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On the classification of inverse limits of tent maps
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Louis Block (Gainesville, FL), Slagjana Jakimovik (Skopje),
Lois Kailhofer (Milwaukee, WI) and James Keesling (Gainesville, FL)

Abstract. Let f; and f: be tent maps on the unit interval. In this paper we give
a new proof of the fact that if the critical points of fs and f; are periodic and the in-
verse limit spaces (I, fs) and (I, f;) are homeomorphic, then s = ¢. This theorem was
first proved by Kailhofer. The new proof in this paper simplifies the proof of Kailhofer.
Using the techniques of the paper we are also able to identify certain isotopies between
homeomorphisms on the inverse limit space.

1. Introduction. Given a continuous map f of a one-dimensional space
to itself, one may form an inverse limit space by using f repeatedly as the
bonding map. Spaces formed in this way commonly appear as attractors in
dynamical systems [1, 2, 4, 8, 12, 21|. This motivates the study of such in-
verse systems. It is natural to try to determine when two such inverse limits
are homeomorphic. In the case of solenoids, there is a well known character-
ization [1, 15]. Consider the inverse limit space for the inverse system where
the inverse system spaces are each the interval and the bonding maps are
each some tent map

fs(z) = min{sz,s(1 —x)}

for x € [0,1] and s € [1,2]. This inverse limit space has also been stud-
ied extensively. Any unimodal map without wandering intervals, restrictive
intervals, or periodic attractors is conjugate to a tent map (see e.g. [16]).
As conjugate maps have homeomorphic inverse limit spaces, the family of
tent maps is more inclusive than it seems at first glance. Given parameters
s # t it is unknown whether the corresponding inverse limit spaces (I, fs)
and (I, f¢) could be homeomorphic where I = [0, 1]. However, partial results
exist [3, 6, 9, 11, 17, 20].
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In this paper we work with tent maps for which s € [\/Q, 2] and the
turning point is periodic, i.e. letting c denote the turning point, there is some
positive integer n such that f'(c¢) = c. In [13] and [14]| Kailhofer proved the
following result.

TurEOREM (Kailhofer). Suppose that s,t € [v/2,2]. Assume that the turn-
ing point is periodic for both fs and fi. Then X4 is homeomorphic to X, if
and only if s =t.

In this theorem, X and X; are the cores of (I, f5) and (I, f;), respectively.
These will be defined in the next section. The theorem implies that if (I, fs)
and (I, f;) are homeomorphic, then s = t under the given assumptions.
Related results appear in [3], [9], and [19].

One can extend the same result to the whole interval s € (1,2] in the
following way. For s € (1,v/2], there are two intervals .J; and .J, in the
core I of fs with pairwise disjoint interiors such that f2|;, and f2|;, are
topologically conjugate to fg|r,. It follows that for s € (1, V2], (I, fs) is
determined by (I,2, f,2). Therefore, it is enough to consider tent maps with
slopes in (v/2,2].

In the present paper we give a simplified proof of Kailhofer’s theorem.
The proof in this paper uses some of the results in [13] together with some
new results. One of the results proved in this paper is of particular interest
in itself.

IsoToPY THEOREM. Let s € (v/2,2). Let Iy = [f2(c), fs(c)] be the core
of fs. Let Xs = (Is, fs) be the inverse limit of the core. Let h be any hom-
eomorphism of Xs. Then there is a positive integer n and an integer k such
that h™ is isotopic to o* where o is the shift map on X,.

A weakened version of this theorem will be proved in the early part of
the paper. In the simplified proof of Kailhofer’s theorem, we only need that
a certain homeomorphism h permutes the composants of X, in the same
way as o for some integer k. If h and o were isotopic, then it would easily
follow that the composants of X are permuted by them in the same way. It
is only at the end of the paper that we actually show that h and ¢* are in
fact isotopic.

2. Preliminaries. In this section we will recall some general definitions
and known background results needed to state and prove the main results
of this paper.

