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An ordered stru
ture of rank tworelated to Dula
's ProblembyA. Doli
h (Chi
ago, IL) and P. Speissegger (Hamilton)
Abstra
t. For a ve
tor �eld ξ on R

2 we 
onstru
t, under 
ertain assumptions on ξ,an ordered model-theoreti
 stru
ture asso
iated to the �ow of ξ. We do this in su
h a waythat the set of all limit 
y
les of ξ is represented by a de�nable set. This allows us to givetwo restatements of Dula
's Problem for ξ�that is, the question whether ξ has �nitelymany limit 
y
les�in model-theoreti
 terms, one involving the re
ently developed notionof U
þ-rank and the other involving the notion of o-minimality.Introdu
tion. Let ξ = a1

∂
∂x

+ a2
∂
∂y

be a ve
tor �eld on R
2 of 
lass C1,and let

S(ξ) := {(x, y) ∈ R
2 : a1(x, y) = a2(x, y) = 0}be the set of singularities of ξ. By the existen
e and uniqueness theoremsfor ordinary di�erential equations (see Cama
ho and Lins Neto [2, p. 28℄ fordetails), ξ indu
es a C1-foliation Fξ on R

2 \ S(ξ) of dimension 1. Abusingterminology, we simply 
all a leaf of this foliation a leaf of ξ. A 
y
le of ξ isa 
ompa
t leaf of ξ; a limit 
y
le of ξ is a 
y
le L of ξ for whi
h there existsa non
ompa
t leaf L′ of ξ su
h that L is 
ontained in the 
losure of L′.Dula
's Problem is the following statement: �if ξ is polynomial, then ξ has�nitely many limit 
y
les�. It is a weakening of the se
ond part of Hilbert's16th problem, whi
h states that �there is a fun
tion H : N → N su
h that forall d ∈ N, if ξ is polynomial of degree d then ξ has at most H(d) limit 
y
les�.Both problems have an interesting history, and while Dula
's Problem wasindependently settled in the 1990s by É
alle [4℄ and Il'yashenko [6℄, Hilbert's16th Problem remains open; see [6℄ for more details.In this paper, we attempt to reformulate Dula
's Problem in model-theoreti
 terms. Our motivation to do so is twofold: we want to2000 Mathemati
s Subje
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18 A. Doli
h and P. Speissegger(i) �nd a model-theoreti
 stru
ture naturally asso
iated to ξ in whi
hthe �ow of ξ and the set of limit 
y
les of ξ are represented byde�nable sets;(ii) know to what extent the geometry of su
h a stru
ture is determinedby Dula
's Problem.Our starting point for (i) is motivated by the pie
ewise triviality ofRolle foliations asso
iated to analyti
 1-forms as des
ribed by Chazal [3℄.Let U ⊆ R
2 be open; a leaf L of ξ|U is a Rolle leaf of ξ|U if for every

C1-
urve δ : [0, 1] → U with δ(0) ∈ L and δ(1) ∈ L, there is a t ∈ [0, 1]su
h that δ′(t) is tangent to ξ(δ(t)). Based on Khovanski�� theory [7℄ over ano-minimal expansion of the real �eld [14℄, we establish (Proposition 1.5 andTheorem 3.4):
Theorem A. Assume that ξ is de�nable in an o-minimal expansion ofthe real �eld. Then there is a 
ell de
omposition C of R

2 
ompatible with
S(ξ) su
h that , with Creg := {C ∈ C : C ∩ S(ξ) = ∅},(1) every 1-dimensional C ∈ Creg is either transverse to ξ or tangentto ξ;(2) for every open C ∈ Creg, every leaf of ξ|C is a Rolle leaf of ξ|C ;(3) for every open C ∈ Creg, the �ow of ξ in C is represented by a lexi-
ographi
 ordering of C.Part (3) of this theorem needs some explanation, as it represents ourunderstanding of the �triviality� of the �ow of ξ in C. Given an open C ∈ Creg,it follows from part (2) that the dire
tion of ξ indu
es a linear ordering <Γon every leaf L of ξ|C . We 
an furthermore de�ne a relation on the set
L(C) of all leaves of ξ|C as follows: given a leaf L of ξ|C , the fa
t that
L is a Rolle leaf of ξ|C implies (see Remark 1.2 below) that L separates
C \ L into two 
onne
ted 
omponents UL,1 and UL,2 su
h that the ve
tor
ξ⊥(z) := (a2(z),−a1(z)) points into UL,2 for all z ∈ L. Thus, for a leaf L′of ξ|C di�erent from L, we de�ne L ≪C L′ if L′ ⊆ UL,2 and L′ ≪C L if
L′ ∈ UL,1. In general, though, the relation ≪C does not always de�ne anordering, even if every leaf of ξ|C is Rolle; see Example 2.2 below.Part (3) now means that the 
ell de
omposition C may be 
hosen insu
h a way that for every open C ∈ Creg, the ordering ≪C on L(C) is alinear ordering. (See Example 3.2 for su
h a de
omposition in the situation ofExample 2.2.) This leads to lexi
ographi
 orderings as follows: given C ∈ Cregand z ∈ C, we denote by Lz the leaf of ξ|C 
ontaining z. If C ∈ Creg is open,we de�ne a linear ordering <C on C by x <C y if and only if either Lx ≪C Ly,or Lx = Ly and x <Lx y. Letting EC be a set of representatives of L(C),it is not hard to see that the stru
tures (C,<C , EC) and (R2, <lex, {y = 0})are isomorphi
, where <lex is the usual lexi
ographi
 ordering of R

2.



An ordered stru
ture of rank two 19To 
omplete the pi
ture, we also de�ne an ordering <C on ea
h 1-dimen-sional C ∈ Creg: if C is tangent to ξ, we let <C be the linear ordering indu
edon C by the dire
tion of ξ, and if C is transverse to ξ, we let <C be the linearordering indu
ed on C by the dire
tion of ξ⊥. For ea
h open C ∈ Creg, wealso let <EC
be the restri
tion of <C to EC . Ea
h of these orderings indu
esa topology on the 
orresponding set that makes it homeomorphi
 to the realline. Finally, for ea
h 1-dimensional C ∈ Creg tangent to ξ, we �x an element

eC ∈ C.In the situation of Theorem A, we re
onne
t the pie
es of C a

ording tothe �ow of ξ as follows: let B be the union of
• all 1-dimensional 
ells in Creg transverse to ξ,
• the sets EC for all open 
ells C ∈ Creg,
• all 0-dimensional 
ells in Creg,
• the singletons {eC} for all 1-dimensional C ∈ Creg tangent to ξ.We de�ne the forward progression map f : B ∪ {∞} → B ∪{∞} by (roughlyspeaking) putting f(x) equal to the next point in B on the leaf of ξ through

x if x 6= ∞ and if su
h a point exists; otherwise we put f(x) := ∞. In thissituation, a point x ∈ B belongs to a 
y
le of ξ if and only if there is anonzero n ∈ N su
h that fn(x) = x, where fn denotes the nth iterate of f.In fa
t, only �nitely many iterates of f are ne
essary to 
apture all 
y
lesof ξ (Proposition 5.3): sin
e a 
y
le of ξ is a Jordan 
urve in R
2, it is a Rolleleaf of ξ and therefore interse
ts ea
h C ∈ C of dimension at most 1 in atmost one 
onne
ted 
omponent. Hen
e there is an N ∈ N su
h that for all

x ∈ B, x belongs to a 
y
le of ξ if and only if fN (x) = x.To see how we 
an use this to dete
t limit 
y
les of 
ertain ξ, we �rstde�ne a 
y
le L of ξ to be a boundary 
y
le if, for every x ∈ L and everyneighborhood V of x, the set V interse
ts some non
ompa
t leaf of ξ. Bound-ary 
y
les and limit 
y
les are the same if ξ is real-analyti
, be
ause of thefollowing theorem of Poin
aré's [12℄ (see also Perko [11, p. 217℄):
Fact 1. If ξ is real-analyti
, then ξ 
annot have an in�nite number oflimit 
y
les that a

umulate on a 
y
le of ξ.On the other hand, it follows from the previous paragraph that for every

x ∈ B, the point x belongs to a boundary 
y
le of ξ if and only if x is in theboundary (relative to B 
onsidered with the topology indu
ed on it by thevarious orderings de�ned above) of the set of all �xed points of fN .Based on the observations mentioned in the pre
eding paragraphs (anda few related observations), we asso
iate to ea
h de
omposition C as in The-orem A a �ow 
on�guration Φξ = Φξ(C) of ξ, intended to 
ode how the 
ellsin C are linked together by the �ow of ξ. To ea
h �ow 
on�guration Φ, weasso
iate in turn a unique �rst-order language L(Φ) in su
h a way that the



20 A. Doli
h and P. Speisseggersituation des
ribed in the pre
eding paragraphs naturally yields an L(Φξ)-stru
ture Mξ in whi
h the lexi
ographi
 orderings of Theorem A, the asso-
iated forward progression map f : B ∪ {∞} → B ∪ {∞} and the set of all
x ∈ B that belong to some boundary 
y
le of ξ are de�nable.If, in the situation of Theorem A, there is an open C ∈ Creg, then theindu
ed stru
ture on C in Mξ is not o-minimal (be
ause the stru
ture
(C,<C , EC) des
ribed above is de�nable in Mξ). Thus, to answer (ii) weneed to work with notions weaker than o-minimality. A weakening that in-
ludes lexi
ographi
 orderings is provided by the rosy theories introdu
ed byOnshuus [9℄.To re
all this rather te
hni
al de�nition, we �x a 
omplete �rst order the-ory T and a su�
iently saturated model M of T , and we work in Meq. (Forstandard model-theoreti
 terminology, we refer the reader to Marker [8℄.)The de�nition of þ-forking is mu
h like that of forking in the stable or simple
ontext: A formula φ(x, a) strongly divides over a set A if tp(a/A) is nonal-gebrai
 and the set {φ(x, b) : b |= tp(a/A)} is k-in
onsistent for some k ∈ N.The formula φ(x, a) þ-divides over A if for some tuple c, φ(x, a) stronglydivides over A ∪ {c}. The formula φ(x, a) þ-forks over A if φ(x, a) impliesa �nite disjun
tion of formulas all of whi
h þ-divide over A. A 
ompletetype p(x) þ-forks over A if there is some formula φ(x) in p(x) that þ-forksover A.For a theory T to be rosy means, roughly speaking, that in models of T ,þ-forking has many desirable properties, mu
h like forking in the stable orsimple 
ontexts. For the formal de�nition we need only fo
us on a single oneof these: T is rosy if for any 
omplete type p(x) over a parameter set B, thereexists B0 ⊆ B with ‖B0‖ ≤ ‖T‖ su
h that p(x) does not þ-fork over B0.The �degree of rosiness� of a theory is measured by the Uþ-rank, de�nedanalogously to the U -rank in stable theories. For an ordinal α and a 
ompletetype p(x) with parameter set A, we de�ne Uþ(p) ≥ α by ordinal indu
tion:(i) Uþ(p) ≥ 0 if p is 
onsistent;(ii) if α is a limit ordinal, then Uþ(p) ≥ α if Uþ(p) ≥ β for all β < α;(iii) Uþ(p) ≥ α+1 if there is a 
omplete type q(x) so that p ⊆ q, q þ-forksover A and Uþ(q) ≥ α.For an ordinal α, we say that Uþ(p) = α if Uþ(p) ≥ α and Uþ(p) 6≥ α + 1.Finally, Uþ(T ) is de�ned to be the supremum of Uþ(p) for all one-types pwith parameters over the empty set. One of the fundamental fa
ts aboutrosy theories is that T is rosy if Uþ(T ) is an ordinal [9℄.For example, every o-minimal theory is rosy of Uþ-rank one. On the otherhand, the theory T of the stru
ture (C,<C , EC) above has Uþ-rank at leasttwo. To see the latter, let M |= T be ℵ1-saturated and write Cz := {x ∈ C :
z1 <C x <C z2 for all z1, z2 ∈ EC su
h that z1 <C z <C z2}. Sin
e EM

C is a



An ordered stru
ture of rank two 21dense linear ordering without endpoints, there are in�nitely many a ∈ EM
Csu
h that a /∈ a
l(∅). For any two su
h a, b ∈ EM

C , the �bers CM
a and CM

bare disjoint, in�nite de�nable sets. Hen
e Uþ(M) ≥ 2.In this paper, we use the argument of the previous example to establishlower bounds on Uþ-rank for the theories we are interested in. For upperbounds, we need a spe
ial 
ase of the Coordinatization Theorem [10, Theo-rem 2.2.2℄:
Fact 2. Assume that T de�nes a dense linear ordering without end-points, and let M |= T be saturated. Let also n ∈ N and assume thatfor all a ∈ M , there are a1, . . . , an ∈ M su
h that a = an and for ea
h

i ∈ {1, . . . , n}, the type of (a1, . . . , ai) over (a1, . . . , ai−1) is implied in T bythe order type of (a1, . . . , ai) over (a1, . . . , ai−1). Then Uþ(T ) ≤ n.Note that our dis
ussion above and the previous example imply that
Uþ(Mξ) ≥ 2. The main result of this paper is the following restatement ofDula
's Problem:
Theorem B. Assume that ξ is de�nable in an o-minimal expansion ofthe real �eld , and let Mξ be the L(Φξ)-stru
ture asso
iated to some �ow
on�guration Φξ of ξ. Then:(1) ξ has �nitely many boundary 
y
les if and only if Uþ(Mξ) = 2;(2) if ξ is real-analyti
, then ξ has �nitely many limit 
y
les if and onlyif Uþ(Mξ) = 2.The proof of Theorem B is lengthy, but straightforward: we prove that

Mξ admits quanti�er elimination in a 
ertain expanded language (Theo-rem 9.11). The main ingredient in this proof is a redu
tion�modulo the the-ory of Mξ in the expanded language, roughly speaking�of general quanti-�er-free formulas to 
ertain quanti�er-free order formulas, whi
h allows usto dedu
e the quanti�er elimination for Mξ from quanti�er elimination ofthe theory of (R2, <lex, {y = 0}, π), where π : R
2 → {y = 0} is the 
anoni
alproje
tion on the x-axis. Under the assumption of having only �nitely manyboundary 
y
les, the new predi
ates of the expanded language are easily seento de�ne subsets of the various 
ells obtained by Theorem A that are �niteunions of points and intervals. Su�
ien
y in Theorem B then follows fromFa
t 2; ne
essity follows by general Uþ-rank arguments.As a 
orollary of Theorem B, É
alle's and Il'yashenko's solutions of Du-la
's Problem imply the following:

Corollary. Assume ξ is polynomial , and let Mξ be the L(Φξ)-stru
tureasso
iated to some �ow 
on�guration Φξ of ξ. Then Uþ(Mξ) = 2.It remains an open question whether, in the situation of the Corollary,the stru
tures are de�nable in some o-minimal expansion of the real line.



22 A. Doli
h and P. SpeisseggerAn answer to this question, however, seems to go far beyond our 
urrentknowledge surrounding Dula
's Problem.Finally, our proof of Theorem B gives rise to a se
ond restatement ofDula
's Problem that does not involve Uþ-rank: Let G be the union of all
1-dimensional C ∈ Creg that are transverse to ξ, all 0-dimensional C ∈ Cregand {∞}. Let Gξ be the expansion of G by all 
orresponding orderings <Cand by the map f2|G. (Note that f2|G maps G into G.) We may view Gξ asa graph whose verti
es are the elements of G and whose edges are de�nedby f2.
Theorem C. Assume that ξ is de�nable in an o-minimal expansion ofthe real �eld , and let Gξ be as above. Then:(1) ξ has �nitely many boundary 
y
les if and only if the stru
ture in-du
ed by Gξ on ea
h 1-dimensional C ⊆ G is o-minimal;(2) if ξ is real-analyti
, then ξ has �nitely many limit 
y
les if andonly if the stru
ture indu
ed by Gξ on ea
h 1-dimensional C ⊆ Gis o-minimal.Our paper is organized as follows: in Se
tions 1�3, we establish Theo-rem A: In Se
tion 1, we 
ombine basi
 o-minimal 
al
ulus with Khovanski��'sLemma to obtain a 
ell de
omposition satisfying (1) and (2) of Theorem A.To re�ne this de
omposition so that (3) holds, we need to study what setswe obtain as Hausdor� limits of a sequen
e of leaves of ξ|C (Proposition 2.5).The re�nement is then given in Se
tion 3, where (3) is established as Theo-rem 3.4. In Se
tions 4 and 5, we de�ne the relevant orderings and progressionmaps asso
iated to ξ as mentioned earlier. Inspired by the latter, we thenintrodu
e the notion of a �ow 
on�guration and the asso
iated �rst-orderlanguage in Se
tion 6, where we also give an axiomatization of the 
ru-
ial properties satis�ed by the models Mξ above. Some basi
 fa
ts aboutthe iterates of the forward progression map are dedu
ed from these axiomsin Se
tion 7. In Se
tion 8, we extend our axioms to re�e
t the additionalassumption that there are only �nitely many boundary 
y
les, and we in-trodu
e additional predi
ates for 
ertain de�nable sets related to the setsof �xed points of the iterates of the forward progression map. The quanti-�er elimination result is then given in Se
tion 9, and we prove Theorems Cand B in Se
tion 10. We �nish with a few questions and remarks in Se
-tion 11.
Global conventions. We �x an o-minimal expansion R of the real�eld; �de�nable� means �de�nable in R with parameters�.For 1 ≤ m ≤ n, we denote by Πm : R

n → R
m the proje
tion on the �rst

m 
oordinates.Given (x, y) ∈ R
2, we put (x, y)⊥ := (y,−x).



