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Quasi-linear maps
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Abstract. A quasi-linear map from a continuous function space C(X) is one which
is linear on each singly generated subalgebra. We show that the collection of quasi-linear
functionals has a Banach space pre-dual with a natural order. We then investigate quasi-
linear maps between two continuous function spaces, classifying them in terms of gener-
alized image transformations.

Let X be a compact Hausdorff space and C(X) the space of real-valued
continuous functions on X. If f ∈ C(X), let A(f) denote the closed subal-
gebra of C(X) generated by 1 and f . In other words,

A(f) = {ϕ ◦ f : ϕ ∈ C(f(X))}.

A map from C(X) into a vector space is said to be quasi-linear if it is linear
on A(f) for each f ∈ C(X). If B is a Banach space, a quasi-linear map
̺ : C(X) → B is is said to be bounded if there is an M < ∞ such that
‖̺(f)‖ ≤ M‖f‖∞ for each f ∈ C(X). In this case define the norm ‖̺‖ to
be the infimum of all such M . In the case where B = R, we say that ̺ is a
quasi-linear functional on C(X). The linear space of all bounded quasi-linear
functionals on C(X) will be denoted by QL(X).

If B is an ordered Banach space, and ̺ : C(X) → B is quasi-linear, we
say that ̺ is positive if ̺(f) ≥ 0 for each f ≥ 0. The positive quasi-linear
functionals on C(X) were characterized by Johan Aarnes in [1] by associat-
ing a set function to each positive quasi-linear functional, generalizing the
Riesz representation theorem. The primary difference between Aarnes’ set
functions and regular Borel measures is that subadditivity is no longer re-
quired and they are only defined on subsets which are either open or closed.
These set functions are now called topological measures, a terminology which
replaces the older one of quasi-measures. One consequence of these results
is that all positive quasi-linear functionals are bounded. In [7], the current
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author extends Aarnes’ result to the case of all bounded quasi-linear func-
tionals by considering signed topological measures.

The purpose of this paper is to more fully describe the space of quasi-
linear functionals QL(X), and to investigate quasi-linear maps between
C(X) and other Banach spaces.

1. The pre-dual of QL(X). The first remarkable thing about QL(X)
is that it has a Banach space pre-dual. This has been previously noted in
[13, 14], but we give a more thorough treatment.

Theorem 1. Let X be a compact Hausdorff space. Then there is a Ba-

nach space D(X) and a bounded quasi-linear map Φ : C(X) → D(X) with

the following properties:

(i) Φ is an isometry.

(ii) The span of the image of Φ is dense in D(X).
(iii) If L ∈ D(X)∗, then L ◦ Φ is a bounded quasi-linear functional on

C(X) with ‖L‖ = ‖L◦Φ‖. Furthermore, every bounded quasi-linear

functional on C(X) is of this form.

(iv) If ̺ : C(X) → B is any bounded quasi-linear map into a Banach

space B, then there is a unique bounded linear map ̺̂ : D(X) → B
such that ̺ = ̺̂◦ Φ. Also, ‖̺̂‖ = ‖̺‖.

(v) The space D(X) is characterized by the above properties as follows:
Suppose D is any Banach space with a bounded quasi-linear isome-

try Φ′ : C(X) → D and that whenever ̺ : C(X) → B is a bounded

quasi-linear map, there exists a unique ̺̂ : D → B which is bounded

and linear with ̺ = ̺̂◦Φ′ and ‖̺‖ = ‖̺̂‖. Then there is an isometric

isomorphism J : D(X) → D such that Φ′ ◦ J = Φ.

Finally , the Banach space dual of D(X) is naturally isomorphic to QL(X).

Proof. Let

A =
⊕

f∈C(X)

C(f(X))

be the l1 direct sum of the spaces C(f(X)) where f ranges over C(X). A
typical element of A is an indexed family (ϕf ) where f ranges over C(X),
ϕf ∈ C(f(X)) for all f and

‖(ϕf )‖ =
∑

f

‖ϕf‖∞ <∞.

In particular, at most countably many ϕf are non-zero. For any fixed f ∈
C(X), let If denote the injection of C(f(X)) to the f coordinate of A.

Let N ⊆ A be the closed linear span of elements of the form Iϕ◦f (id) −
If (ϕ) where f ranges over C(X) and ϕ over C(f(X)) and id represents the
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identity function from ϕ(f(X)) into R. The notation will not distinguish
between these identity functions for different f . Finally, let D(X) = A/N
with the quotient norm and define Φ(f) = If (id)+N ∈ D(X) for f ∈ C(X).