Let X be a topological space. X is an arc if there exists a homeomor-
phism from X onto [0, 1]. The components of X are the maximal connected
subspaces of X. We define N=1{0,1,2,...}, Ny ={1,2,...}, R=(—00,0)
and R} = [0, 00).
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A continuum is a compact connected metric space. Let X be a continuum.
The composant of x € X is the union of all proper subcontinua of X that
contain z. An end continuum in X is a subcontinuum T of X such that
whenever T' C H, T C J for continua H,J C X, then either H C J or
J C H. A point x € X is an endpoint of X if {z} is an end continuum in X.
Note that endpoints are topological invariants.

Let {X;,d;}52, be a collection of compact metric spaces with d; bounded
by 1, and such that for each ¢, f; : X;41 — X, is a continuous map. The
inverse limit space is

o0
{Xi fit = {T = (z0,71,...) ‘ ze [ X filwi) = mi, i€ N},
i=0
and has metric d given by

0 di (s, i)
EMEDPE
=0

For each i, m; denotes the projection map from [[;°) X; into X;. An
inverse limit space {Xj, f;}5°, is a continuum if X is a continuum for every i
[18, Theorem 2.4|. If X; = X and f; = f for all 4, the inverse limit space is
denoted (X, f), and the map o : (X, f) — (X, f) defined by o(x¢, 21,...) =
(f(z0),z0,21,-..) is known as the shift homeomorphism or as the induced
homeomorphism.

A continuous map f : [a,b] — [a,b] is called unimodal if there exists a
unique turning or critical point, ¢, such that f|[a7c] is increasing and f|[c,b] is
decreasing. For each = € [a, b], the forward itinerary of x is I(x) = bob1by - - -
where b; = R if fi(z) > ¢, b; = L if f(z) < ¢, and b; = C if fi(z) = c,
with the convention that the itinerary stops after the first C'. The itinerary
of f(c) is known as the kneading sequence of f and it is denoted K(f).

The set of itineraries is given the parity-lexicographical ordering in the
following way. Set L < C < R. Let W = wowy --- and V = vgvy - - - be two
distinct itineraries and let k be the first index where the itineraries differ. If
k=0, then W < V if and only if wy < vg. If & > 1, and wowy - - - wp_1 =
Yo7 - - - Vp—1 has an even number of R’s, that is, has even parity, then W < V
if and only if wy < vg; if wowy - - - wp_1 = vou1 - - - Vp_1 has an odd number of
R’s, that is, has odd parity, then W < V if and only if v < wg. It is known
that the map = — I(z) is monotone, that is, if z < y, then I(z) < I(y)
(cf. [10]).

The modified forward itinerary of f(c), denoted I'(f(c)), is defined as
follows. If K(f) = apay--- is infinite, let I'(f(c)) = K(f). If K(f) =
aoay - - - ang—2C, then I'(f(c)) = (aoai---ay, 1), where a; _, replaces
the terminal C' in the kneading sequence and agay ---a,, | < K(f) in the
parity-lexicographical ordering.
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DEFINITION 2.1. Let f: I — I be a unimodal map. Let T = (xq, 21, - -)
be a point in the inverse limit space (I, f) of f. The backward itinerary of T,
denoted B(Z) = bob - - -, is a sequence of R’s and L’s such that

(1) y=Rifz; >cand b; =L if z; <,

(2) if x; = c for some i > 0, then bgb; - --b;—1 = a;—1a;—2 - - - ayap, where
I'(f(c)) = aoay - - - .

Define By = {B(Z) |T € (I, f)}.

REMARK 2.2. Suppose that c is periodic with period ng. Let T € (I, f). If
x; # c for all i € N, or if z; = ¢ for infinitely many ¢ € N, then T has exactly
one backward itinerary. If z; = c for finitely many ¢« € N, then T has two
backward itineraries that differ at only one coordinate, max{i € N | z; = c}.

