
FUNDAMENTAMATHEMATICAE198 (2008)

A topologial haraterization of holomorphiparaboli germs in the planebyFrédéri Le Roux (Orsay)
Abstrat. J.-M. Gambaudo and É. Péou introdued the �linking property� in thestudy of the dynamis of germs of planar homeomorphisms in order to provide a new proofof Naishul's theorem. In this paper we prove that the negation of the Gambaudo�Péouproperty haraterizes the topologial dynamis of holomorphi paraboli germs. As aonsequene, a rotation set for germs of surfae homeomorphisms around a �xed point anbe de�ned, and it turns out to be non-trivial exept for ountably many onjugay lasses.1. Introdution. Let H+ be the set of orientation preserving homeo-morphisms of the plane that �x 0, and let h ∈ H+. We are interested in thedynamis of the germ of h at 0. Imagine one wants to evaluate the �amountof rotation� in a neighbourhood V of 0 by looking at the way the orbit ofsome point x ∈ V rotates around 0. Then two kinds of di�ulties an arise:
• if the orbit of x leaves V after a small number of iterations, then thebehaviour of x is not signi�ant with respet to the loal dynamis;
• if the orbit of x tends to the �xed point 0, then the rotation of xaround 0 is not signi�ant either, beause it is not invariant under aontinuous hange of oordinates.These di�ulties have led Gambaudo and Péou to introdue the �linkingproperty� (see [GP, Pé℄) whih demands that inside eah neighbourhood of

0 there exist arbitrarily long segments of orbits starting and ending not toolose to 0. In this paper we prove that the only germs that do not share thelinking property are the ontration, dilatation and holomorphi paraboligerms. To be more preise, let us de�ne the short trip property, whih is thenegation of the Gambaudo�Péou property, as follows.Definition 1. Let f ∈ H+. We say that f has the short trip propertyif there exists a neighbourhood V of the �xed point 0 suh that for every2000 Mathematis Subjet Classi�ation: 37E30, 37E45, 37F99.Key words and phrases: �xed point, rotation set, Leau�Fatou theorem.[77℄ © Instytut Matematyzny PAN, 2008



78 F. Le Rouxneighbourhood W of 0, there exists an integer NW > 0 suh that for ev-ery segment of orbit (x, f(x), . . . , fn(x)) whih is inluded in V , and whoseendpoints x, fn(x) are outside W , the length n is less than NW .Two homeomorphisms f1, f2 ∈ H+ are said to be loally topologiallyonjugate if there exists a homeomorphism ϕ ∈ H+ suh that f2 = ϕf1ϕ
−1on some neighbourhood of 0. We are interested in the loal dynamis nearthe �xed point 0, thus we onsider maps up to loal onjugay. Note thatany loal homeomorphism loally oinides with a homeomorphism de�nedon the whole plane, so that working with globally de�ned homeomorphismsis just a matter of onveniene and does not alter the results (see [Ham℄or [LR1, hapitre 2℄). As a onsequene, to prove that two homeomorphismsare loally topologially onjugate it su�es to onstrut the onjugay ona neighbourhood of 0.Definition 2. Let f ∈ H+, and identify the plane with the omplexplane C. We say that f is a loally holomorphi paraboli homeomorphism(or just paraboli) if f is holomorphi on some neighbourhood of 0, f ′(0) isa root of unity, and for every positive n the map fn is not loally equal tothe identity.Note that the hypothesis on f ′(0) amounts to saying that the di�erentialof f is a rational rotation, and then the last hypothesis is equivalent to sayingthat f is not loally topologially onjugate to its di�erential. Aording toCamaho's version of the Leau�Fatou theorem, if f ∈ H+ is paraboli, then

f is loally topologially onjugate to some map
z 7→ e2iπp/qz(1 + zqr) with p/q ∈ Q, q, r ≥ 1.See [Cam℄, and Figure 1.We an now state our theorem.Theorem 3. Let f be an orientation preserving homeomorphism of theplane that �xes the point 0. Then f has the short trip property if and only if itis loally topologially onjugate to the ontration z 7→ 1

2
z, to the dilatation

z 7→ 2z, or to a loally holomorphi paraboli homeomorphism.As a onsequene there are only ountably many onjugay lasses failingto have the Gambaudo�Péou property.In order to explain where Theorem 3 omes from, let us �rst disuss theNaishul theorem. In [GP℄ it was shown that the Gambaudo�Péou propertyholds when f preserves area, and then this property is used to prove theNaishul theorem: among area preserving homeomorphisms �xing 0 that aredi�erentiable at 0 and whose di�erential is a rotation, the angle of the rota-tion is invariant under a loal topologial onjugay. Then the following niegeneralization of the Naishul theorem is given by Gambaudo, Le Calvez and
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Fig. 1. Loal topologial dynamis of f : z 7→ e2iπp/qz(1 + zqr); here q = 3, p = 1, r = 2,so that there are two orbits of attrating petals and two orbits of repulsive petals.Péou in [GLP℄. As a generalization of di�erentiability at 0, they onsiderthe homeomorphisms f for whih the �xed point an be �blown up�, i.e. re-plaed by an ideal irle in suh a way that f an be extended to a irlehomeomorphism (see the preise de�nition in [GLP℄). They prove that forsuh homeomorphisms, the Poinaré rotation number of the extended irlehomeomorphism is invariant under a loal topologial onjugay, unless f isa ontration or a dilatation. The strategy of their proof is the following.If f has the Gambaudo�Péou property, then one an use the argumentsin [GP℄. Now assume that f is indi�erent, that is, f admits arbitrarily smallnon-trivial invariant ompat onneted sets K ontaining 0; then one anuse Carathéodory's prime ends theory to assoiate a irle homeomorphism
fK to eah suh K, and use the rotation number of fK to prove the topolog-ial invariane. Then one proves a last lemma asserting that a germ whihis not indi�erent and does not have the Gambaudo�Péou property must bea ontration or a dilatation.As a onsequene of the Leau�Fatou theorem, paraboli maps are indif-ferent. Thus Theorem 3 an be seen as a generalization of this last lemma.Furthermore, it provides an alternative proof of the generalized Naishul the-orem, avoiding the use of prime ends, as follows: we keep the argumentsin [GP℄ to takle homeomorphisms with the Gambaudo�Péou property;then, in view of Theorem 3, it only remains to deal with paraboli homeo-morphisms, for whih the proof is easy beause the loal dynamis is fullyunderstood.More generally, in [LR2℄ we will de�ne a loal rotation set for any hom-eomorphism f in H+. This set is a subset of the extended line R ∪ {±∞},modulo integer translation, and it is a loal topologial onjugay invariant.



