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An ordered structure of rank two
related to Dulac’s Problem

by

A. Dolich (Chicago, IL) and P. Speissegger (Hamilton)

Abstract. For a vector field £ on R? we construct, under certain assumptions on &,
an ordered model-theoretic structure associated to the flow of £&. We do this in such a way
that the set of all limit cycles of £ is represented by a definable set. This allows us to give
two restatements of Dulac’s Problem for £—that is, the question whether £ has finitely
many limit cycles—in model-theoretic terms, one involving the recently developed notion
of UP-rank and the other involving the notion of o-minimality.

Introduction. Let £ = a1% + aga% be a vector field on R? of class C*,
and let

S(€) = {(z,y) € R* : as(w,y) = az(z,y) = 0}

be the set of singularities of £. By the existence and uniqueness theorems
for ordinary differential equations (see Camacho and Lins Neto |2, p. 28| for
details), ¢ induces a C'-foliation F¢ on R? \ S(€) of dimension 1. Abusing
terminology, we simply call a leaf of this foliation a leaf of £. A cycle of £ is
a compact leaf of &; a limit cycle of £ is a cycle L of £ for which there exists
a noncompact leaf L’ of £ such that L is contained in the closure of L’.

Dulac’s Problem is the following statement: “if £ is polynomial, then £ has
finitely many limit cycles”. It is a weakening of the second part of Hilbert’s
16th problem, which states that “there is a function H : N — N such that for
all d € N, if € is polynomial of degree d then & has at most H(d) limit cycles”.
Both problems have an interesting history, and while Dulac’s Problem was
independently settled in the 1990s by Ecalle [4] and II’yashenko [6], Hilbert’s
16th Problem remains open; see |6] for more details.

In this paper, we attempt to reformulate Dulac’s Problem in model-
theoretic terms. Our motivation to do so is twofold: we want to
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(i) find a model-theoretic structure naturally associated to £ in which
the flow of £ and the set of limit cycles of £ are represented by
definable sets;

(ii) know to what extent the geometry of such a structure is determined
by Dulac’s Problem.

Our starting point for (i) is motivated by the piecewise triviality of
Rolle foliations associated to analytic 1-forms as described by Chazal [3].
Let U C R? be open; a leaf L of &|yy is a Rolle leaf of &|y if for every
Cl-curve ¢ : [0,1] — U with §(0) € L and (1) € L, there is a t € [0,1]
such that 0’(¢) is tangent to £(d(¢)). Based on Khovanskil theory |7] over an
o-minimal expansion of the real field [14], we establish (Proposition 1.5 and
Theorem 3.4):

THEOREM A. Assume that & is definable in an o-minimal expansion of
the real field. Then there is a cell decomposition C of R? compatible with
S(&) such that, with Creg :={C € C: C'NS(§) = 0},

(1) every 1-dimensional C' € Creg is either transverse to & or tangent
to &;

(2) for every open C € Creq, every leaf of &|c ts a Rolle leaf of &|c;

(3) for every open C € Creg, the flow of € in C is represented by a lexi-
cographic ordering of C.

Part (3) of this theorem needs some explanation, as it represents our
understanding of the “triviality” of the flow of £ in C'. Given an open C' € Creg,
it follows from part (2) that the direction of ¢ induces a linear ordering <p
on every leaf L of £|c. We can furthermore define a relation on the set
L(C) of all leaves of &|c as follows: given a leaf L of |c, the fact that
L is a Rolle leaf of ¢|¢ implies (see Remark 1.2 below) that L separates
C'\ L into two connected components Ur, ;1 and Ur o such that the vector
¢1(2) == (a2(2), —ai(2)) points into Uy o for all z € L. Thus, for a leaf L'
of ¢|¢ different from L, we define L <¢ L' if L'’ C Upy and L’ <¢ L if
L' € Up,. In general, though, the relation < does not always define an
ordering, even if every leaf of | is Rolle; see Example 2.2 below.

Part (3) now means that the cell decomposition C may be chosen in
such a way that for every open C' € Cyeq, the ordering <¢ on L(C) is a
linear ordering. (See Example 3.2 for such a decomposition in the situation of
Example 2.2.) This leads to lexicographic orderings as follows: given C € Creg
and z € C, we denote by L. the leaf of {|c containing z. If C' € Cy¢g is open,
we define a linear ordering <¢ on C' by x <¢ y if and only if either L, <¢ Ly,
or Ly = Ly and = <y, y. Letting Ec be a set of representatives of L(C),
it is not hard to see that the structures (C, <¢, Ec¢) and (R?, <jex, {y = 0})
are isomorphic, where <) is the usual lexicographic ordering of R2.



An ordered structure of rank two 19

To complete the picture, we also define an ordering < on each 1-dimen-
sional C' € Ceg: if C is tangent to &, we let <c be the linear ordering induced
on C' by the direction of £, and if C' is transverse to &, we let <c be the linear
ordering induced on C by the direction of £1. For each open C € Creg, We
also let <g, be the restriction of <¢ to E¢c. Each of these orderings induces
a topology on the corresponding set that makes it homeomorphic to the real
line. Finally, for each 1-dimensional C' € Creg tangent to &, we fix an element
ec € C.

In the situation of Theorem A, we reconnect the pieces of C according to
the flow of £ as follows: let B be the union of

all 1-dimensional cells in C,eg transverse to &,

the sets E¢ for all open cells C € Creg,

all 0-dimensional cells in Creg,

the singletons {ec} for all 1-dimensional C' € C,eg tangent to &.

We define the forward progression map f: BU{oco} — BU{oc} by (roughly
speaking) putting f(z) equal to the next point in B on the leaf of £ through
x if ¢ # oo and if such a point exists; otherwise we put f(z) := oco. In this
situation, a point x € B belongs to a cycle of £ if and only if there is a
nonzero n € N such that {*(z) = x, where {* denotes the nth iterate of f.

In fact, only finitely many iterates of § are necessary to capture all cycles
of ¢ (Proposition 5.3): since a cycle of ¢ is a Jordan curve in R?, it is a Rolle
leaf of ¢ and therefore intersects each C' € C of dimension at most 1 in at
most one connected component. Hence there is an N € N such that for all
r € B, x belongs to a cycle of ¢ if and only if fV (z) = .

To see how we can use this to detect limit cycles of certain £, we first
define a cycle L of £ to be a boundary cycle if, for every x € L and every
neighborhood V of z, the set V intersects some noncompact leaf of £&. Bound-
ary cycles and limit cycles are the same if £ is real-analytic, because of the
following theorem of Poincaré’s [12] (see also Perko [11, p. 217]):

Facr 1. If € is real-analytic, then & cannot have an infinite number of
limit cycles that accumulate on a cycle of &.

On the other hand, it follows from the previous paragraph that for every
x € B, the point z belongs to a boundary cycle of ¢ if and only if x is in the
boundary (relative to B considered with the topology induced on it by the
various orderings defined above) of the set of all fixed points of §V.

Based on the observations mentioned in the preceding paragraphs (and
a few related observations), we associate to each decomposition C as in The-
orem A a flow configuration @¢ = P¢(C) of £, intended to code how the cells
in C are linked together by the flow of £. To each flow configuration @, we
associate in turn a unique first-order language £(®) in such a way that the
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situation described in the preceding paragraphs naturally yields an £(®¢)-
structure M, in which the lexicographic orderings of Theorem A, the asso-
ciated forward progression map §: BU {oco} — B U {oo} and the set of all
x € B that belong to some boundary cycle of ¢ are definable.

If, in the situation of Theorem A, there is an open C' € Creg, then the
induced structure on C in Mg is not o-minimal (because the structure
(C,<¢, Ec) described above is definable in M¢). Thus, to answer (ii) we
need to work with notions weaker than o-minimality. A weakening that in-
cludes lexicographic orderings is provided by the rosy theories introduced by
Onshuus [9].

To recall this rather technical definition, we fix a complete first order the-
ory T and a sufficiently saturated model M of T', and we work in M®4. (For
standard model-theoretic terminology, we refer the reader to Marker [8].)
The definition of p-forking is much like that of forking in the stable or simple
context: A formula ¢(x,a) strongly divides over a set A if tp(a/A) is nonal-
gebraic and the set {¢(x,b) : b = tp(a/A)} is k-inconsistent for some k € N.
The formula ¢(z,a) p-divides over A if for some tuple ¢, ¢(x,a) strongly
divides over A U {c}. The formula ¢(z,a) p-forks over A if ¢(x,a) implies
a finite disjunction of formulas all of which p-divide over A. A complete
type p(x) p-forks over A if there is some formula ¢(x) in p(x) that b-forks
over A.

For a theory T to be rosy means, roughly speaking, that in models of T,
p-forking has many desirable properties, much like forking in the stable or
simple contexts. For the formal definition we need only focus on a single one
of these: T is rosy if for any complete type p(x) over a parameter set B, there
exists By C B with ||Bp|| < ||| such that p(x) does not b-fork over By.

The “degree of rosiness” of a theory is measured by the UP-rank, defined
analogously to the U-rank in stable theories. For an ordinal o and a complete
type p(z) with parameter set A, we define UP(p) > a by ordinal induction:

(i) UP(p) > 0if p is consistent;
(ii) if o is a limit ordinal, then Ub( ) > aif UP(p) > B for all 8 < o
) U

(iii) UP(p) > a+1 if there is a complete type q(x) so that p C g, ¢ b-forks
over A and UP(q) > a.

For an ordinal a, we say that UP(p) = « if UP(p) > o and UP(p) # a + 1.
Finally, UP(T) is defined to be the supremum of UP(p) for all one-types p
with parameters over the empty set. One of the fundamental facts about
rosy theories is that T is rosy if UP(T) is an ordinal [9).

For example, every o-minimal theory is rosy of UP-rank one. On the other
hand, the theory T of the structure (C, <¢, Ec) above has UP-rank at least
two. To see the latter, let M |= T be Rj-saturated and write C, := {z € C :
21 <c x <¢ z2 for all z1, z9 € E¢ such that z; <¢ z <¢ 22}. Since Eé" is a
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dense linear ordering without endpoints, there are infinitely many a € Eéfl
such that a ¢ acl(§)). For any two such a,b € EM, the fibers C and CM
are disjoint, infinite definable sets. Hence UP(M) > 2.

In this paper, we use the argument of the previous example to establish
lower bounds on UP-rank for the theories we are interested in. For upper
bounds, we need a special case of the Coordinatization Theorem [10, Theo-
rem 2.2.2[:

Fact 2. Assume that T defines a dense linear ordering without end-
points, and let M = T be saturated. Let also n € N and assume that
for all a € M, there are ai,...,a, € M such that a = a, and for each
i€ {l,...,n}, the type of (a1,...,a;) over (a1,...,a;—1) is implied in T by
the order type of (a1, ...,a;) over (ai,...,a;_1). Then UP(T) < n.

Note that our discussion above and the previous example imply that
UP(M,) > 2. The main result of this paper is the following restatement of
Dulac’s Problem:

THEOREM B. Assume that £ is definable in an o-minimal expansion of
the real field, and let Mg be the L(P¢)-structure associated to some flow
configuration ®¢ of {. Then:

(1) & has finitely many boundary cycles if and only if UP(M¢) = 2;
(2) if £ is real-analytic, then & has finitely many limit cycles if and only
if UP(M,) = 2.

The proof of Theorem B is lengthy, but straightforward: we prove that
M¢ admits quantifier elimination in a certain expanded language (Theo-
rem 9.11). The main ingredient in this proof is a reduction—modulo the the-
ory of M¢ in the expanded language, roughly speaking—of general quanti-
fier-free formulas to certain quantifier-free order formulas, which allows us
to deduce the quantifier elimination for M, from quantifier elimination of
the theory of (R?, <jey, {y = 0}, 7), where 7 : R? — {y = 0} is the canonical
projection on the x-axis. Under the assumption of having only finitely many
boundary cycles, the new predicates of the expanded language are easily seen
to define subsets of the various cells obtained by Theorem A that are finite
unions of points and intervals. Sufficiency in Theorem B then follows from
Fact 2; necessity follows by general UP-rank arguments.

As a corollary of Theorem B, Ecalle’s and I'yashenko’s solutions of Du-
lac’s Problem imply the following;:

COROLLARY. Assume § is polynomial, and let M¢ be the L(P¢)-structure
associated to some flow configuration ¢ of &. Then UP(Mg) = 2.

It remains an open question whether, in the situation of the Corollary,
the structures are definable in some o-minimal expansion of the real line.
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An answer to this question, however, seems to go far beyond our current
knowledge surrounding Dulac’s Problem.

Finally, our proof of Theorem B gives rise to a second restatement of
Dulac’s Problem that does not involve UP-rank: Let G be the union of all
1-dimensional C' € C,¢, that are transverse to &, all 0-dimensional C' € Cyeqg
and {oo}. Let G¢ be the expansion of G by all corresponding orderings <¢
and by the map §?|¢. (Note that §*|¢ maps G into G.) We may view G¢ as
a graph whose vertices are the elements of G and whose edges are defined
by §2.

THEOREM C. Assume that £ is definable in an o-minimal expansion of
the real field, and let G¢ be as above. Then:

(1) € has finitely many boundary cycles if and only if the structure in-
duced by G¢ on each 1-dimensional C' C G 1s o-minimal,

(2) if € is real-analytic, then & has finitely many limit cycles if and
only if the structure induced by Ge on each 1-dimensional C' C G
18 o-minimal.