Then Φ(ϕ ◦ f) = Iϕ◦f (id) +N = If (ϕ) +N for all ϕ ∈ C(f(X)). Thus,
for every ϕ, ψ in C(f(X)), we have Φ(ϕ ◦ f + ψ ◦ f) = If (ϕ + ψ) + N =
If (ϕ) + If (ψ) +N = Φ(ϕ ◦ f) + Φ(ψ ◦ f). Hence Φ is linear on A(f). Also,
‖Φ(f)‖ = ‖If (id)+N‖ ≤ ‖If (id)‖ = ‖f‖∞, so Φ is bounded and quasi-linear.
Now notice that for any (ϕf ) in A, (ϕf ) + N =

∑
f Φ(ϕf ◦ f), so that the

span of the image of Φ is dense in D(X). Even more, this sum is countable,
so every element of D(X) can be written in the form

∑
i Φ(fi) for some

countable collection of fi ∈ C(X).
Next suppose that ̺ : C(X) → B is a bounded quasi-linear map into a

Banach space. Define ̺′ : A→ B by ̺′((ϕf )) =
∑
̺(ϕf ◦ f). Since

∑

f

‖̺(ϕf ◦ f)‖∞ ≤
∑

f

‖̺‖ · ‖ϕf ◦ f‖∞ = ‖̺‖ ·
∑

f

‖ϕf‖∞ = ‖̺‖ · ‖(ϕf )‖,

this map is defined on all of A and ‖̺′‖ ≤ ‖̺‖. Moreover, since ̺ is quasi-
linear, ̺′ is linear on A. Also, since ̺(f) = ̺′(If (id)), it follows that ‖̺‖ ≤
‖̺′‖ as well.

We now have ̺′(If (ϕ) − Iϕ◦f (id)) = ̺(ϕ ◦ f) − ̺(id ◦ ϕ ◦ f) = 0, so
̺′ factors through D(X) = A/N . Hence, there is a bounded linear map
̺̂ : D(X) → B with

̺̂◦ Φ(f) = ̺̂(If (id) +N) = ̺′(If (id)) = ̺(id ◦ f) = ̺(f).

Note that ‖̺̂‖ = ‖̺′‖ = ‖̺‖. Since the span of the image of Φ is dense,
the map ̺̂ is unique. The statement about the duality of D(X) and QL(X)
follows by taking B = R.

The isometry of Φ follows from [13, 14], where it is shown that if ̺ is a
quasi-linear functional on C(X), then |̺(f)−̺(g)| ≤ ‖̺‖ · ‖f −g‖∞. By the
Hahn–Banach theorem and the fact that ‖L ◦ Φ‖ = ‖L‖ for L ∈ QL(X), it
follows that

‖Φ(f) − Φ(g)‖ = sup{|L ◦ Φ(f) − L ◦ Φ(g)| : L ∈ D(X)∗, ‖L‖ ≤ 1}

≤ sup{‖L ◦ Φ‖ · ‖f − g‖∞ : L ∈ D(X)∗, ‖L‖ ≤ 1}

= ‖f − g‖∞.

For the reverse inequality, let x ∈ X and L be point evaluation at x. Then
L is quasi-linear on C(X) and hence can be lifted to L̂ on D(X) with

‖L‖ = ‖L̂‖. Thus |f(x) − g(x)| = |L̂(Φ(f)) − L̂(Φ(g))| ≤ ‖Φ(f) − Φ(g)‖.
Hence ‖f − g‖∞ ≤ ‖Φ(f) − Φ(g)‖. In particular, by taking g = 0, we see
that ‖Φ(f)‖ = ‖f‖∞ for all f ∈ C(X).

Finally, suppose D is a Banach space with a quasi-linear isometry Φ′ :
C(X) → D as above. Thus there are unique bounded linear maps J :
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D(X) → D and J ′ : D → D(X) with J ◦ Φ = Φ′ and J ′ ◦ Φ′ = Φ. Then
J ◦ J ′ ◦ Φ′ = J ◦ Φ = Φ′, so by the uniqueness clause, J ◦ J ′ is the identity
map. Similarly, J ′ ◦ J is the identity. Also, we have ‖J ′‖ = ‖Φ‖ = 1 and
‖J‖ = ‖Φ′‖ = 1, so both J and J ′ are isometries.

While it is not clear from the definition that quasi-linear maps are con-
tinuous, we see that a main result of [14] is true in slightly more generality. It
is also possible to deduce this directly from [14] by use of the Hahn–Banach
theorem.

Corollary 2. Bounded quasi-linear maps are Lipschitz.

Corollary 3. Let ̺ : C(X) → C(Y ) be a bounded quasi-linear map.

Then there is a bounded linear ̺̂ : D(X) → D(Y ) such that ̺̂ ◦ Φ = Φ ◦ ̺
if and only if L ◦ ̺ ∈ QL(X) for every L ∈ QL(Y ). In this case η ◦ ̺ is

quasi-linear for every bounded quasi-linear map η : C(Y ) → B.