Consider the one-parameter family of tent maps fs : [ — I, fs(z) =
min{sz,s(1 —z)}, € I and s € [v/2,2]. The tent map f, is unimodal for
all s € [\/5, 2]. From now on, unless otherwise specified, consider s € (\/5, 2]
fixed such that the critical point ¢ of fs has period ng. Write

c; = fsz(c) and ¢; = (Ci, Ci—1y-++5Cl,CoCpg—1y- -+, CZ'_H)OO
fori=0,1,...,n9 — 1. Set I, = [co, ], Ir = [c,c1] and I5 = [c2, ¢1]. Then I
is invariant under f; and fs is locally eventually onto on I, that is, for every
nondegenerate interval J C I there exists an n > 0 such that fI'(J) = I,.
The interval I is known as the core of fs. The inverse limit space of (I, fs)
is equal to the union of Xy = (I, fs) with an open ray having X as its limit
set. To denote the nth coordinate in the inverse system we use I,, instead of
(Is)n. We know that X is indecomposable. Under the assumption that c is
periodic every proper subcontinuum of X is an arc. Thus, every composant
is a union of arcs.

The composant Cz of T € X is the set of all points in X, with backward
itineraries eventually identical to B(Z), that is, ¥ € Cz if and only if the

backward itineraries of  and ¥ differ in at most finitely many coordinates
(Lemma 4.1).

3. Definitions and results from Kailhofer’s paper. In this section
we give several definitions introduced by Kailhofer and some of the results
from her paper [13].

DEFINITION 3.1. Let w = wowy - -+ € By,. Define
Ay ={7 € X, | mi(T) € I, for all i € N},
the set of points in X with backward itinerary w. Define
A, =0"(Ay).
Note that A, = {Z € X | B(T) = w}.
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REMARK 3.2. Each A, is a nondegenerate arc contained in a single
composant.

LEMMA 3.3 ([13, Lemma 4]). Let w € By,. There exist 0 < i # j < ng
such that mo| 4, is a homeomorphism onto [c;, c;].

The proof of this lemma shows that for an interval J C [c2, c1], fs(gs(J))
# J if and only if ¢3 is in the interior of J, where g is the inverse of the
map fs restricted on [cz, ¢], but for n > ng, fs(g™(J)) = g 1(J).

REMARK 3.4. Note that if T € X, is an endpoint of A, and T # ¢; for
any : =0,1,...,n9 — 1, then T has two backward itineraries.

The following lemma is well known and appears in several publications.
Barge and Martin in [5] describe the basic construction of endpoints in

(X, f).
LEMMA 3.5 ([13, Lemma 8|). The endpoints of X5 are ¢,¢1, ..., Cny—1.

REMARK 3.6. Each composant C' in X, has the property that there is a
continuous bijection either from R to C or from R to C.

DEFINITION 3.7. Let p € N and 0 < j < ng. Define
no—1

Ppj ={T € Ce | mpno(T) = ¢j},  Pp= U Pyp,j-

The elements of @, are called p-special points.

DEFINITION 3.8. Let n,m € N. Define E,, = 7, (®y) and

Pom = {z el,

Jz,y € E,,3k € {0,1,...,2™} such that

k 2m — k
(z,y)NE, =0 and z = x—i_(zm )y}

We see that F,, partitions [,, into finitely many intervals and P, ,, refines
that partition by dividing each interval into 2" subintervals.

DEFINITION 3.9. Let n,m € N and let z € P, . If ¢ # co, set y =
max{w € P, |z > w}. If 2 # ¢, set z =min{w € P, ,,, | z < w}. Define
(y,z) if x € (co,c1),
Lm =19 [r,2) ifr=cy,
(y,z] ifx=c.
Let
m={ 2 €Pum}t,  Lum={l |15, =m"(5,.), % € Pom}.

Let U = {U;}!", be an open cover of a topologlcal space X. Recall that
the set U is a chaining of the space X if U;NU; # () if and only if |i — j] < 1.
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Let U = {U;}}.; and let V. = {V;}"; be chainings of a topological
space X. We say that the chaining U refines the chaining V', in symbols
U <V, if for every 1 < i < n, there is 1 < j < m such that U; C V.

LEMMA 3.10 ([13, Lemma 16]). Fiz n,m,i,j € N. Then

(1) Ly is a chaining of I,.