Our paper is organized as follows: in Sections 1-3, we establish Theo-
rem A: In Section 1, we combine basic o-minimal calculus with Khovanskii’s
Lemma to obtain a cell decomposition satisfying (1) and (2) of Theorem A.
To refine this decomposition so that (3) holds, we need to study what sets
we obtain as Hausdorff limits of a sequence of leaves of £|¢ (Proposition 2.5).
The refinement is then given in Section 3, where (3) is established as Theo-
rem 3.4. In Sections 4 and 5, we define the relevant orderings and progression
maps associated to £ as mentioned earlier. Inspired by the latter, we then
introduce the notion of a flow configuration and the associated first-order
language in Section 6, where we also give an axiomatization of the cru-
cial properties satisfied by the models M, above. Some basic facts about
the iterates of the forward progression map are deduced from these axioms
in Section 7. In Section 8, we extend our axioms to reflect the additional
assumption that there are only finitely many boundary cycles, and we in-
troduce additional predicates for certain definable sets related to the sets
of fixed points of the iterates of the forward progression map. The quanti-
fier elimination result is then given in Section 9, and we prove Theorems C
and B in Section 10. We finish with a few questions and remarks in Sec-
tion 11.

GLOBAL CONVENTIONS. We fix an o-minimal expansion R of the real
field; “definable” means “definable in R with parameters”.

For 1 < m < n, we denote by II,, : R® — R" the projection on the first
m coordinates.

Given (z,y) € R?, we put (z,9)* := (y, —x).
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For a subset A C R", we let cl(A), int(A), bd(A) := cl(A4) \ int(A) and
fr(A) := cl(A) \ A denote the topological closure, interior, boundary and
frontier, respectively.

For n € N, we define the analytic diffeomorphism ¢,, : R — (—1,1)" by
(1, s xn) = (w1 //1+ 22, ... 2, /y/1 + 22). Given X C R", we write
X* := ¢,(X), and given a vector field » on R" of class C'!, we write n* for
the push-forward (¢, ).n of n to (—1,1)"™.

Acknowledgements. We thank Lou van den Dries and Chris Miller for
their suggestions and comments on the earlier versions of this paper.

1. Rolle decomposition. Let U C R? be open and p > 1 be an integer.
Let £ = ala% + aga% be a definable vector field on U of class CP (that is, the
functions aj, as : U — R are definable and of class CP), and let

S(€) :={2z€U:ai(z) =az(z) =0}

be the set of singularities of £. By the existence and uniqueness theorems
for ordinary differential equations [2, p. 28], ¢ induces a CP-foliation F¢ on
U\ S(&) of dimension 1. Abusing terminology, we simply call a leaf of this
foliation a leaf of &.

REMARK. Put w := agdzx — a1dy; then S(&) is the set of singularities of
w, and the foliation F¢ is exactly the foliation on U \ S(¢) defined by the
equation w = 0. Below, we will use this observation (mainly in connection
with some citations) without further mention.

DEFINITION 1.1. Let v : I — U be of class CP, where I C R is an
interval. We call v a CP-curve in U and usually write I" := ~([). If t € I is
such that £+ (y(t))-v'(t) # 0, we say that v is transverse to & at t; otherwise, 7
is tangent to & at t. The curve 7y is transverse (tangent) to £ if v is transverse
(tangent) to & at every ¢ € I.

A leaf L of € is a Rolle leaf of & if for every C'-curve v : [0,1] — U with
7(0) € L and (1) € L, there is a t € [0, 1] such that &+(vy(¢)) - 7/(t) = 0.

A cycle of £ is a compact leaf of £. A cycle L of £ is a limit cycle of £ if
there is a noncompact leaf L’ of £ such that L C cl(L’). A cycle L of { is a
boundary cycle of £ if for every open set V C R? with V N L # (), there is a
noncompact leaf L' of £ such that V N L' # (.

REMARK 1.2. Since £ is integrable in U \ S(§), every Rolle leaf L of
¢ is an embedded submanifold of U \ S(&) that is closed in U \ S(£). In
particular, by Theorem 4.6 and Lemma 4.4 of Chapter 4 in [5], if U \ S(&)
is simply connected, then U \ (S(£) U L) has exactly two connected com-
ponents such that L is equal to the boundary in U \ S(§) of each of these
components.
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LEMMA 1.3 (Khovanskif [7]).

(1) Assume that U \ S(&) is simply connected, and let L C U \ S(&) be
an embedded leaf of £ that is closed in U \ S(£). Then L is a Rolle
leaf of £ in U.

(2) Let L be a cycle of £&. Then L is a Rolle leaf of €.

Sketch of proof. (1) Arguing as in the preceding remark, we see that the
set U \ S(§) has exactly two connected components U; and Us, such that
bd(U;) N (U \ S(§)) = L for i = 1,2. The argument of Example 1.3 in |14]
now shows that L is a Rolle leaf of &.

(2) Since L is compact, L is an embedded and closed submanifold of R
Now conclude as in part (1). m

DEFINITION 1.4. We call ¢ Rolle if S(&) = 0, € is of class C' and every
leaf of £ is a Rolle leaf of &.

We now let C be a CP-cell decomposition of R? compatible with U and
S(§), and we put Cy := {C € C : C C U}. Refining C, we may assume that
€|c is of class CP for every C € Cy, and that every C' € Cy of dimension 1
is either tangent or transverse to £. Refining C again, we also assume that

(I) a1 and ag have constant sign on every C' € Cy.

Such a decomposition C is called a Rolle decomposition for &, because of the
following;:

PROPOSITION 1.5. Let C' € Cy be open such that C N S(§) = 0. Then
&|lc ts Rolle. Moreover, if both a; and ag have nonzero constant sign on C,
then either every leaf of &|c is the graph of a strictly increasing CP-function
f I — R, or every leaf of |c is the graph of a strictly decreasing CP-
function f : I — R, where I C R is an open interval depending on f.

Proof. If ai|c = 0 or az|c = 0, the conclusion is obvious. So we assume
that a1|c and ag|c have constant positive sign, say; the remaining three
cases are handled similarly. Let L be a leaf of {|¢; we claim that L is the
graph of a strictly increasing CP-function f : I — R, where I := IT;(L).

To see this, assume first that there are x,y1,y2 € R such that (x,y;) € L
for i = 1,2 and y; # y2. Since &|¢ is of class CP, the leaf L is a CP-curve, so
by Rolle’s Theorem, there is an a € L such that L is tangent at a to 9/9y.
But this means that aq(a) = 0, a contradiction. Thus, L is the graph of a
strictly increasing CP-function f: 1 — R.

It follows from the claim that L is an embedded submanifold of C and,
since C'NS(§) = 0, that L is a closed subset of C. Thus by Lemma 1.3(1),
L is a Rolle leaf of {|¢. =
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2. Rolle foliations and Hausdorff limits of Rolle leaves. We con-
tinue working with £ as in Section 1, and we fix a Rolle decomposition C
for €. We fix an open C' € Cy such that C'NS(€) = 0.

To simplify notation, we write £ in place of £|¢ throughout this section.

Let L be a leaf of . Since L is a Rolle leaf of £, C'\ L has two connected
components Uy, 1 and Uy, 2, and L is the boundary of Ur, ; in C for i = 1,2.
Since £*(2) # (0,0) for all z € C and L is connected, there is an i € {1,2}
such that £1(2) points inside Up, for all z € L; reindexing if necessary, we
may assume that £+ (z) points inside UL for every leaf L of .

DEFINITION 2.1. For a point z € C, we let LS be the unique leaf of £
such that z € LS. For any subset X C (', we define

Fox) = | LS,
zeX
called the £-saturation of X, and we put

L8(X):={LS:z e X}.

For X C C, we define a relation <<§( on the set £(X) as follows: L <<§( M
if and only if L C Uy, (if and only if M C U, 9).

Whenever £ is clear from context, we omit “£” in the definitions and
notations above.

Note that in general the relation < ¢ may not define an order relation
on L(C):

ExamMpLE 2.2. Let ¢ := —ya% + :Ua%, and let g : R2 — R be defined
by g(x,y) = (y — (z — 2))?. Then g( is a real-analytic vector field on R?
and S(g¢) = {0} U{(z,y) : y = x — 1}. Let also C be the cell (a, 3), where
a,3:(0,1) — R are defined by a(x) := 2z — 2 and §(z) :=x — 1.

Then C' N S(g¢) = 0, and since every leaf of ¢ is a Rolle leaf of (, the
vector field g¢|c is Rolle. However, <<“éC is not an ordering of £(C): Pick a
leaf L of £ (that is, a circle with center (0,0)) such that L N gr(«) contains
two points. Then L N C consists of two distinct leaves Ly and Lo of g(|c.
Since ¢*(z) points outside the circle L for every z € L, we get L C Ur,a
and Ly C Uy, 1, that is, Ly <<%C Lo and Lo <<%C L.

However, for certain X the relation <x is a linear ordering of £(X), as
discussed in the following lemma. For a curve v : I — C, we write

L(t) == L,y foralltel;
in this situation, we have F(I") = J,c; L(t).

LEMMA 2.3. Lety: 1 — C be a CP-curve transverse to &, where I C R
s an interval.
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(1) If I is open, then F(I') is open.

(2) The relation < is a linear ordering of L(I"), and the map t — L(t) :
I — L(I) is order-preserving if &X(y(t)) -4 (t) > 0 for allt € I and
order-reversing if E-(y(t)) - v (t) < 0 for all t € 1.

Proof. (1) Assume that I is open, and let ¢ € I. Because £ is CP and
nonsingular and + is transverse to £, by a variant of Picard’s Theorem (see
Theorem 8-2 of [1]), there is an open set By C C' containing ~y(¢) such that
B, C F(I'). Put B := J,.; By; then I' C B C F(I'), so F(I') = F(B). Since
B is open, it follows from Theorem III.1 in [2] that F'(I) is open.

(2) Since +y is transverse to £ and each L(t) is Rolle, the map ¢ — L(t) :
I — L(I') is injective. It therefore suffices to show that either

s<t< L(s)<p L(t) forall s,tel,

or
s<t< L(t)<r L(s) forall s,tel.

Since v is transverse to &, the continuous map t — &LX(y(t)) - '(t) : I — R
has constant positive or negative sign. Assume it has constant positive sign;
the case of constant negative sign is handled similarly. Then for every t € I,
the set
I'ep:={y(s):sel, s<t}

is contained in Upy) ;. Hence L(s) C Up,; for all s € I with s < ¢, that is,
L(s) < L(t) for all s € I with s < t¢. Similarly, L(t) < L(s) for all s € I
with s > ¢, and since ¢t € I was arbitrary, the lemma follows. =

We assume for the rest of this section that C' is bounded. Let &~ be the

1-form on C' defined by |
€le
= Telell

Then £¢ is a bounded, definable CP-map on C', so by o-minimality, there is
a finite set Fo C fr(C) such that {¢ extends continuously to cl(C) \ Fc; we
denote this continuous extension by - as well.

Let ¢,d € R and «,( : (¢,d) — R be definable and CP such that
C = (a, #). Because C' is bounded, the limits a(c) := limy—. a(z), a(d) :=
lim,_.qa(z), B(c) := limz—. B(x) and B(d) := lim, .4 B(z) exist in R. The
points of the set

Vo = {(esale), (. ald), (e, B0, (d, 5(d)}

are called the corners of C.

EXAMPLE 2.4. In Example 2.2, we have F C Vi and both g¢ - (9/0x)
and gC - (9/0y) have constant nonzero sign. The next proposition shows that

under the latter assumptions, the situation of Example 2.2 is as bad as it
gets.
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PROPOSITION 2.5. Suppose that Fo C Ve, ai|lc # 0 and az|c # 0. Let
~v:[0,1] — C be a CP-curve transverse to &, and let t; € (0,1) be such that
to <t <ty <--- and t; — 1. Then the sequence (cl(L(t;))) converges in
the Hausdorff metric to a compact set K := limcl(L(t;)) C cl(C) such that

(i) II1(K) = [a,b] withc<a <b<d,
(i1) each component of K N C is a leaf of &;
(iii) K NI, (a,b) = gr(f) for some continuous function f : (a,b) — R.

Proof. By Proposition 1.5, we may assume that for every ¢ € [0, 1], the
leaf L(t) is the graph of a strictly increasing CP-function f; : (a(t),b(t)) —
R (the other cases are handled similarly). Since C' is bounded, the limits
fi(a(t)) == lim,_q¢) fe(w) and fi(b(t)) := lim,_p) fi(7) exist, and we also
denote by f; : [a(t),b(t)] — R the corresponding continuous extension of f;.
Then cl(L(t)) = gr(f:). By Lemma 2.3, we may also assume that the map
t— L(t) : [0,1] — L(I") is order-preserving (again, the other case is handled
similarly). Finally, since each f; is strictly increasing and the map t — L(t) :
[0,1] — L£(I") is order-preserving, it follows that fs(z) > fi(z) for all s,t €
[0, 1] such that s <t and = € (a(s),b(s)) N (a(t),b(t)).

Since each cl(L(t;)) is connected, the set K is connected, so I1;(K) is
an interval [a,b], which proves (i). It follows in particular that for every
x € (a,b), there is an open interval I, C (a,b) containing x such that
I, C (a(t;),b(t;)) for all sufficiently large i. Thus by our assumptions,

(x) for every z € (a,b) we have f, |1, > fi,,, |1, for sufficiently large i.

Next, we show that K N C is an integral manifold of £. Fix a point
(z,y) € KNC} it suffices to show that there is an open box B C C containing
(x,y) such that K N B is an integral manifold of £. Let B = I x J be an
open box containing (x,y) such that I C I,. Since a1 (z,y) # 0, we may also
assume (after shrinking B) that there is an € > 0 such that |a;(2/,y")| > € for
all (¢/,y") € B; in particular, there is an M > 0 such that f;,|; is M-Lipschitz
for all sufficiently large i. Hence by (%), the function f : I — R defined by
f(2') :=1lim;_ f1,(2) is Lipschitz and satisfies KN(IxR) = KNB = gr(f).
Finally, shrinking B again if necessary, we see that F¢ being a foliation
implies that K N B is an integral manifold of £, as required.

Since K is compact and K N C' is an integral manifold of £, every com-
ponent of K N C is a leaf of &. It also follows from the previous paragraph
that K N C is the graph of a continuous function g : IT; (K N C') — R, which
proves (ii).