Proof. Suppose ̺̂ exists. For each L ∈ QL(X), there is an L̂ ∈ D(X)∗

with L = L̂ ◦ Φ. Then L ◦ ̺ = L̂ ◦ Φ ◦ ̺ = L̂ ◦ ̺̂◦ Φ is quasi-linear. For the
converse, we need only show that Φ ◦ ̺ is quasi-linear. If not, then there are
f ∈ C(X) and ϕ, ψ ∈ C(f(X)) such that

Φ ◦ ̺(ϕ ◦ f + ψ ◦ f) 6= Φ ◦ ̺(ϕ ◦ f) + Φ ◦ ̺(ψ ◦ f).

But then the Hahn–Banach theorem gives an L ∈ D(Y )∗ such that L ◦
Φ ◦ ̺(ϕ ◦ f + ψ ◦ f) 6= L ◦ Φ ◦ ̺(ϕ ◦ f) + L ◦ Φ ◦ ̺(ψ ◦ f). In other words,
L ◦ Φ ◦ ̺ 6∈ QL(X). Since L ◦ Φ ∈ QL(Y ), this is a contradiction.

Now, if B is a Banach space and η : C(Y ) → B is a bounded quasi-linear
map, there is a bounded linear map η̂ : D(Y ) → B such that η = η̂ ◦ Φ.
Then η ◦ ̺ = η̂ ◦ Φ ◦ ̺ = η̂ ◦ ̺̂◦ Φ is quasi-linear.

As an example, suppose ̺ : C(X) → C(Y ) is an algebra homomorphism
on each singly generated subalgebra A(f), i.e., ̺ is a quasi-homomorphism.
It was shown in [4] that ̺(ϕ ◦ f) = ϕ ◦ ̺(f) for all ϕ ∈ C(f(X)) and
f ∈ C(X). Hence L ◦ ̺ is again quasi-linear whenever L ∈ QL(Y ). The
previous result then shows that ̺ lifts to a map ̺̂ : D(X) → D(Y ).

On the other hand, if ̺ is not a quasi-homomorphism, then there may
be no such lift, as the following example shows.

Example 1. Let ̺ ∈ QL(X) and define T : C(X × Y ) → C(Y ) by
T (f)(y) = ̺(fy), where fy ∈ C(X) is defined by fy(x) = f(x, y). It is
shown in [8] that T is a quasi-linear map, but that η ◦ T is not quasi-linear
if η ∈ QL(Y ) is non-linear, and ̺ is not a quasi-homomorphism. Hence, T
does not lift to a map D(X×Y ) → D(Y ) unless ̺ is a quasi-homomorphism
or every element of QL(Y ) is linear.

Returning to the general case, let f ∈ C(X) and let B(f) denote the
collection of those g ∈ C(X) that are constant on components of level sets
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of f . Hence, B(f) is the analytic subalgebra generated by the single function
f ∈ C(X). In general, B(f) is much larger than the subalgebra A(f). For
example, if X = S1 ⊆ R

2 and f is projection to the x-axis, B(f) = C(X).

If f ∈ C(X), letX/f denote the space obtained fromX by identifying all
components of level sets of f to points. Let πf : X → X/f be the quotient
map. Then πf is a monotone map in the sense that inverse images of points
are connected. Also, B(f) consists of all functions of the form g ◦ πf for
g ∈ C(X/f). By Katětov’s theorem (see [5]), the covering dimension of X/f
is at most 1.

Proposition 4. For any f ∈ C(X), the map Φ is linear on B(f).

Proof. Let π̂f : C(X/f) → C(X) be defined by π̂f (g) = g ◦ πf . If L ∈
D(X)∗, then the quasi-linear map L ◦ Φ ◦ π̂f : C(X/f) → R is linear since
every quasi-linear functional on C(Y ) is linear when dimY ≤ 1 (see [7]).
Hence, Φ must be linear on the image of π̂f , i.e. on B(f).

Corollary 5. If dimX ≤ 1, then D(X) = C(X).

Proof. This follows since, by Katětov’s theorem, any two elements of
C(X) are in a common singly generated analytic subalgebra, B(f). By the
last result, Φ is linear. Hence, C(X) is isometrically imbedded in D(X) as
a dense linear subspace. This subspace must be closed, giving the result.

Now we put an order structure on D(X) so that Φ : C(X) → D(X)
is order preserving and so that the positive, bounded, linear functionals
on D(X) correspond to the positive, bounded, quasi-linear functionals on
C(X). To this end, let C+(X) denote the non-negative functions in C(X),
and letD(X)+ be the closed cone inD(X) generated by the image of C+(X)
under Φ. We use the terminology of ordered Banach spaces from [11].

Theorem 6. Suppose that whenever ϕ ∈ D(X) with ϕ 6= 0, there is a

positive quasi-linear functional L ∈ QL(X) with L̂(ϕ) 6= 0. Then the space

D(X) with positive cone D(X)+ is an ordered Banach space with a regular

order. The positive linear functionals on D(X) correspond to the positive

quasi-linear functionals on C(X). In addition, Φ(1) is a strong order unit

for D(X) and the map Φ is order preserving in the sense that Φ(f) ≤ Φ(g)
whenever f ≤ g in C(X).