80 F. Le RouxThen Theorem 3 will entail that the loal rotation set is non-void as soon as
f does not fall into the ountably many onjugay lasses desribed by thetheorem.One an also think of Theorem 3 as a loal analogue of previous re-sults showing that a simple dynamial property an imply a strong rigidity.The most striking result here is probably the Hiraide�Lewowiz theorem: anexpansive homeomorphism on a ompat surfae is onjugate to a pseudo-Anosov homeomorphism (see [Hi, Le℄). Closer to our setting, Kerékjártó hasshown that an orientation preserving homeomorphism of a losed orientablesurfae whose singular set is totally disonneted is topologially onjugateto a onformal transformation (see [BK, Ke34a, Ke34b℄). Thus, for instane,an orientation preserving homeomorphism f of the plane is onjugate to atranslation if and only if it has no �xed point and the family (fn)n≥0 isequiontinuous at eah point for the spherial metri.In some sense, Theorem 3 highlights that it is easy to be loally onju-gate to a loally paraboli homeomorphism: a homeomorphism that �lookslike� a paraboli map will be onjugate to it. In ontrast, the examples givenin [BLR℄ reveal how di�ult it is to be onjugate to the saddle homeo-morphism (2x, y/2), and in partiular that it is not enough to preserve thehyperboli foliation. A topologial haraterization an be given, but it musttake into aount the sophistiated osillating set (see, in [BLR℄, the remarkon Fig. 3 as well as part III).2. Dynamis of paraboli germs. Propositions 12 and 13 below pro-vide a �rst (lassial) haraterization of paraboli germs in terms of attrat-ing and repulsive setors and invariant petals.2.1. Contrations and attrating setors. We begin by haraterizing thedynamis of ontrations. Then we desribe attrating setors. Of ourse,similar results hold for dilatations and repulsive setors, although we willnot state them expliitly.Let f ∈ H+. We will say that a sequene (En)n≥0 of subsets of the planeonverges to 0 if for every neighbourhood W of 0, all but �nitely many termsof the sequene are inluded in W . The following result is very lassial.Proposition 4. Let f ∈ H+. Let D be a topologial losed dis (1) whihis a neighbourhood of 0, and suppose that the orbit (fn(D))n≥0 onverges to 0.Then f is loally topologially onjugate to the ontration z 7→ 1

2
z.Proof. By hypothesis there exists n > 0 suh that fn(D) ⊂ Int(D).Choose some dereasing �nite sequene of topologial losed diss Di with

D0 = D, Int(Di) ⊃ Di+1, and Int(Dn−1) ⊃ fn(D0). Consider the set
(1) A topologial losed dis is a set homeomorphi to the losed unit dis.
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O = Int(Dn−1) ∩ Int(f(Dn−2)) ∩ · · · ∩ Int(fn−1(D0)).Let U be the onneted omponent of O ontaining the �xed point 0. Thehypotheses on the Di's entail that Clos(f(O)) ⊂ O. Sine Clos(f(U)) isonneted and ontains 0, we dedue that Clos(f(U)) ⊂ U . Furthermore,aording to a theorem of Kerékjártó, the set D′ = Clos(U) is a losedtopologial dis (see [Ke23, LCY℄). This dis satis�es f(D′) ⊂ Int(D′).Now the annulus D′ \ Int(f(D′)) is a �fundamental domain� for f , andan be used to onstrut a loal topologial onjugay between f and theontration.We will say that two sets S and S′ oinide in a neighbourhood of 0,or have the same germ at 0, and we will write S

0
= S′, if there exists aneighbourhood V of 0 suh that S ∩ V = S′ ∩ V .Definition 5 (see Figure 2). An attrating setor is a topologial loseddis S whose boundary ontains 0, whih oinides in a neighbourhood of

0 with its image f(S), and whose orbit (fn(S))n≥0 onverges to 0. Theattrating setor is said to be nie if f(S) ⊂ S and S \ f(S) is onneted.A (nie) repulsive setor is a (nie) attrating setor for f−1.
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Fig. 2. Attrating and nie attrating setors
Claim 6.1. If S is an attrating setor then there exists a nie attrating setor S′,inluded in S, and having the same germ as S at 0.2. If S′ is a nie attrating setor for f , then there exists a homeo-morphism Φ between S′ and the half-dis S0 = {|z| ≤ 1, y ≥ 0} suhthat the onjugay relation Φf = 1

2
Φ between f and the ontration

z 7→ 1

2
z holds on S′.Remark 7. Here are some easy onsequenes of item 2 of the laim.1. The sets Φ−1([−1, 0]), Φ−1([0, 1]) are alled the sides of the nie at-trating setor; they do not depend on the hoie of Φ.