Let now = € (a,b) be such that = ¢ I, (KNC'). Then (z, a(x)) or (z, 5(x))
belongs to K, because (a,b) C II;(K); by (x) we have (z,0(z)) ¢ K, so
(z,0(z)) € K. If (& - %)(m,a(m)) # 0, then by the same arguments as
used for (ii), we conclude that there are open intervals I,J C R such that
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(z,a(x)) € IxJand KN(IxJ) is the graph of a continuous function defined
on I. Therefore, part (iii) is proved once we show that (¢ - 8%) (z,a(x)) #0
for all z € (a,b) \ I (K NC).

Assume for a contradiction that there is an = € (a,b) \ II;(K N C) such
that (¢ - %)(m,a(x)) = 0. Let M > |&/(x)], and let I,J C R be open
intervals such that I C I, and |ag/a1| > M on B := 1 x J. Since f;,(z) —
a(z), it follows from the fundamental theorem of calculus for all sufficiently
large i that fi,(x;) = a(x;) for some z; € I, a contradiction. m

3. Piecewise trivial decomposition. We continue working with £ as
in Section 1, and we adopt the notations used there. Note that £* (as defined
at the end of the Introduction) is a definable vector field on U* of class C?,
and that C is a Rolle decomposition of R? for ¢ if and only if C* := {C* :
C € C} is a Rolle decomposition of (—1,1)? for £*.

Let C C U be a bounded, open, definable CP-cell such that £|¢ is Rolle.
To detect situations like the one described in Example 2.2, we associate the
following notations to such a C'. There are real numbers ¢ < d and definable
CP-functions a, 8 : (c,d) — R such that C' = (a,3). Given a C'-function
0 : (¢,d) — R such that a(z) < §(z) < f(z) for all z € (c¢,d), we define
os:C — R by

1
os(z,y) == gL(:an) ) <5/($)>
Note that for each x € (¢, d), there are by o-minimality a maximal af (z) €
(a(z), B(z)] and a minimal G (x) € [a(x), B(x)) such that the function o,
has constant sign on {z} x (a(z),a§ (z)) and the function o5 has constant
sign on {z} x (85 (), B(x)); we omit the superscript “C” whenever C is clear
from context. Note that g, Gy : (¢,d) — R are definable.

DEFINITION 3.1. A CP-cell decomposition of R? compatible with U,
bd(U) and S(§) is called almost piecewise trivial for £ if

(I) every C € Cy of dimension 1 is either tangent or transverse to &;
(IT) the components of £ have constant sign on every C € Cy;

and for every open, bounded C' € Cy such that C' N S(§) = 0, the following
hold:

(1) Fo C Ve

(IV) the maps ag, 0o : (¢,d) — R are continuous;

(V) the map o, has constant sign on the cell (o, o), and the map op
has constant sign on the cell (5, 3).

We call C piecewise trivial for € if C* is almost piecewise trivial for £*.
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ExXAMPLE 3.2. Let ¢ := —ya% —I—xa%, and let C be the cell decomposition

of R? consisting of the sets of the form {(z,y) : x * 0, yx 0} with * * €
{=,<,>}. Then C is piecewise trivial for (.

REMARKS 3.3.

(1) Any piecewise trivial decomposition for £ is a Rolle decomposition
for &.

(2) If U is bounded, then C is almost piecewise trivial for £ if and only
if C is piecewise trivial for &.

(3) We obtain a piecewise trivial decomposition for £ in the following
way: First, obtain a CP-cell decomposition C compatible with U,
bd(U) and S(&) satisfying (I) and (II). Then, to satisfy (III)-(V), we
only need to refine I1;(C) := {II;(C) : C € C}.

We now fix a piecewise trivial decomposition C of R? for ¢£. The name
“piecewise trivial” is justified by:

THEOREM 3.4. Let C € Cy be open such that C N S(§) = 0. Then the
relation <o on L(C) is a linear ordering.

To prove the theorem, we fix a bounded, open C' € Cyy such that C'NS(§)
= (). Establishing the theorem for this C' suffices: if the theorem holds for
every bounded, open D € C such that DN S(§) = @, then the theorem holds
with C* and £* in place of C and & (because every D € C* is bounded). Since
@9 is an analytic diffeomorphism, it follows that the theorem holds for every
open D € C such that DN S(&) = 0.

We need quite a bit of preliminary work (see the end of this section for
the proof of the theorem). For Lemma 3.5 and Corollary 3.6 below, we fix a
CP-curve 7 : [0,1] — C transverse to &.

LEMMA 3.5. Let t; € (0,1) for i € N be such that t; — t € [0,1]. Then
CNlimel(L(t;)) = L(t).

Proof. From Proposition 2.5 we know that C' " K is a union of leaves
of £|¢, where K := limcl(L(t;)). Thus, since vy(t;) — v(¢) and y(¢) € L(t),
it follows that L(t) € C N K. To prove the opposite inclusion, we may
assume by Proposition 1.5 that every leaf of | is the graph of a strictly
increasing function (the other case is handled similarly). By Proposition 2.5
again, IT;(K) = [a,b] with ¢ < a < b < d, and there is a continuous function
f: (a,b) — R such that K N ((a,b) x R) = gr(f).

Assume for a contradiction that there is a leaf M of £|¢ such that M #
L(t) and M C CNK. Then L(t) and M are disjoint subsets of gr(f); say
L(t) = gr(ft), where f : (a(t),b(t)) — R, and M = gr(g), where g : (a’, V') —
R. We assume here that o/ < b < a(t) < b(t); the other case is again
handled similarly. By our assumption, ¢ < a(t) and hence lim, )+ fi(z) €
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{a(a(t)), B(a(t))}. We assume here lim, .+ fi(z) = a(a(t)), the other
case being handled similarly. Then by the Mean Value Theorem, for every
e > 0 there is an = € (a(t),a(t) + €) such that f/(x) > &'(z), that is,
ooz, fi(z)) < 0. It follows from (V) that

() the map o, has constant negative sign on (a, ayg).

On the other hand, V' < d, and we may assume that lim,_,,— g(z) = «(V'):
otherwise, lim,_ ;- g(x) = ('), and since

lim) () = lim  fi(z) = ala(t)),

xz—a(t z—a(t)t

we can replace M by a leaf of {|¢ that is contained in gr(f) and has the
desired property. But lim, ;- g(x) = a(b’) means (as above) that for ev-
ery € > 0 there is an z € (V/ — ,V/) such that ¢'(z) < o'(x), that is,
ooz, g(x)) > 0. This contradicts (x), so the lemma is proved. =

Put F := F(v((0,1))); note that F' is open by Lemma 2.3(1).

COROLLARY 3.6. C Nbd(F) = L(0)U L(1); in particular, there are dis-
tinct jo, j1 € {1,2} such that C'\ cl(F) = Ur),j, Y UL)j, -

Proof. Let z € cl(F) N C, and let z; € F be such that z; — z. Let
t; € (0,1) be such that z; € L(t;); passing to a subsequence if necessary, we
may assume that ¢; — ¢ € [0,1]. Then z € C Nlimcl(L(t;)), so z € L(t) by
Lemma 3.5. Since F' is open by Lemma 2.3(1), it follows that C N bd(F) C
L(0) U L(1). On the other hand, by Lemma 2.3(2), there is a j € {1,2} such
that L(t) C Ur(,; for all t € (0,1] and L(t) C Uy j for all ¢ € [0,1), where
j' € {1,2}\ {j}. Hence L(0) U L(1) € C Nbd(F(I')), and the corollary is
proved. =

DEFINITION 3.7. Let 7 : [0,1] — U be continuous. We call 7 piecewise
CP-monotone in & if there are tg :=0 <t <ty < --- <ty < trsq:=1 and
* € {<, >} such that for all i =0,...,k, the restriction 7|, 4, ) is C?, and
either £+(7(¢)) - 7/(t) = 0 for all ¢ € (t;,t;11) or EX(7(t)) - 7/(t) * 0 for all
t € (t;,ti+1). In this situation, we also say that 7 is x-piecewise CP-monotone

in £. We call such a 7 tangent to § if each 7|, .. ) is tangent to &.

LEMMA 3.8. Let v,w € C. Then there is a curve 7 : [0,1] — C that is
piecewise CP-monotone in & and satisfies 7(0) = v and 7(1) = w.

Proof. If L, = L, then there is a CP-curve 7 : [0,1] — L, such that
7(0) = v and 7(1) = w, and we are done. So we assume from now on that
Ly, # Ly. Let jy, € {1,2} be such that w € Uz, j,.,, and put

< i gy =1,
ko 1=
o > if fyu = 2.
By o-minimality, there is a definable CP-curve 7 : [0,1] — C such that
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(I) 7(0) =v and 7(1) = w.

Again by o-minimality, there are o := 0 < t; < --- <ty < tg41 := 1 such
that for each ¢ = 0,...,k,

(IT) the map t — &-(7(t)) - 7/(t) has constant sign on (¢;,t;11).
By Khovanskii theory [14], we may also assume that for every i =0, ...k,
(II1) either 7((ti, tit1)) N (Ly U Lyy) = 0 or 7((ti, tit1)) C Ly U Ly,

We now proceed by induction on k, simultaneously for all v,w € C and 7
satisfying (I)—(III), to prove that 7 can be changed into a curve that is s~
piecewise CP-monotone in &. If k = 0, then 7 is *,,,-piecewise CP-monotone
in £, so we are done. Therefore, we assume that k£ > 0 and that the claim
holds for lower values of k.

Since 7(1) = w ¢ L, and L, is closed in C, there is a maximal ¢ € [0,1)
such that 7(t) € L,, and by our choice of t1,...,t;, we have t = ¢; for some
i € {0,...,k}. If i > 1, we replace T[4, by a CP-curve 71 : [0,%;] — Ly
such that 7(0) = v and 7(t;) = 7(¢;), and we reindex t;,...,t511 as
t1,...,tk—i+o. Hence by the inductive hypothesis, we may assume that ¢ <1
and 7([0,1]) € L, U Uy, j,,.- Put v := 7(¢1); we now distinguish two cases:

CASE 1: v' € Ly. Then ., = %4y, so by the inductive hypothesis (and
rescaling), there is a curve 71 : [t1, 1] — C that is *,,-piecewise CP-monotone
in £ and satisfies 71(t1) = v" and 71(1) = w. Now replace 7|y, 17 by 1.

CASE 2: v/ ¢ L,. Then we must have &1 (7(t))-7(t)%,,0 for all t € (0,¢y).
If v' € L, the lemma follows by a similar argument to that in Case 1, so we
assume that v' ¢ L,,. We claim again that s, = %, in this situation, from
which the lemma then follows by the inductive hypothesis as in Case 1.

To see the claim, we note that by Corollary 3.6 the complement of
F(7([0,#1])) in C has two connected components Uy, ; and Uy, ,, where
J,7" € {1,2} are distinct. By the above, j must be different from 7y, so
w e ULU,J,,, that is, j' = jyrw, which implies jy = Jurw as required. m

LEMMA 3.9. Let 7:[0,1] — C be piecewise CP-monotone in & such that
T s not tangent to §. Then there is a CP-curve v : [0,1] — C such that 7y is
transverse to C, v(0) = 7(0) and y(1) = 7(1).

Proof. Let tg:=0 < t; <ty < -+ <t <tpy1 :=1 be as in Definition
3.7. We work by induction on k. If £ = 0, then by hypothesis 7 is transverse
to &, and we take v := 7. So we assume that k > 0; for the inductive step,
it suffices to consider the case k = 1. The hypothesis on 7 then implies that
at least one of 7[(,,) and 7|, 1) is transverse to &; so we distinguish three
cases:
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CASE 1: Both 7|4,y and 7|, 1) are transverse to §. By Picard’s The-
orem, there are an open neighborhood W C C of 7(t;) and a CP-diffeo-
morphism f : R? — W such that f(0) = 7(¢t;) and f*¢ = 0/0x, where
f7€ is the pull-back of £ via f. Then for some £ > 0, the continuous curve
flo 7| (t1—e,t14¢) 18 CP and transverse to 9/0z on (t1 —¢,t1) U (t1,t1 +¢€).
Using standard smoothing arguments from analysis, we can now find a CP-
curve  : (t1 —&,t1 + €) — R2? that is transverse to 9/0x and satisfies
n(t) = f~17(t)) for all t € (t; —e,t1 —/2) U (t1 + /2,1 + ). Now define
v:[0,1] = C by

L (T(t) i0<t<ti—ecortite<it<I,
") _{f(n(t)) £ —c<t<t e

CASE 2: T|(y,) is transverse to & and 7|, 1) is tangent to {. Since
7([t1,1]) is compact, there are (by Picard’s theorem again) sy = t; <
s1 < -+ < 8§ < 841 = 1, open neighborhoods W; C U of 7(s;) and
CP-diffeomorphisms f; : R? — W, for i = 0,...,] + 1 such that 7([t1,1]) C
WoU---UWii, fi(0) = 7(s;) and f ¢ = 0/0z for each i. We assume that
[ =0, so that so = t; and s; = 1; the general case then follows by induction
on [.

Let uw € (t1,1) be such that 7(u) € Wy N W;. Working with fy as in
Case 1, we can replace 7|, by a CP-curve 7 : [0,u] — C transverse to §
such that 7(0) = 7(0) and n(u) = 7(u). Define n(t) := 7(t) for t € (u,1];
repeating the procedure with 7 and f; in place of 7 and fp, we obtain a
CP-curve 7 : [0,1] — C that is transverse to { and satisfies y(0) = 7(0) and
~v(1) = 7(1), as desired.