An ordered stru
ture of rank two 23For a subset A ⊆ R
n, we let cl(A), int(A), bd(A) := cl(A) \ int(A) and

fr(A) := cl(A) \ A denote the topologi
al 
losure, interior, boundary andfrontier, respe
tively.For n ∈ N, we de�ne the analyti
 di�eomorphism φn : R
n → (−1, 1)n by

φn(x1, . . . , xn) := (x1/
√

1 + x2
1, . . . , xn/

√

1 + x2
n). Given X ⊆ R

n, we write
X∗ := φn(X), and given a ve
tor �eld η on R

n of 
lass C1, we write η∗ forthe push-forward (φn)∗ η of η to (−1, 1)n.A
knowledgements. We thank Lou van den Dries and Chris Miller fortheir suggestions and 
omments on the earlier versions of this paper.1. Rolle de
omposition. Let U ⊆ R
2 be open and p ≥ 1 be an integer.Let ξ = a1

∂
∂x

+a2
∂
∂y

be a de�nable ve
tor �eld on U of 
lass Cp (that is, thefun
tions a1, a2 : U → R are de�nable and of 
lass Cp), and let
S(ξ) := {z ∈ U : a1(z) = a2(z) = 0}be the set of singularities of ξ. By the existen
e and uniqueness theoremsfor ordinary di�erential equations [2, p. 28℄, ξ indu
es a Cp-foliation Fξ on

U \ S(ξ) of dimension 1. Abusing terminology, we simply 
all a leaf of thisfoliation a leaf of ξ.
Remark. Put ω := a2dx− a1dy; then S(ξ) is the set of singularities of

ω, and the foliation Fξ is exa
tly the foliation on U \ S(ξ) de�ned by theequation ω = 0. Below, we will use this observation (mainly in 
onne
tionwith some 
itations) without further mention.Definition 1.1. Let γ : I → U be of 
lass Cp, where I ⊆ R is aninterval. We 
all γ a Cp-
urve in U and usually write Γ := γ(I). If t ∈ I issu
h that ξ⊥(γ(t))·γ′(t) 6= 0, we say that γ is transverse to ξ at t; otherwise, γis tangent to ξ at t. The 
urve γ is transverse (tangent) to ξ if γ is transverse(tangent) to ξ at every t ∈ I.A leaf L of ξ is a Rolle leaf of ξ if for every C1-
urve γ : [0, 1] → U with
γ(0) ∈ L and γ(1) ∈ L, there is a t ∈ [0, 1] su
h that ξ⊥(γ(t)) · γ′(t) = 0.A 
y
le of ξ is a 
ompa
t leaf of ξ. A 
y
le L of ξ is a limit 
y
le of ξ ifthere is a non
ompa
t leaf L′ of ξ su
h that L ⊆ cl(L′). A 
y
le L of ξ is aboundary 
y
le of ξ if for every open set V ⊆ R

2 with V ∩ L 6= ∅, there is anon
ompa
t leaf L′ of ξ su
h that V ∩ L′ 6= ∅.Remark 1.2. Sin
e ξ is integrable in U \ S(ξ), every Rolle leaf L of
ξ is an embedded submanifold of U \ S(ξ) that is 
losed in U \ S(ξ). Inparti
ular, by Theorem 4.6 and Lemma 4.4 of Chapter 4 in [5℄, if U \ S(ξ)is simply 
onne
ted, then U \ (S(ξ) ∪ L) has exa
tly two 
onne
ted 
om-ponents su
h that L is equal to the boundary in U \ S(ξ) of ea
h of these
omponents.



24 A. Doli
h and P. SpeisseggerLemma 1.3 (Khovanski�� [7℄).(1) Assume that U \ S(ξ) is simply 
onne
ted , and let L ⊆ U \ S(ξ) bean embedded leaf of ξ that is 
losed in U \ S(ξ). Then L is a Rolleleaf of ξ in U .(2) Let L be a 
y
le of ξ. Then L is a Rolle leaf of ξ.Sket
h of proof. (1) Arguing as in the pre
eding remark, we see that theset U \ S(ξ) has exa
tly two 
onne
ted 
omponents U1 and U2, su
h that
bd(Ui) ∩ (U \ S(ξ)) = L for i = 1, 2. The argument of Example 1.3 in [14℄now shows that L is a Rolle leaf of ξ.(2) Sin
e L is 
ompa
t, L is an embedded and 
losed submanifold of R

2.Now 
on
lude as in part (1).Definition 1.4. We 
all ξ Rolle if S(ξ) = ∅, ξ is of 
lass C1 and everyleaf of ξ is a Rolle leaf of ξ.We now let C be a Cp-
ell de
omposition of R
2 
ompatible with U and

S(ξ), and we put CU := {C ∈ C : C ⊆ U}. Re�ning C, we may assume that
ξ|C is of 
lass Cp for every C ∈ CU , and that every C ∈ CU of dimension 1is either tangent or transverse to ξ. Re�ning C again, we also assume that(I) a1 and a2 have 
onstant sign on every C ∈ CU .Su
h a de
omposition C is 
alled a Rolle de
omposition for ξ, be
ause of thefollowing:Proposition 1.5. Let C ∈ CU be open su
h that C ∩ S(ξ) = ∅. Then
ξ|C is Rolle. Moreover , if both a1 and a2 have nonzero 
onstant sign on C,then either every leaf of ξ|C is the graph of a stri
tly in
reasing Cp-fun
tion
f : I → R, or every leaf of ξ|C is the graph of a stri
tly de
reasing Cp-fun
tion f : I → R, where I ⊆ R is an open interval depending on f .Proof. If a1|C = 0 or a2|C = 0, the 
on
lusion is obvious. So we assumethat a1|C and a2|C have 
onstant positive sign, say; the remaining three
ases are handled similarly. Let L be a leaf of ξ|C ; we 
laim that L is thegraph of a stri
tly in
reasing Cp-fun
tion f : I → R, where I := Π1(L).To see this, assume �rst that there are x, y1, y2 ∈ R su
h that (x, yi) ∈ Lfor i = 1, 2 and y1 6= y2. Sin
e ξ|C is of 
lass Cp, the leaf L is a Cp-
urve, soby Rolle's Theorem, there is an a ∈ L su
h that L is tangent at a to ∂/∂y.But this means that a1(a) = 0, a 
ontradi
tion. Thus, L is the graph of astri
tly in
reasing Cp-fun
tion f : I → R.It follows from the 
laim that L is an embedded submanifold of C and,sin
e C ∩ S(ξ) = ∅, that L is a 
losed subset of C. Thus by Lemma 1.3(1),
L is a Rolle leaf of ξ|C .



An ordered stru
ture of rank two 252. Rolle foliations and Hausdor� limits of Rolle leaves. We 
on-tinue working with ξ as in Se
tion 1, and we �x a Rolle de
omposition Cfor ξ. We �x an open C ∈ CU su
h that C ∩ S(ξ) = ∅.To simplify notation, we write ξ in pla
e of ξ|C throughout this se
tion.Let L be a leaf of ξ. Sin
e L is a Rolle leaf of ξ, C \L has two 
onne
ted
omponents UL,1 and UL,2, and L is the boundary of UL,i in C for i = 1, 2.Sin
e ξ⊥(z) 6= (0, 0) for all z ∈ C and L is 
onne
ted, there is an i ∈ {1, 2}su
h that ξ⊥(z) points inside UL,i for all z ∈ L; reindexing if ne
essary, wemay assume that ξ⊥(z) points inside UL,2 for every leaf L of ξ.Definition 2.1. For a point z ∈ C, we let Lξ
z be the unique leaf of ξsu
h that z ∈ Lξ

z. For any subset X ⊆ C, we de�ne
F ξ(X) :=

⋃

z∈X

Lξ
z,
alled the ξ-saturation of X, and we put

Lξ(X) := {Lξ
z : z ∈ X}.For X ⊆ C, we de�ne a relation ≪ξ

X on the set Lξ(X) as follows: L≪ξ
X Mif and only if L ⊆ UM,1 (if and only if M ⊆ UL,2).Whenever ξ is 
lear from 
ontext, we omit �ξ� in the de�nitions andnotations above.Note that in general the relation ≪C may not de�ne an order relationon L(C):Example 2.2. Let ζ := −y ∂

∂x
+ x ∂

∂y
, and let g : R

2 → R be de�nedby g(x, y) := (y − (x − 2))2. Then gζ is a real-analyti
 ve
tor �eld on R
2and S(gζ) = {0} ∪ {(x, y) : y = x− 1}. Let also C be the 
ell (α, β), where

α, β : (0, 1) → R are de�ned by α(x) := x− 2 and β(x) := x− 1.Then C ∩ S(gζ) = ∅, and sin
e every leaf of ζ is a Rolle leaf of ζ, theve
tor �eld gζ|C is Rolle. However, ≪gζ
C is not an ordering of L(C): Pi
k aleaf L of ξ (that is, a 
ir
le with 
enter (0, 0)) su
h that L ∩ gr(α) 
ontainstwo points. Then L ∩ C 
onsists of two distin
t leaves L1 and L2 of gζ|C .Sin
e ζ⊥(z) points outside the 
ir
le L for every z ∈ L, we get L1 ⊆ UL2,1and L2 ⊆ UL1,1, that is, L1 ≪gζ

C L2 and L2 ≪gζ
C L1.However, for 
ertain X the relation ≪X is a linear ordering of L(X), asdis
ussed in the following lemma. For a 
urve γ : I → C, we write

L(t) := Lγ(t) for all t ∈ I;in this situation, we have F (Γ ) =
⋃

t∈I L(t).Lemma 2.3. Let γ : I → C be a Cp-
urve transverse to ξ, where I ⊆ Ris an interval.
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h and P. Speissegger(1) If I is open, then F (Γ ) is open.(2) The relation ≪Γ is a linear ordering of L(Γ ), and the map t 7→ L(t) :
I → L(Γ ) is order-preserving if ξ⊥(γ(t)) · γ′(t) > 0 for all t ∈ I andorder-reversing if ξ⊥(γ(t)) · γ′(t) < 0 for all t ∈ I.Proof. (1) Assume that I is open, and let t ∈ I. Be
ause ξ is Cp andnonsingular and γ is transverse to ξ, by a variant of Pi
ard's Theorem (seeTheorem 8-2 of [1℄), there is an open set Bt ⊆ C 
ontaining γ(t) su
h that

Bt ⊆ F (Γ ). Put B :=
⋃

t∈I Bt; then Γ ⊆ B ⊆ F (Γ ), so F (Γ ) = F (B). Sin
e
B is open, it follows from Theorem III.1 in [2℄ that F (Γ ) is open.(2) Sin
e γ is transverse to ξ and ea
h L(t) is Rolle, the map t 7→ L(t) :
I → L(Γ ) is inje
tive. It therefore su�
es to show that either

s < t⇔ L(s) ≪Γ L(t) for all s, t ∈ I,or
s < t⇔ L(t) ≪Γ L(s) for all s, t ∈ I.Sin
e γ is transverse to ξ, the 
ontinuous map t 7→ ξ⊥(γ(t)) · γ′(t) : I → Rhas 
onstant positive or negative sign. Assume it has 
onstant positive sign;the 
ase of 
onstant negative sign is handled similarly. Then for every t ∈ I,the set

Γ<t := {γ(s) : s ∈ I, s < t}is 
ontained in UL(t),1. Hen
e L(s) ⊆ UL(t),1 for all s ∈ I with s < t, that is,
L(s) ≪Γ L(t) for all s ∈ I with s < t. Similarly, L(t) ≪Γ L(s) for all s ∈ Iwith s > t, and sin
e t ∈ I was arbitrary, the lemma follows.We assume for the rest of this se
tion that C is bounded. Let ξC be the
1-form on C de�ned by

ξC :=
ξ|C

‖ξ|C‖
.Then ξC is a bounded, de�nable Cp-map on C, so by o-minimality, there isa �nite set FC ⊆ fr(C) su
h that ξC extends 
ontinuously to cl(C) \ FC ; wedenote this 
ontinuous extension by ξC as well.Let c, d ∈ R and α, β : (c, d) → R be de�nable and Cp su
h that

C = (α, β). Be
ause C is bounded, the limits α(c) := limx→c α(x), α(d) :=
limx→d α(x), β(c) := limx→c β(x) and β(d) := limx→d β(x) exist in R. Thepoints of the set

VC := {(c, α(c)), (d, α(d)), (c, β(c)), (d, β(d))}are 
alled the 
orners of C.Example 2.4. In Example 2.2, we have FC ⊆ VC and both gζ · (∂/∂x)and gζ · (∂/∂y) have 
onstant nonzero sign. The next proposition shows thatunder the latter assumptions, the situation of Example 2.2 is as bad as itgets.



An ordered stru
ture of rank two 27Proposition 2.5. Suppose that FC ⊆ VC , a1|C 6= 0 and a2|C 6= 0. Let
γ : [0, 1] → C be a Cp-
urve transverse to ξ, and let ti ∈ (0, 1) be su
h that
t0 < t1 < t2 < · · · and ti → 1. Then the sequen
e (cl(L(ti))) 
onverges inthe Hausdor� metri
 to a 
ompa
t set K := lim cl(L(ti)) ⊆ cl(C) su
h that(i) Π1(K) = [a, b] with c ≤ a < b ≤ d;(ii) ea
h 
omponent of K ∩ C is a leaf of ξ;(iii) K ∩Π−1

1 (a, b) = gr(f) for some 
ontinuous fun
tion f : (a, b) → R.Proof. By Proposition 1.5, we may assume that for every t ∈ [0, 1], theleaf L(t) is the graph of a stri
tly in
reasing Cp-fun
tion ft : (a(t), b(t)) →
R (the other 
ases are handled similarly). Sin
e C is bounded, the limits
ft(a(t)) := limx→a(t) ft(x) and ft(b(t)) := limx→b(t) ft(x) exist, and we alsodenote by ft : [a(t), b(t)] → R the 
orresponding 
ontinuous extension of ft.Then cl(L(t)) = gr(ft). By Lemma 2.3, we may also assume that the map
t 7→ L(t) : [0, 1] → L(Γ ) is order-preserving (again, the other 
ase is handledsimilarly). Finally, sin
e ea
h ft is stri
tly in
reasing and the map t 7→ L(t) :
[0, 1] → L(Γ ) is order-preserving, it follows that fs(x) > ft(x) for all s, t ∈
[0, 1] su
h that s < t and x ∈ (a(s), b(s)) ∩ (a(t), b(t)).Sin
e ea
h cl(L(ti)) is 
onne
ted, the set K is 
onne
ted, so Π1(K) isan interval [a, b], whi
h proves (i). It follows in parti
ular that for every
x ∈ (a, b), there is an open interval Ix ⊆ (a, b) 
ontaining x su
h that
Ix ⊆ (a(ti), b(ti)) for all su�
iently large i. Thus by our assumptions,(∗) for every x ∈ (a, b) we have fti |Ix > fti+1

|Ix for su�
iently large i.Next, we show that K ∩ C is an integral manifold of ξ. Fix a point
(x, y) ∈ K∩C; it su�
es to show that there is an open box B ⊆ C 
ontaining
(x, y) su
h that K ∩ B is an integral manifold of ξ. Let B = I × J be anopen box 
ontaining (x, y) su
h that I ⊆ Ix. Sin
e a1(x, y) 6= 0, we may alsoassume (after shrinking B) that there is an ε > 0 su
h that |a1(x

′, y′)| ≥ ε forall (x′, y′) ∈ B; in parti
ular, there is anM > 0 su
h that fti |I isM -Lips
hitzfor all su�
iently large i. Hen
e by (∗), the fun
tion f : I → R de�ned by
f(x′) := limi→∞ fti(x