82 F. Le Roux2. There exist arbitrarily small nie attrating setors within S′; more-over, any pair of points x, y on both sides of S′ are the endpoints ofthe sides of some nie attrating setor inluded in S′.3. Any homeomorphism Φ between the union of the sides of S′ and thesegment [−1, 1], satisfying the onjugay relation Φf = 1

2
Φ, an beextended to a homeomorphism between S′ and S0 onjugating f and

z 7→ 1

2
z as in item 2 of the laim.Proof of Claim 6. Let S be an attrating setor. We �rst notie thatthere exists an ar α inluded in the boundary of S, whose interior (2) Int(α)ontains the �xed point 0, and suh that f(α) ⊂ Int(α). Indeed, onsider aone-to-one ontinuous map ϕ : (−1, 1) → ∂S suh that ϕ(0) = 0, and let f̂ =

ϕ−1fϕ. Sine f(S)
0
= S, this map f̂ is well de�ned on some neighbourhood

V of 0 in (−1, 1), it is a homeomorphism from V to f̂(V ) ⊂ (−1, 1), andit �xes 0. Sine f preserves the orientation, and f(S)
0
= S, f̂ also preservesthe orientation. Furthermore, for every positive x ∈ V , we have f̂(x) < x:otherwise the sequene (f̂−n(x))n≥0 would be well de�ned and inluded in V ,and then ϕ(x) would be inluded in fn(∂S) for every positive n, ontraditingthe hypothesis that (fn(S))n≥0 onverges to 0. Similarly we get f̂(x) > xfor every negative x, so f̂(Clos(V )) ⊂ V . Finally, the ar α is obtained as

ϕ(Clos(V )).Consider the set
A :=

⋃

n≥0

f−n(α).This is learly a ontinuous one-to-one image of the real line, and f(A) = A.By de�nition of an attrating setor, there exists an integer n0 suh that forevery n ≥ n0, fn(S) is disjoint from the ompat set f−1(α) \ Int(α). Then
A ∩ S = f−n0(α) ∩ S. In partiular, we an �nd a simple ar β suh that
α∪β is a Jordan urve inluded in S, and whose intersetion with A reduesto α.Let D0 be the topologial losed dis bounded by α ∪ β. Then D0 isinluded in S and oinides with S in a neighbourhood of 0, and D0∩A = α.Note that for every n, fn(D0) ∩ A = fn(D0 ∩ A) = fn(α). The dis D0 islearly an attrating setor. Let n0 be a positive integer suh that for every
n ≥ n0, fn(D0) does not meet β. Thus fn(D0) ⊂ Int(D0) ∪ fn(α).We an now �nd a losed topologial dis S′ ⊂ D0, having the samegerm at 0 as D0, whih is a nie attrating setor for f . For this we anmake a onstrution similar to the proof of Proposition 4, with the followingadaptations. Now we hoose the topologial diss Di having the same germat 0, ontaining α, and suh that Int(Di)∪α ⊃ Di+1 and Int(Dn−1)∪ fn(α)

(2) The interior of a urve is de�ned to be the urve minus its endpoints.
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⊃ fn(D0). As before, we onsider the set

O = Int(Dn−1) ∩ Int(f(Dn−2)) ∩ · · · ∩ Int(fn−1(D0)).Now the open set U is de�ned to be the unique onneted omponent of
O that has the same germ at 0 as the Di's, and S′ is the losure of U .Then f(S′) ⊂ U ∪ fn(α), and fn(S′) ontains fn(α); and thus S′ \ f(S′) isonneted. The details are left to the reader.The proof of item 2 is straightforward by using the fundamental domain
Clos(S′ \ f(S′)).2.2. Regular invariant petals. We �rst reall a theorem of Kerékjártó([Ke34b℄).Theorem 8 (Kerékjártó). Let f be a homeomorphism of the plane thatpreserves the orientation, and suppose that for any ompat set K the orbit
(fn(K))n≥0 onverges to the point at in�nity in the sphere R2 ∪ {∞}. Then
f is topologially onjugate to the translation z 7→ z + 1.Sketh of proof. By onsidering the spae of orbits, the problem an bebrought into the realm of the lassi�ation of surfaes; then the onlusionfollows from the fat that any (Hausdor�) surfae without boundary, whosefundamental group is the group of integers, is homeomorphi to an in�niteylinder (see for example [AS℄).Definition 9. An invariant petal for f is a topologial losed dis Pwhose boundary ontains the �xed point 0, and suh that f(P ) = P . Aninvariant petal is alled regular if for every ompat set K ⊂ P \ {0}, thesequene (fn(K))n≥0 onverges to 0.Remark 10. If P is a regular invariant petal then f has no �xed point onthe topologial line ∂P \{0}. Thus we may endow this line with a dynamialorder suh that f(x) > x for any x 6= 0 on ∂P . The petal will be alled diretif this dynamial order is ompatible with the topologial (usual) orientationof ∂P as a Jordan urve of the oriented plane (for whih the interior of P is�on the left� of ∂P ); in the opposite ase it will be alled indiret.An adaptation of the proof of Kerékjártó's theorem yields the following.Claim 11. Let P be a regular invariant petal for f ∈ H+. If P is diretthen the restrition f|P is topologially onjugate, via an orientation preserv-ing homeomorphism, to the restrition of the translation z 7→ z + 1 to thelosed half-sphere {x + iy : y ≥ 0} ∪ {∞} of the Riemann sphere Ĉ. Thesame is true if P is indiret with z + 1 replaed by z − 1.2.3. Charaterization of paraboli homeomorphisms. We an now har-aterize the loal dynamis of paraboli homeomorphisms. For any set D themaximal invariant subset of D is the set ⋂