CASE 3: 7|(o4,) is tangent to § and 7|y, 1 is transverse to &. This case
is similar to Case 2. n

Combining Lemmas 3.8 and 3.9, we obtain:

COROLLARY 3.10. Let u,v € C be such that L, # L,. Then there is a
CP-curve v : [0,1] — C such that v(0) = u, v(1) = v and 7 is transverse
to€. m

Proof of Theorem 3.4. Let M,L € L(C) be distinct and choose v € M
and w € L. By Corollary 3.10, there is a CP-curve 7 : [0,1] — C such that
7(0) = v, ¥(1) = w and 7 is transverse to &. Hence ¢ — &-(v(t)) - 7/(t) has
constant nonzero sign on [0, 1]; this shows that <¢ is irreflexive. Transitivity
follows by a similar argument. =

4. Foliation orderings. Let £ = ala% —i—aga% be a definable vector field

of class C' on R?. We fix a piecewise trivial decomposition C of R? for &;
refining C if necessary, we may assume that C is a stratification. To simplify
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statements, we put
Crog := {C €C:CNSE) =0}

For instance, in Example 3.2, the piecewise trivial decomposition C is a

stratification and Creg = C \ {0}.

REMARK 4.1. C being a stratification has the following consequence: for

every l-dimensional C' € C, there are exactly two distinct open D € C such
that C' N fr(D) # 0, and for each of these D we have C' C fr(D).

Let V C R?\ S(€) be an integral manifold of £, that is, a 1-dimensional
manifold tangent to £. Given u,v € V', we define u <§/ v if and only if there is
a Cl-path 7 : [0,1] — V such that v(0) = u, v(1) = v and &(y(¢)) -9/(t) > 0
for all ¢ € [0, 1].

LEMMA 4.2. Assume that V s connected and not a compact leaf. Then
the relation <§, defines a dense linear ordering of V' without endpoints.

Proof. Let u,v € V be such that u # v. Since V is connected, we get
u <€. v or v <€. u. On the other hand, if there are C'-paths 7,6 : [0,1] — V
such that v(0) = §(1) = u, v(1) = 6(0) = v and &(y(¢)) - ¥'(t) > 0 and
E(6(¢))-d'(t) > 0 for all ¢t € [0,1], then v([0,1]) Ud([0,1]) is a compact leaf of
& contained in V; since V' is connected, it follows that V' is a compact leaf,
a contradiction. m

We now fix a C' € Cyeg such that dim(C') > 0.

DEFINITION 4.3. The foliation of £ induces an ordering <§C on C as

follows:

e Suppose that C' is open, and let u,v € C. Then every leaf of &|¢ is
noncompact by Proposition 1.5. Thus, we define u <£C’ v if and only if
L, <<% L,or L,=1L,and u <£Lu V.

e Suppose that dim(C) = 1 and C is tangent to . Then C' is a con-
nected, noncompact integral manifold of &, so we define <€C as before
Lemma 4.2.

e Suppose that dim(C') = 1 and C' is transverse to &. Let u,v € C; we
define u <% v if and only if there is a C'-curve 7 : [0,1] — C such
that & (y(t)) -1/(t) > 0 for all £ € [0, 1].

As before, we omit the superscript & whenever it is clear from context.

A <g-interval is a set A of the form (a,b) := {c € C : a %1 ¢ %3 b} with
a,be C,or (a,00) :={ce€ C:axc}witha € C,or (—o00,b) :={c e C:cxc}
with b € C, where *, %1, %9 € {<c, <c¢}; we call A open if x = x; = %9 = <(.

LEMMA 4.4. The ordering <¢ is a dense linear ordering on C without

endpoints. Moreover, if dim(C') = 1, then every <c-bounded subset of C' has
a least upper bound.
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Proof. 1t is clear from the definition that C' has no endpoints with respect
to <¢. Density and linearity follow from Lemmas 2.3 and 4.2 if dim(C) = 1,
and if C is open, they follow from Lemma 4.2 and Theorem 3.4.

For the second statement, assume that dim(C) = 1 and let o : (0,1) —R?
be C' and injective such that C = «((0,1)). If C is tangent to &, then the
map ¢ — &(a(t)) - &'(t) has constant nonzero sign, and if C' is transverse
to &, then the map ¢ +— &+ (a(t)) - /(t) has constant nonzero sign. Thus in
both cases, the map « : ((0,1),<) — (C, <¢) is either order-preserving or
order-reversing; the second statement follows. =

We assume for the remainder of this section that either C is open, or C
is 1-dimensional and tangent to £.

DEFINITION 4.5. For each leaf L of |, it follows from Proposition 1.5
that fr(L) consists of exactly two points P;, P; € fr(C) U {oc}, where, for
% € {>, <}, P; is the unique of these two points with the property that for
every Cl-curve v : [0,1) — L satisfying v(0) € L and lim¢ . y(t) = Pj,
we have £((t)) - +/(t) * 0 for all ¢ € [0,1). In this situation, we define the
forward projection fo : C' — fr(C) U {oo} and the backward projection bo :
C — fr(C)U{oo} as

fc(z):= Py, and bg(z):=Pp, forall z € C.

From now on we assume that C' is open, and we let D € Crg be of
dimension 1 and contained in fr(C') such that D is transverse to &.

LEMMA 4.6. Either D C fo(C) and DN bc(C) =0, or D C be(C) and
Dnife(C) =10.

Proof. Let a: (0,1) — R? be a definable C''-map such that D = «((0, 1))
and &4 (a(t)) - o/(t) > 0 for all t € (0,1). Thus, either (a(t)) points into
C for all t, or £(a(t)) points out of C for all ¢. In the first case, we have
fc(C)ND =, and in the second case b (C)N D = (). Moreover, by Picard’s
Theorem, for every w € D there is an integral manifold V C R? of ¢ such
that V'.N D = {w}; hence, either w € fo(C) or w € b (C). m

LEMMA 4.7. The maps fc\fal(D) and bC’bEI(D) are increasing.

Proof. We prove the lemma for fo. Let u,v € C' with v <¢ v be such
that fo(u),fc(v) € D; we may clearly assume that L, <¢ L,, and hence
(by Picard’s Theorem) that fo(u) # fo(v).

We assume here that D = gr(a), where a : (a,b) — R is a definable C'-
function; the case D = {a} x (b, ¢) is handled similarly. Let also 3 : (a,b) — R
be a definable C!-function such that C' = (a,8) or C = (3,); we assume
here the former, the latter being handled similarly. For s € [0, 1], we put

as(t) == (1 —s)a(t)+sB(t), a<t<b.
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Then for every t € (a,b), we have lims_g as(t) = «(t) and lims_g o (t) =
a/(t).

Let now a < a’ <" < b be such that fo(u),fc(v) € gral(y py. Since D
is transverse to {, there is an &€ > 0 such that gras|(y ) is transverse to §
for all s € [0,¢). It follows from the previous paragraph that the map ¢ —
oa(t,a(t)) has the same constant nonzero sign as the map t — o4, (¢, as(t))
for all s € (0,¢). Therefore by Lemma 2.3(2) and the definition of <p, we
have fo(u) <p fo(v), as required. m

COROLLARY 4.8. Let I C C be a <c-interval. Then each of fc(I) N D
and bo(I) N D is either empty, a point or an open <p-interval.

Proof. Assume that a,b € fo(I) N D are such that a <p b, and let ¢ € D
be such that a <p ¢ <p b; it suffices to show that ¢ € fo(I). By Lemma 4.6,
c € fc(C). Let u,v,w € C be such that a = fo(u), b = fc(v), ¢ = fo(w) and
u,v € I. Then u <¢ w <¢ v by Lemma 4.7, as required. =

We fix a set Ec C C such that |[Ec N L| =1 for every L € £L(C) and put
<Es = <c|Ey, and we denote by ey, the unique element of N L, for every
Le L(C).

REMARK. The map L — LN E¢ : (L(C),<¢) — (Ec,<g,) is an
isomorphism of ordered structures.

PROPOSITION 4.9. Letg € {f,b}. If D C g¢(C), then Dy := g (D)NE¢
is an <g.-interval, and the map gc|p, : (Dg, <ec|p,) — (D,<p) is an
isomorphism of ordered structures.

Proof. The transversality of D to & implies that if w € D and Ly, Lo €
L(C) are such that w = Py, = Py or u= P; = Pj,, then Ly = Ly. Thus
by Lemma 4.7, the map g¢| Dp; 1s strictly increasing, so the lemma follows. =

5. Progression map. We continue working with £ and C as in Section 4,
and we adopt all corresponding notations. We let

(1) Copen be the collection of all open cells in Creg;
(ii) Cian be the collection of all cells in Cyeg that are of dimension 1 and
tangent to &;
(iii) Cirans be the collection of all cells in Cyeg that are of dimension 1 and
transverse to &;
(iv) Csingle be the collection of all p € R? such that {p} € Creg-

By Lemma 4.6 and since C is a stratification, there are, for each C €
Cirans, distinct and unique cells C°, CF € Copen such that C'N cl(C®) # 0,
C Ncl(C) # 0 and

C Ciee(C® and C C b (Ch.
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Similarly, there are, for each p € Cgipgle, distinct and unique cells ]ob,pf €
Copen U Cran such that p € cl(p®), p € cl(p’) and

P E fpo (p®) and pe b (ph.
(For p € Cgingle, We use the fact that there is an open box B containing p such
that the leaf of {|p passing through p is a Rolle leaf.) For each C' € Ciap, we
fix an arbitrary element ec € C; note that for each z € C, C' is the unique

leaf L. of {|¢ containing z.
We now define f/, b’ : R? — R? U {co} by

fo(z) if 2z € C € Copen U Ctan and er,_ < 2,
f'(z) _ Jer. if z € C € Copen U Cran and z <, er,_,
) (besle, )TN (2) if 2 € C € Cirans U Caingles
z if z € S(§)
and
(bo(2) if 2z € C € Copen U Ctan and z <y,_ey,_,
o(2) = er, if z € C € Copen UCtan and e, <r,, 2,
(Fev B, )~ H(2)  if 2 € C € Cirans U Csingle
z if z € 5(§).

DEFINITION 5.1. We define §,b : R? U {co} — R? U {co} by
i(2) = {f’(z) if z € R? and §(2) ¢ S(¢),

00 otherwise
and

b(z) = { b/(z) if z€ R% and b/(2) ¢ S(€),
00 otherwise.

We call f a progression map associated to £ and b a reverse progression map

associated to £. We put

Cl = Ctrans U Csingle U U{EC :C e Copen} U {{eC} :C e Ctan}

and let B := [ JCy; note that f(R?) C BU{oc} and b(R?) C BU{cc}. Finally,
we define f* : R?2 U {co} — R2 U {co} by {°(z) := z, and for k > 0 we define
f¥: R2 U {oo} — R2 U {oo} inductively on k by §*(z) := f(f*~1(x)).

PROPOSITION 5.2. Let X € C; and L be a compact leaf of €. Then
IXNL|<1.

Proof. If X € Cgingle or X = {ec} for some C' € Cian, the conclusion is
trivial. By Lemma 1.3(2), L is a Rolle leaf of &; in particular, | X N L| <1
if X € Cirans- So we may assume that X = E¢ for some C' € Copen. Then
there is at most one L’ € L(C) contained in L: otherwise by Corollary 3.10,
there is a Cl-curve 7 : [0,1] — C transverse to ¢ such that v(0),v(1) € L, a
contradiction. It follows again that [ X NL| < 1. m
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PROPOSITION 5.3. There is an N € N such that for every x € B, the
leaf of & through x is compact if and only if ¥ (x) = .

Proof. Let x € B; if f*(x) = x for some k > 0, then the leaf of ¢
through z is compact. For the converse, we assume that the leaf L of £
through x is compact. Since L is compact, we have L N S(£) = 0, that is,
f*(z) € B for every k > 0. Thus with n := |Cyeg|+ 1, there are a C € Creg and
0 < k1 < ko < n such that §*(z), f*2(x) € C. It follows from Proposition 5.2
that f*1(2) = f*2(z), and hence that

2= o () = b o 2 () = 127 (o),

Since n is independent of x € B, the number N := n! will do. =

6. Flow configuration theories. Inspired by the previous sections, we
now define a first-order theory as described in the introduction. Our main
goal, reached in Section 9, is to show that this theory admits quantifier
elimination in a language suitable to our purposes.

DEFINITION 6.1. A flow configuration is a tuple
b = (dsopena dstana étran& ésinglea (bba (bf? min7 max, NQ)
such that ®open, Pran, Pirans and Pgipgle are pairwise disjoint, finite sets,

¢b7 ¢f : ¢trans ) stingle - @open ) Qstana

min, max : @open U Pian U Pirans — @single U {OO}

and Ng € N. In this situation, we shall write a® and a instead of ¢°(a) and
¢f(a) for a € Prrans U stingle-

EXAMPLE 6.2. Let & be a vector field on R? of class C' and definable
in an o-minimal expansion of the real field, and let C be a piecewise trivial
cell decomposition of R? that is also a stratification. We define Copens Ctan,
Ciranss Csingle and b T Cirans U Csingle — Copen U Ctan as in Section 5, and we
let N € N be as in Proposition 5.3.

Let C' € Copen UCtan UCrans. If there is a point in Cgpgle that is contained
in the closure of every set {x € C : x <é a} with a € C, we let min(C) be
any such point; otherwise, we put min(C') := co. Similarly, if there is a point
in Cgingle that is contained in the closure of every set {reC:a <£C’ x} with
a € C, we let max(C) be any such point; otherwise, we put max(C) := oo.
Then the tuple

QS{ = @5 (C) = (Copena Ctana Ctran& Csingle7 b’ f’ min, max, N)
is a flow configuration associated to &.

For the remainder of this section, we fix a flow configuration ®.
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DEFINITION 6.3. Let L£(®) be the first-order language consisting of

(i) aunary predicate C' and a binary predicate <¢ for each C' € @ypen U
Dian U Ptrans:
(ii) a unary predicate E¢ for each C' € Pgpen and a constant symbol ec
for each C € ®y,p;
(ili) a constant symbol s, and a constant symbol ¢ for each ¢ € Pgingle;
(iv) unary function symbols f and b;
(v) constant symbols rg and sg, for each C' € Pirans and g € {f, b}.

Throughout the rest of this paper, for m € N we write {™ for the £(®)-word
consisting of m repetitions of the symbol f, and similarly for b™.