Proof. First notice that if L is positive and ϕ =
∑
Φ(fi) where each

fi ≥ 0, then L̂(ϕ) ≥ 0. Hence if ϕ ∈ D(X)+ ∩ −D(X)+, then L̂(ϕ) = 0 for
all L positive. By our assumption, ϕ = 0.

Now, if ϕ =
∑
Φ(fi) is in D(X), we see, upon noticing f+

i , f
−
i ∈ A(fi),

that ϕ =
∑
Φ(f+

i )−
∑
Φ(f−i ) ∈ D(X)+ −D(X)+. Thus, D+(X) generates

D(X). Similarly, setting ψ =
∑
Φ(|fi|), we see that ϕ,−ϕ ≤ ψ. Now, ‖ψ‖ ≤
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∑
‖fi‖∞, so ‖ψ‖ < 1 if ‖ϕ‖ < 1. Hence, D(X) is an ordered Banach space

with a regular order.

Notice that L ∈ D(X)∗ is a positive linear functional if and only if
L ◦ Φ(f) ≥ 0 for all f ≥ 0 in C(X). Hence L ◦ Φ is a positive quasi-linear
functional on C(X) if and only if L is a positive linear functional on D(X).

Now, since D(X)+ is closed, we see by use of a Hahn–Banach separation
argument that

∑
Φ(fi) ≥ 0 if and only if

∑
̺(fi) ≥ 0 for all positive quasi-

linear functionals ̺ ∈ QL(X). In particular, since ̺(‖f‖∞ ·1−f) ≥ 0 for any
f ∈ C(X), we see that Φ(f) ≤ ‖f‖∞ · Φ(1). Also, if ϕ =

∑
Φ(fi), we have

ϕ ≤ Φ(1)
∑

‖fi‖∞. From the definition of the norm on D(X), this shows
that ϕ ≤ Φ(1) · ‖ϕ‖. Similarly, −Φ(1) · ‖ϕ‖ ≤ ϕ. Thus Φ(1) is a strong order
unit for D(X).

Also, if f ≤ g in C(X) and ̺ is a positive quasi-linear functional, it is
known that ̺(f) ≤ ̺(g) [1, Lemma 4.1]. From the previous paragraph, this
implies that Φ(f) ≤ Φ(g), so Φ is order preserving.

In particular, if every L ∈ QL(X) can be written as L = L1−L2 where L1

and L2 are positive, then D(X) is an ordered Banach space. It is not known
if this decomposition is always possible. Even if D(X) is not an ordered
Banach space, we can still define the cone D(X)+. We would then find that

φ ≤ ψ and ψ ≤ φ exactly when L̂(φ) = L̂(ψ) for all positive quasi-linear
functionals L ∈ QL(X). The map Φ : C(X) → D(X) will still be order
preserving with this modification.

Proposition 7. If X is simply connected (more generally , if g(X) = 0,
see below), then D(X) is an ordered Banach space and the order on D(X)
is monotone. That is, −ϕ ≤ ψ ≤ ϕ in D(X) implies that ‖ψ‖ ≤ ‖ϕ‖.

Proof. The results from [13, 14] show that if X is of this form, the
order on QL(X) is 1-generating in the sense that every L ∈ QL(X) can be
written in the form L = L1−L2 with L1, L2 positive and ‖L‖ = ‖L1‖+‖L2‖.
Hence, the cone of D(X) is 1-normal. It follows that the order on D(X) is
monotone.

It is natural to ask whether D(X) has the Riesz decomposition property.
Unfortunately, this is not the case even when g(X) = 0. In fact, ifX = [0, 1]2,
then QL(X) is not a Banach lattice, so this is precluded (see [7]).

2. Generalized image transformations. At this point, we would like
to recall the representation of quasi-linear functionals on C(X) in terms of
integration with respect to signed topological measures. For X a compact
Hausdorff space, let O(X) denote the collection of open sets in X and C(X)
denote the collection of closed sets. Also, let A(X) = O(X)∪C(X). A signed

topological measure on X is a map µ : A(X) → R such that
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(a) If A1∩A2 = ∅ and A1∪A2 ∈ A(X), then µ(A1∪A2) = µ(A1)+µ(A2).
(b) There is an M < ∞ such that whenever {Ai} are disjoint in A(X),

then
∑

|µ(Ai)| ≤M .
(c) For U ∈ O(X), µ(U) = limµ(C) where C ranges over the directed

set of C ∈ C(X) with C ⊆ U .

If, in addition, µ(A) ≥ 0 for all A ∈ A(X), we say that µ is a positive

topological measure on X. Notice that for this case the second property
above follows from the other two with M = µ(X).

If µ is a signed topological measure on X and f ∈ C(X), it is possible
to define a measure on R via µf (A) = µ(f−1(A)) for open sets A ⊆ R and
then define, for f ∈ C(X),

̺µ(f) =
\
X

f dµ =
\
R

x dµf (x).