n∈Z
fn(D) of points whose wholeorbit is inluded in D.



84 F. Le RouxProposition 12 (see Figure 1). Let f ∈ H+. Fix some integer l ≥ 1.Then f is loally topologially onjugate to z 7→ z(1 + zl) if and only if thereexists a neighbourhood of 0 whih is a topologial losed dis D, alled a niedis, suh that1. the maximal invariant subset of D is the union of 2l regular invariantpetals P1, . . . , P2l whose pairwise intersetions are {0};2. the sets ∂D∩Pi are onneted , and the yli order of these sets along
∂D oinides with the order of the indies i ∈ Z/2lZ;3. for every i, let Si be the losure of the onneted omponent of
D \ (P1 ∪ · · · ∪ P2l) meeting both Pi and Pi+1; then Si is a nie at-trating setor for i odd and a nie repulsive setor for i even.The next statement takes into aount a possible permutation of thepetals.Proposition 13. Let f ∈ H+ and suppose that for some positive inte-ger n0 the map fn0 is loally topologially onjugate to a paraboli homeo-morphism. Then so is f .The proofs are delayed until Setion 4.3. Proof of the theorem. From now on, f denotes an orientationpreserving homeomorphism of the plane that �xes 0 and has the short tripproperty. For every set V we de�ne the sets

W s(V ) =
⋂

n≥0

f−n(V ) and W u(V ) =
⋂

n≤0

f−n(V ).We �x some open neighbourhood V of 0 as in the de�nition of the shorttrip property. Sine our hypothesis is symmetri in time, both the above setsshare the same properties, and we will usually restrit the study to W s(V ).3.1. Orbits. The following lemma shows in partiular that the orbits ofpoints near 0 an only onverge to 0 or esape from the neighbourhood V .Note that this lemma still holds in any dimension.Lemma 14.1. For every ompat subset K of W s(V )\{0}, the sequene (fn(K))n≥0onverges to 0.2. The set W s(V ) \ {0} is open.3. The set W s(V ) ∪ W u(V ) is a neighbourhood of 0.4. If W s(V ) is a neighbourhood of 0 then f is loally topologially on-jugate to z 7→ 1

2
z; if W u(V ) is a neighbourhood of 0 then f is loallytopologially onjugate to z 7→ 2z.Proof. Let K be a ompat subset of W s(V ) \ {0}, and let W be someneighbourhood of 0 disjoint from K. Note that by de�nition of W s(V ), for



Charaterization of holomorphi paraboli germs 85every positive n, fn(K) ⊂ V . Now let NW be given by the short trip property.Then the property fores fn(K) ⊂ W for every n > NW . This proves item1 of the lemma.Let x 6= 0 be some point in W s(V ), and W a neighbourhood of 0 whoselosure does not ontain x, and suh that W ∪ f(W ) ⊂ V . Let NW be givenby the short trip property. Let
O =

(

NW
⋂

n=0

f−n(V )
)

\ Clos(W ).This is an open set that ontains x. We prove item 2 of the lemma by showingthat O ⊂ W s(V ). To see this, let y ∈ O. By de�nition of NW in the short tripproperty we have fNW (y) ∈ W . Then we laim that fn(y) ∈ W for every
n ≥ NW , whih will entail y ∈ W s(V ) as desired. Assume otherwise and let
n0 be the least integer after NW suh that fn0(y) 6∈ W . Sine f(W ) ⊂ Vwe have fn0(y) ∈ V . The segment of orbit y, . . . , fn0(y) ontradits thede�nition of NW . This ompletes the proof of item 2.We onsider again a neighbourhood W of 0 suh that W ∪ f(W ) ∪
f−1(W ) ⊂ V and NW given by the short trip property. We de�ne the fol-lowing neighbourhood of 0:

Z =

NW
⋂

n=−NW

f−n(W ).We prove by ontradition that Z ⊂ W s(V ) ∪ W u(V ). Assume some x ∈ Zbelongs neither to W s(V ) nor to W u(V ). Sine W ⊂ V , the orbit (fn(x)) of xleaves W both in the past and in the future; but by de�nition of Z this annothappen for n between −NW and NW . Let r, s be the least positive integerssuh that f−r(x) and f s(x) do not belong to W ; sine f(W )∪f−1(W ) ⊂ V ,both points belong to V \W and again we have found a segment of orbit oflength r + s > 2NW ontraditing the de�nition of NW .Finally, we notie that item 4 is a onsequene of item 1 and the topo-logial haraterization of ontrations (Proposition 4 above).3.2. Constrution of the petals. We still onsider a homeomorphism
f ∈ H+ with the short trip property, and from now on we assume that fis loally onjugate neither to the ontration z 7→ 1