ExXAMPLE 6.4. Let £ and C be as in Example 6.2; we adopt the notations
used there. We associate to £ a unique L(P¢)-structure Mg = M¢(C) as
follows:

(i) the universe M of M, is R?\ S(&) U {oc};

(ii) for each C' € CopenUCtanUCtrans, the predicate C is interpreted by the
corresponding cell in C, and the predicate <¢ is interpreted by the
union of <g with {(min(C),a) : a € C} and {(a, max(C)) : a € C};

(iii) for each C' € Copen, the predicate E¢ is interpreted by the set E¢
described in Section 5, and for each C' € Cian, the constant ec is
interpreted by the element e € C' picked in Section 5;

(iv) the constant s is interpreted as oo, and for each ¢ € Csingle, the
constant c is interpreted as the corresponding element of Cgingle;

(v) the functions f and b are interpreted by the corresponding forward
progression and reverse progression maps;

(vi) for each C' € Cirans and g € {f,b}, the constants rg and s% are
interpreted as the lower and upper endpoints, respectively, of the
interval g(C) in Ece U {min(C9), max(C?)}.

DEFINITION 6.5. We put @ := Popen UPtan UPsrans; intending to capture
the theory of the previous example, we let T'(®) be the L(®)-theory consisting
of the universal closures of the formulas in the axiom schemes (F1)—(F15)
below.

(F1) The formulas

(a) /\ —c=dA /\ -C(c),

Cadedssinglev cAd Ceésinglm Cedy
(b) /\ —c=5A /\ -C(s),
ce@single CEQO

(c) x=sV \/ r=cV \/ (C’(m)/\ /\ —|D(:C)).

ce@single CE¢O DE@O ,D#C
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(F2) For each C' € &g the sentences stating that < is a dense linear or-
dering of C, together with C'(z) — (z <¢ max(C) Amin(C) <¢ z).

REMARK. We do not wish to state that < is a linear order on all of
C' U {min(C), max(C)}, because it is possible that min(C') = max(C'). The
axioms (F2) suffice for our purpose, which is to be able to refer to C' as the
<c-interval between min(C') and max(C).

(F3) The formula /\ Clec) A /\ Ec(z) — C(x).
CEPran CEPopen
(F4) For each C' € @gpen the sentences stating that the restriction of <¢
to E¢ is a dense linear ordering,.

(F5) For each (g,h) € {(f,b), (b, )} and * € {<, >} the formulas
(a) g(s) =sA (-2 =5 — —g(x) =)

) A (m8(e) = s —bla(c) = ),

c€Pgingle
€ A Co) = Ec(g@)n N\ Cla@) = g(x) = ec,
CePopen CePran
@) N\ (Clx)Aecxcaxcalec)) — alx) = alec),
CePran
() N\ (C(z)Aec*cxxchlec)) = a(z) = ec.
CePran

F6) For each C € Cypen and g € {f, b} the formula
p

(Ec(z) N Ec(y) Ag(e) = 8(y)) — (g(z) = s Ve =y).

(F7) For each ¢ € Pgingle and g € {f, b}, the sentences g(c) = eco if
9 € Dpan and Ees(g(c)) if 8 € Dopen.

(F8) For each C € Pyans and (g, h) € {(f, ), (b, f)} the sentences stating
that g(C) is an interval I; in Fce and g|c : C — I; is an order-
isomorphism.

(F9) For each C € Pypen and (g,h) € {(f,b), (b,f)} the formula

Eow) = (s =sv \/  De@)v \  a@)=a).

DePtrans, C=Db de@singlev C=db

We need more axioms describing the ordering <c and the behavior of
fand b on C for C € Pypen. For example, if z € C'\ E¢, we want that
x has either a unique predecessor or a unique successor in E¢. Also, for
any y € F¢, the set of points  for which y is either the predecessor or
the successor is infinite and densely ordered by <¢. For convenience, we let
gbg(x, y) be the formula

C(x) N—Ec(z) NEc(y) Nx <cy A —-3z(Ec(z) Nz <¢ z <c Y)
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and ¢%(z,y) be the formula
C(z) N=Ec(x) NEc(y) Ny <c x AN—32(Ec(z) Ny <c z <c ).
(F10) For each C € Pgpen the formulas

(a) C(x) A=Eo(x) = 3y(op(e,y) vV 6&(2,v)),
(b) 3ydb(x,y) — —Fyod (=, 2),
() Fyoe(z,y) — ~Fyol(w,y),
and the formula scheme E¢c(y) — Hooxqﬁfc(:n, y) A 3%zl (2, y).
(F11) For each C' € ®pen the sentences stating that for every y € E¢, the
restriction of <¢ to the set Cy := {z : ¢&(z,y) \/qbfc(x, y)Ve =y}
is a dense linear ordering, together with Cy(z) — (z <¢ f(y) A
8(y) <c ).
(F12) For each C € ®open and (g, h) € {(f,b), (b, f)} the formulas
(a) C(z) A=Ec(z) Ay (z,y) — Vz(dg (2, 2) — 8(z) = 2),
(b) C(a) A~Eo(x) A Iydls(,5) — Y2(@(x, 2) — o(z) = o(2))
(F13) For each C' € ®trans and (g, h) € {(f,b), (b, f)} the formulas
(a) Ece(rg) v rE =min(C?) V rg = max(C?),
(b) Ece(sg)V s = min(C?) V sg, = max(C?),
(c) 13 <cs s,
(d) Ece(z) — (C(h(x)) — rd <cs x <ce s&).
(F14) For each m,n € N, C € Popen, D € Pirans and g € {f,b} the
formulas
(a) Ec(z) A Ec(g"(x)) ANg"(x) =z — g™ () =z,
(b) D(z) A D(g"(x)) Ng"(x) =z — g™ () = .
(F15) For each m € N and g € {f,b} the formula g"(z) = 2 —
g (z) = x.
This completes our list of axioms for T'(®).

Our choice of axioms above and Sections 4 and 5 imply the following:
PROPOSITION 6.6. Let & be a vector field on R? of class C' and definable
in an o-minimal expansion of the real field, and let Mg be an L(P¢)-structure
assoctated to § as in Example 6.4. Then M¢ =T (D¢). m
DEFINITION 6.7. We write
D1 := Pirans U{Ec : C € Popen}-

The following L£(®)-formulas are of particular interest: for C' € @1, we let
Fixc(z) be the formula C(z) A §¥¢ (2) = 2 and Fix¢(z,y) be the formula

Fz((z <c z<cyVy<c z<cz)AFixc(z)).
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Next, we let Bd¢(z) be the formula
Fixc(z) AVyVz(y <c @ <c z — Jw(y <¢ w <¢ z A = Fixc(w))),
and let Limg (z) be the formula
Fixc(z) A Jy(C(y) Ay # 2 A ~Fixe(z,y)).

EXAMPLE 6.8. Let £ be a vector field on R? of class C' and definable in
an o-minimal expansion of the real field, and let M be an L(P¢)-structure
associated to & as in Example 6.4. Let also C € Cy := Cians U{Ep : F €
Copen}. Then Fixc (M) is the set of points in C' that belong to a cycle of &;
Bde (M) is the set of points in C' that belong to a boundary cycle of &; and
Limc (M) is the set of points in C' that belong to a limit cycle of . Note
that if £ is analytic, then the set Bdo (M) is discrete by Poincaré’s Theorem
[12] (see also [11, p. 217]); in particular, Bdc(M) = Limc (M) in this case.

In general, by Proposition 5.3, the cardinality of Bdo (M) is equal to
the number of boundary cycles of ¢ that intersect C'. Since every cycle of
¢ intersects the set |JCian U |JCtrans U | Csingle, it follows that, with b(§)
denoting the cardinality of the set of all boundary cycles of &, we have

|BdC’(M)| < b(g) < |Ctan’ + |Csingle| + Z |BdD(M)’
DeECrtrans

7. Iterating the progression maps. We continue to work with a flow
configuration @ as in Definition 6.1. Throughout this section, we fix (g,5) €

{(1,0), (6,9}

For the next lemma, we denote by ©(yp) the universal closure of the
conjunction of the formulas (/\Ced?o -C(x)) — g(h()) = z,

(C(x) N Ec(b(2))) — a(b(z)) = g(x)
and
(Ec(z) ANb(z) #5) — g(b(z)) ==
for each C' € Popen,
(C(z) Ab(z) = ec) — g(b(z)) = g(x)
and
(x=ecAb(z) #s) = a(b(z)) ==
for each C' € Pyan, and C(x) — g(h(x)) = x for each C' € Pirans U Pgingle-
LEMMA 7.1. T(®) - Oy

Proof. Let M |=T(®), and let a € M be such that a ¢ Joeg, C- Then
by (F1), either a = ¢ for some ¢ € Pgingle, or a = s. In the latter case, we
have g(h(a)) = h(g(a)) = a by (F5), so we may assume that a = ¢ for some

ceE @single- Then h(g(a)) = g(h(a)) = a by (F7)—(F9).
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The proofs of the other conjuncts are similar, using also (F12); we leave
the details to the reader. m

COROLLARY 7.2. Let ¢ be any quantifier-free L(P)-formula. Then ¢ is
equivalent in T'(P) to a quantifier-free formula ¢’ such that no term occurring
in @' contains both the symbols § and b.

Proof. By induction on [ := max{length(¢) : ¢ is a term occurring in ¢},
using Lemma 7.1. u

For the remainder of this section, we fix an arbitrary model M of T'(®).
To simplify notation, we omit the superscript M below and write C' :=

C' U {min(C), max(C)} for C € &;.
DEFINITION 7.3. Let C € @1 and k € N. We define
GY = {g'(z) : z is a constant, 0 < I < k and g'(z) € C},

and we let (9’5 be the collection of all possible order types of pairs (a,b) € C?
over G’Ié. In addition, for (p,(1 € C and D € &, we put

95" (C0. 1) :=={z € D : ¢ <c g¥(z) <c (1}

and

Hp(Co,¢1) 7= {b'(2) : z € {C0, 1} or z is a constant,
0 <1<k and h!(z) € D}.

Note that Glé and H¥(Co,¢1), and hence OF,, are finite sets whose cardi-
nality is bounded by a number depending only on the language and k, but
independent of M, C, D, (g or (.

PROPOSITION 7.4. Let C,D € &1, (o, (1 € C and k € N.

(1) The set gBk((o, (1) is a union of points in Hg(co, (1) and open inter-
vals with endpoints in H¥ (o, C1).

(2) For each v € O’é, there is a conjunction oy(x,yo,y1) of atomic for-
mulas with free variables x, yo and y1 such that whenever (o, (1) has
order type 9 over G¥, the set gBk((o,Cl) is defined by the formula
O'ﬁ(ll?, Cos Cl)

(3) g* restricted to gBk(Co,Cl) is continuous.

Proof. For every x € gBk(Co,Cl), there is a sequence F = (Ey,..., E)
of elements of @y := &1 U {{c} : ¢ € Pgingle} U {{ec} : C € Pran} such that
Ey= D, E; =C and g'(z) € E; for i = 0,...,k. Thus, we fix a sequence
E = (Ey,...,Ey) € @]2”'1 with E, = C, and we define the set

9570, ¢1) ={z e M g'(z) € By fori=0,....k, (o <c g"(z) <c (i}

it suffices to prove the proposition with gEk(CO, ¢1) and HEO(CO, ¢1) in place
of g5 (G0, 1) and Hp(Go, G1)-
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Next, we note that if E; € {{c} : ¢ € Pgingle} U {{ec} : C € Ppan} for
some i € {1,...,k—1}, then a € g"((o, 1) if and only if gi(a) is the unique
constant in E; and (o <¢ g*(a) <¢ (1, so the proposition follows in this
case.

We therefore assume from now on that E; € &, for each ¢ =0,...,k, and
in this case we prove the proposition with part (1) replaced by

(1) The set gEk(CO, (1) is an open interval with endpoints in HEO(CO, ¢1).
We proceed by induction on k. The case k = 0 is trivial, so we assume
that k& > 1. By axiom (F8), the set g(_Elk_l Ek)(CO,Cl) is an open interval
whose endpoints 79,71 belong to the set H%k_l(go, ¢1) and are determined
by the order type of (o, (1) over G}Ek. In fact, we claim that the order type
of (no,m) over G%;il is determined by the order type of ({p, (1) over G%k;
together with the inductive hypothesis applied to 9?}501... Ek,l)(m’m)’ the

proposition then follows, because Hgo_l(c, d) is contained in HEO (€0, 1) for

all ¢,d € Hikfl(g()’ C1).
To see the claim, assume first that £, = E¢ for some C' € $gpen. Then

by axiom (F8), the set {g(z) : z € G%ﬁl} is contained in G%k and the claim
follows in this case. So we assume that Ej € Pirans. Then by axiom (F13),
Ej_1 = E¢ for some C € Pypen and there are constants a and b such that
(no,m1) C (a,b) = g Y (E}) = h(E;) (as intervals).

Hence the order type of (19,71) over Gifcl is determined by the order type
of (no,m) over the set G’ := {z € G%_cl i a <¢ z <c¢ b}. Then again by
axiom (F8), the set {g(z) : z € G'} is contained in G%k and the claim also
follows in this case. m

COROLLARY 7.5. Let C € &1 and put G := gEN(min(C), max(C)).

(1) The set Bda(M) is a closed and nowhere dense subset of G.

(2) Assume that & = &¢ and M = M for some definable vector field £
of class C* on R2. Then for every c € G\Bdgc(M), there are a,b € C
such that

a = sup{zr € Bdg(M) U (C\G):z <¢ c},
b= inf{x € Bde(M)U (C\ G):c<c z}.