For positive quasi-linear functionals, the following results is due to Aar-
nes [1]. The general case is due to the current author [6].

Theorem 8. If µ is a signed topological measure, then ̺µ is a bounded

quasi-linear functional on C(X). Conversely , every bounded quasi-linear

functional on C(X) is of the form ̺µ for a unique signed topological mea-

sure µ. The positive topological measures correspond to the positive quasi-

linear functionals in this way.

Since QL(X) is the dual of D(X), it has a natural weak-∗ topology
induced from this duality, i.e. σ(QL(X), D(X)). Similarly, there is a weak-∗
topology induced from the action on just C(X), i.e. σ(QL(X), C(X)).
The topologies induced on bounded subsets of QL(X) are the same. In
particular, let QP (X) denote the collection of quasi-probabilities on X, that
is, the positive topological measures µ with µ(X) = 1. Then it is known
that QP (X) is a compact Hausdorff space in the unique weak-∗ topology
(see [10]). The topology on QP (X) has an alternative description which is
found in [10]: the sets of the form

Ûα = {µ ∈ QP (X) : µ(U) > α}

where U ∈ O(X) and α ∈ R form a subbase for this topology.

Definition 9. For f ∈ C(X), define f̃ : QP (X) → R by f̃(µ) = ̺µ(f).
We also define, for A ∈ A(X), eA : QP (X) → R by eA(µ) = µ(A).

Proposition 10. The function f̃ is continuous for each f ∈ C(X).
Also, for U ⊆ X open, the function eU is lower semicontinuous. We have

the following :

(a) e∅ = 0, and eX = 1.
(b) If A = A1 ∪A2 is a disjoint union in A(X), then eA = eA1

+ eA2
.
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(c) If U ∈ O(X), then eU is lower semicontinuous and eU = sup{eC :
C ⊆ U, C ∈ C(X)}.

Proof. The continuity of f̃ is clear by definition of the weak-∗ topol-
ogy. The listed properties follow directly from the properties of the quasi-
probabilities µ. Finally, if U ⊆ X is open, then

eU (µ) = µ(U) = sup{̺µ(f) : 0 ≤ f ≤ U} = sup{f̃ : 0 ≤ f ≤ U},

so that eU is the supremum of a collection of continuous functions, and so
is lower semicontinuous.

This result inspires the following definition.

Definition 11. Suppose that X and Y are compact Hausdorff spaces
and for each A ∈ A(X), there is a non-negative semicontinuous function kA

on Y such that:

(a) k∅ = 0, kX = 1.
(b) If A = A1 ∪A2 is a disjoint union in A(X), then kA = kA1

+ kA2
.

(c) If U ∈ O(X), then kU is lower semicontinuous and kU = sup{kC :
C ⊆ U,C ∈ C(X)}.

We then call the collection {kA} a generalized image transformation from
X to Y .

We note in particular that kX\A = 1 − kA, so for C ∈ C(X), kC =
inf{kU : C ⊆ U ∈ O(X)} is upper semicontinuous.

Theorem 12. There are correspondences between normalized positive

quasi-linear maps ̺ : C(X) → C(Y ), weak-∗ continuous functions w : Y →
QP (X), and generalized image transformations {kA} from X to Y such that

for corresponding entities, ̺(f)(y) =
T
X f dw(y), and kA = eA ◦ w.

Proof. Given a normalized quasi-linear map ̺ and a point y ∈ Y , the
map sending f to ̺(f)(y) is a normalized quasi-linear functional, so can
be represented by integration with respect to a topological measure w(y).
Since each ̺(f) is continuous on Y by assumption and since QP (X) has the
weak-∗ topology, the map w is continuous.

On the other hand, if w : Y → QP (X) is continuous, we may define
̺(f)(y) =

T
f dw(y) and kA(y) = w(y)(A) for f ∈ C(X) and A ∈ A(X).

Clearly, then, ̺(f) is continuous for f ∈ C(X) and ̺ is then a normalized
quasi-linear map from C(X) to C(Y ). On the other hand, we see that kA =
eA ◦ w. Since each eA is semicontinuous, the same is true for each kA. Also
the collection {kA} inherits the defining properties of a generalized image
transformation from the transformation {eA}.

Now suppose that {kA} is a generalized image transformation and y ∈ Y .
Define a set function w(y) on A(X) by w(y)(A) = kA(y). The properties of
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generalized image transformations show that w(y) is a positive topological
measure on X with w(y)(X) = 1. Thus w(y) ∈ QP (X). To show that w
defines a continuous map, we consider the inverse image of the subbasic
open set Ûα. We have

w−1(Ûα) = {y ∈ Y : w(y)(U) > α} = {y ∈ Y : kU (y) > α}.

Since kU is lower semicontinuous on Y for U open in X, this shows w−1(Ûα)
is open, and so w is continuous. Finally, kA(y) = w(y)(A) = eA ◦ w(y).