2
z nor to the dilatation

z 7→ 2z. We aim to prove that f is loally onjugate to a paraboli hom-eomorphism by ultimately applying Propositions 12 and 13. The main taskwill be to onstrut the family of periodi petals. As a �rst approximation wewill selet a �nite number of onneted omponents of W s(V )∩W u(V )\{0},hoping to �nd one petal inside eah of these omponents.We �x an open neighbourhood V of 0 as before, and we assume Vis simply onneted. Aording to item 3 of the previous lemma, we an



86 F. Le Rouxhoose a topologial losed dis D whih is a neighbourhood of 0 inludedin W s(V ) ∪ W u(V ). Aording to item 4, sine we exluded the ases ofontrations and dilatations, D is inluded neither in W s(V ) nor in W u(V ).By ompatness we an deompose ∂D into the onatenation of 2l ≥ 2 ars
α1, . . . , α2l suh that αi is inluded in W s(V ) for i odd and in W u(V ) for
i even. We make the following minimality hypothesis: the number l is mini-mal among all suh hoies of topologial losed diss D and deompositionsof ∂D.For every i (integer modulo 2l) the ommon endpoint xi of αi−1 and αibelongs to W s(V ) ∩ W u(V ). We denote by Ci the onneted omponent of
W s(V ) ∩ W u(V ) \ {0} that ontains xi. Aording to item 2 of Lemma 14,
Ci is open. Let D′ be a topologial losed dis; sine V is simply onneted,if ∂D′ ⊂ V then D′ ⊂ V . Applying this to the iterates of D′, we see that if
∂D′ ⊂ W s(V ) ∩ W u(V ), then D′ ⊂ W s(V ) ∩ W u(V ). Sine W s(V ) is not aneighbourhood of 0, we get the following onsequene.Lemma 15. Any onneted omponent of W s(V ) ∩W u(V ) \ {0} is openand simply onneted. In partiular , the sets Ci are homeomorphi to theplane. Furthermore, any topologial losed dis D whose boundary is inludedin Ci ∪ {0} is also inluded in Ci ∪ {0}.The next lemma is the fundamental step in the onstrution of the peri-odi petals. No dynamis is involved here; indeed, we will only need proper-ties 2 and 3 from Lemma 14 on the topology of W s(V ) and W u(V ).Lemma 16. For every i, the losure of Ci ontains the �xed point 0.Proof. For notational simpliity we assume i = 1, and we write C = C1and x = x1 ∈ α2l ∩ α1. Using the Shoen�ies theorem, up to a hange ofoordinates, we an assume that D is a eulidean losed dis.We will argue by ontradition. Assuming that 0 does not belong to thelosure of C, we will onstrut a simple ar α with the following properties(we denote by ∂α the set of endpoints of α and set Int(α) = α \ ∂α):1. Int(α) ⊂ Int(D), ∂α ⊂ ∂D;2. α separates (3) x from 0 in D;3. either α ⊂ W s(V ) and ∂α ∩ W u(V ) = ∅, or α ⊂ W u(V ) and ∂α ∩

W s(V ) = ∅.From this we will get a ontradition as follows (see Figure 3(a)). Assumefor example that the �rst ase of the last item holds. Let 1 ≤ i1 ≤ i2 ≤ 2l besuh that the endpoints of α are respetively in αi1 and αi2 . Sine ∂α doesnot meet W u(V ), both i1 and i2 are odd, and in partiular 1 ≤ i1 ≤ i2 < 2l.
(3) A set A separates two points in a set B if the two points belong to distintonneted omponents of B \ A.
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(a) The ar α (b) The sequene Γk and the limit set FFig. 3. Proof of Lemma 16Let β ⊂ ∂D be the ar with the same endpoints as α and not ontain-ing x; then β is overed by αi1 ∪ · · · ∪ αi2 , and from the seond point wesee that the Jordan urve α ∪ β surrounds 0. Sine α ∪ αi1 ∪ αi2 ⊂ W s(V ),we an write α ∪ β as the onatenation of i2 − i1 ars, eah inluded in
W s(V ) or W u(V ). This ontradits the minimality hypothesis on l sine
i2 − i1 < 2l.We now assume that 0 6∈ Clos(C) and turn to the onstrution of suh anar α. Aording to Lemma 15, there exists a homeomorphism Φ : R2 → C.Let (Dk) be the sequene of images under Φ of the onentri diss withradius k and entre Φ−1(x). Thus:

• x ∈ D1,
• Dk ⊂ Int(Dk+1),
•

⋃

k≥0
Dk = C.Let y be some point in Int(D) su�iently near x so that the segment [xy]is inluded in D1∩D. For every k, the set ∂Dk∩Int(D) is losed in Int(D) andseparates y from 0 in Int(D) sine 0 6∈ Dk. Aording to Theorem V.14.3in [New℄, there exists a onneted omponent of ∂Dk ∩ Int(D) that alsoseparates y from 0. Let Γk denotes the losure of this omponent; thus Γk isa subar of the Jordan urve ∂Dk with Int(Γk) ⊂ Int(D), ∂Γk ⊂ ∂D, and itseparates x from 0 in D; in other words, it satis�es the �rst two propertiesabove required for the ar α.Remember that the spae of ompat onneted subsets of D is ompatunder the Hausdor� metri. Thus, up to taking subsequenes, we an assumethat (Γk) onverges to a ompat onneted set F ⊂ D (see Figure 3(b)).Sine Γk ⊂ ∂Dk, the set F is inluded in ∂C. By assumption, ∂C does notontain 0, so neither does F . Then again F separates y from 0 in Int(D): ifnot, there would exist an ar in Int(D) from y to 0 missing F , but then thisar would also miss Γk for su�iently large k, ontrary to the property that

Γk separates y from 0.