Proof. Part (1) follows from the continuity of g”¥|; and the definition of
the set Bdg(M). Part (2) follows from part (1) and the fact that CMe is
complete. m

Finally, for each C' € ®; we let C(z) abbreviate C(z) V z = min(C) V
r = max(C). We let G* be the set of all £L(®)-terms g’c such that 0 < j < k
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and ¢ is a constant symbol, and we let OF be the set of all formulas of the
form

(Clyo) A Clyr)) A A (T *{r,0} ©);

{10} CG*U{yo,y1}

where C' € @1 and x, ) € {<¢,>c,=,#}. The cardinalities of G* and OF
are bounded by a number depending only on k (and on £(®)). Moreover, in
M, each formula ¥ € OF determines an order type in (9’5 for some C € &q;
and conversely, every order type in Og with C' € @1 is determined by some
formula 9 € OF. Thus we obtain the following from Proposition 7.4:

COROLLARY 7.6. Let k € N. Then there are | = l(k) € N and quantifier-
free formulas 95 (yo, v1), - - -, 9F (yo, y1) with free variables yo and y; such that

l
(1) T(@) =\ 95 (o, 1) < \/ (Clyo) ACl));
=1 Cedq
(2) for every D € &y there are quantifier-free formulas UZ-D’k(a:,yo,yl)
with free variables xz, yo and y1, i = 1,...,1, such that if M |=
9% (o, C1) for (o, (1 € M and some i, then the set gE)k(CO, C1) is defined

by the formula UiD’k(%COaCl)' u

REMARK 7.7. We obtain analogous statements to Proposition 7.4 and
Corollary 7.6 if we replace the open interval ({y, (1) by a half-open or closed
interval.

8. Dulac flow configurations. It is clear from Example 6.8 that, for
a vector field ¢ on R? definable in R, the set of boundary cycles of ¢ is
represented in Mg by the definable sets Bdc(M). The following example
shows that the theory T'(®) has hardly any implications for the nature of
these sets.

ExaMPLE 8.1. Consider the vector field ¢ of Example 3.2, and let C be
the piecewise trivial decomposition obtained there. We denote by @, the flow
configuration corresponding to this C and write

Co:={(z,y):2>0,y=0} €C.

We show here how to define, given any closed and nowhere dense subset F'
of Cp, a vector field ¢’ of class C* for which @ is still a flow configuration
and such that Bdg, (M) = F.

First, given 0 < a < b < 00, we let d(,p) : R? — R be the function
diap)(x,y) = (b= (2% +9?))((z®+y*) —a?), and we let e(, p) : R* — R be the
C*-function defined by e, p) (7, y) = exp(—1/d(qp)(2,y)). We let (4 p) be
the vector field of class C* on the annulus A ) := {(,y) : dqp) (7, y) > 0}
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defined by
| 9 9
Clap) = —(y +e@p (z,y)x) i (7 — e@p)(z,9)y) oy

Second, let FF C Cy be an arbitrary closed and nowhere dense subset.
Then Cp \ F is open in Cjy and hence the union of countably many disjoint
open intervals Io, I1, I, .... We let ¢/ be the vector field on R? of class C™
defined by

, Cri(z,y) if (z,y) € Ay, for some j € N,
Clw,y) =9 /' Y
((x,y)  otherwise.
(Note that by Wilkie’s Theorem [15], ¢’ is definable in some o-minimal ex-
pansion of the real field if and only if F' is finite.)

In view of the previous example, we now introduce a strengthening of the
setting described in Section 6.

DEFINITION 8.2. A Dulac flow configuration ¥ is a pair (P, v) such that
@ is a flow configuration and v € N.

EXAMPLE 8.3. Let ¢ be a definable vector field on R? of class C''. Let
P = &¢ be a flow configuration associated to § as in Example 6.2 and let M
be the associated L(P¢)-structure described in Example 6.4. Assume that
there is a v € N such that for each C' € @1, the set Bdc (M) has cardinality
at most v. Then ¥g := (D¢, v) is called a Dulac flow configuration associated
to €.

For the remainder of this section, we fix a Dulac flow configuration ¥ =
(D,v).

DEFINITION 8.4. The language L£(¥) consists of the symbols of L(®)
together with the following symbols for each C € &4:

(i) binary predicates R¢ and Sanv Bjnc, STme and Bfn’c for each
m e N;
(ii) constant symbols 74, ...,7%.

We put I' =T'(¥) ::{fyé:CEdil, j=1,...,v}

EXAMPLE 8.5. Let & be a definable vector field on R? of class C, and let
Me¢ be an L(D¢)-structure associated to § as in Example 6.4. Assume that
there is a v € N such that for each C € Cirans U Copen, the set Bdo (M) has
cardinality at most v, and let ¥¢ be a Dulac flow configuration associated to
¢ as in Example 8.3. We expand M into an L£(¥g)-structure M€D as follows:
for each C € &,

(i) Rc is interpreted as the set
{(z,y) € C? : 3z(x <¢ z <¢ y AFixc(2)) V (z = y A Fixc(z)) };
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(ii) for m € N, g € {f,b} and G € {S, -, By, o}, we put

* 1= ’
>c if Gis BY

and we interpret G as the union of the sets
{(z,y) € C?: 32(Ce) Az <c 2 <cy AC(g™(2)) Ng™(2) x )}
and the set {(z,z): C(z) AN C(g"™(x)) A g™ () * z};
(iii) if a1 <¢ -+ <¢ am are the points in C that lie on boundary cycles
of &, we interpret 77, as a; if 1 < j < m and as max(C) if m < j < v.
This completes the description of ./\/l? .

DEFINITION 8.6. Inspired by the previous example, we let T'(¥) be the
L(¥)-theory consisting of T'(®) and the universal closures of the formulas in
the axiom schemes (D1)—(D6):

(D1) For each C € &1, m € N and G € {RC’S;,C’B;,C’SSLC’B%,C}’
the formulas

(a) G(z,y) — (C(z) AC(y)),
(b) G(z,y) — (z <¢c y V (x = min(C) A y = max(C))).

(D2) For each C' € @ the formulas
(a) Ro(x,y) « Jz(x <¢ z <¢ y AFixe(z)), and
(b) Rc(z,x) < Fixc(z).
(D3) For each m € N, C € &1 and g € {f, b} the formulas
(a) S5 c(,y) < 3z(z <c 2 <cy A g"(2) <c 2),
(b) S8, c(z,x) o (C(x) A g™ (x) <c 2),
(c) Bg%c(x,y) o z(r<cz<cyNhz<cgm(z)),
(d) Bglyc(x,x) = (Clx) Nz <c g™(z)).
(D4) For each m € N, C € @1, g € {f,b} and G € {R¢, Bfn’c, Sg%c} the
formula
[G(z,y) AVz(x <c z <cy — C(g™(2)))
A—-3z(x <c z <c y ABde(2))]
—Vz(z <c z <cy — G(z,2)).

(D5), For each C' € &; the formulas

(a) C(v) A (C(’Vé) — Fixo(;yé)) for j=0,...,v
(b) ¢ <c Vé (’VC = ’Vg — 5 = max(C)) for j = 0,...,
v—1.
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(D6),, For each C' € &; the formula
(Cl@) ABde(@) = \/ (2 =7 A CE).
j=1

This completes the description of the axioms.

PROPOSITION 8.7. If £ is a definable vector field on R? of class C' with
finitely many boundary cycles, then M? =T ().

Proof. This is almost immediate from the definition of M? and Propo-
sition 6.6, except perhaps for axiom (D4), which follows from Proposition
7.4 and the fact that every bounded subset of R has an infimum. =

REMARK 8.8. Let T(®)" be the union of T(&) with axioms (D1)-(D4)
only. Since (D1)—(D3) just extend T'(®) by definitions in the sense of Section
4.6 in Shoenfield [13], the argument in the proof of the previous proposi-

tion shows that any L£(®¢)-structure M as defined in Example 6.4 can be
expanded to a model My of T'(P)".

9. Quantifier elimination for 7(¥). We fix a Dulac flow configuration
¥ = (@,v); our ultimate goal is to show that T'(¥) eliminates quantifiers.
Most of the work in this section goes towards showing that, in order to
eliminate quantifiers, we need only consider formulas of the form Jy¢(x,y)
where ¢ is of a special form.

TERMINOLOGY. Let x = (x1,...,2,) be a tuple of variables and y and
z single variables. To simplify terminology, we write “term” and “formula”
for “L(¥)-term” and “L(¥)-formula”. For a formula ¢, we write ¢(x,y) to
indicate that the free variables of ¢ are among z1,...,z, and y. A binary
atomic formula is a formula of the form At to, where A is a binary relation
symbol in £(¥) and ¢; and ¢ are terms.

For this section fix an arbitrary model M of T'(¥); again, we omit the
superscript M when interpreting predicates in M.

DEFINITION 9.1. An order formula is a quantifier-free £(&)U I'-formula.
A z-order formula is a quantifier-free formula ¢ such that every atomic sub-
formula of ¢ containing z is an £(&) U I'-formula.

A z-order formula ¢ is minimal if the only subterm of ¢ containing z is
z itself and every binary atomic subformula Atits of ¢ is such that at most
one of t; and ¢ contains z.

Our first goal is to show that we may, in order to prove quantifier elim-
ination, restrict our attention to y-order formulas. This argument is based
on the following lemma, which will also be of use later.
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LEMMA 9.2. Let G € L(¥) \ L(D).

(1) The formula Gyy is equivalent in T'(¥) to a minimal y-order formula
U(y).

(2) The formula Gyz is equivalent in T(¥) to a formula 1(y, z) that is
both a minimal y-order formula and a minimal z-order formula.

Proof. Let C' € &1, m € N and g € {f,b} be such that G is one of R,
ng,C’ or BS%C. In this proof, we write < instead of <¢; if G is R¢, we assume
m = N = Ng. By Corollary 7.6(1), any formula ¢ is equivalent in T'(¥) to
the conjunction of the formulas ¢J; — ¢, where i € {1,...,1(m)} and ¥; is the
formula 97" (min(C'), max(C')). Hence it suffices to prove the lemma with each
Y¥; — G(y,y) in place of G(y,y) and each ¥; — G(y, ) in place of G(y, 2);
so we also fix an ¢ below and write ¥ in place of ;. Now by Corollary 7.6(2),
there are finitely many terms ag, a} for 1 < j <, built up exclusively from
constants, such that whenever M |= ¢ the set {z € C' : g™ (2) € C} is the
union of the open intervals I; = (oz?, ozjl-) and points aJQ = ozjl-.

(1) We claim that the formula ¥ — G(y,y) is equivalent to ¥ — %,
where ¢ is of the form

C’(y)/\( \/ (a?<y<aj1»\/a?:y:a]1-)) A ( \/ zbg\/ \/ @Z)g)ﬁl)
1<y<r BEY Bo,B1EY
with Y = I"U {aé :1€{0,1} and 1 < j < r}, and for each § € Y, the
formula 1/1? is C(y) A ((y=BAG(B,B) Vy =tY) with
Y if Gis Rc,
t% the term { H"min(C) if G is Srgn,C’
h" max(C) if G is Bfn,C’
and for each (g, 51 € Y, the formula @Dg),ﬁl is of the form

(C(Bo) V o = min(C)) A (C(B1) V B1 = max(C)) A By <y < BL A1, 5,
where

=S% c(Bo, 1) A =BY, (6o, /1) if G is Re,
056 is § ~Bh.c(B0, B1) A=Re(Bo, 1) i Gis SE, ¢
=S5, o (B0, B1) A=Rc(Bo, 1) if G is B, ¢

Note that 9 — ¥¢ is a minimal y-order formula; thus, the proof of part (1)
is finished once we prove the claim.

We prove the claim for R¢; the other cases of G are similar and left to the
reader. Suppose that M = ¢ and pick an a € M such that M = Rg(a,a).
Then M = oz? <a < ozjl- for some j € {1,...,r}. If a = (3 for some
B €Y, we are done, so we assume a # (3 for all 3 € Y. Then there are
Bo, /1 € Y such that M | By < a < 1 and M |E =(fy < f < 1) for
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every 3 € Y. Hence by axiom (D4), M | Rc(b,b) for every b € (5y, 31), so
M = ﬂsg%c(ﬁo, B1) A ﬁBfn’C(ﬂo, B1) as required. The converse of the claim
is immediate.

(2) The formula ¥ — G(y, z) is in turn equivalent in T'(¥) to

0 = (G(y, 2) Ay = min(C) vV y = max(C) v C(y)));

since the lemma is immediate for the formulas ¥ — (G(y, 2) A y = min(C))
and ¥ — (Gyz Ay = max(C)), we need only consider ¥ — (G(y,z) A C(y)).
We claim that the latter is equivalent to ¥ — ¢, where ¥¢ is of the form

Cy) A(C(z) Vz=max(C)) Ay < zA((y=2AG(y,y) V (y <z An%)),

n% is the formula

V w=8rGB,2)V \ (y<B<znGB.BYV 0554

pey pey Bo,B1€Y, 1<j<r

and for each By, 01 € Y and j € {1,...,r}, the formula 77,%,,814‘ is

Bo<yAz<pBiAal <ByApfr<alAG(Bo,B1) AnG s

with ng)’ 5, defined as for part (1).

We again prove the claim for R, leaving the other cases of G to the
reader. Suppose that M |= 9 and M = Rc(a,b) A C(b) and work inside M.
Suppose that a # § for all § € Y and that M = —(a < 8 < bA Rc(5,0))
for every 3 € Y. Then f¥(d) = d for some d € (a,b), and d € (oz?,oz})
for some j. Moreover, there are 3y, 31 € Y such that d € (5o, 1) and 3 ¢
(Bo, 1) for every (3 € Y. Hence by axiom (D4), we get M = _‘Szgv,c(ﬁ& B1) A
—|B§,,C(ﬂ0, B1), as required. The converse of the claim is straightforward.

By symmetry, a similar claim holds with ¢ — (G(y, z) AC(2)) in place of
Y — (G(y, z) A C(y)). Combining these two claims with part (1) now yields
part (2). m

COROLLARY 9.3. Every quantifier-free formula ¢(x,y) is equivalent in
T(¥) to a y-order formula (x,y).