′) is Lips
hitz and satis�esK∩(I×R) = K∩B = gr(f).Finally, shrinking B again if ne
essary, we see that Fξ being a foliationimplies that K ∩B is an integral manifold of ξ, as required.Sin
e K is 
ompa
t and K ∩ C is an integral manifold of ξ, every 
om-ponent of K ∩ C is a leaf of ξ. It also follows from the previous paragraphthat K ∩C is the graph of a 
ontinuous fun
tion g : Π1(K ∩C) → R, whi
hproves (ii).Let now x ∈ (a, b) be su
h that x /∈ Π1(K∩C). Then (x, α(x)) or (x, β(x))belongs to K, be
ause (a, b) ⊆ Π1(K); by (∗) we have (x, β(x)) /∈ K, so
(x, α(x)) ∈ K. If (

ξC · ∂
∂x

)

(x, α(x)) 6= 0, then by the same arguments asused for (ii), we 
on
lude that there are open intervals I, J ⊆ R su
h that
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(x, α(x)) ∈ I×J and K∩(I×J) is the graph of a 
ontinuous fun
tion de�nedon I. Therefore, part (iii) is proved on
e we show that (

ξC · ∂
∂x

)

(x, α(x)) 6= 0for all x ∈ (a, b) \Π1(K ∩ C).Assume for a 
ontradi
tion that there is an x ∈ (a, b) \Π1(K ∩ C) su
hthat (

ξC · ∂
∂x

)

(x, α(x)) = 0. Let M > |α′(x)|, and let I, J ⊆ R be openintervals su
h that I ⊆ Ix and |a2/a1| > M on B := I × J . Sin
e fti(x) →
α(x), it follows from the fundamental theorem of 
al
ulus for all su�
ientlylarge i that fti(xi) = α(xi) for some xi ∈ I, a 
ontradi
tion.3. Pie
ewise trivial de
omposition. We 
ontinue working with ξ asin Se
tion 1, and we adopt the notations used there. Note that ξ∗ (as de�nedat the end of the Introdu
tion) is a de�nable ve
tor �eld on U∗ of 
lass Cp,and that C is a Rolle de
omposition of R

2 for ξ if and only if C∗ := {C∗ :
C ∈ C} is a Rolle de
omposition of (−1, 1)2 for ξ∗.Let C ⊆ U be a bounded, open, de�nable Cp-
ell su
h that ξ|C is Rolle.To dete
t situations like the one des
ribed in Example 2.2, we asso
iate thefollowing notations to su
h a C. There are real numbers c < d and de�nable
Cp-fun
tions α, β : (c, d) → R su
h that C = (α, β). Given a C1-fun
tion
δ : (c, d) → R su
h that α(x) ≤ δ(x) ≤ β(x) for all x ∈ (c, d), we de�ne
σδ : C → R by

σδ(x, y) := ξ⊥(x, y) ·

(

1

δ′(x)

)

.Note that for ea
h x ∈ (c, d), there are by o-minimality a maximal αC
0 (x) ∈

(α(x), β(x)] and a minimal βC
0 (x) ∈ [α(x), β(x)) su
h that the fun
tion σαhas 
onstant sign on {x} × (α(x), αC

0 (x)) and the fun
tion σβ has 
onstantsign on {x}×(βC
0 (x), β(x)); we omit the supers
ript �C� whenever C is 
learfrom 
ontext. Note that α0, β0 : (c, d) → R are de�nable.Definition 3.1. A Cp-
ell de
omposition of R

2 
ompatible with U ,
bd(U) and S(ξ) is 
alled almost pie
ewise trivial for ξ if(I) every C ∈ CU of dimension 1 is either tangent or transverse to ξ;(II) the 
omponents of ξ have 
onstant sign on every C ∈ CU ;and for every open, bounded C ∈ CU su
h that C ∩ S(ξ) = ∅, the followinghold:(III) FC ⊆ VC ;(IV) the maps α0, β0 : (c, d) → R are 
ontinuous;(V) the map σα has 
onstant sign on the 
ell (α, α0), and the map σβhas 
onstant sign on the 
ell (β0, β).We 
all C pie
ewise trivial for ξ if C∗ is almost pie
ewise trivial for ξ∗.
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ture of rank two 29Example 3.2. Let ζ := −y ∂
∂x

+x ∂
∂y
, and let C be the 
ell de
ompositionof R

2 
onsisting of the sets of the form {(x, y) : x ∗ 0, y ⋆ 0} with ∗, ⋆ ∈
{=, <,>}. Then C is pie
ewise trivial for ζ.Remarks 3.3.(1) Any pie
ewise trivial de
omposition for ξ is a Rolle de
ompositionfor ξ.(2) If U is bounded, then C is almost pie
ewise trivial for ξ if and onlyif C is pie
ewise trivial for ξ.(3) We obtain a pie
ewise trivial de
omposition for ξ in the followingway: First, obtain a Cp-
ell de
omposition C 
ompatible with U ,

bd(U) and S(ξ) satisfying (I) and (II). Then, to satisfy (III)�(V), weonly need to re�ne Π1(C) := {Π1(C) : C ∈ C}.We now �x a pie
ewise trivial de
omposition C of R
2 for ξ. The name�pie
ewise trivial� is justi�ed by:Theorem 3.4. Let C ∈ CU be open su
h that C ∩ S(ξ) = ∅. Then therelation ≪C on L(C) is a linear ordering.To prove the theorem, we �x a bounded, open C ∈ CU su
h that C ∩S(ξ)

= ∅. Establishing the theorem for this C su�
es: if the theorem holds forevery bounded, open D ∈ C su
h that D∩S(ξ) = ∅, then the theorem holdswith C∗ and ξ∗ in pla
e of C and ξ (be
ause every D ∈ C∗ is bounded). Sin
e
φ2 is an analyti
 di�eomorphism, it follows that the theorem holds for everyopen D ∈ C su
h that D ∩ S(ξ) = ∅.We need quite a bit of preliminary work (see the end of this se
tion forthe proof of the theorem). For Lemma 3.5 and Corollary 3.6 below, we �x a
Cp-
urve γ : [0, 1] → C transverse to ξ.Lemma 3.5. Let ti ∈ (0, 1) for i ∈ N be su
h that ti → t ∈ [0, 1]. Then
C ∩ lim cl(L(ti)) = L(t).Proof. From Proposition 2.5 we know that C ∩ K is a union of leavesof ξ|C , where K := lim cl(L(ti)). Thus, sin
e γ(ti) → γ(t) and γ(t) ∈ L(t),it follows that L(t) ⊆ C ∩ K. To prove the opposite in
lusion, we mayassume by Proposition 1.5 that every leaf of ξ|C is the graph of a stri
tlyin
reasing fun
tion (the other 
ase is handled similarly). By Proposition 2.5again, Π1(K) = [a, b] with c ≤ a < b ≤ d, and there is a 
ontinuous fun
tion
f : (a, b) → R su
h that K ∩

(

(a, b) × R
)

= gr(f).Assume for a 
ontradi
tion that there is a leaf M of ξ|C su
h that M 6=
L(t) and M ⊆ C ∩K. Then L(t) and M are disjoint subsets of gr(f); say
L(t) = gr(ft), where ft : (a(t), b(t)) → R, andM = gr(g), where g : (a′, b′) →
R. We assume here that a′ < b′ ≤ a(t) < b(t); the other 
ase is againhandled similarly. By our assumption, c < a(t) and hen
e limx→a(t)+ ft(x) ∈
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{α(a(t)), β(a(t))}. We assume here limx→a(t)+ ft(x) = α(a(t)), the other
ase being handled similarly. Then by the Mean Value Theorem, for every
ε > 0 there is an x ∈ (a(t), a(t) + ε) su
h that f ′t(x) > α′(x), that is,
σα(x, ft(x)) < 0. It follows from (V) that(∗) the map σα has 
onstant negative sign on (α, α0).On the other hand, b′ < d, and we may assume that limx→b′− g(x) = α(b′):otherwise, limx→b′− g(x) = β(b′), and sin
e

lim
x→a(t)

f(x) = lim
x→a(t)+

ft(x) = α(a(t)),we 
an repla
e M by a leaf of ξ|C that is 
ontained in gr(f) and has thedesired property. But limx→b′− g(x) = α(b′) means (as above) that for ev-ery ε > 0 there is an x ∈ (b′ − ε, b′) su
h that g′(x) < α′(x), that is,
σα(x, g(x)) > 0. This 
ontradi
ts (∗), so the lemma is proved.Put F := F (γ((0, 1))); note that F is open by Lemma 2.3(1).Corollary 3.6. C ∩ bd(F ) = L(0) ∪ L(1); in parti
ular , there are dis-tin
t j0, j1 ∈ {1, 2} su
h that C \ cl(F ) = UL(0),j0 ∪ UL(1),j1.Proof. Let z ∈ cl(F ) ∩ C, and let zi ∈ F be su
h that zi → z. Let
ti ∈ (0, 1) be su
h that zi ∈ L(ti); passing to a subsequen
e if ne
essary, wemay assume that ti → t ∈ [0, 1]. Then z ∈ C ∩ lim cl(L(ti)), so z ∈ L(t) byLemma 3.5. Sin
e F is open by Lemma 2.3(1), it follows that C ∩ bd(F ) ⊆
L(0)∪L(1). On the other hand, by Lemma 2.3(2), there is a j ∈ {1, 2} su
hthat L(t) ⊆ UL(0),j for all t ∈ (0, 1] and L(t) ⊆ U1,j′ for all t ∈ [0, 1), where
j′ ∈ {1, 2} \ {j}. Hen
e L(0) ∪ L(1) ⊆ C ∩ bd(F (Γ )), and the 
orollary isproved.Definition 3.7. Let τ : [0, 1] → U be 
ontinuous. We 
all τ pie
ewise
Cp-monotone in ξ if there are t0 := 0 < t1 < t2 < · · · < tk < tk+1 := 1 and
∗ ∈ {<,>} su
h that for all i = 0, . . . , k, the restri
tion τ |(ti,ti+1) is Cp, andeither ξ⊥(τ(t)) · τ ′(t) = 0 for all t ∈ (ti, ti+1) or ξ⊥(τ(t)) · τ ′(t) ∗ 0 for all
t ∈ (ti, ti+1). In this situation, we also say that τ is ∗-pie
ewise Cp-monotonein ξ. We 
all su
h a τ tangent to ξ if ea
h τ |(ti,ti+1) is tangent to ξ.Lemma 3.8. Let v, w ∈ C. Then there is a 
urve τ : [0, 1] → C that ispie
ewise Cp-monotone in ξ and satis�es τ(0) = v and τ(1) = w.Proof. If Lv = Lw, then there is a Cp-
urve τ : [0, 1] → Lv su
h that
τ(0) = v and τ(1) = w, and we are done. So we assume from now on that
Lv 6= Lw. Let jvw ∈ {1, 2} be su
h that w ∈ ULv,jvw , and put

∗vw :=

{

< if jvw = 1,
> if jvw = 2.By o-minimality, there is a de�nable Cp-
urve τ : [0, 1] → C su
h that
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ture of rank two 31(I) τ(0) = v and τ(1) = w.Again by o-minimality, there are t0 := 0 < t1 < · · · < tk < tk+1 := 1 su
hthat for ea
h i = 0, . . . , k,(II) the map t 7→ ξ⊥(τ(t)) · τ ′(t) has 
onstant sign on (ti, ti+1).By Khovanski�� theory [14℄, we may also assume that for every i = 0, . . . , k,(III) either τ((ti, ti+1)) ∩ (Lv ∪ Lw) = ∅ or τ((ti, ti+1)) ⊆ Lv ∪ Lw.We now pro
eed by indu
tion on k, simultaneously for all v, w ∈ C and τsatisfying (I)�(III), to prove that τ 
an be 
hanged into a 
urve that is ∗vw-pie
ewise Cp-monotone in ξ. If k = 0, then τ is ∗vw-pie
ewise Cp-monotonein ξ, so we are done. Therefore, we assume that k > 0 and that the 
laimholds for lower values of k.Sin
e τ(1) = w /∈ Lv and Lv is 
losed in C, there is a maximal t ∈ [0, 1)su
h that τ(t) ∈ Lv, and by our 
hoi
e of t1, . . . , tk, we have t = ti for some
i ∈ {0, . . . , k}. If i > 1, we repla
e τ |[0,ti] by a Cp-
urve τ1 : [0, ti] → Lvsu
h that τ1(0) = v and τ1(ti) = τ(ti), and we reindex ti, . . . , tk+1 as
t1, . . . , tk−i+2. Hen
e by the indu
tive hypothesis, we may assume that i ≤ 1and τ([0, 1]) ⊆ Lv ∪ ULv,jvw . Put v′ := τ(t1); we now distinguish two 
ases:
Case 1: v′ ∈ Lv. Then ∗v′w = ∗vw, so by the indu
tive hypothesis (andres
aling), there is a 
urve τ1 : [t1, 1] → C that is ∗vw-pie
ewise Cp-monotonein ξ and satis�es τ1(t1) = v′ and τ1(1) = w. Now repla
e τ |[t1,1] by τ1.
Case 2: v′ /∈ Lv. Then we must have ξ⊥(τ(t))·τ(t)∗vw0 for all t ∈ (0, t1).If v′ ∈ Lw, the lemma follows by a similar argument to that in Case 1, so weassume that v′ /∈ Lw. We 
laim again that ∗v′w = ∗vw in this situation, fromwhi
h the lemma then follows by the indu
tive hypothesis as in Case 1.To see the 
laim, we note that by Corollary 3.6 the 
omplement of

F (τ([0, t1])) in C has two 
onne
ted 
omponents ULv ,j and ULv′,j′
, where

j, j′ ∈ {1, 2} are distin
t. By the above, j must be di�erent from jvw, so
w ∈ ULv′,j′

, that is, j′ = jv′w, whi
h implies jvw = jv′w as required.Lemma 3.9. Let τ : [0, 1] → C be pie
ewise Cp-monotone in ξ su
h that
τ is not tangent to ξ. Then there is a Cp-
urve γ : [0, 1] → C su
h that γ istransverse to C, γ(0) = τ(0) and γ(1) = τ(1).Proof. Let t0 := 0 < t1 < t2 < · · · < tk < tk+1 := 1 be as in De�nition3.7. We work by indu
tion on k. If k = 0, then by hypothesis τ is transverseto ξ, and we take γ := τ . So we assume that k > 0; for the indu
tive step,it su�
es to 
onsider the 
ase k = 1. The hypothesis on τ then implies thatat least one of τ |(0,t1) and τ |(t1,1) is transverse to ξ; so we distinguish three
ases:
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Case 1: Both τ |(0,t1) and τ |(t1,1) are transverse to ξ. By Pi
ard's The-orem, there are an open neighborhood W ⊆ C of τ(t1) and a Cp-di�eo-morphism f : R

2 → W su
h that f(0) = τ(t1) and f∗ξ = ∂/∂x, where
f∗ξ is the pull-ba
k of ξ via f . Then for some ε > 0, the 
ontinuous 
urve
f−1 ◦ τ |(t1−ε,t1+ε) is Cp and transverse to ∂/∂x on (t1 − ε, t1) ∪ (t1, t1 + ε).Using standard smoothing arguments from analysis, we 
an now �nd a Cp-
urve η : (t1 − ε, t1 + ε) → R

2 that is transverse to ∂/∂x and satis�es
η(t) = f−1(τ(t)) for all t ∈ (t1 − ε, t1 − ε/2) ∪ (t1 + ε/2, t1 + ε). Now de�ne
γ : [0, 1] → C by

γ(t) :=

{

τ(t) if 0 ≤ t < t1 − ε or t1 + ε < t ≤ 1,

f(η(t)) if t1 − ε ≤ t ≤ t1 + ε.