(2) Ly,m is a chaining of Xs.

(3) Lym < Lijifn>i,m>j.

(4) If T € By, then there is a unique | € Ly, , such that T € 1.

(5) mesh(Lym) — 0 as n — oo and m — .

DEFINITION 3.11. For each p € N, define

W,={zeCs|IT € A" NA v +#we By}U({c}.
If 7 € W)y, then T is called a p-wrapping point. There is a natural order
on the set of all p-wrapping points with < 7 if h=1(Z) < h~1(7) for any
continuous bijection h : Ry — C&.

LeEMMA 3.12. Fiz p € N. Then

(1) W, ={Z € C¢ | In > png such that m,(T) = c}.
(2) Wpi1 C Ppi1 C W),
(3) o™ (Wp) = Wpia.

ExAMPLE 3.1. Let T be the tent map with kneading sequence RLRRC.
Figure 1 shows the p-wrapping points and the (p+ 1)-wrapping points of C.

Cl T
cg 4

m5p(C)

Co L'

c1 1’
C4q +.

T5pr1)(C) C3 17
C <4

Co L

Fig. 1. The projections of the p-wrapping points e and the (p + 1)-wrapping points o

PropoOsSITION 3.13 ([13, Proposition 25|). Fiz p,m,k € N, 0 < k < ng.
If D is a component of Cz NI | then the closure of D is an arc and D

n,m?
contains exactly one element of P, .
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DEFINITION 3.14. Let T € W)\{¢}. Let £ € N be such that png + k =
max{n | m,(Z) = c¢}. Define the p-level of T by L,(Z) = k. Set L,(¢) = .

The set {L,(Z) | * € Wp\{¢}} is unbounded. Note that T € W4 if and
only if L,(Z) > no.

ExXAMPLE 3.2. Let T be the tent map with kneading sequence RLRRC.
Figure 2 shows the 5p-projections of the p-wrapping points of Cz, marked
by e, and the p-levels of the corresponding p-wrapping points of Cj.

Cl

Cq4 +

co L

o 4+
[
o 4+
g
o 4+
[
o +
o +
o 4+
N
o +
g
o 4+
S
o 4+
—_
oo -+
—_
o 4+
N
o 4+
g
o 4+

1 l l 1

I T T T

p-level: oo 1 3 1
Fig. 2. The p-levels of the p-wrapping points of the composant of ¢

PROPOSITION 3.15 ([13, Proposition 29|). Let p € N and w < v in C; be
such that Tpn, (W) = Tpn, (). There exists a p-wrapping point Z such that W <
Z < v. Additionally, if both W and U are p-wrapping points, then there ezists
a p-wrapping point Z such that W < Z < T and Ly(Z) > min{L,(w), L,(7)}.

DEFINITION 3.16. Fix p € N. Let H be an arc in the composant of ¢
with Int(H) N W), = {h1,...,hp—1} and OH = {hg, hy,}.

(1) The arc H is p-symmetric if Tpng (F0) = Tpng (hn) and Ly(h;) =
Ly(hp—;) for all 0 < i < n. 3 3
(2) The arc H is p-pseudosymmetric if mpn,(hi) = mpng(hn—;) for all

0<?1<n.
If H is p-pseudosymmetric or p-symmetric, then n is even and the center
of H, denoted Ky, is the point h,, /5.

REMARK 3.17. Fix p € N and let H C C; be an arc. If H is p-pseudo-
symmetric, then H is g-pseudosymmetric for all ¢ < p. If H is p-symmetric,
then H is g-symmetric for all ¢ € N such that gng < pno + L,(Fn).
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PROPOSITION 3.18 ([13, Proposition 34]). Let p € N and w € W,\{¢}
such that Ly(w) # 0. Let H be the union of all p-symmetric arcs with cen-
ter w. There exists a p-wrapping point T € H such that L,(v) > L,(w).
Furthermore, U is an endpoint of H.

REMARK 3.19. Let H be a p-symmetric arc in Cz and let L = L,(Rg).
Proposition 3.18 implies that all the interior points in H have p-levels smaller
than L, hence 7,41 |r is @ homeomorphism.