Proof. It suffices to prove the proposition for all atomic formulas; the
relevant atomic formulas are handled in Lemma 9.2. u

Our second goal in this section is to show that we only need to consider,
for quantifier elimination, y-order formulas in which the complexity of any
term involving y is as low as possible. Minimal y-order formulas are examples
of such y-order formulas; but we cannot always reduce to minimal y-order
formulas.

DEFINITION 9.4. Let t be a term. The z-height h,(t) of t is defined as
follows:
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(i) if z does not occur in ¢, then h,(t) := 0;
(i) ha(z) = 1
(iii) if ¢ is ft’ or bt’ for some term ¢’ and z occurs in ¢/, then h,(t) :=
h(t') + 1.
Let A(t1,t2) be a binary atomic formula; the z-height h.(A(t1,t2)) of
A(t1,t2) is defined as the pair (a,b) € N2, where
{ 1 if z occurs in both ¢; and to,

0 otherwise,
min{h,(t1),h.(t2)} if z occurs in both ¢, and ¢,
B {max{hz(tl),hz(tz)} otherwise.
Let B(t) be a unary atomic formula; the z-height h,(B(t)) of B(t) is
defined by h,(B(t)) := (0, h,(t)) € N2
Let ¢ be a quantifier-free formula; the z-height h,(¢) of ¢ is the max-
imum of the set {h.(¢) : ¢ is an atomic subformula of ¢} with respect to
the lexicographic ordering of N2. We write h(¢) = (hl(¢), h2(¢)) below.
Finally, a term t is mized if it contains both function symbols f and b;
otherwise t is called unmized.

EXAMPLE 9.5. Let ¢ be a z-order formula. Then h,(¢) < (0,1) if and
only if ¢ is minimal.

LEMMA 9.6. Let ¢(x,y) be a y-order formula. Then there is a y-order
formula (x,y) that contains no mized terms such that ¢ and 1) are equiva-

lent in T(¥) and hy(1) < hy(®).

Proof. Let ¢ be the £(®)-formula obtained from ¢ by replacing each con-
stant ’yé by a new variable zé, for C € @1 and j=1,...,v. By Lemma 7.1,
¢’ is equivalent in T'(®) to a quantifier-free £(®)-formula v’ that is a disjunc-
tion of formulas of the form 1 A £, where £ is obtained from ¢’ by replacing
each mixed subterm by an unmixed term of lower y-height, and where 7
is a conjunction of some of the premises of the implications occurring in
O(5,5) and in Oy ) with x there replaced by various unmixed subterms of ¢
Clearly, hy (&) < hy(¢') for every such &; since hzlj(n) = 0 for every such 7, it
follows that hy(¢') < hy(¢') if hy(¢') = 1. On the other hand, if hy(¢') = 0,
then every subterm ¢ of ¢ satisfies hy(t) < h2(¢'); so hy(n) < hy(¢') for
every such 7. Therefore, we always have hy(¢') < hy(¢') = hy(¢), and we
let ¢ be the y-order formula obtained from 1’ by replacing each variable zé
again by yé. n

Below we let 1(y) denote the formula Apeq . C(y) — Ec(y) and we
put
T = T@) U {u(y)}.
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LEMMA 9.7. Let ¢(x,y) be a y-order formula. Then there is a y-order
formula ¢(x,y) such that ¢ is equivalent in T to ¢ and h;&b) <1.

Proof. By induction on hy(¢); the case where hi(gﬁ) < 1 is trivial, so we
assume that hZ(¢) > 1 and we prove that

(%) there exists an order formula 1 (x,y) such that ¢ is equivalent in 7’

to ¢ and hy (1) < hy(®).

To do so, we fix arbitrary (g,h) € {(f,b),(b,f)}, a unary predicate P, a
C € &g and terms t; and to, and we assume that y occurs in ¢1, and either y
does not occur in t3 or hy(t1) < hy(t2). By the definition of hy(¢) and axiom
(F5), it suffices to prove (x) with each of the atomic formulas P(g(¢1)),
g(t1) = t2, g(t1) <c t2 and t2 <¢ g(t1) in place of ¢.

CASE 1: ¢ is P(g(t1)). By axioms (F7)—(F9), the formula ¢ is equivalent
in 7" to v, where 1) is the formula depending on P defined as follows:

o if P € Pypen or Pis Er for some F' € Pypen, then 9 is
\/ D(tl) V \/ ty =d;
De@trams,P:Dh de@singlevlj:dh
o if P € Py, then ¢ is the formula ¢t; = h(ep);
o if P € Pans, then 1) is the formula Epy (t7).
In each case of 1) above, we have hy(¢) < hy(¢), as required.

CASE 2: ¢ is g(t1) = t2. Then by axioms (F5), (F7)—(F9) and (F13) the
formula ¢ is equivalent in 7" to v, where ) is the conjuction of the formulas

D) ta=sVv \ Clt) v \/ a=cVv \/ ta=cc
Cedq CE@Smgle CePran
(ii) t2 = ¢ — t1 = h(c) for each constant c¢ different from s,

(iii) to = 5 — ((t1 = 5)

vV (Betn N 0 <cti<eshing A (h=b()

Ceéopen DESC Ceésingle
v\ ((aleo) <o t1 <c ec Vee <ot <o 8(ec)) Aslec) = 5))
C€Ptan

with S¢ := {D € ®irans : D" = C},
(iV) C(tQ) — 1t = h(tg) for C e Pq.

If y does not occur in to, then hy(y)) < hy(¢); so we assume that y occurs
in to. In this case, the only atomic subformula € of ¢ with hl(¢) = 1 is

tr = h(t2), and hy(ti = b(t2)) = (L hy(t1)) < (1,hy(a(t1))) = hy(®) by
hypothesis, so hy(w) < hy(¢) as well.
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CASE 3: ¢ is g(t1) <¢ t2. There are various subcases depending on C.

o If C € ®ans, we write D := COP; then by axioms (F8) and (F13) the
formula ¢ is equivalent in 7" to 1, where 1 is the conjunction of the
formulas

(C(t2) Vs = max(O) A(Ep(t1) Ard <p ti <p r8) Vit = h(min(C)))
and
(Ep(t1) A <p ti <p ) — (t1 <p h(t2) V t2 = max(C)).

o If C € Popen, then by axioms (F2), (F9), (F10), (F12) and (F13) the
formula ¢ is equivalent in T” to v, where 1) is the conjunction of the
formulas

(i) \ D(t1) V \ t1 =d,

DE@tran& Ds=C ded&singlea P=db

(ii) (C(t2) A=Ec(t2) A Ec(a(t2))) V (C(t2) A—Ec(t) A Ec(b(t2))) v
Ec(ta) V (tg = maX(C)),

(if)) (D(t1)ABe(t2) — () <c t2 <¢ shAL <p B(t2) V(s <c t2))
for each D € ®ans with D8 = C,

(iv) (D(tl) A —|Ec(t2) A Ec(g(tg))) — ((7’% <c g(tQ) <c SgD ANt1 <p
h(t2)) V (s% <c¢ 9(t2)) for each D € Pypapns with D% = C,

(v) (D(t1) A —~Ec(t2) A Ec(h(t2))) — ((r} <c b(t2) <c s$ At1 <p
h(H(t2))) V (s <c b(t2))) for each D € Pypans with DI = C,

(vi) t1 =d — gd <c ta for d € Pgingle with P = db.

o If C' € Pyay, then by axioms (F2) and (F7) the formula ¢ is equivalent
in 77 to v/, where v’ is
(C(t2) Vta = max(C)) A ((t1 = b(ec) Aec <c t2) V g(t1) = min(C)).
In this case we let ¢ be the formula obtained from v’ by replacing the

subformula g(¢;) = min(C') by the corresponding formula obtained in
Case 2.

We leave it to the reader to verify that hy(y) < hy(¢) in each of these
subcases.

CASE 4: ¢ is ty <¢ g¢(t1). This case is similar to Case 3; we leave the
details to the reader. m

PROPOSITION 9.8. Let ¢(z,y) be a quantifier-free formula. Then there
is a minimal y-order formula 1 (x,y) such that ¢ is equivalent in T" to 1.

Proof. By Corollary 9.3 and Lemma 9.7, we may assume that ¢ is a
y-order formula such that hg(gé) < 1. By Lemma 9.6, there is a y-order
formula ’(z,y) such that ¢ is equivalent in 7" to ¢’, 1)’ contains no mixed

terms and hy(¢) < hy(¢).
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In particular, for every binary atomic subformula 7 of ¢’ in which both
terms contain y, one of the terms is y itself and the other is either {(y) or
b™(y) for some m = m(n) € N. We now replace each such binary atomic
subformula 7 of ¥ with m(n) > 1 by the formula 7’ defined as follows:

e if nis y = g"(y) with g € {f,b}, then 7’ is the disjunction of the
formulas y = ¢Ag™(c) = ¢, for each constant symbol ¢, and C(g™(y)) A
Rc(y,y), for each C € Py;

o if nisy <¢ g™(y) with g € {f, b}, then 7/ is Bg%c(y,y);

o if nis g"(y) <c y with g € {f, b}, then /' is Sfmc(y,y).

We also replace each occurrence of y = y by s = s and each occurrence
of y <¢c y by s # s, and we denote by 19" the resulting formula. Clearly,
hy(¥") < hy(¢'), and every binary atomic subformula of 4" in which both
terms contain y is of the form G(y, y) for some G € L(¥)\ L(®P). Moreover, by
axioms (D1)-(D4), (D5), and (D6),, the formula ¢’ is equivalent in T” to 1"

Next, we replace each subformula of 9" of the form G(y,y), where G €
L(W)\ L(P), by the corresponding minimal y-order formula 1(y) obtained in
Lemma 9.2(1). If ¢" is the resulting y-order formula, then " is equivalent
in T(¥) to ¢" and hy (") = 0.

Finally, by Lemmas 9.7 and 9.6, there is a y-order formula 1) such that
hy (1) < (0,1), ¥ contains no mixed terms and 1 is equivalent in 7" to ¢)"”. =

Finally, note that

T(®) U{Cy)} = —Ec(y) < (C(f(y) v C(b(y)))

for each C' € Popen, by axioms (F5), (F10) and (F12). Hence, for each C' €
Popen and each g € {f, b}, we put T g := T(¥) U {C(y) A C(g(y))}; by
the previous proposition, it remains to reduce quantifier-free formulas in
each T 4. It turns out, however, that we cannot entirely reduce to minimal
y-order formulas in these situations.

Instead, given g € {f, b}, we call a formula ¢ g-almost minimal if ¢ is
quantifier-free, the only subterms of ¢ containing z are z and g(z), and every
binary atomic subformula A(t1,t2) of ¢ is such that at most one of ¢; and
to contains z.

PROPOSITION 9.9. Let ¢(x,y) be a quantifier-free formula, C € Popen
and g € {f,b}. Then there is a g-almost minimal y-order formula ¢ g(x,y)
such that ¢ is equivalent in To g to Yo g.

Proof. By Corollary 9.3 and Lemma 9.6, we may assume that ¢ is a
y-order formula containing no mixed terms. On the other hand, we have
T = (fly)) and T = «(b(y)) by axiom (F5). Let n(z,y) be an atomic
subformula of ¢; it suffices to show that there is a g-almost minimal y-order
formula &, (x, y) such that n and §,, are equivalent in T¢ 4. If hg(n) =0, there
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is nothing to do, so we assume h;(n) > (, and we distinguish two cases to

define &,.

CASE 1: hi(n) > 1. We first replace each occurrence of g(y) in n by a
new variable z and each occurrence of h(y) in n by h(z). Denote the resulting
atomic formula by n'(z, z); by axiom (F12), n'(z, g(y)) is equivalent in T 4
to n(x,y). By Proposition 9.8, the formula 7(z, z) is equivalent in 7" to a
minimal z-order formula 1”(z,z). Since T(¥) = 1(g(y)), it follows that n
is equivalent in T 4 to the g-almost minimal y-order formula &, given by

n"(z,8(y)).

CASE 2: h;(n) = 1. In this case, we take &, equal to n if  contains a
unary predicate symbol; so we assume that n is a binary atomic formula
A(ti,t2). If nis y = y, we take &, to be s = s, and if n is y <p y for
some D € &g, we take §, to be s # s; so we also assume from now on that
max{h(t1), h2(t2)} > 1. By axiom (F5), the formulas y = g™ (y), y = b (y),
y <p ¢™(y), ¥y <p H™(y), 8™ (y) <p y and h™(y) <p y, for m > 0 and
D € &y \ {C}, are all equivalent in T¢ g to s # s, so we are left with four
subcases:

(i) if nis y <c¢ g™ (y) for some m > 0, then we let ' be the formula
(v <c 8(y) AC(@™(y)) A Re(a(y)ey) vV By, 1 o(8(y),8(v));

(i) if n is y <c¢ h™(y) for some m > 0, then we let ' be the formula
(y <c 9(y) AC(H™ () A Re(a(y), 8(1))) V BY, (a(y), 8(y));

(i) if n is g"(y) <c¢ y for some m > 0, then we let ' be the formula

(8(y) <cy AC@™(y)) A Re(a(y),8(y)) V Sy, 1 o(8(y), 8(y));
(iv) if n is h™(y) <c¢ y for some m > 0, then we let 1’ be the formula

(8(y) <c y ACH™ () A Re(a(y), 8(1))) V S5, o (a(y), 8(y))-

We claim that 7 and 7’ are equivalent in T¢ 5. We prove this for subcase (i);
the other cases are similar and left to the reader. Let b € M be such that
M |= C(b) AC(g(b)). Assume that M |= b <c g™ (b) A =By, _; (a(b),8(b)).
Then g"(b) € E¢ and g"(b) <c g(b) by axioms (F2) and (F5). Hence
b <c g(b), so M = ¢'(b,g(b)) by axioms (F10) and (F12), which implies
g™ (b) = g(b) as required. Conversely, assume first that M = b <¢ g(b) A
C(g™(b)) ANRc(g(b),g(b)); then b <¢ g™(b) by axioms (D2) and (F14). Now
assume that M = B} | (g(b), 8(b)); then g(b) <c g™(b) by axiom (D3),
and hence b <¢ g™ (b) by axioms (F10) and (F12).