88 F. Le RouxSine C is a onneted omponent of the open set W s(V )∩W u(V ) \ {0},its boundary ∂C is disjoint from this set. Thus F is disjoint from W s(V ) ∩
W u(V ); and sine it is inluded in D it is overed by the two open sets
W s(V ) \ {0} and W u(V ) \ {0}. Sine F is onneted, it must be inluded inone of these sets, and disjoint from the other.To �x ideas, suppose that F ⊂ W s(V ) \ W u(V ). The ar Γk is inludedin W s(V ). Now this ar almost satis�es the three properties above requiredfor the ar α: it only fails to have its endpoints outside W u(V ). To remedythis we notie that, up to taking sequenes, the two sequenes of endpoints
(Γk(0)), (Γk(1)) onverge to some z0, z1 ∈ F ∩∂D. Sine F ⊂ W s(V )\{0} wean hoose ε > 0 so that the eulidean balls B0, B1 of radius ε and respetiveentres z0, z1 are inluded in W s(V ). For k large enough, Γk meets both balls,and then we onstrut the desired ar α by modifying Γk near its endpoints:we replae two small extreme subars of Γk, respetively inluded in B0 and
B1, by two eulidean segments reahing z0 and z1. Note that sine D is aeulidean dis, both segments, apart from their endpoints z0, z1, are inludedin Int(D). The endpoints z0, z1 of the resulting ar α are in F , thus outside
W u(V ), and α has the third property while still satisfying the �rst two. Asexplained at the beginning of the proof, the existene of α ontradits theminimality of l.3.3. Periodiity of the petals. Unfortunately, we are not able to prove di-retly that the sets Ci of the previous setion are periodi for f . To overomethis di�ulty we will onsider slightly larger sets C′

i whih will turn out tobe periodi. In the next setion we will �nd a periodi petal inside eah C′
i.We suppose that the losure of V is inluded in some neighbourhood

V ′ of 0 whih still has the short trip property. In other words, we applythe results of the previous setions with V small enough to meet this newassumption. We note that Lemmas 14 and 15 apply to V ′. Obviously theinlusions W s(V ) ⊂ W s(V ′) and W u(V ) ⊂ W u(V ′) hold. Let the dis Dand the sets Ci be de�ned from V as in the previous setion. Eah Ci isonneted and inluded in W s(V ′) ∩ W u(V ′) \ {0}, and thus inluded in aonneted omponent of W s(V ′) ∩ W u(V ′) \ {0}, whih we denote by C′
i.Lemma 17. The sets C′

i are periodi: for every i there exists some positiveinteger qi suh that f qi(C′
i) = C′

i.Proof. We �rst note that the set W s(V ′) ∩ W u(V ′) \ {0} is invariantunder f , and hene for every n, fn(C′
i) is a onneted omponent of thatset.We laim that for every i there exist in�nitely many n suh that fn(Ci)meets the irle ∂D. Assuming the laim, we hoose some point x, any neigh-bourhood of whih ontains points of ∂D∩fnk(Ci) for in�nitely many values



Charaterization of holomorphi paraboli germs 89of n. Sine x is a limit of points whose whole orbits are inluded in V , its or-bit is inluded in Clos(V ) ⊂ V ′; in other words, x ∈ W s(V ′)∩W u(V ′) \ {0}.Let O be the onneted omponent of this last set ontaining x. Aordingto Lemma 15, O is open, and thus there exist in�nitely many integers n suhthat fn(Ci) meets O. For every suh n, fn(C′
i) is a onneted omponent of

W s(V ′)∩W u(V ′)\{0} that meets O, thus it oinides with O. Hene we an�nd two integers n1 < n2 suh that fn1(C′
i) = fn2(C′

i), whih proves that C′
iis periodi.We prove the laim. By Lemma 16 the �xed point 0 belongs to the losureof Ci. Sine Ci ∪ {0} is not a neighbourhood of 0, this point also belongs tothe losure of ∂Ci. Furthermore,

(∂Ci) \ {0} ⊂ ∂(W s(V ) ∩ W u(V )) \ {0}

⊂ (W s(ClosV ) ∩ W u(ClosV )) \ (W s(V ) ∩ W u(V )).Consequently, for any z ∈ ∂Ci \ {0} there exists an integer n suh that
fn(z) ∈ ∂V . Let (zk) be a sequene in ∂Ci onverging to 0. Then any sequene
nk suh that fnk(zk) ∈ ∂V is unbounded, beause the union of �nitely manyiterates of ∂V is a losed set whih does not ontain 0. For any k the set
fnk(Ci) is onneted, its losure ontains 0 and meets ∂V , thus it also meets
∂D. This ompletes the proof of the laim.3.4. Constrution of the loal onjugay. We �nally de�ne the petals.Aording to the previous lemma we an hoose some n0 > 0 suh that
F = fn0 leaves invariant every set C′

i. In view of Proposition 13, Theorem 3will follow from the fat that F is loally onjugate to a loally holomorphiparaboli homeomorphism. Let us prove this fat.Reall that C′
i is homeomorphi to the plane (Lemma 15), and for anyompat set K ⊂ C′

i, the sequenes (fn(K))n≥0 and (fn(K))n≤0 onvergeto 0 (Lemma 14). Consequently, Theorem 8 tells us that for every i therestrition of F to the invariant set C′
i is onjugate to the plane translation