This result should be compared with the characterization of quasi-hom-
omorphisms in terms of image transformations given in [4]. In particular,
the map ̺ is a quasi-homomorphism if and only if the topological measures
w(y) are all {0, 1}-valued.

If we consider the situation from Example 1 above and let U ⊆ X×Y be
open and µ the topological measure associated with ̺, then the generalized
image transformation corresponding to T will be given by kU (y) = µ(Uy).
This is shown in [8].

It is of some interest to determine the exact correspondence between
quasi-linear maps ̺ and generalized image transformations above in more
specific terms. To accomplish this, let f ∈ C(X), y ∈ Y , α ∈ R, and define
kf (y, α) = kU (y) where U = f−1(α,∞). Then, if f ≥ 0 is continuous, we
have

̺(f)(y) =
\
R

x dw(y)f (x) =

∞\
0

x\
0

1 dt dw(y)f (x)

=

∞\
0

w(y)f (α,∞) dα =

∞\
0

kf (y, α) dα.

This equality provides a way to extend the domain of ̺ to include positive
lower semicontinuous functions.

Definition 13. Given a normalized, positive quasi-linear map ̺ : C(X)
→ C(Y ) and a lower semicontinuous function f : X → [0,∞], we define
kf (y, α) = kU (y) where U = f−1(α,∞]. We also define

̺(f) =

∞\
0

kf (y, α) dα.

Notice that kf (y, α) is lower semicontinuous in α for fixed y ∈ Y by
inner regularity of topological measures. In particular, for the characteristic
function f = ξU of an open set, ̺(ξU ) = kU since in that case kf (y, α) =
kU (y) for α < 1 and is 0 otherwise. Notice also that if 0 ≤ f ≤ M , then
0 ≤ ̺(f) ≤M .
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Proposition 14. Suppose that D is a directed family of positive lower

semicontinuous functions on X and f = sup{g : g ∈ D} pointwise. If ̺ :
C(X) → C(Y ) is quasi-linear , then ̺(f) = sup{̺(g) : g ∈ D}. In particular ,
kU = sup{̺(f) : 0 ≤ f ≤ ξU , f ∈ C(X)} for U open in X.

Proof. For each α ∈ R, f−1(α,∞] =
⋃
{g−1(α,∞] : g ∈ D} is a directed

union of open sets. Hence

kf (y, α) = w(y)(f−1(α,∞)) = sup{w(y)(g−1(α,∞)) : g ∈ D}

= sup{kg(y, α) : g ∈ D}.

Again we have used the inner regularity of the topological measures w(y).
Since all functions in this equality are lower semicontinuous, the result fol-
lows by standard results on measures.

It is clear from this that ̺(f) is lower semicontinuous when f ≥ 0 is
lower semicontinuous. Another easy consequence is the following.

Proposition 15. Suppose that ̺ : C(X) → C(Y ) and η : C(Y ) → R

are positive quasi-linear maps such that η ◦ ̺ is a quasi-linear functional.

Let {kA} be the generalized image transformation associated with ̺ and let

ν and τ be the topological measures associated with η and η ◦ ̺, respectively.

Then, for U ⊆ X open, we have τ(U) = η(kU ).

In particular, since η may not even be linear on continuous functions,
it may well happen that η(kU∪V ) = η(kU ) + η(kV ) fails for some disjoint
open sets U , V in X. In this case, η ◦ ̺ cannot be quasi-linear since the
corresponding set function is not a topological measure.

3. Examples. We now turn to methods of constructing examples of
quasi-linear maps. We assume for the rest of this paper that X is a con-
nected, locally connected, compact Hausdorff space. A subset A of X is
called solid if both A and its complement X \ A are connected. We denote
the solid sets in any collection of sets by adding a subscript “s”. Thus, Cs(X)
denotes the collection of closed solid subsets of X and Us(X) that of open
solid subsets. A map µ : As(X) → [0, 1] is called a solid set function if

(i) whenever {Cn} is a finite family of disjoint sets in Cs, and
⋃
Cn ⊆

C ∈ Cs, then
∑
µ(Cn) ≤ µ(C),

(ii) if U ∈ Us, then µ(U) = sup{µ(C) : C ⊆ U, C ∈ Cs},
(iii) if {An} is a finite partition of X into sets from As, then

∑
µ(An) =

µ(X) = 1.

A fundamental result due to Aarnes [2] is that any solid set function extends
uniquely to a normalized positive topological measure on X. See also [13, 14]
for extensions of this result to signed topological measures.
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Definition 16. We define the genus, g(X), to be one less than the
maximum number of components of U ∩ V where U, V ∈ Us(X) and U ∪ V
= X.

It is known [12] that the fundamental group π1(X) of a locally simply
connected space X is infinite if there are connected open sets U and V
with U ∩V disconnected. Hence, g(X) = 0 for any locally simply connected
space X with finite fundamental group. In particular, this holds if X is
simply connected.