Case 2: τ |(0,t1) is transverse to ξ and τ |(t1,1) is tangent to ξ. Sin
e
τ([t1, 1]) is 
ompa
t, there are (by Pi
ard's theorem again) s0 := t1 <
s1 < · · · < sl < sl+1 := 1, open neighborhoods Wi ⊆ U of τ(si) and
Cp-di�eomorphisms fi : R

2 → Wi for i = 0, . . . , l + 1 su
h that τ([t1, 1]) ⊆
W0 ∪ · · · ∪Wl+1, fi(0) = τ(si) and f∗i ξ = ∂/∂x for ea
h i. We assume that
l = 0, so that s0 = t1 and s1 = 1; the general 
ase then follows by indu
tionon l.Let u ∈ (t1, 1) be su
h that τ(u) ∈ W0 ∩ W1. Working with f0 as inCase 1, we 
an repla
e τ |[0,u] by a Cp-
urve η : [0, u] → C transverse to ξsu
h that η(0) = τ(0) and η(u) = τ(u). De�ne η(t) := τ(t) for t ∈ (u, 1];repeating the pro
edure with η and f1 in pla
e of τ and f0, we obtain a
Cp-
urve γ : [0, 1] → C that is transverse to ξ and satis�es γ(0) = τ(0) and
γ(1) = τ(1), as desired.
Case 3: τ |(0,t1) is tangent to ξ and τ |(t1,1) is transverse to ξ. This 
aseis similar to Case 2.Combining Lemmas 3.8 and 3.9, we obtain:Corollary 3.10. Let u, v ∈ C be su
h that Lu 6= Lv. Then there is a

Cp-
urve γ : [0, 1] → C su
h that γ(0) = u, γ(1) = v and γ is transverseto ξ.Proof of Theorem 3.4. Let M,L ∈ L(C) be distin
t and 
hoose v ∈ Mand w ∈ L. By Corollary 3.10, there is a Cp-
urve γ : [0, 1] → C su
h that
γ(0) = v, γ(1) = w and γ is transverse to ξ. Hen
e t 7→ ξ⊥(γ(t)) · γ′(t) has
onstant nonzero sign on [0, 1]; this shows that ≪C is irre�exive. Transitivityfollows by a similar argument.4. Foliation orderings. Let ξ = a1

∂
∂x

+a2
∂
∂y

be a de�nable ve
tor �eldof 
lass C1 on R
2. We �x a pie
ewise trivial de
omposition C of R

2 for ξ;re�ning C if ne
essary, we may assume that C is a strati�
ation. To simplify
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ture of rank two 33statements, we put
Creg := {C ∈ C : C ∩ S(ξ) = ∅}.For instan
e, in Example 3.2, the pie
ewise trivial de
omposition C is astrati�
ation and Creg = C \ {0}.Remark 4.1. C being a strati�
ation has the following 
onsequen
e: forevery 1-dimensional C ∈ C, there are exa
tly two distin
t open D ∈ C su
hthat C ∩ fr(D) 6= ∅, and for ea
h of these D we have C ⊆ fr(D).Let V ⊆ R

2 \ S(ξ) be an integral manifold of ξ, that is, a 1-dimensionalmanifold tangent to ξ. Given u, v ∈ V , we de�ne u <ξ
V v if and only if there isa C1-path γ : [0, 1] → V su
h that γ(0) = u, γ(1) = v and ξ(γ(t)) · γ′(t) > 0for all t ∈ [0, 1].Lemma 4.2. Assume that V is 
onne
ted and not a 
ompa
t leaf. Thenthe relation <ξ

V de�nes a dense linear ordering of V without endpoints.Proof. Let u, v ∈ V be su
h that u 6= v. Sin
e V is 
onne
ted, we get
u <ξ

V v or v <ξ
V u. On the other hand, if there are C1-paths γ, δ : [0, 1] → Vsu
h that γ(0) = δ(1) = u, γ(1) = δ(0) = v and ξ(γ(t)) · γ′(t) > 0 and

ξ(δ(t)) · δ′(t) > 0 for all t ∈ [0, 1], then γ([0, 1])∪ δ([0, 1]) is a 
ompa
t leaf of
ξ 
ontained in V ; sin
e V is 
onne
ted, it follows that V is a 
ompa
t leaf,a 
ontradi
tion.We now �x a C ∈ Creg su
h that dim(C) > 0.Definition 4.3. The foliation of ξ indu
es an ordering <ξ

C on C asfollows:
• Suppose that C is open, and let u, v ∈ C. Then every leaf of ξ|C isnon
ompa
t by Proposition 1.5. Thus, we de�ne u <ξ

C v if and only if
Lu ≪ξ

C Lv or Lu = Lv and u <ξ
Lu

v.
• Suppose that dim(C) = 1 and C is tangent to ξ. Then C is a 
on-ne
ted, non
ompa
t integral manifold of ξ, so we de�ne <ξ

C as beforeLemma 4.2.
• Suppose that dim(C) = 1 and C is transverse to ξ. Let u, v ∈ C; wede�ne u <ξ

C v if and only if there is a C1-
urve γ : [0, 1] → C su
hthat ξ⊥(γ(t)) · γ′(t) > 0 for all t ∈ [0, 1].As before, we omit the supers
ript ξ whenever it is 
lear from 
ontext.A <C-interval is a set A of the form (a, b) := {c ∈ C : a ∗1 c ∗2 b} with
a, b ∈ C, or (a,∞) := {c ∈ C : a∗c} with a ∈ C, or (−∞, b) := {c ∈ C : c∗c}with b ∈ C, where ∗, ∗1, ∗2 ∈ {<C ,≤C}; we 
all A open if ∗ = ∗1 = ∗2 = <C .Lemma 4.4. The ordering <C is a dense linear ordering on C withoutendpoints. Moreover , if dim(C) = 1, then every <C-bounded subset of C hasa least upper bound.
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h and P. SpeisseggerProof. It is 
lear from the de�nition that C has no endpoints with respe
tto <C . Density and linearity follow from Lemmas 2.3 and 4.2 if dim(C) = 1,and if C is open, they follow from Lemma 4.2 and Theorem 3.4.For the se
ond statement, assume that dim(C) = 1 and let α : (0, 1)→R
2be C1 and inje
tive su
h that C = α((0, 1)). If C is tangent to ξ, then themap t 7→ ξ(α(t)) · α′(t) has 
onstant nonzero sign, and if C is transverseto ξ, then the map t 7→ ξ⊥(α(t)) · α′(t) has 
onstant nonzero sign. Thus inboth 
ases, the map α : ((0, 1), <) → (C,<C) is either order-preserving ororder-reversing; the se
ond statement follows.We assume for the remainder of this se
tion that either C is open, or Cis 1-dimensional and tangent to ξ.Definition 4.5. For ea
h leaf L of ξ|C , it follows from Proposition 1.5that fr(L) 
onsists of exa
tly two points P>

L , P
<
L ∈ fr(C) ∪ {∞}, where, for

∗ ∈ {>,<}, P ∗
L is the unique of these two points with the property that forevery C1-
urve γ : [0, 1) → L satisfying γ(0) ∈ L and limt→1 γ(t) = P ∗

L,we have ξ(γ(t)) · γ′(t) ∗ 0 for all t ∈ [0, 1). In this situation, we de�ne theforward proje
tion fC : C → fr(C) ∪ {∞} and the ba
kward proje
tion bC :
C → fr(C) ∪ {∞} as

fC(z) := P>
Lz

and bC(z) := P<
Lz

for all z ∈ C.From now on we assume that C is open, and we let D ∈ Creg be ofdimension 1 and 
ontained in fr(C) su
h that D is transverse to ξ.Lemma 4.6. Either D ⊆ fC(C) and D ∩ bC(C) = ∅, or D ⊆ bC(C) and
D ∩ fC(C) = ∅.Proof. Let α : (0, 1) → R

2 be a de�nable C1-map su
h thatD = α((0, 1))and ξ⊥(α(t)) · α′(t) > 0 for all t ∈ (0, 1). Thus, either ξ(α(t)) points into
C for all t, or ξ(α(t)) points out of C for all t. In the �rst 
ase, we have
fC(C)∩D = ∅, and in the se
ond 
ase bC(C)∩D = ∅. Moreover, by Pi
ard'sTheorem, for every w ∈ D there is an integral manifold V ⊆ R

2 of ξ su
hthat V ∩D = {w}; hen
e, either w ∈ fC(C) or w ∈ bC(C).Lemma 4.7. The maps fC |f−1
C

(D) and bC |b−1
C

(D) are in
reasing.Proof. We prove the lemma for fC . Let u, v ∈ C with u <C v be su
hthat fC(u), fC(v) ∈ D; we may 
learly assume that Lu ≪C Lv, and hen
e(by Pi
ard's Theorem) that fC(u) 6= fC(v).We assume here that D = gr(α), where α : (a, b) → R is a de�nable C1-fun
tion; the 
aseD = {a}×(b, c) is handled similarly. Let also β : (a, b) → Rbe a de�nable C1-fun
tion su
h that C = (α, β) or C = (β, α); we assumehere the former, the latter being handled similarly. For s ∈ [0, 1], we put
αs(t) := (1 − s)α(t) + sβ(t), a < t < b.
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ture of rank two 35Then for every t ∈ (a, b), we have lims→0 αs(t) = α(t) and lims→0 α
′
s(t) =

α′(t).Let now a < a′ < b′ < b be su
h that fC(u), fC(v) ∈ grα|(a′,b′). Sin
e Dis transverse to ξ, there is an ε > 0 su
h that grαs|(a′,b′) is transverse to ξfor all s ∈ [0, ε). It follows from the previous paragraph that the map t 7→
σα(t, α(t)) has the same 
onstant nonzero sign as the map t 7→ σαs(t, αs(t))for all s ∈ (0, ε). Therefore by Lemma 2.3(2) and the de�nition of <D, wehave fC(u) <D fC(v), as required.Corollary 4.8. Let I ⊆ C be a <C-interval. Then ea
h of fC(I) ∩ Dand bC(I) ∩D is either empty , a point or an open <D-interval.Proof. Assume that a, b ∈ fC(I)∩D are su
h that a <D b, and let c ∈ Dbe su
h that a <D c <D b; it su�
es to show that c ∈ fC(I). By Lemma 4.6,
c ∈ fC(C). Let u, v, w ∈ C be su
h that a = fC(u), b = fC(v), c = fC(w) and
u, v ∈ I. Then u <C w <C v by Lemma 4.7, as required.We �x a set EC ⊆ C su
h that |EC ∩L| = 1 for every L ∈ L(C) and put
<EC

:= <C |EC
, and we denote by eL the unique element of E ∩L, for every

L ∈ L(C).
Remark. The map L 7→ L ∩ EC : (L(C),≪C) → (EC , <EC

) is anisomorphism of ordered stru
tures.Proposition 4.9. Let g ∈ {f, b}. If D ⊆ gC(C), then Dg := g−1
C (D)∩ECis an <EC

-interval , and the map gC |Dg : (Dg, <EC
|Dg ) → (D,<D) is anisomorphism of ordered stru
tures.Proof. The transversality of D to ξ implies that if u ∈ D and L1, L2 ∈

L(C) are su
h that u = P>
L1

= P>
L2

or u = P<
L1

= P<
L2
, then L1 = L2. Thusby Lemma 4.7, the map gC |Df

is stri
tly in
reasing, so the lemma follows.5. Progression map. We 
ontinue working with ξ and C as in Se
tion 4,and we adopt all 
orresponding notations. We let(i) Copen be the 
olle
tion of all open 
ells in Creg;(ii) Ctan be the 
olle
tion of all 
ells in Creg that are of dimension 1 andtangent to ξ;(iii) Ctrans be the 
olle
tion of all 
ells in Creg that are of dimension 1 andtransverse to ξ;(iv) Csingle be the 
olle
tion of all p ∈ R
2 su
h that {p} ∈ Creg.By Lemma 4.6 and sin
e C is a strati�
ation, there are, for ea
h C ∈

Ctrans, distin
t and unique 
ells Cb, Cf ∈ Copen su
h that C ∩ cl(Cb) 6= ∅,
C ∩ cl(Cf) 6= ∅ and

C ⊆ fCb (Cb) and C ⊆ bCf (Cf).
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h and P. SpeisseggerSimilarly, there are, for ea
h p ∈ Csingle, distin
t and unique 
ells pb, pf ∈
Copen ∪ Ctan su
h that p ∈ cl(pb), p ∈ cl(pf) and

p ∈ fpb (pb) and p ∈ bpf (pf).(For p ∈ Csingle, we use the fa
t that there is an open box B 
ontaining p su
hthat the leaf of ξ|B passing through p is a Rolle leaf.) For ea
h C ∈ Ctan, we�x an arbitrary element eC ∈ C; note that for ea
h z ∈ C, C is the uniqueleaf Lz of ξ|C 
ontaining z.We now de�ne f′, b′ : R
2 → R

2 ∪ {∞} by
f′(z) :=



















fC(z) if z ∈ C ∈ Copen ∪ Ctan and eLz ≤Lz z,

eLz if z ∈ C ∈ Copen ∪ Ctan and z <Lz eLz ,

(bCf |E
Cf

)−1(z) if z ∈ C ∈ Ctrans ∪ Csingle,

z if z ∈ S(ξ)and
b′(z) :=



















bC(z) if z ∈ C ∈ Copen ∪ Ctan and z ≤Lz eLz ,

eLz if z ∈ C ∈ Copen ∪ Ctan and eLz <Lz z,

(fCb |E
Cb

)−1(z) if z ∈ C ∈ Ctrans ∪ Csingle,

z if z ∈ S(ξ).Definition 5.1. We de�ne f, b : R
2 ∪ {∞} → R

2 ∪ {∞} by
f(z) :=

{

f′(z) if z ∈ R
2 and f′(z) /∈ S(ξ),

∞ otherwiseand
b(z) :=

{

b′(z) if z ∈ R
2 and b′(z) /∈ S(ξ),

∞ otherwise.We 
all f a progression map asso
iated to ξ and b a reverse progression mapasso
iated to ξ. We put
C1 = Ctrans ∪ Csingle ∪

⋃

{EC : C ∈ Copen} ∪ {{eC} : C ∈ Ctan}and let B :=
⋃

C1; note that f(R2) ⊆ B∪{∞} and b(R2) ⊆ B∪{∞}. Finally,we de�ne f0 : R
2 ∪ {∞} → R

2 ∪ {∞} by f0(x) := x, and for k > 0 we de�ne
fk : R

2 ∪ {∞} → R
2 ∪ {∞} indu
tively on k by fk(x) := f(fk−1(x)).Proposition 5.2. Let X ∈ C1 and L be a 
ompa
t leaf of ξ. Then

|X ∩ L| ≤ 1.Proof. If X ∈ Csingle or X = {eC} for some C ∈ Ctan, the 
on
lusion istrivial. By Lemma 1.3(2), L is a Rolle leaf of ξ; in parti
ular, |X ∩ L| ≤ 1if X ∈ Ctrans. So we may assume that X = EC for some C ∈ Copen. Thenthere is at most one L′ ∈ L(C) 
ontained in L: otherwise by Corollary 3.10,there is a C1-
urve γ : [0, 1] → C transverse to ξ su
h that γ(0), γ(1) ∈ L, a
ontradi
tion. It follows again that |X ∩ L| ≤ 1.
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ture of rank two 37Proposition 5.3. There is an N ∈ N su
h that for every x ∈ B, theleaf of ξ through x is 
ompa
t if and only if fN (x) = x.Proof. Let x ∈ B; if fk(x) = x for some k > 0, then the leaf of ξthrough x is 
ompa
t. For the 
onverse, we assume that the leaf L of ξthrough x is 
ompa
t. Sin
e L is 
ompa
t, we have L ∩ S(ξ) = ∅, that is,
fk(x) ∈ B for every k > 0. Thus with n := |Creg|+1, there are a C ∈ Creg and
0 ≤ k1 < k2 ≤ n su
h that fk1(x), fk2(x) ∈ C. It follows from Proposition 5.2that fk1(x) = fk2(x), and hen
e that

x = bk1 ◦ fk1(x) = bk1 ◦ fk2(x) = fk2−k1(x).Sin
e n is independent of x ∈ B, the number N := n! will do.6. Flow 
on�guration theories. Inspired by the previous se
tions, wenow de�ne a �rst-order theory as des
ribed in the introdu
tion. Our maingoal, rea
hed in Se
tion 9, is to show that this theory admits quanti�erelimination in a language suitable to our purposes.Definition 6.1. A �ow 
on�guration is a tuple
Φ = (Φopen, Φtan, Φtrans, Φsingle, φ

b, φf,min,max, NΦ)su
h that Φopen, Φtan, Φtrans and Φsingle are pairwise disjoint, �nite sets,
φb, φf : Φtrans ∪ Φsingle → Φopen ∪ Φtan,

min,max : Φopen ∪ Φtan ∪ Φtrans → Φsingle ∪ {∞}and NΦ ∈ N. In this situation, we shall write ab and af instead of φb(a) and
φf(a) for a ∈ Φtrans ∪ Φsingle.Example 6.2. Let ξ be a ve
tor �eld on R

2 of 
lass C1 and de�nablein an o-minimal expansion of the real �eld, and let C be a pie
ewise trivial
ell de
omposition of R
2 that is also a strati�
ation. We de�ne Copen, Ctan,

Ctrans, Csingle and b, f : Ctrans ∪ Csingle → Copen ∪ Ctan as in Se
tion 5, and welet N ∈ N be as in Proposition 5.3.Let C ∈ Copen ∪Ctan∪Ctrans. If there is a point in Csingle that is 
ontainedin the 
losure of every set {x ∈ C : x <ξ
C a} with a ∈ C, we let min(C) beany su
h point; otherwise, we put min(C) := ∞. Similarly, if there is a pointin Csingle that is 
ontained in the 
losure of every set {x ∈ C : a <ξ

C x} with
a ∈ C, we let max(C) be any su
h point; otherwise, we put max(C) := ∞.Then the tuple

