO] S. Jackowski and B. Oliver, Vector bundles over classifying spaces of compact Lie groups, Acta Math. 176 (1996), 109–143.
- [JS] S. Jackowski and J. Słomińska, *G*-functors, *G*-posets and homotopy decompositions of *G*-spaces, Fund. Math., to appear.
- [LMM] L. G. Lewis, J. P. May and J. McClure, Ordinary RO(G)-graded cohomology, Bull. Amer. Math. Soc. 4 (1981), 208–212.
- [LMS] L. G. Lewis, J. P. May and M. Steinberger, Equivariant Stable Homotopy Theory, Lecture Notes in Math. 1213, Springer, 1986.
- [O1] B. Oliver, A proof of the Conner conjecture, Ann. of Math. 103 (1976), 637–644.
- [O2] —, A transfer for compact Lie group actions, Proc. Amer. Math. Soc. 97 (1976), 546–548.
- [Q] D. Quillen, Homotopy properties of the poset of non-trivial p-subgroups of a group, Adv. Math. 28 (1978), 101–128.
- [S1] J. Słomińska, Some spectral sequences in Bredon cohomology, Cahiers Topologie Géom. Différentielle Catégoriques 33 (1992), 99–134.
- [S2] —, Homotopy colimits on E-I-categories, in: Algebraic Topology (Poznań, 1989), Lecture Notes in Math. 1474, Springer, 1991, 273–294.
- [S3] —, Hecke structure on Bredon cohomology, Fund. Math. 140 (1991), 1–30.
- [S4] —, Cohomology decompositions of the Borel construction, preprint, Toruń, 1996.
- [Sy] P. Symonds, The orbit space of the p-subgroup complex is contractible, Comment. Math. Helv. 73 (1998), 400–405.
- [TW] J. Thévenaz and P. J. Webb, Homotopy equivalence of posets with a group action, J. Combin. Theory Ser. A 56 (1991), 173–181.
- [T] R. W. Thomason, Homotopy colimits in the category of small categories, Proc. Cambridge Philos. Soc. 85 (1979), 91–109.
- [Wa1] S. Waner, A generalization of cohomology of groups, Proc. Amer. Math. Soc. 85 (1982), 469–474.
- [Wa2] —, Mackey functors and G-cohomology, ibid. 90 (1984), 641–648.
- [We] P. J. Webb, A split exact sequences of Mackey functors, Comment. Math. Helv. 66 (1991), 34–69.
- [Wi] S. J. Wilson, Equivariant homology theories on G-complexes, Trans. Amer. Math. Soc. 212 (1975), 155–171.
- [Ž] R. T. Živaljević, Combinatorics of topological posets: homotopy complementation formulas, Adv. Appl. Math. 21 (1998), 547–574.

Faculty of Mathematics and Information Sciences Technical University of Warsaw Pl. Politechniki 1 00-661 Warszawa, Poland E-mail: jolslom@impan.gov.pl

> Received 14 April 1999; in revised form 22 January 2001