τ : z 7→ z + 1. Observe that any point is on a horizontal line
∆′ =

⋃

n∈Z

τn(δ′)with ompat δ′ (a horizontal segment). Bringing this line bak under theonjugay, we see that any point xi ∈ C′
i is on a set ∆i ⊂ C′

i whih is theunion of the iterates under F of a ompat set (an ar) inluded in C′
i. ByLemma 14, ∆i ∪ {0} is a Jordan urve. Let Pi be the losed topologialdis bounded by this urve (here we use the Shoen�ies theorem). The lastsentene of Lemma 15 entails that Pi is inluded in C′

i, and then Lemma 14shows that Pi is a regular invariant petal for F .The urve αi meets both petals Pi and Pi+1. Furthermore for i oddwe have αi ⊂ W s(V ), so by Lemma 14, (Fn(αi))n≥0 onverges to 0, and
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(Fn(αi))n≤0 onverges to 0 for i even. Thus the onstrution of a loal on-jugay between F and z 7→ z(1+zl) now boils down to the following lemma.Lemma 18 (see Figure 1). Let f ∈ H+. Fix some integer l ≥ 1. Assumethe following hypotheses.1. There exist 2l regular invariant petals P1, . . . , P2l whose pairwise in-tersetions are {0}.2. There exists a topologial losed dis D whih is a neighbourhood of 0,and whose boundary is the onatenation of 2l ars α1, . . . , α2l, eahhaving one endpoint on Pi and the other on Pi+1.3. For i odd the sequene (fn(αi))n≥0 onverges to 0, and for i even thesequene (fn(αi))n≤0 onverges to 0.Then f is loally onjugate to z 7→ z(1 + zl).Note that we do not suppose that ∂D∩Pi is onneted, nor that αi doesnot meet some petal Pj with j 6= i, i + 1, in ontrast to Proposition 12.An important step of the proof will be to hek that the petal indexationoinides with their yli order around 0.Proof of Lemma 18. Consider a homeomorphism f ∈ H+ satisfying thehypotheses of the lemma. The ar αi ontains a minimal subar α′

i onneting
Pi to Pi+1; the endpoints of α′

i are respetively on Pi and Pi+1, and itsinterior Int(α′
i) is disjoint from Pi and Pi+1. Let i be odd, so that (fn(α′

i))n≥0onverges to 0. Then we de�ne an attrating setor S′
i as follows. We onsiderthe urve obtained by onatenating the ar α′

i, the subar of ∂Pi fromthe endpoint of α to 0 following the dynamial orientation of ∂Pi, and thesimilar subar on Pi+1 (see Remark 10). This is a Jordan urve, it bounds atopologial losed dis S′
i. Clearly (fn(∂S′

i))n≥0 onverges to 0, and thus sodoes (fn(S′
i))n≥0; in other words, S′

i is indeed an attrating setor. Note thatas a onsequene, it an ontain neither Pi nor Pi+1, beause an attratingsetor ontains no invariant set. We apply item 1 of Claim 6 to get a nieattrating setor Si ⊂ S′
i having the same germ as S′

i at 0. For i even wesymmetrially de�ne a repulsive setor S′
i and a nie repulsive setor Si.Sine the petals are topologial losed diss whose pairwise intersetionis {0}, the Shoen�ies theorem shows that the union of the petals is hom-eomorphi to the model pitured on the left of Figure 1; but we still haveto prove that their yli order is as shown on the right of the �gure (orthe reverse one). For this we argue by ontradition. Suppose there existssome i suh that the petals Pi and Pi+1 are not adjaent: they are loallyseparated near 0 by the union of the other petals. Then there exists anotherpetal Pj suh that the setor Si ontains a neighbourhood of 0 in Pj ; in otherwords, Clos(Pj \ Si) is a ompat subset of Pj \ {0}. Using Claim 11 that



Charaterization of holomorphi paraboli germs 91desribes the dynamis of f on Pj , we �nd a point x 6= 0 whose full orbit
{fn(x) : n ∈ Z} is inluded in Pj ∩ Si. But an attrating or repulsive setorontains no full orbit, whih provides the desired ontradition.Up to reversing the indexation, we may now assume that the petals areindexed in the positive yli order around 0 (so that the Shoen�ies theoremprovides an orientation preserving homeomorphism that sends eah Pi ontothe model of Figure 1). Sine Si ontains neither Pi nor Pi+1, the dynamialorder on the boundaries of the petals is as indiated in Figure 1: the petal
Pi is diret for i odd and indiret for i even.Up to replaing Si with some smaller nie setor, we dedue that1. for any i, j with j 6= i, i + 1, we have Pi ∩ Sj = {0};2. for any i 6= j, we have Si ∩ Sj = {0} = f−1(Si) ∩ Sj .Consider the set D = P1∪S1 ∪· · ·∪P2l ∪S2l. Thanks to item 2 the maximalinvariant subset of D is the union of the petals Pi. Thus D is a topologi-al losed dis satisfying the hypotheses of Proposition 12. Now the lemmafollows from the proposition.4. Proof of Propositions 12 and 13Proof of Proposition 12. The fat that for the map z 7→ z(1 + zl) thereexists a topologial losed dis D with properties 1�3 of the proposition ispart of the proof of the Camaho�Leau�Fatou theorem (see [Cam, Mil℄).We turn to the proof of the reverse impliation. We onsider a homeo-morphism f ∈ H+ and a dis D with properties 1�3 of the proposition. Wehave to prove that if f ′ ∈ H+ and a dis D′ has the same properties (withthe same l) then f and f ′ are loally topologially onjugate. Note that theunion of all setors Si and petals Pi is equal to D.Let i be an odd integer. Sine Si is an attrating setor between Pi and
Pi+1, the petal Pi is diret, while Pi+1 is indiret (see Remark 10). The sameis true for f ′. Thus aording to Claim 11, the restritions of f and f ′ to
Pi and P ′