Φξ = Φξ(C) := (Copen, Ctan, Ctrans, Csingle,
b, f,min,max, N)is a �ow 
on�guration asso
iated to ξ.For the remainder of this se
tion, we �x a �ow 
on�guration Φ.
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h and P. SpeisseggerDefinition 6.3. Let L(Φ) be the �rst-order language 
onsisting of(i) a unary predi
ate C and a binary predi
ate <C for ea
h C ∈ Φopen∪
Φtan ∪ Φtrans;(ii) a unary predi
ate EC for ea
h C ∈ Φopen and a 
onstant symbol eCfor ea
h C ∈ Φtan;(iii) a 
onstant symbol s, and a 
onstant symbol c for ea
h c ∈ Φsingle;(iv) unary fun
tion symbols f and b;(v) 
onstant symbols rg

C and sg
C for ea
h C ∈ Φtrans and g ∈ {f, b}.Throughout the rest of this paper, for m ∈ N we write fm for the L(Φ)-word
onsisting of m repetitions of the symbol f, and similarly for bm.Example 6.4. Let ξ and C be as in Example 6.2; we adopt the notationsused there. We asso
iate to ξ a unique L(Φξ)-stru
ture Mξ = Mξ(C) asfollows:(i) the universe Mξ of Mξ is R
2 \ S(ξ) ∪ {∞};(ii) for ea
h C ∈ Copen∪Ctan∪Ctrans, the predi
ate C is interpreted by the
orresponding 
ell in C, and the predi
ate <C is interpreted by theunion of <ξ

C with {(min(C), a) : a ∈ C} and {(a,max(C)) : a ∈ C};(iii) for ea
h C ∈ Copen, the predi
ate EC is interpreted by the set ECdes
ribed in Se
tion 5, and for ea
h C ∈ Ctan, the 
onstant eC isinterpreted by the element eC ∈ C pi
ked in Se
tion 5;(iv) the 
onstant s is interpreted as ∞, and for ea
h c ∈ Csingle, the
onstant c is interpreted as the 
orresponding element of Csingle;(v) the fun
tions f and b are interpreted by the 
orresponding forwardprogression and reverse progression maps;(vi) for ea
h C ∈ Ctrans and g ∈ {f, b}, the 
onstants rg
C and sg

C areinterpreted as the lower and upper endpoints, respe
tively, of theinterval g(C) in ECg ∪ {min(Cg),max(Cg)}.Definition 6.5. We put Φ0 := Φopen∪Φtan∪Φtrans; intending to 
apturethe theory of the previous example, we let T (Φ) be the L(Φ)-theory 
onsistingof the universal 
losures of the formulas in the axiom s
hemes (F1)�(F15)below.(F1) The formulas(a) ∧

c,d∈Φsingle, c6=d

¬c = d ∧
∧

c∈Φsingle, C∈Φ0

¬C(c),(b) ∧

c∈Φsingle

¬c = s ∧
∧

C∈Φ0

¬C(s),
(
) x = s ∨

∨

c∈Φsingle

x = c ∨
∨

C∈Φ0

(

C(x) ∧
∧

D∈Φ0,D 6=C

¬D(x)
).
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h C ∈ Φ0 the senten
es stating that <C is a dense linear or-dering of C, together with C(x)→(x <C max(C)∧min(C) <C x).
Remark. We do not wish to state that <C is a linear order on all of

C ∪ {min(C),max(C)}, be
ause it is possible that min(C) = max(C). Theaxioms (F2) su�
e for our purpose, whi
h is to be able to refer to C as the
<C -interval between min(C) and max(C).(F3) The formula ∧

C∈Φtan

C(eC) ∧
∧

C∈Φopen

EC(x) → C(x).(F4) For ea
h C ∈ Φopen the senten
es stating that the restri
tion of <Cto EC is a dense linear ordering.(F5) For ea
h (g, h) ∈ {(f, b), (b, f)} and ∗ ∈ {≤,≥} the formulas(a) g(s) = s ∧ (¬x = s→ ¬g(x) = x),(b) ∧

c∈Φsingle

(¬g(c) = s→ h(g(c)) = c),(
) ∧

C∈Φopen

Cg(x) → EC(g(x)) ∧
∧

C∈Φtan

C(g(x)) → g(x) = eC ,(d) ∧

C∈Φtan

(C(x) ∧ eC ∗C x ∗C g(eC)) → g(x) = g(eC),(e) ∧

C∈Φtan

(C(x) ∧ eC ∗C x ∗C h(eC)) → g(x) = eC .(F6) For ea
h C ∈ Copen and g ∈ {f, b} the formula
(EC(x) ∧ EC(y) ∧ g(x) = g(y)) → (g(x) = s ∨ x = y).(F7) For ea
h c ∈ Φsingle and g ∈ {f, b}, the senten
es g(c) = ecg if

cg ∈ Φtan and Ecg (g(c)) if cg ∈ Φopen.(F8) For ea
h C ∈ Φtrans and (g, h) ∈ {(f, b), (b, f)} the senten
es statingthat g(C) is an interval I1 in ECg and g|C : C → I1 is an order-isomorphism.(F9) For ea
h C ∈ Φopen and (g, h) ∈ {(f, b), (b, f)} the formula
EC(x) →

(

g(x) = s ∨
∨

D∈Φtrans, C=Dh

D(g(x)) ∨
∨

d∈Φsingle, C=dh

g(x) = d
)

.

We need more axioms des
ribing the ordering <C and the behavior of
f and b on C for C ∈ Φopen. For example, if x ∈ C \ EC , we want that
x has either a unique prede
essor or a unique su

essor in EC . Also, forany y ∈ EC , the set of points x for whi
h y is either the prede
essor orthe su

essor is in�nite and densely ordered by <C . For 
onvenien
e, we let
φf

C(x, y) be the formula
C(x) ∧ ¬EC(x) ∧ EC(y) ∧ x <C y ∧ ¬∃z(EC(z) ∧ x <C z <C y)
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h and P. Speisseggerand φb
C(x, y) be the formula
C(x) ∧ ¬EC(x) ∧EC(y) ∧ y <C x ∧ ¬∃z(EC(z) ∧ y <C z <C x).(F10) For ea
h C ∈ Φopen the formulas(a) C(x) ∧ ¬EC(x) → ∃y(φf

C(x, y) ∨ φb
C(x, y)),(b) ∃yφf

C(x, y) → ¬∃yφb
C(x, z),(
) ∃yφb

C(x, y) → ¬∃yφf
C(x, y),and the formula s
heme EC(y) → ∃∞xφf

C(x, y) ∧ ∃∞xφb
C(x, y).(F11) For ea
h C ∈ Φopen the senten
es stating that for every y ∈ EC , therestri
tion of <C to the set Cy := {x : φb

C(x, y)∨φf
C(x, y)∨x = y}is a dense linear ordering, together with Cy(x) → (x <C f(y) ∧

g(y) <C x).(F12) For ea
h C ∈ Φopen and (g, h) ∈ {(f, b), (b, f)} the formulas(a) C(x) ∧ ¬EC(x) ∧ ∃yφg
C(x, y) → ∀z(φg

C(x, z) → g(x) = z),(b) C(x) ∧ ¬EC(x) ∧ ∃yφh
C(x, y) → ∀z(φh

C(x, z) → g(x) = g(z)).(F13) For ea
h C ∈ Φtrans and (g, h) ∈ {(f, b), (b, f)} the formulas(a) ECg (rg
C) ∨ rg

C = min(Cg) ∨ rg
C = max(Cg),(b) ECg (sg

C) ∨ sg
C = min(Cg) ∨ sg

C = max(Cg),(
) rg
C ≤Cg sg

C ,(d) ECg (x) → (C(h(x)) ↔ rg
C <Cg x <Cg sg

C).(F14) For ea
h m,n ∈ N, C ∈ Φopen, D ∈ Φtrans and g ∈ {f, b} theformulas(a) EC(x) ∧ EC(gm(x)) ∧ gn(x) = x→ gm(x) = x,(b) D(x) ∧D(gm(x)) ∧ gn(x) = x→ gm(x) = x.(F15) For ea
h m ∈ N and g ∈ {f, b} the formula gm(x) = x →
gNΦ(x) = x.This 
ompletes our list of axioms for T (Φ).Our 
hoi
e of axioms above and Se
tions 4 and 5 imply the following:Proposition 6.6. Let ξ be a ve
tor �eld on R

2 of 
lass C1 and de�nablein an o-minimal expansion of the real �eld , and let Mξ be an L(Φξ)-stru
tureasso
iated to ξ as in Example 6.4. Then Mξ |= T (Φξ).Definition 6.7. We write
Φ1 := Φtrans ∪ {EC : C ∈ Φopen}.The following L(Φ)-formulas are of parti
ular interest: for C ∈ Φ1, we let

FixC(x) be the formula C(x) ∧ fNΦ(x) = x and FixC(x, y) be the formula
∃z((x ≤C z ≤C y ∨ y ≤C z ≤C x) ∧ FixC(z)).
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ture of rank two 41Next, we let BdC(x) be the formula
FixC(x) ∧ ∀y∀z

(

y <C x <C z → ∃w(y <C w <C z ∧ ¬FixC(w))
)

,and let LimC(x) be the formula
FixC(x) ∧ ∃y(C(y) ∧ y 6= x ∧ ¬FixC(x, y)).Example 6.8. Let ξ be a ve
tor �eld on R

2 of 
lass C1 and de�nable inan o-minimal expansion of the real �eld, and let Mξ be an L(Φξ)-stru
tureasso
iated to ξ as in Example 6.4. Let also C ∈ C1 := Ctrans ∪ {EF : F ∈
Copen}. Then FixC(M) is the set of points in C that belong to a 
y
le of ξ;
BdC(M) is the set of points in C that belong to a boundary 
y
le of ξ; and
LimC(M) is the set of points in C that belong to a limit 
y
le of ξ. Notethat if ξ is analyti
, then the set BdC(M) is dis
rete by Poin
aré's Theorem[12℄ (see also [11, p. 217℄); in parti
ular, BdC(M) = LimC(M) in this 
ase.In general, by Proposition 5.3, the 
ardinality of BdC(M) is equal tothe number of boundary 
y
les of ξ that interse
t C. Sin
e every 
y
le of
ξ interse
ts the set ⋃

Ctan ∪
⋃

Ctrans ∪
⋃

Csingle, it follows that, with b(ξ)denoting the 
ardinality of the set of all boundary 
y
les of ξ, we have
|BdC(M)| ≤ b(ξ) ≤ |Ctan| + |Csingle| +

∑

D∈Ctrans

|BdD(M)|.

7. Iterating the progression maps. We 
ontinue to work with a �ow
on�guration Φ as in De�nition 6.1. Throughout this se
tion, we �x (g, h) ∈
{(f, b), (b, f)}.For the next lemma, we denote by Θ(g,h) the universal 
losure of the
onjun
tion of the formulas (

∧

C∈Φ0
¬C(x)) → g(h(x)) = x,

(C(x) ∧EC(h(x))) → g(h(x)) = g(x)and
(EC(x) ∧ h(x) 6= s) → g(h(x)) = xfor ea
h C ∈ Φopen,

(C(x) ∧ h(x) = eC) → g(h(x)) = g(x)and
(x = eC ∧ h(x) 6= s) → g(h(x)) = xfor ea
h C ∈ Φtan, and C(x) → g(h(x)) = x for ea
h C ∈ Φtrans ∪ Φsingle.Lemma 7.1. T (Φ) ⊢ Θ(g,h).Proof. Let M |= T (Φ), and let a ∈ M be su
h that a /∈ ⋃

C∈Φ0
C. Thenby (F1), either a = c for some c ∈ Φsingle, or a = s. In the latter 
ase, wehave g(h(a)) = h(g(a)) = a by (F5), so we may assume that a = c for some

c ∈ Φsingle. Then h(g(a)) = g(h(a)) = a by (F7)�(F9).



42 A. Doli
h and P. SpeisseggerThe proofs of the other 
onjun
ts are similar, using also (F12); we leavethe details to the reader.Corollary 7.2. Let φ be any quanti�er-free L(Φ)-formula. Then φ isequivalent in T (Φ) to a quanti�er-free formula φ′ su
h that no term o

urringin φ′ 
ontains both the symbols f and b.Proof. By indu
tion on l := max{length(t) : t is a term o

urring in φ},using Lemma 7.1.For the remainder of this se
tion, we �x an arbitrary model M of T (Φ).To simplify notation, we omit the supers
ript M below and write C :=
C ∪ {min(C),max(C)} for C ∈ Φ1.Definition 7.3. Let C ∈ Φ1 and k ∈ N. We de�ne

Gk
C := {gl(z) : z is a 
onstant, 0 ≤ l ≤ k and gl(z) ∈ C},and we let Ok

C be the 
olle
tion of all possible order types of pairs (a, b) ∈ C2over Gk
C . In addition, for ζ0, ζ1 ∈ C and D ∈ Φ1, we put

g−k
D (ζ0, ζ1) := {x ∈ D : ζ0 <C gk(x) <C ζ1}and

Hk
D(ζ0, ζ1) := {hl(z) : z ∈ {ζ0, ζ1} or z is a 
onstant,

0 ≤ l ≤ k and hl(z) ∈ D}.Note that Gk
C and Hk

D(ζ0, ζ1), and hen
e Ok
C , are �nite sets whose 
ardi-nality is bounded by a number depending only on the language and k, butindependent of M, C, D, ζ0 or ζ1.Proposition 7.4. Let C,D ∈ Φ1, ζ0, ζ1 ∈ C and k ∈ N.(1) The set g−k

D (ζ0, ζ1) is a union of points in Hk
D(ζ0, ζ1) and open inter-vals with endpoints in Hk

D(ζ0, ζ1).(2) For ea
h ϑ ∈ Ok
C , there is a 
onjun
tion σϑ(x, y0, y1) of atomi
 for-mulas with free variables x, y0 and y1 su
h that whenever (ζ0, ζ1) hasorder type ϑ over Gk

C , the set g−k
D (ζ0, ζ1) is de�ned by the formula

σϑ(x, ζ0, ζ1).(3) gk restri
ted to g−k
D (ζ0, ζ1) is 
ontinuous.Proof. For every x ∈ g−k

D (ζ0, ζ1), there is a sequen
e E = (E0, . . . , Ek)of elements of Φ2 := Φ1 ∪ {{c} : c ∈ Φsingle} ∪ {{eC} : C ∈ Φtan} su
h that
E0 = D, Ek = C and gi(x) ∈ Ei for i = 0, . . . , k. Thus, we �x a sequen
e
E = (E0, . . . , Ek) ∈ Φk+1

2 with Ek = C, and we de�ne the set
g−k

E (ζ0, ζ1) := {x ∈M : gi(x) ∈ Ei for i = 0, . . . , k, ζ0 <C gk(x) <C ζ1};it su�
es to prove the proposition with g−k
E (ζ0, ζ1) and Hk

E0
(ζ0, ζ1) in pla
eof g−k

D (ζ0, ζ1) and Hk
D(ζ0, ζ1).
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ture of rank two 43Next, we note that if Ei ∈ {{c} : c ∈ Φsingle} ∪ {{eC} : C ∈ Φtan} forsome i ∈ {1, . . . , k−1}, then a ∈ g−k
E (ζ0, ζ1) if and only if gi(a) is the unique
onstant in Ei and ζ0 <C gk(a) <C ζ1, so the proposition follows in this
ase.We therefore assume from now on that Ei ∈ Φ1 for ea
h i = 0, . . . , k, andin this 
ase we prove the proposition with part (1) repla
ed by

(1)′ The set g−k
E (ζ0, ζ1) is an open interval with endpoints in Hk

E0
(ζ0, ζ1).We pro
eed by indu
tion on k. The 
ase k = 0 is trivial, so we assumethat k > 1. By axiom (F8), the set g−1

(Ek−1,Ek)(ζ0, ζ1) is an open intervalwhose endpoints η0, η1 belong to the set H1
Ek−1

(ζ0, ζ1) and are determinedby the order type of (ζ0, ζ1) over G1
Ek
. In fa
t, we 
laim that the order typeof (η0, η1) over Gk−1

Ek−1
is determined by the order type of (ζ0, ζ1) over Gk

Ek
;together with the indu
tive hypothesis applied to gk−1

(E0,...,Ek−1)
(η0, η1), theproposition then follows, be
ause Hk−1

E0
(c, d) is 
ontained in Hk

E0
(ζ0, ζ1) forall c, d ∈ H1

Ek−1
(ζ0, ζ1).To see the 
laim, assume �rst that Ek = EC for some C ∈ Φopen. Thenby axiom (F8), the set {g(z) : z ∈ Gk−1

Ek−1
} is 
ontained in Gk

Ek
and the 
laimfollows in this 
ase. So we assume that Ek ∈ Φtrans. Then by axiom (F13),

Ek−1 = EC for some C ∈ Φopen and there are 
onstants a and b su
h that
(η0, η1) ⊆ (a, b) = g−1(Ek) = h(Ek) (as intervals).Hen
e the order type of (η0, η1) over Gk−1