DEFINITION 3.20. The set &, partitions the composant of € into count-
ably many arcs called p-gaps.

For any p-gap H, ¢ ¢ mpn,(Int(H)) and 7, (0H) = {c}. The intersection
of any two p-gaps is at most one point.

LEMMA 3.21. For any p € N, a p-gap is p-symmetric.

Proof. Fixp € N. Let H be a p-gap and 0H = {y,z}. Let T € Int(H) be a
p-wrapping point with largest p-level, say L. Suppose H is not p-symmetric.
Then fo(Tpno+L(¥)) # fs(Tpno+L(Z)), hence there is a p-wrapping point
w € Int(H) such that fo(mpn,+r(W)) is equal to either fo(mpn,+r(Y)) or
fs(Tpno+1(Z)). This implies that m,,,(w) = ¢, which contradicts H being a
p-gap. =

The proof of the previous lemma is longer than the one given by Kailhofer,
but it is self-contained.

DEFINITION 3.22. Fix p,q € N. Let G be a p-gap with GNW, =
{90:G1,- -9, and H be a g-gap with H N W, = {ho, h1,...,hy}. The
gaps G and H are of the same type if n = m and 7y, (G;) = Tgn, (hs) for all
0<?2<n.

PROPOSITION 3.23 ([13, Proposition 41]). Fiz p,q € N. Let G be a p-gap
and H a q-gap. If Ly(Ry) = Ly(Rg), then G and H are of the same type.

DEFINITION 3.24. Fix p € N and let G be a p-gap. The arcs between
two consecutive p-wrapping points in G are called legs of G.

The first p-gap in the composant of € is denoted F,.
LEMMA 3.25. Fiz p € N and let G be a p-gap. Then

(1) The first leg of G contains a (p — 1)-gap [13, Lemma 46].
(2) The first (p —1)-gap in G is of the same type as F), [13, Prop. 47].

DEFINITION 3.26. Fix p € N. Define ¢ = L,(FF,).

REMARK 3.27. Since the type of F}, does not depend on p, ¢ does not
depend on p. Since F), is contained in the first leg of F}, 11, the center of F,
is not a (p + 1)-wrapping point, hence ¢ = L,(Kg,) < ng. Note also that
ano(EFp) = Cyp.
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Now, consider a homeomorphism h : (I, f) — (I, f) with h(c) = ¢ (If
h(¢) = ¢;, where 0 < i < ng, consider the map h = c~% o h.)

Fix m,n,p,q € N such that h(Lgngn) < Lpng,m- If h(¢j) = ¢ for 0 <
i,j < mno, then h(lghyn) C IS, - This implies that h(dg;) C 1%, .. By
Proposition 3.13, every component of lgim,n contains exactly one element
of @, ;. Since two consecutive points of @, lie in two different links, each
component of /7, . contains at most one element of h(®, ;). Thus, h induces
a one-to-one map hg ) : ¢, — Pp, defined as follows.

DEFINITION 3.28. Fix m,n,p,q € N such that h(Lgngn) < Lpngm- If
W € g5 and h(c;) = ¢ for 0 < 4,5 < ng, then hy, (W) is defined as the

element of @ ; that lies in the same component of [}, . as h(w).

If G is an arc in the composant of ¢ with G = {Z,7} C &y, let hy,(G)
be the arc between hg,(T) and hg ().

THEOREM 3.29 ([13, Corollary 67]). Fiz positive integers m,n,p,q such
that h(Lgngn) < Lpng,m- If H is a g-pseudosymmetric arc in the composant

of ¢ with OH C @4, then Eq,p(H) is p-pseudosymmetric.

LEMMA 3.30 ([13, Lemma 68]). Let p € N. Let G and H be distinct
p-pseudosymmetric arcs in the composant of ¢ such that¢ € G and ¢ € H.