In [9], the present author proves a number of results about g(X), and
shows how to construct examples of non-trivial solid set functions for certain
spaces with g(X) = 1. Unfortunately, there are very few non-trivial examples
of solid set functions known when g(X) ≥ 2. This is one of the major open
problems in the study of topological measures.

For the next result, recall that a monotone map h : X → Y is one where
inverse images of points are connected.

Proposition 17. Let h : X → Y be an onto monotone map. Then:

(i) If A ⊆ Y is solid , h−1(A) ⊆ X is solid.

(ii) g(Y ) ≤ g(X).
(iii) If µ : As(X) → [0, 1] is a solid set function, then h∗µ : As(Y ) →

[0, 1] defined by h∗µ(A) = µ(h−1(A)) is a solid set function.

(iv) If ̺ : C(X) → R is a quasi-linear functional with correspond-

ing topological measure µ, then h∗µ corresponds to the quasi-linear

functional defined by h∗̺(g) = ̺(g ◦ h).

The verification of all parts of this proposition is easy since it is known
that h−1(C) is connected when C ⊆ Y is connected. It should be noted that
the topological measure h∗µ can be defined for any function h : X → Y
by setting h∗µ(A) = ν(h−1(A)) for A ∈ A(X) where ν is the topological
measure extending µ to all of A(X). It is not usually so easy to characterize
h∗µ in terms of the solid set function µ. The difficulty in general is exactly
that h−1(A) need not be solid when A is.

Now suppose that f ∈ C(X) and µ is a solid set function on X. Recall
that the space X/f is defined by collapsing components of level sets of f
to points and that the corresponding quotient map is denoted by πf : X →
X/f .

Proposition 18. For a solid set function µ on X and f ∈ C(X), there

is a Borel measure ν on X/f that is defined via the solid set function ν(A) =
µ(π−1

f A). For every g ∈ C(X/f), we have\
X

g ◦ πf dµ =
\

X/f

g dν.
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Proof. From the above, π∗fµ is a solid set function on X/f . Moreover,
the dimension dimX/f ≤ 1, so π∗fµ extends to a measure on X/f . This
measure is ν.

One of the unusual aspects of the subject of topological measures is the
fact that it can be difficult to recognise a Borel measure when it is described
via solid set functions. In particular, the measure ν in the previous result
characterizes the quasi-linear functional associated with µ on the analytic
subalgebra B(f). In the special case that µ takes on only the values 0 and 1,
ν must be a point mass. Locating that point mass in special cases will be
one of our goals.

If we have a space X with g(X) = 0, the only partitions involved in
the definition of solid set functions are those of the form {U,X \ U}. This
drastically simplifies the construction of solid set functions, and hence the
construction of topological measures. One technique for doing so is through
the supermeasures [3]. Below, P({1, . . . , n}) denotes the collection of all
subsets of {1, . . . , n}.

Definition 19. A supermeasure on the set {1, . . . , n} is a map µ :
P({1, . . . , n}) → [0, 1] such that

(i) µ(A) + µ(Ac) = 1 for all A,

(ii) µ(A ∪B) ≥ µ(A) + µ(B) if A and B are disjoint.

Notice the direction of the inequality in the last condition. Supermeas-
ures are superadditive on disjoint subsets of {1, . . . , n}. Note also that µ(B)
≤ µ(A) whenever B ⊆ A.

Suppose that g(X) = 0 and µ : P({1, . . . , n}) → [0, 1] is a supermeasure.
Let ϕ : {1, . . . , n} → X be any function into X. Define the function ϕ∗µ
on As(X) by setting ϕ∗µ(A) = µ(ϕ−1A) for A ∈ As(X). It is then easy to
see that ϕ∗µ is a solid set function. By Aarnes’ construction, this solid set
function extends to a topological measure on X which we will also denote by
ϕ∗µ. The topological measures on X obtained from supermeasures in this
way are said to be finitely defined. It is known that the collection of finitely
defined topological measures is dense in QP (X) when g(X) = 0 (see [3]).

Proposition 20. Suppose that g(X) = 0 and µ is a {0, 1}-valued finitely

defined topological measure determined by the points {x1, . . . , xn}. Let

f ∈ C(X). Then
T
f dµ is either the value of f at some xi or the value

of f at some component D of some level set of f such that X \ D has at

least three components.

Proof. Write µ = ϕ∗ν where ν is a supermeasure on {1, . . . , n} and
ϕ : {1, . . . , n} → X. As above, with πf : X → X/f , the measure µf =
π∗fµ = (πf ◦ ϕ)∗ν is a point mass on X/f , say µf = δp with p ∈ X/f . We
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claim that p is either one of the points in πf ◦ ϕ({1, . . . , n}) or a cut-point
of X/f whose complement has at least three components.