EC
is determined by the order typeof (η0, η1) over the set G′ := {z ∈ Gk−1

EC
: a <C z <C b}. Then again byaxiom (F8), the set {g(z) : z ∈ G′} is 
ontained in Gk

Ek
and the 
laim alsofollows in this 
ase.Corollary 7.5. Let C ∈ Φ1 and put G := g−N

C (min(C),max(C)).(1) The set BdC(M) is a 
losed and nowhere dense subset of G.(2) Assume that Φ = Φξ and M ≡ Mξ for some de�nable ve
tor �eld ξof 
lass C1 on R
2. Then for every c ∈ G\BdC(M), there are a, b ∈ Csu
h that

a = sup{x ∈ BdC(M) ∪ (C \G) : x <C c},

b = inf{x ∈ BdC(M) ∪ (C \G) : c <C x}.Proof. Part (1) follows from the 
ontinuity of gN |G and the de�nition ofthe set BdC(M). Part (2) follows from part (1) and the fa
t that CMξ is
omplete.Finally, for ea
h C ∈ Φ1 we let C(x) abbreviate C(x) ∨ x = min(C) ∨
x = max(C). We let Gk be the set of all L(Φ)-terms gjc su
h that 0 ≤ j ≤ k



44 A. Doli
h and P. Speisseggerand c is a 
onstant symbol, and we let Ok be the set of all formulas of theform
(C(y0) ∧ C(y1)) ∧

∧

{τ,̺}⊆Gk∪{y0,y1}

(τ ∗{τ,̺} ̺),

where C ∈ Φ1 and ∗{τ,̺} ∈ {<C , >C ,=, 6=}. The 
ardinalities of Gk and Okare bounded by a number depending only on k (and on L(Φ)). Moreover, in
M, ea
h formula ϑ ∈ Ok determines an order type in Ok

C for some C ∈ Φ1;and 
onversely, every order type in Ok
C with C ∈ Φ1 is determined by someformula ϑ ∈ Ok. Thus we obtain the following from Proposition 7.4:Corollary 7.6. Let k ∈ N. Then there are l = l(k) ∈ N and quanti�er-free formulas ϑk

1(y0, y1), . . . , ϑ
k
l (y0, y1) with free variables y0 and y1 su
h that

(1) T (Φ) ⊢
l

∨

i=1

ϑk
i (y0, y1) ↔

∨

C∈Φ1

(C(y0) ∧ C(y1));(2) for every D ∈ Φ1 there are quanti�er-free formulas σD,k
i (x, y0, y1)with free variables x, y0 and y1, i = 1, . . . , l, su
h that if M |=

ϑk
i (ζ0, ζ1) for ζ0, ζ1 ∈M and some i, then the set g−k

D (ζ0, ζ1) is de�nedby the formula σD,k
i (x, ζ0, ζ1).Remark 7.7. We obtain analogous statements to Proposition 7.4 andCorollary 7.6 if we repla
e the open interval (ζ0, ζ1) by a half-open or 
losedinterval.8. Dula
 �ow 
on�gurations. It is 
lear from Example 6.8 that, fora ve
tor �eld ξ on R

2 de�nable in R, the set of boundary 
y
les of ξ isrepresented in Mξ by the de�nable sets BdC(M). The following exampleshows that the theory T (Φ) has hardly any impli
ations for the nature ofthese sets.Example 8.1. Consider the ve
tor �eld ζ of Example 3.2, and let C bethe pie
ewise trivial de
omposition obtained there. We denote by Φζ the �ow
on�guration 
orresponding to this C and write
C0 := {(x, y) : x > 0, y = 0} ∈ C.We show here how to de�ne, given any 
losed and nowhere dense subset Fof C0, a ve
tor �eld ζ ′ of 
lass C∞ for whi
h Φζ is still a �ow 
on�gurationand su
h that BdC0

(Mζ′) = F .First, given 0 < a < b < ∞, we let d(a,b) : R
2 → R be the fun
tion

d(a,b)(x, y) := (b2−(x2+y2))((x2+y2)−a2), and we let e(a,b) : R
2 → R be the

C∞-fun
tion de�ned by e(a,b)(x, y) := exp(−1/d(a,b)(x, y)). We let ζ(a,b) bethe ve
tor �eld of 
lass C∞ on the annulus A(a,b) := {(x, y) : d(a,b)(x, y) > 0}
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ture of rank two 45de�ned by
ζ(a,b) := −(y + e(a,b)(x, y)x)

∂

∂x
+ (x− e(a,b)(x, y)y)

∂

∂y
.Se
ond, let F ⊆ C0 be an arbitrary 
losed and nowhere dense subset.Then C0 \ F is open in C0 and hen
e the union of 
ountably many disjointopen intervals I0, I1, I2, . . . . We let ζ ′ be the ve
tor �eld on R

2 of 
lass C∞de�ned by
ζ ′(x, y) :=

{

ζIj
(x, y) if (x, y) ∈ AIj

for some j ∈ N,

ζ(x, y) otherwise.(Note that by Wilkie's Theorem [15℄, ζ ′ is de�nable in some o-minimal ex-pansion of the real �eld if and only if F is �nite.)In view of the previous example, we now introdu
e a strengthening of thesetting des
ribed in Se
tion 6.Definition 8.2. A Dula
 �ow 
on�guration Ψ is a pair (Φ, ν) su
h that
Φ is a �ow 
on�guration and ν ∈ N.Example 8.3. Let ξ be a de�nable ve
tor �eld on R

2 of 
lass C1. Let
Φ = Φξ be a �ow 
on�guration asso
iated to ξ as in Example 6.2 and let Mξbe the asso
iated L(Φξ)-stru
ture des
ribed in Example 6.4. Assume thatthere is a ν ∈ N su
h that for ea
h C ∈ Φ1, the set BdC(Mξ) has 
ardinalityat most ν. Then Ψξ := (Φξ, ν) is 
alled a Dula
 �ow 
on�guration asso
iatedto ξ.For the remainder of this se
tion, we �x a Dula
 �ow 
on�guration Ψ =
(Φ, ν).Definition 8.4. The language L(Ψ) 
onsists of the symbols of L(Φ)together with the following symbols for ea
h C ∈ Φ1:(i) binary predi
ates RC and Sf

m,C , Bf
m,C , Sb

m,C and Bb
m,C for ea
h

m ∈ N;(ii) 
onstant symbols γ1
C , . . . , γ

ν
C .We put Γ = Γ (Ψ) := {γj

C : C ∈ Φ1, j = 1, . . . , ν}.Example 8.5. Let ξ be a de�nable ve
tor �eld on R
2 of 
lass C1, and let

Mξ be an L(Φξ)-stru
ture asso
iated to ξ as in Example 6.4. Assume thatthere is a ν ∈ N su
h that for ea
h C ∈ Ctrans ∪ Copen, the set BdC(Mξ) has
ardinality at most ν, and let Ψξ be a Dula
 �ow 
on�guration asso
iated to
ξ as in Example 8.3. We expand Mξ into an L(Ψξ)-stru
ture MD

ξ as follows:for ea
h C ∈ Φ1,(i) RC is interpreted as the set
{(x, y) ∈ C2 : ∃z(x <C z <C y ∧ FixC(z)) ∨ (x = y ∧ FixC(x))};
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h and P. Speissegger(ii) for m ∈ N, g ∈ {f, b} and G ∈ {Sg
m,C , B

g
m,C}, we put

∗ :=

{

<C if G is Sg
m,C ,

>C if G is Bg
m,C ,and we interpret G as the union of the sets

{(x, y) ∈ C2 : ∃z
(

C(z) ∧ x <C z <C y ∧ C(gm(z)) ∧ gm(z) ∗ z
)

}and the set {(x, x) : C(x) ∧ C(gm(x)) ∧ gm(x) ∗ x};(iii) if a1 <C · · · <C am are the points in C that lie on boundary 
y
lesof ξ, we interpret γj
C as aj if 1 ≤ j ≤ m and as max(C) ifm < j ≤ ν.This 
ompletes the des
ription of MD

ξ .Definition 8.6. Inspired by the previous example, we let T (Ψ) be the
L(Ψ)-theory 
onsisting of T (Φ) and the universal 
losures of the formulas inthe axiom s
hemes (D1)�(D6):(D1) For ea
h C ∈ Φ1, m ∈ N and G ∈ {RC , S

f
m,C , B

f
m,C , S

b
m,C , B

b
m,C},the formulas(a) G(x, y) → (C(x) ∧ C(y)),(b) G(x, y) → (x ≤C y ∨ (x = min(C) ∧ y = max(C))).(D2) For ea
h C ∈ Φ1 the formulas(a) RC(x, y) ↔ ∃z(x <C z <C y ∧ FixC(z)), and(b) RC(x, x) ↔ FixC(x).(D3) For ea
h m ∈ N, C ∈ Φ1 and g ∈ {f, b} the formulas(a) Sg

m,C(x, y) ↔ ∃z(x <C z <C y ∧ gm(z) <C z),(b) Sg
m,C(x, x) ↔ (C(x) ∧ gm(x) <C x),(
) Bg
m,C(x, y) ↔ ∃z(x <C z <C y ∧ z <C gm(z)),(d) Bg
m,C(x, x) ↔ (C(x) ∧ x <C gm(x)).(D4) For ea
h m ∈ N, C ∈ Φ1, g ∈ {f, b} and G ∈ {RC , B

g
m,C , S

g
m,C} theformula

[G(x, y) ∧ ∀z(x <C z <C y → C(gm(z)))

∧ ¬∃z(x <C z <C y ∧ BdC(z))]

→ ∀z(x <C z <C y → G(z, z)).(D5)ν For ea
h C ∈ Φ1 the formulas(a) C(γj
C) ∧ (C(γj

C) → FixC(γj
C)) for j = 0, . . . , ν,(b) γj

C ≤C γj+1
C ∧ (γj

C = γj+1
C → γj

C = max(C)) for j = 0, . . . ,
ν − 1.
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h C ∈ Φ1 the formula
(C(x) ∧ BdC(x)) ↔

ν
∨

j=1

(x = γj
C ∧ C(γj

C)).This 
ompletes the des
ription of the axioms.Proposition 8.7. If ξ is a de�nable ve
tor �eld on R
2 of 
lass C1 with�nitely many boundary 
y
les, then MD

ξ |= T (Ψξ).Proof. This is almost immediate from the de�nition of MD
ξ and Propo-sition 6.6, ex
ept perhaps for axiom (D4), whi
h follows from Proposition7.4 and the fa
t that every bounded subset of R has an in�mum.Remark 8.8. Let T (Φ)′ be the union of T (Φ) with axioms (D1)�(D4)only. Sin
e (D1)�(D3) just extend T (Φ) by de�nitions in the sense of Se
tion4.6 in Shoen�eld [13℄, the argument in the proof of the previous proposi-tion shows that any L(Φξ)-stru
ture Mξ as de�ned in Example 6.4 
an beexpanded to a model M′

ξ of T (Φ)′.9. Quanti�er elimination for T (Ψ). We �x a Dula
 �ow 
on�guration
Ψ = (Φ, ν); our ultimate goal is to show that T (Ψ) eliminates quanti�ers.Most of the work in this se
tion goes towards showing that, in order toeliminate quanti�ers, we need only 
onsider formulas of the form ∃yφ(x, y)where φ is of a spe
ial form.Terminology. Let x = (x1, . . . , xm) be a tuple of variables and y and
z single variables. To simplify terminology, we write �term� and �formula�for �L(Ψ)-term� and �L(Ψ)-formula�. For a formula φ, we write φ(x, y) toindi
ate that the free variables of φ are among x1, . . . , xm and y. A binaryatomi
 formula is a formula of the form At1t2, where A is a binary relationsymbol in L(Ψ) and t1 and t2 are terms.For this se
tion �x an arbitrary model M of T (Ψ); again, we omit thesupers
ript M when interpreting predi
ates in M.Definition 9.1. An order formula is a quanti�er-free L(Φ)∪Γ -formula.A z-order formula is a quanti�er-free formula φ su
h that every atomi
 sub-formula of φ 
ontaining z is an L(Φ) ∪ Γ -formula.A z-order formula φ is minimal if the only subterm of φ 
ontaining z is
z itself and every binary atomi
 subformula At1t2 of φ is su
h that at mostone of t1 and t2 
ontains z.Our �rst goal is to show that we may, in order to prove quanti�er elim-ination, restri
t our attention to y-order formulas. This argument is basedon the following lemma, whi
h will also be of use later.
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h and P. SpeisseggerLemma 9.2. Let G ∈ L(Ψ) \ L(Φ).(1) The formula Gyy is equivalent in T (Ψ) to a minimal y-order formula
ψ(y).(2) The formula Gyz is equivalent in T (Ψ) to a formula ψ(y, z) that isboth a minimal y-order formula and a minimal z-order formula.Proof. Let C ∈ Φ1, m ∈ N and g ∈ {f, b} be su
h that G is one of RC ,

Sg
m,C or Bg

m,C . In this proof, we write < instead of <C ; if G is RC , we assume
m = N = NΦ. By Corollary 7.6(1), any formula φ is equivalent in T (Ψ) tothe 
onjun
tion of the formulas ϑi → φ, where i ∈ {1, . . . , l(m)} and ϑi is theformula ϑm

i (min(C),max(C)). Hen
e it su�
es to prove the lemma with ea
h
ϑi → G(y, y) in pla
e of G(y, y) and ea
h ϑi → G(y, z) in pla
e of G(y, z);so we also �x an i below and write ϑ in pla
e of ϑi. Now by Corollary 7.6(2),there are �nitely many terms α0

j , α
1
j for 1 ≤ j ≤ r, built up ex
lusively from
onstants, su
h that whenever M |= ϑ the set {z ∈ C : gm(z) ∈ C} is theunion of the open intervals Ij = (α0
j , α

1
j ) and points α0

j = α1
j .(1) We 
laim that the formula ϑ → G(y, y) is equivalent to ϑ → ψG,where ψG is of the form

C(y) ∧
(

∨

1≤j≤r

(α0
j < y < α1

j ∨ α
0
j = y = α1

j )
)

∧
(

∨

β∈Y

ψG
β ∨

∨

β0,β1∈Y

ψG
β0,β1

)

with Y := Γ ∪ {αl
j : l ∈ {0, 1} and 1 ≤ j ≤ r}, and for ea
h β ∈ Y , theformula ψG

β is C(y) ∧ ((y = β ∧G(β, β)) ∨ y = tG) with
tG the term 









y if G is RC ,

hm min(C) if G is Sg
m,C ,

hm max(C) if G is Bg
m,C ,and for ea
h β0, β1 ∈ Y , the formula ψG

β0,β1
is of the form

(C(β0) ∨ β0 = min(C)) ∧ (C(β1) ∨ β1 = max(C)) ∧ β0 < y < β1 ∧ η
G
β0,β1

,where
ηG

β0,β1
is 









¬Sg
N,C(β0, β1) ∧ ¬Bg

N,C(β0, β1) if G is RC ,

¬Bg
m,C(β0, β1) ∧ ¬RC(β0, β1) if G is Sg

m,C ,
¬Sg

m,C(β0, β1) ∧ ¬RC(β0, β1) if G is Bg
m,C .Note that ϑ→ ψG is a minimal y-order formula; thus, the proof of part (1)is �nished on
e we prove the 
laim.We prove the 
laim for RC ; the other 
ases of G are similar and left to thereader. Suppose that M |= ϑ and pi
k an a ∈ M su
h that M |= RC(a, a).Then M |= α0

j ≤ a ≤ α1
j for some j ∈ {1, . . . , r}. If a = β for some

β ∈ Y , we are done, so we assume a 6= β for all β ∈ Y . Then there are
β0, β1 ∈ Y su
h that M |= β0 < a < β1 and M |= ¬(β0 < β < β1) for
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e by axiom (D4), M |= RC(b, b) for every b ∈ (β0, β1), so
M |= ¬Sg

m,C(β0, β1) ∧ ¬Bg
m,C(β0, β1) as required. The 
onverse of the 
laimis immediate.(2) The formula ϑ→ G(y, z) is in turn equivalent in T (Ψ) to

ϑ→ (G(y, z) ∧ (y = min(C) ∨ y = max(C) ∨ C(y)));sin
e the lemma is immediate for the formulas ϑ → (G(y, z) ∧ y = min(C))and ϑ→ (Gyz ∧ y = max(C)), we need only 
onsider ϑ→ (G(y, z)∧C(y)).We 
laim that the latter is equivalent to ϑ→ ψG, where ψG is of the form
C(y) ∧ (C(z) ∨ z = max(C)) ∧ y ≤ z ∧ ((y = z ∧G(y, y)) ∨ (y < z ∧ ηG)),