i are onjugate. The onjugaies an be glued together to obtainan orientation preserving homeomorphism Φ :
⋃

Pi →
⋃

P ′
i whih sends Pionto P ′

i and is a onjugay between the restritions of f and f ′.The image under Φ of Si∩(Pi∪Pi+1) is not neessarily equal to S′
i∩(P ′

i ∪
P ′

i+1). But using item 2 of Claim 6 we an replae Si and S′
i with smaller nieattrating setors so that this equality beomes true (see item 2 of Remark 7).We an now use item 3 of Remark 7 to extend Φ to a homeomorphismbetween D and D′, sending Si onto S′

i and onjugating the restritions of
f and f ′. We do this for every attrating or repulsive setor Si. We furtherextend Φ to a homeomorphism of the plane. The onjugay relation f ′Φ = Φfis satis�ed on D ∩ f−1(D). This ompletes the proof of the proposition.



92 F. Le RouxTo prove Proposition 13 we need a laim.Claim 19. Let Q1, Q2 be two invariant petals inluded in a regular in-variant petal P for F ∈ H+. Then Q1 meets Q2, and there exists a uniqueonneted omponent O of Int(Q1)∩ Int(Q2) suh that F (O) = O. Further-more, the losure of O is a regular invariant petal for F .Proof. The �rst part is easily proved using the translation model given byClaim 11. The only di�ulty in the seond part is to hek that the losureof O is indeed a topologial losed dis. But this follows from the previouslyquoted result of Kerékjártó ([Ke23, LCY℄).Also note that if Q ⊂ P are two regular invariant petals and P is diretthen Q is diret.Proof of Proposition 13. Let fn0 = F be onjugate to a paraboli hom-eomorphism F0. Up to inreasing n0, we an assume that F ′
0(0) = 1, andthus F is loally onjugate to z 7→ z(1 + zl) for some integer l. Let D bea nie dis for F , and let {P1, . . . , P2l} be the family of petals assoiatedwith D, as given by Proposition 12.For eah i we hoose a small invariant petal Qi for F inluded in Pi. Sine

fn0 = F and Qi is invariant for F , if Qi is small enough then every iterate
fn(Qi) is inluded in D. Sine fn(Qi)\{0} is onneted and invariant for F ,it is inluded in a onneted omponent of the F -maximal invariant subsetof D \ {0}, that is, fn(Qi) is inluded in some petal Pj. Fix j and onsiderthe �nite family of all the petals fn(Qi) for n ∈ Z and i ∈ Z/2lZ whih areinluded in Pj . We denote the intersetion of their interiors by Oj . ApplyingClaim 19 indutively we see that the losure of Oj is a regular invariant petalfor F ; let us all it P j .By onstrution the petals in the family {P j} are permuted by f , theirpairwise intersetions are {0}, and their yli order around 0 is given bythe yli order on the indies j ∈ Z/2lZ. Sine f is an orientation preserv-ing homeomorphism, there exists i0 suh that f(P i) = P i+i0 for every i.Furthermore, sine f respets the dynamial orders indued by F on theboundary of the petals, i0 must be even. The order n′

0 of the permutation
i 7→ i + i0 is a divisor of n0 (maybe proper). It is easy to see that there ex-ists another nie dis D for F whose maximal invariant subset is the unionof this family of petals. The nie attrative and repulsive setors Si for F ,assoiated with D, are learly also attrative or repulsive setors for fn′

0 ,and aording to Claim 6 we an �nd within eah Si a nie attrating orrepulsive setor Si for fn′

0 having the same germ at 0. Now the topologiallosed dis D de�ned as the union of all petals P i and setors Si is a nie disfor fn′

0 , the hypotheses of Proposition 12 are satis�ed, and fn′

0 is onjugateto F .



Charaterization of holomorphi paraboli germs 93Using these families of petals and setors we are now in a position toonstrut a loal onjugay Φ between f and the model map f0 : z 7→

e2iπi0/2lz(1 + zl). Note that f
n′

0

0
is onjugate to z 7→ z(1 + zl) and that f0permutes a family of regular invariant petals for f

n′

0

0
. The onstrution of theonjugay is similar to the one de�ned in the proof of Proposition 12. Hereis the main di�erene: sine the petals are permuted by f , we have �rst tode�ne a onjugay Φ between fn′

0 and f
n′

0

0
on some petal P i, and then thereis a unique way to extend it to the f -orbit of P i to get a onjugay between

f and f0. We do the same for every f -orbit of petals, and for every f -orbitof a setor. This ompletes the proof of Proposition 13.
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