In fact, suppose that p is not in the image of ϕf = πf ◦ ϕ and that the
complement of {p} has at most two components, U and V . Then both U
and V are open, solid sets with µf (U) = δp(U) = 0 = µf (V ). Since X \ V
is solid with ϕ−1

f (U) = ϕ−1
f (X \ V ), we see from the solid set function that

µf (X \ V ) = µf (U) = 0. Since µf (V ) = 0, this shows that µf (X/f) = 0, a
contradiction. Finally, set D = π−1

f (p).

As an immediate corollary, we have the following.

Proposition 21. Suppose that X is a smooth manifold with g(X) = 0,
µ is as above and f is a smooth function on X. Then

T
X f dµ is either the

value of f at some xi or the value of f at some critical point. In the latter

case, if the critical point is regular , then it is not a local extremum of f .

This follows since the only way for a component of a level set of a smooth
function to have more than two co-components is for the value of the function
to be a critical point which is either non-regular or a saddle point.

We can now use these ideas to construct examples of non-trivial quasi-
linear maps. To do this, fix a supermeasure µ on {1, . . . , n} and a function
ϕ : {1, . . . , n− 1} → X where g(X) = 0. For each x ∈ X, define

ϕx(k) =

{
ϕ(k) if k ∈ {1, . . . , n− 1},

x if k = n.

Then ϕx : {1, . . . , n} → X, and we may define the topological measure
µx = ϕ∗

xµ on X. In the case where µ is a {0, 1}-valued supermeasure, each
µx will be a {0, 1}-valued topological measure on X.

We claim that the map w : x 7→ µx is continuous from X to QP (X). In

fact, if Ûα is a subbasic open set of QP (X), then

w−1Ûα = {x : µx(U) > α} = {x : µ(ϕ−1
x (U)) > α}.

This last set is either X, U , or the empty set depending on the values of
µ(ϕ−1(U)) and µ(ϕ−1(U) ∪ {n}). In particular, it is the empty set if both
values of µ are less than or equal to α; X if both are greater than α; and U
otherwise. In any case, w−1Ûα is open.

We may now define a quasi-linear map ̺ : C(X) → C(X) by setting

̺(f)(x) =
\
f dµx.

The corresponding generalized image transformation is easily seen to be
given by

kU = µ(ϕ−1(U))ξX\U + µ(ϕ−1(U) ∪ {n})ξU .
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Proposition 22. In the above situation, η ◦ ̺ is quasi-linear for every

quasi-linear map η : C(X) → C(Y ). Moreover , for each f ∈ C(X), ̺(f) ∈
B(f), the analytic subalgebra generated by f .

Proof. The first statement follows from the second since if g, h ∈ B(f),
we have ̺(g), ̺(h) ∈ B(f). Since η is linear on B(f), η ◦ ̺ is also linear on
B(f) which contains A(f). To show that ̺(f) ∈ B(f), we need to show that
̺(f) is constant on components of level sets of f . But

̺(f)(x) =
\
X

f dµx =
\

X/f

f̂ dπ∗fµx.

Here, f̂ is the function on X/f such that f = f̂ ◦πf . Now, π∗fµx is obtained
from the supermeasure µ through the action of the function πf ◦ϕx which is
only dependent on the component of the level set of f in which x lies. This
completes the proof.

In particular, define µ on P({1, 2, 3, 4, 5}) via

µ(A) =





0 if cardA = 0 or 1,

1/2 if cardA = 2 or 3,

1 if cardA = 4 or 5.

It is known that the finitely determined topological measures defined by µ
are extreme points of QP (X) for many spaces X. For example, if X = [0, 1]2

is the unit square and x1, . . . , x5 are points in the open square, this will be
the case. Related examples can be found in [3].

Now, let g(X) = 0 and ϕ : {1, 2, 3, 4} → X take distinct values in X
and consider the generalized image transform and quasi-linear map ̺ given
above. Then, for U solid,

kU =





0 if card(U ∩ imϕ) = 0,

(1/2)ξU if card(U ∩ imϕ) = 1,

1/2 if card(U ∩ imϕ) = 2,

1/2 + (1/2)ξU if card(U ∩ imϕ) = 3,

1 if card(U ∩ imϕ) = 4.

Since kU can take on values other than 0 or 1, ̺ is not a quasi-homomorphism
even though η ◦ ̺ is quasi-linear for all quasi-linear η. This should be con-
trasted to the situation for products of quasi-measures noted earlier.

Finally, suppose that η : C(X) → R is a positive quasi-linear functional
with corresponding topological measure ν. We see that the topological mea-
sure associated with η ◦ ̺ is given on solid sets A by
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ν(A) =





0 if card(A ∩ imϕ) = 0,

(1/2)ν(A) if card(A ∩ imϕ) = 1,

1/2 if card(A ∩ imϕ) = 2,

1/2 + (1/2)ν(A) if card(A ∩ imϕ) = 3,

1 if card(A ∩ imϕ) = 4.
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