ηG is the formula
∨

β∈Y

(y = β ∧G(β, z)) ∨
∨

β∈Y

(y < β < z ∧G(β, β)) ∨
∨

β0,β1∈Y, 1≤j≤r

ηG
β0,β1,j ,and for ea
h β0, β1 ∈ Y and j ∈ {1, . . . , r}, the formula ηG

β0,β1,j is
β0 < y ∧ z < β1 ∧ α

0
j ≤ β0 ∧ β1 ≤ α1

j ∧G(β0, β1) ∧ η
G
β0,β1with ηG

β0,β1
de�ned as for part (1).We again prove the 
laim for RC , leaving the other 
ases of G to thereader. Suppose that M |= ϑ and M |= RC(a, b)∧C(b) and work inside M.Suppose that a 6= β for all β ∈ Y and that M |= ¬(a < β < b ∧ RC(β, β))for every β ∈ Y . Then fN (d) = d for some d ∈ (a, b), and d ∈ (α0

j , α
1
j )for some j. Moreover, there are β0, β1 ∈ Y su
h that d ∈ (β0, β1) and β /∈

(β0, β1) for every β ∈ Y . Hen
e by axiom (D4), we get M |= ¬Sg
N,C(β0, β1)∧

¬Bg
N,C(β0, β1), as required. The 
onverse of the 
laim is straightforward.By symmetry, a similar 
laim holds with ϑ→ (G(y, z)∧C(z)) in pla
e of

ϑ→ (G(y, z) ∧ C(y)). Combining these two 
laims with part (1) now yieldspart (2).Corollary 9.3. Every quanti�er-free formula φ(x, y) is equivalent in
T (Ψ) to a y-order formula ψ(x, y).Proof. It su�
es to prove the proposition for all atomi
 formulas; therelevant atomi
 formulas are handled in Lemma 9.2.Our se
ond goal in this se
tion is to show that we only need to 
onsider,for quanti�er elimination, y-order formulas in whi
h the 
omplexity of anyterm involving y is as low as possible. Minimal y-order formulas are examplesof su
h y-order formulas; but we 
annot always redu
e to minimal y-orderformulas.Definition 9.4. Let t be a term. The z-height hz(t) of t is de�ned asfollows:
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h and P. Speissegger(i) if z does not o

ur in t, then hz(t) := 0;(ii) hz(z) := 1;(iii) if t is ft′ or bt′ for some term t′ and z o

urs in t′, then hz(t) :=
hz(t

′) + 1.Let A(t1, t2) be a binary atomi
 formula; the z-height hz(A(t1, t2)) of
A(t1, t2) is de�ned as the pair (a, b) ∈ N

2, where
a :=

{

1 if z o

urs in both t1 and t2,
0 otherwise,

b :=

{

min{hz(t1), hz(t2)} if z o

urs in both t1 and t2,
max{hz(t1), hz(t2)} otherwise.Let B(t) be a unary atomi
 formula; the z-height hz(B(t)) of B(t) isde�ned by hz(B(t)) := (0, hz(t)) ∈ N

2.Let φ be a quanti�er-free formula; the z-height hz(φ) of φ is the max-imum of the set {hz(ψ) : ψ is an atomi
 subformula of φ} with respe
t tothe lexi
ographi
 ordering of N
2. We write hz(φ) = (h1

z(φ), h2
z(φ)) below.Finally, a term t is mixed if it 
ontains both fun
tion symbols f and b;otherwise t is 
alled unmixed.Example 9.5. Let φ be a z-order formula. Then hz(φ) ≤ (0, 1) if andonly if φ is minimal.Lemma 9.6. Let φ(x, y) be a y-order formula. Then there is a y-orderformula ψ(x, y) that 
ontains no mixed terms su
h that φ and ψ are equiva-lent in T (Ψ) and hy(ψ) ≤ hy(φ).Proof. Let φ′ be the L(Φ)-formula obtained from φ by repla
ing ea
h 
on-stant γj

C by a new variable zj
C , for C ∈ Φ1 and j = 1, . . . , ν. By Lemma 7.1,

φ′ is equivalent in T (Φ) to a quanti�er-free L(Φ)-formula ψ′ that is a disjun
-tion of formulas of the form η ∧ ξ, where ξ is obtained from φ′ by repla
ingea
h mixed subterm by an unmixed term of lower y-height, and where ηis a 
onjun
tion of some of the premises of the impli
ations o

urring in
Θ(f,b) and in Θ(b,f) with x there repla
ed by various unmixed subterms of φ′.Clearly, hy(ξ) ≤ hy(φ

′) for every su
h ξ; sin
e h1
y(η) = 0 for every su
h η, itfollows that hy(ψ

′) ≤ hy(φ
′) if h1

y(φ
′) = 1. On the other hand, if h1

y(φ
′) = 0,then every subterm t of φ′ satis�es hy(t) ≤ h2

y(φ
′); so hy(η) ≤ hy(φ

′) forevery su
h η. Therefore, we always have hy(ψ
′) ≤ hy(φ

′) = hy(φ), and welet ψ be the y-order formula obtained from ψ′ by repla
ing ea
h variable zj
Cagain by γj

C .Below we let ι(y) denote the formula ∧

C∈Φopen
C(y) → EC(y) and weput

T ′ := T (Ψ) ∪ {ι(y)}.
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ture of rank two 51Lemma 9.7. Let φ(x, y) be a y-order formula. Then there is a y-orderformula ψ(x, y) su
h that φ is equivalent in T ′ to ψ and h2
y(ψ) ≤ 1.Proof. By indu
tion on hy(φ); the 
ase where h2

y(φ) ≤ 1 is trivial, so weassume that h2
y(φ) > 1 and we prove that

(∗) there exists an order formula ψ(x, y) su
h that φ is equivalent in T ′to ψ and hy(ψ) < hy(φ).To do so, we �x arbitrary (g, h) ∈ {(f, b), (b, f)}, a unary predi
ate P , a
C ∈ Φ0 and terms t1 and t2, and we assume that y o

urs in t1, and either ydoes not o

ur in t2 or hy(t1) < hy(t2). By the de�nition of hy(φ) and axiom(F5), it su�
es to prove (∗) with ea
h of the atomi
 formulas P (g(t1)),
g(t1) = t2, g(t1) <C t2 and t2 <C g(t1) in pla
e of φ.
Case 1: φ is P (g(t1)). By axioms (F7)�(F9), the formula φ is equivalentin T ′ to ψ, where ψ is the formula depending on P de�ned as follows:
• if P ∈ Φopen or P is EF for some F ∈ Φopen, then ψ is

∨

D∈Φtrans, P=Dh

D(t1) ∨
∨

d∈Φsingle, P=dh

t1 = d;

• if P ∈ Φtan, then ψ is the formula t1 = h(eP );
• if P ∈ Φtrans, then ψ is the formula EP h (t1).In ea
h 
ase of ψ above, we have hy(ψ) < hy(φ), as required.
Case 2: φ is g(t1) = t2. Then by axioms (F5), (F7)�(F9) and (F13) theformula φ is equivalent in T ′ to ψ, where ψ is the 
onju
tion of the formulas(i) t2 = s ∨

∨

C∈Φ1

C(t2) ∨
∨

c∈Φsingle

t2 = c ∨
∨

C∈Φtan

t2 = eC ,(ii) t2 = c→ t1 = h(c) for ea
h 
onstant c di�erent from s,(iii) t2 = s→
(

(t1 = s)

∨
∨

C∈Φopen

(

EC(t1) ∧
∧

D∈SC

¬(rh
D <C t1 <C sh

D) ∧
∧

c∈Φsingle

(¬t1 = h(c))
)

∨
∨

C∈Φtan

((g(eC) <C t1 ≤C eC ∨ eC ≤C t1 <C g(eC)) ∧ g(eC) = s)
)

with SC := {D ∈ Φtrans : Dh = C},(iv) C(t2) → t1 = h(t2) for C ∈ Φ1.If y does not o

ur in t2, then hy(ψ) < hy(φ); so we assume that y o

ursin t2. In this 
ase, the only atomi
 subformula ξ of ψ with h1
y(ξ) = 1 is

t1 = h(t2), and hy(t1 = h(t2)) = (1, hy(t1)) < (1, hy(g(t1))) = hy(φ) byhypothesis, so hy(ψ) < hy(φ) as well.
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Case 3: φ is g(t1) <C t2. There are various sub
ases depending on C.
• If C ∈ Φtrans, we write D := Ch; then by axioms (F8) and (F13) theformula φ is equivalent in T ′ to ψ, where ψ is the 
onjun
tion of theformulas

(C(t2)∨t2 = max(C))∧((ED(t1)∧r
h
C <D t1 <D rh

C)∨t1 = h(min(C)))and
(ED(t1) ∧ r

h
C <D t1 <D rh

C) → (t1 <D h(t2) ∨ t2 = max(C)).

• If C ∈ Φopen, then by axioms (F2), (F9), (F10), (F12) and (F13) theformula φ is equivalent in T ′ to ψ, where ψ is the 
onjun
tion of theformulas(i) ∨

D∈Φtrans, Dg=C

D(t1) ∨
∨

d∈Φsingle, P=dh

t1 = d,(ii) (C(t2)∧¬EC(t2)∧EC(g(t2)))∨
(

C(t2)∧¬EC(t2)∧EC(h(t2))
)

∨

EC(t2) ∨
(

t2 = max(C)
),(iii) (D(t1)∧EC(t2)) → ((rg

D <C t2 <C sg
D∧t1 <D h(t2))∨(sg

D ≤C t2))for ea
h D ∈ Φtrans with Dg = C,(iv) (D(t1) ∧ ¬EC(t2) ∧ EC(g(t2))) → ((rg
D <C g(t2) <C sg

D ∧ t1 <D

h(t2)) ∨ (sg
D ≤C g(t2)) for ea
h D ∈ Φtrans with Dg = C,(v) (D(t1) ∧ ¬EC(t2) ∧ EC(h(t2))) → ((rg

D <C h(t2) <C sg
D ∧ t1 ≤D

h(h(t2))) ∨ (sg
D ≤C h(t2))) for ea
h D ∈ Φtrans with Dg = C,(vi) t1 = d→ gd <C t2 for d ∈ Φsingle with P = dh.

• If C ∈ Φtan, then by axioms (F2) and (F7) the formula φ is equivalentin T ′ to ψ′, where ψ′ is
(C(t2) ∨ t2 = max(C)) ∧

(

(t1 = h(eC) ∧ eC <C t2) ∨ g(t1) = min(C)
)

.In this 
ase we let ψ be the formula obtained from ψ′ by repla
ing thesubformula g(t1) = min(C) by the 
orresponding formula obtained inCase 2.We leave it to the reader to verify that hy(ψ) < hy(φ) in ea
h of thesesub
ases.
Case 4: φ is t2 <C g(t1). This 
ase is similar to Case 3; we leave thedetails to the reader.Proposition 9.8. Let φ(x, y) be a quanti�er-free formula. Then thereis a minimal y-order formula ψ(x, y) su
h that φ is equivalent in T ′ to ψ.Proof. By Corollary 9.3 and Lemma 9.7, we may assume that φ is a

y-order formula su
h that h2
y(φ) ≤ 1. By Lemma 9.6, there is a y-orderformula ψ′(x, y) su
h that φ is equivalent in T ′ to ψ′, ψ′ 
ontains no mixedterms and hy(ψ) ≤ hy(φ).
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ture of rank two 53In parti
ular, for every binary atomi
 subformula η of ψ′ in whi
h bothterms 
ontain y, one of the terms is y itself and the other is either fm(y) or
bm(y) for some m = m(η) ∈ N. We now repla
e ea
h su
h binary atomi
subformula η of ψ′ with m(η) > 1 by the formula η′ de�ned as follows:

• if η is y = gm(y) with g ∈ {f, b}, then η′ is the disjun
tion of theformulas y = c∧gm(c) = c, for ea
h 
onstant symbol c, and C(gm(y))∧
RC(y, y), for ea
h C ∈ Φ1;

• if η is y <C gm(y) with g ∈ {f, b}, then η′ is Bg
m,C(y, y);

• if η is gm(y) <C y with g ∈ {f, b}, then η′ is Sg
m,C(y, y).We also repla
e ea
h o

urren
e of y = y by s = s and ea
h o

urren
eof y <C y by s 6= s, and we denote by ψ′′ the resulting formula. Clearly,

hy(ψ
′′) ≤ hy(ψ

′), and every binary atomi
 subformula of ψ′′ in whi
h bothterms 
ontain y is of the form G(y, y) for some G ∈ L(Ψ)\L(Φ). Moreover, byaxioms (D1)�(D4), (D5)ν and (D6)ν , the formula ψ′ is equivalent in T ′ to ψ′′.Next, we repla
e ea
h subformula of ψ′′ of the form G(y, y), where G ∈
L(Ψ)\L(Φ), by the 
orresponding minimal y-order formula ψ(y) obtained inLemma 9.2(1). If ψ′′′ is the resulting y-order formula, then ψ′′ is equivalentin T (Ψ) to ψ′′′ and h1

y(ψ
′′′) = 0.Finally, by Lemmas 9.7 and 9.6, there is a y-order formula ψ su
h that

hy(ψ) ≤ (0, 1), ψ 
ontains no mixed terms and ψ is equivalent in T ′ to ψ′′′.Finally, note that
T (Φ) ∪ {C(y)} |= ¬EC(y) ↔ (C(f(y)) ∨ C(b(y)))for ea
h C ∈ Φopen, by axioms (F5), (F10) and (F12). Hen
e, for ea
h C ∈

Φopen and ea
h g ∈ {f, b}, we put TC,g := T (Ψ) ∪ {C(y) ∧ C(g(y))}; bythe previous proposition, it remains to redu
e quanti�er-free formulas inea
h TC,g. It turns out, however, that we 
annot entirely redu
e to minimal
y-order formulas in these situations.Instead, given g ∈ {f, b}, we 
all a formula φ g-almost minimal if φ isquanti�er-free, the only subterms of φ 
ontaining z are z and g(z), and everybinary atomi
 subformula A(t1, t2) of φ is su
h that at most one of t1 and
t2 
ontains z.Proposition 9.9. Let φ(x, y) be a quanti�er-free formula, C ∈ Φopenand g ∈ {f, b}. Then there is a g-almost minimal y-order formula ψC,g(x, y)su
h that φ is equivalent in TC,g to ψC,g.Proof. By Corollary 9.3 and Lemma 9.6, we may assume that φ is a
y-order formula 
ontaining no mixed terms. On the other hand, we have
T |= ι(f(y)) and T |= ι(b(y)) by axiom (F5). Let η(x, y) be an atomi
subformula of φ; it su�
es to show that there is a g-almost minimal y-orderformula ξη(x, y) su
h that η and ξη are equivalent in TC,g. If h2

y(η) = 0, there
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h and P. Speisseggeris nothing to do, so we assume h2
y(η) > 0, and we distinguish two 
ases tode�ne ξη.