Finally, by Proposition 9.8, the formulas B,gc(z, z), S,ic(z, z), C(gF(2))A
Re(z, 2) and C(h*(2)) ARc(z, ) are each equivalent in 7" to minimal z-order
formulas. It follows from the above claim that we are left with subcases
(i)—(iv) for m = 1. But by axioms (F5), (F10) and (F12) we have Tc g =
~C(h(y)). Hence To g = ﬂ(f)g(y, h(y)), so from axioms (F10) and (F12) we
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get Tog = 08(y, 9y). Therefore, y <¢ g(y) is equivalent in T g to s = s if
g is f, and to —s = s if g is b; the other subcases follow similarly. m

The previous two propositions allow us to reduce the problem of elimi-
nating quantifiers in 7'(¥) to that of eliminating quantifiers in two simpler
theories: for C' € @1 UPy,, we let Lo be the language {<¢, min(C'), max(C)}
and T¢ be the Lo-theory consisting of the universal closures of

(A1) the sentences stating that < is a dense linear ordering on C, to-
gether with the formula x = min(C) V 2 = max(C) V min(C) <¢
zr <¢ max(C).

For C € ®Pgpen we let Lo be the language {<c, 7, Ec, min(C), max(C)},
where ¢ a unary function symbol, and we let T be the Lo-theory consisting
of the universal closures of (Al) as well as

(B1) the formula Ec(mc(x)) A (Ec(x) — me(z) = x);

(B2) the formula ¢ (z) <¢ © — —-3y(Ec(y) A mo(z) <c y <c x);

(B3) the formula z <¢ 7o(z) — Jy(Ec(y) ANz <c y <c 7o(x));

(B4) the sentences stating that for every x € E¢, the restriction of < to
the set {y : mc(y) = =} is a dense linear ordering without endpoints.

A routine application of a quantifier elimination test such as Theorem
3.1.4 in 8] gives the following result; we leave the details to the reader.

PROPOSITION 9.10. For each unary predicate symbol C' of L(P), the the-
ory To admits quantifier elimination in the language Lo. w

THEOREM 9.11. The theory T'(¥) admits quantifier elimination.

Proof. Let ¢(x,y) be a quantifier-free formula; we show that Jy¢(x,y) is
equivalent in T'(¥) to a quantifier-free formula. First, note that Jy¢(z,y) is
equivalent in 7'(¥) to the disjunction of the formulas

(1) ¢(x,c) for each constant c;
(2) Jy(C(y) A p(z,y)) for each C' € D1 U Piay;
(3) Fy(C(y) A Cy(y) N ¢(x,y)) for each C' € Popen and each g € {f, b}.

We deal with each disjunct separately; since formulas of type (1) are trivial
to handle, we deal with types (2) and (3).

Type (2). Let C € &1 UPyan. Since T(¥) = C(y) — ¢(y), we may assume
by Proposition 9.8 that ¢ is a minimal y-order formula. Without loss of
generality, we may also assume that ¢ is a conjunction of atomic formulas,
that y occurs in each of the atomic subformulas of ¢ and, by axiom (F1),
that ¢ contains only the relation symbols = and <¢. Let t1,...,t; be all
maximal subterms of ¢ that do not contain y, and let ¢/(z1, ..., zx, y) be the
formula obtained from ¢ by replacing each t; by a new variable z;. Then ¢’ is
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a <¢-formula without parameters; by Proposition 9.10, there is a quantifier-
free Lo-formula ¢/ (21, ..., 2;) such that Jy¢’ and ¢’ are equivalent in T¢.
Let ¢(z) be the L£(¥)-formula obtained from v’ by replacing each z; by t;;
then Jy¢ and v are equivalent in T'(¥), as required.

Type (3). Let C € Popen and g € {f,b}; by Proposition 9.9, we may
assume that ¢ is a g-almost minimal y-order formula. Without loss of gen-
erality, we may also assume that ¢ is a conjunction of atomic formulas,
that y occurs in each of the atomic subformulas of ¢ and, by axiom (F1),
that ¢ contains only the relation symbols =, <¢ and E¢. Let t1,...,t; be
all maximal subterms of ¢ that do not contain y, and let ¢'(z1,..., 2k, y)
be the formula obtained from ¢ by replacing each t; by a new variable z;.
Note that ¢’ contains no parameters. Arguing as for Type (2), it now suf-
fices to find a quantifier-free formula v¢'(z1,...,2;) equivalent in T'(¥) to
Elyd)/(zla sy Rk y)

To do so, we let 7o be a new unary function symbol and let T'(¥)¢c be
the theory T'(¥) together with the universal closure of the formula

y=mc(z) < (Ec(z) Ny =)
V(C(x) ANC(f(x)) Ny = §(2)) V (C(z) A C(b(x)) Ny = b(x))).

Since T'(¥)¢ is an extension by definitions of 7'(¥) in the sense of |13, Section
4.6], it suffices to find a quantifier-free £(¥)-formula ¢)'(z1, . .., zx) equivalent
in T(¥)c to Jyd' (21, ..., 2k, y)-

Let ¢” be the Lo-formula obtained from ¢’ by replacing each occurrence
of g(y) by 7(y); then ¢’ and ¢" are equivalent in T'(¥)¢. Since T(¥)¢ E Tc,
there is by Proposition 9.10 a quantifier-free Lo-formula 9" (21, . .., 2zx) that
is equivalent in T'(¥)¢ to Jyd”(21,. .., 2k, y); without loss of generality, we
may assume that the only subterms of )" are z; and 7z; for i = 1,... k.

Finally, we let ¢’ be the £(¥)-formula obtained from ¢” by replacing each
atomic subformula 1 of 9" by an L£(¥)-formula 7’ determined as follows:

(i) if nis Ec(me(zi)), we let  be C(z;) A (Ec(2i) VC(f(2i)) VC(b(2)));
(i) if n is mo(2;) * z; with * € {=, <¢,>c¢}, we let 1/’ be

CEnCE) A (N Belaz) Aal=) « )
ae{f°,f,b}
(iii) if n is mo(2i) <c me(z;) and * € {=, <c}, we let 1’ be
Cle)nC) A\ Bola(z) ABo(b(z)) Ag(z) «b(z)):
g.he{i.f,6}

and if 7 is not of one of the forms (i)-(iii) above, we let ' be n. This v is
equivalent in T' (%) to ¢" and is of the required form. =
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10. Consequences for the model theory of T'(¥). The quantifier
elimination result established in the previous section allows us to show that
the theory T'(¥) is very well-behaved: it is a theory of finite rank in the sense
developed by Onshuus [10].

We first rephrase the results from the previous section. For a flow con-
figuration @, C € Popen, M = T(¥) and x € EN, we put

Cli={yeCcM:y=avily) =zVvb(y) =2}
and CM := CM U {§(z), g(x)}. The following corollary implies Theorem C:
COROLLARY 10.1. Let ¥ be a Dulac flow configuration and M =T (V).

(1) For C € &1 U Pyan, every definable subset of CM is a finite union of
points and open <c-intervals with endpoints in C.

(2) For C € Popen and x € Eéfl, every definable subset of C' is a finite
union of points and open <c-intervals with endpoints in CM.

Proof. This follows immediately from Theorem 9.11, Propositions 9.8
and 9.9 and axioms (F2) and (F11). =

Below we use the terminology of rosy theories.

THEOREM 10.2. Let ¥ be a Dulac flow configuration and T be any com-
pletion of T(¥). Then T is rosy with UP(T) < 2.

Proof. Let p(x) be a complete 1-type in T, M =T and a € M be such
that M = p(a). If C(z) € p for some C' € PronUP1, then by Corollary 10.1(1)
the type p is determined by the <c-order type of z over the constants;
hence UP(p) < 1. If C(z) A =Ec(z) € p for some C' € Pypen, then by
Corollary 10.1(2) the type p is determined by the <c-order type o(z) of a
over the constants and 7¢(a), where ¢ : C' — E¢ is given by

z if z € EM,
ro(z) =14 i(z) i f(z) € BA,
b(z) if b(z) € EA
Again by Corollary 10.1(1), the type of mc(a) over the constants is deter-
mined by the <c-order type of m¢(a) over the constants.
Since p contains either one of the above formulas or a formula z = ¢

for some constant symbol ¢, it follows from Fact 2 in the introduction that
Ub(T) <2. m

In fact, the UP-rank in the previous theorem is actually equal to 2:

PROPOSITION 10.3. Let @ be a flow configuration and M = T(®P), and
assume that Popen # 0. Then UP(M) > 2.

Proof. Let C' € ®Pgpen. Then by the example in the introduction, the
theory of (C,<¢, Ec) has UP-rank at least two. Hence UP(M) > 2. =
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There is a certain converse to Theorem 10.2 based on Remark 8.8: We let
® be a flow configuration and consider the theory 7'($)" obtained by adding
the universal closures of the following formulas to T'(®)’ for each C' € Pyyaps:

(10.1) C(z) — Jy(Cly) Ny =inf{z: x <¢ 2z ABde(2)}),
' C(z) — Jy(C(y) Ny =sup{z : z <¢ x ABdg(2)}).

ExAaMPLES 10.4.

(1) Let ¥ be a Dulac flow configuration. Then any model M of T'(¥)
satisfies (10.1).

(2) Let & be a definable vector field on R?, and let M, be an L£(P¢)-
structure associated to £ as in Example 6.4. Then M satisfies (10.1)

by Corollary 7.5, and by Remark 8.8 the structure M, can be ex-
panded to a model Mgr of T(P¢) ™.

Below for each v € N we abbreviate the formula stating that Bdc(z)
defines a set with at most v elements by “|Bd¢(x)| < v”.

PROPOSITION 10.5. Let @ be a flow configuration and T be a completion
of T(®)*, and assume that UP(T) < 2. Then there is a v € N such that

(1) T'= [Bde(2)] < v

(2) every model M of T can be expanded to a model of T(P,v).

Proof. (1) Assume that T [~ |[Bdc(x)| < v for any v € N. Then by
model-theoretic compactness, there are an M = T and a C € &; such
that the set Bdc (M) is infinite; we may assume that M is Rj-saturated.
Moreover, by axiom (F8), we may assume that C' € Ppapns. Also, by axiom
(F8) and an argument as in the proof of Proposition 10.3, it suffices to find
a d € CM such that UP(d) > 2.

Since M is Ni-saturated, there is an interval I € C™M such that I N
acl(0) = 0 and I N Bde(M) is infinite. By (10.1) and since Bdo (M) is
nowhere dense, there is a ¢ € I\ Bde(M) such that the elements a :=
sup{z € [ : x <¢ ¢ ABdg(z)} and b:=inf{z € C: a <¢ z ABdc(x)} exist
in I. Then a <¢ b, a,b ¢ acl(D), b € dcl(a) and

MEa<cbABde(a) A—3z(C(x) Na <¢c x <c bABde(x)).
It follows that the formula ¢(z) := a <¢ x <¢ b strongly divides over {;

hence UP(d) > 2 for some d € CM, as required.
Part (2) follows from Proposition 8.7 and part (1). m

We can now prove our restatement of Dulac’s Problem:

Proof of Theorem B. (1) If £ has finitely many boundary cycles, then
by Proposition 8.7 the structure M¢ can be expanded into a model M5D of
T(®¢,v) for some v € N. Since (P¢)open # 0, it follows that 2 < UP(M,) <
Ub(/\/l?) < 2 by Proposition 10.3 and Theorem 10.2.
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Conversely, if UP(M) = 2 then by Proposition 10.5, the structure Mg
can be expanded into a model of T'(®¢, v) for some v € N, so by Example 6.8
the vector field £ has finitely many boundary cycles.

(2) follows from (1) and Poincaré’s Theorem [12] (see also [11, p. 217]).
The “moreover” clause follows from (1) and Theorem 10.2. =

11. Final questions and remarks

(1) In the situation of Theorem B, is it possible for M, to be rosy of
UP-rank strictly greater than 27

(2) Can a restatement of Hilbert’s 16th Problem be obtained in the spirit
of Theorem B?

A naive approach to this question is as follows: Let {&, : a € A} be a
family of vector fields on R? definable in R. Since the arguments in Sections
1 through 5 are uniform in parameters, we may assume that there is a flow
configuration @ such that &, = & for all @ € A. In this situation, one
can readily reformulate the theory T'(®) for the parametric situation; and
if one also assumes the existence of a uniform bound v € N on the number
of boundary cycles of each &,, such a reformulation extends to T(®,v). We
suspect that under the latter assumption, the corresponding theory is rosy
of UP-rank 3; however, this does not appear to us to be a completely trivial
generalization of the results in Section 10, and we plan to pursue it in a
future project.

(3) The structure M? in Example 8.5 does not define any algebraic
operations (by Theorem 9.11). Assume here that S(£) = 0; is it possible to
expand M? by some (or all) of the sets definable in the original o-minimal
structure R without increasing the UP-rank? We know very little about this
question. However, if (a) the z-axis, the projection from R? onto the z-axis,
and both addition and multiplication are definable in an expansion M’ of
MP, and if (b) the expansion M’ still has UP-rank 2, then M’ (and hence
MgD ) would be definable in an o-minimal structure. (The assumption that

M’ has UP-rank two is necessary here.) Thus, question (3) is related to the
following question:

(4) Is the structure ./\/l£D of Example 8.5 definable in some o-minimal
expansion of the real field?

(5) Consider a Dulac flow configuration ¥ and M |= T'(¥). Corollary
10.1, Theorem 10.2 and their respective proofs may be loosely interpreted
as indicating that M is built-up from sets D C M on which the induced
structure is o-minimal. Is there a theory of structures built-up from sets with
induced o-minimal structure, say in the spirit of Zilber’s results on the fine
structure of uncountably categorical theories [16]?
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