Case 1: h2
y(η) > 1. We �rst repla
e ea
h o

urren
e of g(y) in η by anew variable z and ea
h o

urren
e of h(y) in η by h(z). Denote the resultingatomi
 formula by η′(x, z); by axiom (F12), η′(x, g(y)) is equivalent in TC,gto η(x, y). By Proposition 9.8, the formula η′(x, z) is equivalent in T ′ to aminimal z-order formula η′′(x, z). Sin
e T (Ψ) |= ι(g(y)), it follows that ηis equivalent in TC,g to the g-almost minimal y-order formula ξη given by

η′′(x, g(y)).
Case 2: h2

y(η) = 1. In this 
ase, we take ξη equal to η if η 
ontains aunary predi
ate symbol; so we assume that η is a binary atomi
 formula
A(t1, t2). If η is y = y, we take ξη to be s = s, and if η is y <D y forsome D ∈ Φ0, we take ξη to be s 6= s; so we also assume from now on that
max{h2

y(t1), h
2
y(t2)} > 1. By axiom (F5), the formulas y = gm(y), y = hm(y),

y <D gm(y), y <D hm(y), gm(y) <D y and hm(y) <D y, for m > 0 and
D ∈ Φ0 \ {C}, are all equivalent in TC,g to s 6= s, so we are left with foursub
ases:(i) if η is y <C gm(y) for some m > 0, then we let η′ be the formula

(y <C g(y) ∧ C(gm(y)) ∧RC(g(y))gy) ∨Bg
m−1,C(g(y), g(y));(ii) if η is y <C hm(y) for some m > 0, then we let η′ be the formula

(y <C g(y) ∧ C(hm(y)) ∧RC(g(y), g(y))) ∨Bh
m,C(g(y), g(y));(iii) if η is gm(y) <C y for some m > 0, then we let η′ be the formula

(g(y) <C y ∧ C(gm(y)) ∧RC(g(y), g(y))) ∨ Sg
m−1,C(g(y), g(y));(iv) if η is hm(y) <C y for some m > 0, then we let η′ be the formula

(g(y) <C y ∧ C(hm(y)) ∧RC(g(y), g(y))) ∨ Sh
m,C(g(y), g(y)).We 
laim that η and η′ are equivalent in TC,g. We prove this for sub
ase (i);the other 
ases are similar and left to the reader. Let b ∈ M be su
h that

M |= C(b)∧C(g(b)). Assume that M |= b <C gm(b)∧¬Bg
m−1,C(g(b), g(b)).Then gm(b) ∈ EC and gm(b) ≤C g(b) by axioms (F2) and (F5). Hen
e

b <C g(b), so M |= φf(b, g(b)) by axioms (F10) and (F12), whi
h implies
gm(b) = g(b) as required. Conversely, assume �rst that M |= b <C g(b) ∧
C(gm(b))∧RC(g(b), g(b)); then b <C gm(b) by axioms (D2) and (F14). Nowassume that M |= Bg

m−1,C(g(b), g(b)); then g(b) <C gm(b) by axiom (D3),and hen
e b <C gm(b) by axioms (F10) and (F12).Finally, by Proposition 9.8, the formulas Bg
k,C(z, z), Sg

k,C(z, z), C(gk(z))∧

RC(z, z) and C(hk(z))∧RC(z, z) are ea
h equivalent in T ′ to minimal z-orderformulas. It follows from the above 
laim that we are left with sub
ases(i)�(iv) for m = 1. But by axioms (F5), (F10) and (F12) we have TC,g |=

¬C(h(y)). Hen
e TC,g |= ¬φh
C(y, h(y)), so from axioms (F10) and (F12) we
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C(y, gy). Therefore, y <C g(y) is equivalent in TC,g to s = s if

g is f, and to ¬s = s if g is b; the other sub
ases follow similarly.The previous two propositions allow us to redu
e the problem of elimi-nating quanti�ers in T (Ψ) to that of eliminating quanti�ers in two simplertheories: for C ∈ Φ1∪Φtan we let LC be the language {<C ,min(C),max(C)}and TC be the LC -theory 
onsisting of the universal 
losures of(A1) the senten
es stating that <C is a dense linear ordering on C, to-gether with the formula x = min(C) ∨ x = max(C) ∨ min(C) <C

x <C max(C).For C ∈ Φopen we let LC be the language {<C , πC , EC ,min(C),max(C)},where πC a unary fun
tion symbol, and we let TC be the LC -theory 
onsistingof the universal 
losures of (A1) as well as(B1) the formula EC(πC(x)) ∧ (EC(x) → πC(x) = x);(B2) the formula πC(x) <C x→ ¬∃y(EC(y) ∧ πC(x) <C y <C x);(B3) the formula x <C πC(x) → ¬∃y(EC(y) ∧ x <C y <C πC(x));(B4) the senten
es stating that for every x ∈ EC , the restri
tion of <C tothe set {y : πC(y) = x} is a dense linear ordering without endpoints.A routine appli
ation of a quanti�er elimination test su
h as Theorem3.1.4 in [8℄ gives the following result; we leave the details to the reader.Proposition 9.10. For ea
h unary predi
ate symbol C of L(Φ), the the-ory TC admits quanti�er elimination in the language LC .Theorem 9.11. The theory T (Ψ) admits quanti�er elimination.Proof. Let φ(x, y) be a quanti�er-free formula; we show that ∃yφ(x, y) isequivalent in T (Ψ) to a quanti�er-free formula. First, note that ∃yφ(x, y) isequivalent in T (Ψ) to the disjun
tion of the formulas(1) φ(x, c) for ea
h 
onstant c;(2) ∃y(C(y) ∧ φ(x, y)) for ea
h C ∈ Φ1 ∪ Φtan;(3) ∃y(C(y) ∧ Cg(y) ∧ φ(x, y)) for ea
h C ∈ Φopen and ea
h g ∈ {f, b}.We deal with ea
h disjun
t separately; sin
e formulas of type (1) are trivialto handle, we deal with types (2) and (3).Type (2). Let C ∈ Φ1∪Φtan. Sin
e T (Ψ) |= C(y) → ι(y), we may assumeby Proposition 9.8 that φ is a minimal y-order formula. Without loss ofgenerality, we may also assume that φ is a 
onjun
tion of atomi
 formulas,that y o

urs in ea
h of the atomi
 subformulas of φ and, by axiom (F1),that φ 
ontains only the relation symbols = and <C . Let t1, . . . , tk be allmaximal subterms of φ that do not 
ontain y, and let φ′(z1, . . . , zk, y) be theformula obtained from φ by repla
ing ea
h ti by a new variable zi. Then φ′ is
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h and P. Speisseggera <C -formula without parameters; by Proposition 9.10, there is a quanti�er-free LC -formula ψ′(z1, . . . , zk) su
h that ∃yφ′ and ψ′ are equivalent in TC .Let ψ(x) be the L(Ψ)-formula obtained from ψ′ by repla
ing ea
h zi by ti;then ∃yφ and ψ are equivalent in T (Ψ), as required.Type (3). Let C ∈ Φopen and g ∈ {f, b}; by Proposition 9.9, we mayassume that φ is a g-almost minimal y-order formula. Without loss of gen-erality, we may also assume that φ is a 
onjun
tion of atomi
 formulas,that y o

urs in ea
h of the atomi
 subformulas of φ and, by axiom (F1),that φ 
ontains only the relation symbols =, <C and EC . Let t1, . . . , tk beall maximal subterms of φ that do not 
ontain y, and let φ′(z1, . . . , zk, y)be the formula obtained from φ by repla
ing ea
h ti by a new variable zi.Note that φ′ 
ontains no parameters. Arguing as for Type (2), it now suf-�
es to �nd a quanti�er-free formula ψ′(z1, . . . , zk) equivalent in T (Ψ) to
∃yφ′(z1, . . . , zk, y).To do so, we let πC be a new unary fun
tion symbol and let T (Ψ)C bethe theory T (Ψ) together with the universal 
losure of the formula
y = πC(x) ↔ ((EC(x) ∧ y = x)

∨(C(x) ∧ C(f(x)) ∧ y = f(x)) ∨ (C(x) ∧ C(b(x)) ∧ y = b(x))).Sin
e T (Ψ)C is an extension by de�nitions of T (Ψ) in the sense of [13, Se
tion4.6℄, it su�
es to �nd a quanti�er-free L(Ψ)-formula ψ′(z1, . . . , zk) equivalentin T (Ψ)C to ∃yφ′(z1, . . . , zk, y).Let φ′′ be the LC-formula obtained from φ′ by repla
ing ea
h o

urren
eof g(y) by π(y); then φ′ and φ′′ are equivalent in T (Ψ)C . Sin
e T (Ψ)C |= TC ,there is by Proposition 9.10 a quanti�er-free LC -formula ψ′′(z1, . . . , zk) thatis equivalent in T (Ψ)C to ∃yφ′′(z1, . . . , zk, y); without loss of generality, wemay assume that the only subterms of ψ′′ are zi and πzi for i = 1, . . . , k.Finally, we let ψ′ be the L(Ψ)-formula obtained from ψ′′ by repla
ing ea
hatomi
 subformula η of ψ′′ by an L(Ψ)-formula η′ determined as follows:(i) if η is EC(πC(zi)), we let η′ be C(zi)∧(EC(zi)∨C(f(zi))∨C(b(zi)));(ii) if η is πC(zi) ∗ zj with ∗ ∈ {=, <C , >C}, we let η′ be
C(zi) ∧ C(zj) ∧

(

∨

g∈{f0,f,b}

EC(g(zi)) ∧ g(zi) ∗ zj

)

;

(iii) if η is πC(zi) <C πC(zj) and ∗ ∈ {=, <C}, we let η′ be
C(zi) ∧ C(zj) ∧

(

∨

g,h∈{f0,f,b}

EC(g(zi)) ∧ EC(h(zj)) ∧ g(zi) ∗ h(zj)
)

;

and if η is not of one of the forms (i)�(iii) above, we let η′ be η. This ψ′ isequivalent in T (Ψ)C to ψ′′ and is of the required form.
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ture of rank two 5710. Consequen
es for the model theory of T (Ψ). The quanti�erelimination result established in the previous se
tion allows us to show thatthe theory T (Ψ) is very well-behaved: it is a theory of �nite rank in the sensedeveloped by Onshuus [10℄.We �rst rephrase the results from the previous se
tion. For a �ow 
on-�guration Φ, C ∈ Φopen, M |= T (Ψ) and x ∈ EM
C , we put

CM
x := {y ∈ CM : y = x ∨ f(y) = x ∨ b(y) = x}and CM

x := CM
x ∪ {f(x), g(x)}. The following 
orollary implies Theorem C:Corollary 10.1. Let Ψ be a Dula
 �ow 
on�guration and M |= T (Ψ).(1) For C ∈ Φ1 ∪ Φtan, every de�nable subset of CM is a �nite union ofpoints and open <C-intervals with endpoints in C.(2) For C ∈ Φopen and x ∈ EM

C , every de�nable subset of CM
x is a �niteunion of points and open <C-intervals with endpoints in CM

x .Proof. This follows immediately from Theorem 9.11, Propositions 9.8and 9.9 and axioms (F2) and (F11).Below we use the terminology of rosy theories.Theorem 10.2. Let Ψ be a Dula
 �ow 
on�guration and T be any 
om-pletion of T (Ψ). Then T is rosy with Uþ(T ) ≤ 2.Proof. Let p(x) be a 
omplete 1-type in T , M |= T and a ∈ M be su
hthatM |= p(a). If C(x) ∈ p for some C ∈ Φtan∪Φ1, then by Corollary 10.1(1)the type p is determined by the <C -order type of x over the 
onstants;hen
e Uþ(p) ≤ 1. If C(x) ∧ ¬EC(x) ∈ p for some C ∈ Φopen, then byCorollary 10.1(2) the type p is determined by the <C-order type o(x) of aover the 
onstants and πC(a), where πC : C → EC is given by
πC(z) :=











z if z ∈ EM
C ,

f(z) if f(z) ∈ EM
C ,

b(z) if b(z) ∈ EM
C .Again by Corollary 10.1(1), the type of πC(a) over the 
onstants is deter-mined by the <C -order type of πC(a) over the 
onstants.Sin
e p 
ontains either one of the above formulas or a formula x = cfor some 
onstant symbol c, it follows from Fa
t 2 in the introdu
tion that

Uþ(T ) ≤ 2.In fa
t, the Uþ-rank in the previous theorem is a
tually equal to 2:Proposition 10.3. Let Φ be a �ow 
on�guration and M |= T (Φ), andassume that Φopen 6= ∅. Then Uþ(M) ≥ 2.Proof. Let C ∈ Φopen. Then by the example in the introdu
tion, thetheory of (C,<C , EC) has Uþ-rank at least two. Hen
e Uþ(M) ≥ 2.



58 A. Doli
h and P. SpeisseggerThere is a 
ertain 
onverse to Theorem 10.2 based on Remark 8.8: We let
Φ be a �ow 
on�guration and 
onsider the theory T (Φ)+ obtained by addingthe universal 
losures of the following formulas to T (Φ)′ for ea
h C ∈ Φtrans:(10.1) C(x) → ∃y(C(y) ∧ y = inf{z : x <C z ∧ BdC(z)}),

C(x) → ∃y(C(y) ∧ y = sup{z : z <C x ∧ BdC(z)}).Examples 10.4.(1) Let Ψ be a Dula
 �ow 
on�guration. Then any model M of T (Ψ)satis�es (10.1).(2) Let ξ be a de�nable ve
tor �eld on R
2, and let Mξ be an L(Φξ)-stru
ture asso
iated to ξ as in Example 6.4. Then Mξ satis�es (10.1)by Corollary 7.5, and by Remark 8.8 the stru
ture Mξ 
an be ex-panded to a model M+

ξ of T (Φξ)
+.Below for ea
h ν ∈ N we abbreviate the formula stating that BdC(x)de�nes a set with at most ν elements by �|BdC(x)| ≤ ν�.Proposition 10.5. Let Φ be a �ow 
on�guration and T be a 
ompletionof T (Φ)+, and assume that Uþ(T ) ≤ 2. Then there is a ν ∈ N su
h that(1) T |= |BdC(x)| ≤ ν;(2) every model M of T 
an be expanded to a model of T (Φ, ν).Proof. (1) Assume that T 6|= |BdC(x)| ≤ ν for any ν ∈ N. Then bymodel-theoreti
 
ompa
tness, there are an M |= T and a C ∈ Φ1 su
hthat the set BdC(M) is in�nite; we may assume that M is ℵ1-saturated.Moreover, by axiom (F8), we may assume that C ∈ Φtrans. Also, by axiom(F8) and an argument as in the proof of Proposition 10.3, it su�
es to �nda d ∈ CM su
h that Uþ(d) ≥ 2.Sin
e M is ℵ1-saturated, there is an interval I ⊆ CM su
h that I ∩a
l(∅) = ∅ and I ∩ BdC(M) is in�nite. By (10.1) and sin
e BdC(M) isnowhere dense, there is a c ∈ I \ BdC(M) su
h that the elements a :=

sup{x ∈ I : x <C c ∧ BdC(x)} and b := inf{x ∈ C : a <C x ∧ BdC(x)} existin I. Then a <C b, a, b /∈ a
l(∅), b ∈ d
l(a) and
M |= a <C b ∧ BdC(a) ∧ ¬∃x(C(x) ∧ a <C x <C b ∧ BdC(x)).It follows that the formula φ(x) := a <C x <C b strongly divides over ∅;hen
e Uþ(d) ≥ 2 for some d ∈ CM, as required.Part (2) follows from Proposition 8.7 and part (1).We 
an now prove our restatement of Dula
's Problem:Proof of Theorem B. (1) If ξ has �nitely many boundary 
y
les, thenby Proposition 8.7 the stru
ture Mξ 
an be expanded into a model MD

ξ of
T (Φξ, ν) for some ν ∈ N. Sin
e (Φξ)open 6= ∅, it follows that 2 ≤ Uþ(Mξ) ≤
Uþ(MD

ξ ) ≤ 2 by Proposition 10.3 and Theorem 10.2.
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ture of rank two 59Conversely, if Uþ(Mξ) = 2 then by Proposition 10.5, the stru
ture Mξ
an be expanded into a model of T (Φξ, ν) for some ν ∈ N, so by Example 6.8the ve
tor �eld ξ has �nitely many boundary 
y
les.(2) follows from (1) and Poin
aré's Theorem [12℄ (see also [11, p. 217℄).The �moreover� 
lause follows from (1) and Theorem 10.2.
11. Final questions and remarks(1) In the situation of Theorem B, is it possible for Mξ to be rosy of

Uþ-rank stri
tly greater than 2?(2) Can a restatement of Hilbert's 16th Problem be obtained in the spiritof Theorem B?A naïve approa
h to this question is as follows: Let {ξa : a ∈ A} be afamily of ve
tor �elds on R
2 de�nable in R. Sin
e the arguments in Se
tions1 through 5 are uniform in parameters, we may assume that there is a �ow
on�guration Φ su
h that Φξa

= Φ for all a ∈ A. In this situation, one
an readily reformulate the theory T (Φ) for the parametri
 situation; andif one also assumes the existen
e of a uniform bound ν ∈ N on the numberof boundary 
y
les of ea
h ξa, su
h a reformulation extends to T (Φ, ν). Wesuspe
t that under the latter assumption, the 
orresponding theory is rosyof Uþ-rank 3; however, this does not appear to us to be a 
ompletely trivialgeneralization of the results in Se
tion 10, and we plan to pursue it in afuture proje
t.(3) The stru
ture MD
ξ in Example 8.5 does not de�ne any algebrai
operations (by Theorem 9.11). Assume here that S(ξ) = ∅; is it possible toexpand MD

ξ by some (or all) of the sets de�nable in the original o-minimalstru
ture R without in
reasing the Uþ-rank? We know very little about thisquestion. However, if (a) the x-axis, the proje
tion from R
2 onto the x-axis,and both addition and multipli
ation are de�nable in an expansion M′ of

MD
ξ , and if (b) the expansion M′ still has Uþ-rank 2, then M′ (and hen
e

MD
ξ ) would be de�nable in an o-minimal stru
ture. (The assumption that

M′ has Uþ-rank two is ne
essary here.) Thus, question (3) is related to thefollowing question:(4) Is the stru
ture MD
ξ of Example 8.5 de�nable in some o-minimalexpansion of the real �eld?(5) Consider a Dula
 �ow 
on�guration Ψ and M |= T (Ψ). Corollary10.1, Theorem 10.2 and their respe
tive proofs may be loosely interpretedas indi
ating that M is built-up from sets D ⊆ M on whi
h the indu
edstru
ture is o-minimal. Is there a theory of stru
tures built-up from sets withindu
ed o-minimal stru
ture, say in the spirit of Zilber's results on the �nestru
ture of un
ountably 
ategori
al theories [16℄?
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