Then G C H if and only if L,(Rg) < Ly(RH)-
THEOREM 3.31 ([13, Corollary 71]). Fiz m,n,p,q,u,v € N such that

hMLagnon) = Lpngm < hA(Lungw). If hgp(Fy) = Fy for some t € N, then
hgp(Pari0) = Prwo for all k € N,

4. Main result. The following lemma is a well known result (see Brucks
and Diamond [8] and Brucks and Bruin [7]).

LEMMA 4.1. Suppose that A is a proper subcontinuum of Xs. There is
a nonnegative integer k such that w|4 is a homeomorphism. In particular,
A is an arc. Moreover, for any two points T,y € A, B(T) and B(y) agree
after the first k entries.

Proof. If there is a nonnegative integer m such that for each j > m,
c & mj(A), then fy[; (a) is a homeomorphism for each j > m, and the con-
clusion follows easily. So, we may assume that ¢ € m;(A) for arbitrarily large
integer j. Since c is periodic under f;, it follows that for each nonnegative
integer j, m;(A) contains at least one of the points cg, c1, ..., cyo—1. Since f
is locally eventually onto, there is a nonnegative integer k such that for each
integer j > k, m;j(A) contains exactly one of the points cg,c1,...,Cno—1.
We complete the proof by showing that for each ;7 > k the element of
{co,c1, ..., cny—1} which isin 7;(A) is an endpoint of 7;(A). In particular, for
each j > k, c is not in the interior of m;(A), so fs|;(a) is a homeomorphism.
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Suppose j > k. Since c is periodic, there is an integer m > j such that
c1 € mm(A). Since ¢ is an endpoint of I, it follows that ¢; is an endpoint of
Tm(A). Since ¢ is not in the interior of 7,,,(A), fsr,,(4) is @ homeomorphism.
Thus ¢ is an endpoint of 7, —1(A). If m—1 > j, we may repeat this argument
and conclude that ¢ is an endpoint of m,,_2(A). By repeating the argument
inductively, it follows that the element of {cq,c1, ..., cng—1} which is in 7;(A)
is an endpoint of 7;(A). m

Let T € X,. By Remark 3.6, there is a natural order on the elements of
the composant of . With the order topology, Cz will be called the unravelled
composant of 7.

REMARK 4.2. Note that the map hg, is order-preserving.

We will put a specific metric on the unravelled composant which is derived
from the inverse limit system. Let Z,% be in the same composant C' C Xj.
Then there is an arc A C C with endpoints T and 7. By Lemma 4.1, there
is a nonnegative integer k such that 7|4 is a homeomorphism. Define

d(@,9) = s*|m() — ().
Note that if m > k, then d(Z,¥) = §™ |7 (T) —mm(7)|. Thus, d is well defined

for every pair of points in the same composant C. We may consider (C,d)
either as R4 or R depending on whether C' has an endpoint or not.

THEOREM 4.3. Let h1,ho : X5 — X be homeomorphisms which map Cz
to itself. Suppose that there is M € Ny such that d(hi(Z),h2(Z)) < M for
all z € Cz. Then h1(Cz) = ha(Cz) for all T € X,. Furthermore, for every
T e XS7 E(hl(f)) h’2(f)) < M.

Proof. Let T € X;. If T € C%, then h1(Cz) = ha(Cz) by assumption.

Suppose that T ¢ Cz. Since C¢ is dense in X, there is a sequence {Tp, }°° ;
in Cz which converges to T. Then h;(Z,) converges to h;(Z) for i = 1,2.
Consider the unique arcs A,, C Cz with endpoints hy(Z,) and ha(Z,). By
assumption the length of A, in C7 is less than or equal to M. Let £ > 0 be
an integer such that M < s*(c; — c2). Then m(A,,) is a proper subset of
[ca, 1] since the length of 7 (A,,) is less than M/s* < ¢; — co.

Let C(Xs) denote the space of nonempty subcontinua of X, with the
Hausdorff metric. Then 7, : Xg — [c2, 1] induces a continuous map 7y, :
C(Xs) — C([e2,c1]). Since C(Xs) is a compact metric space, the sequence
{A,} has a subsequence {A,,} converging to some A € C(X,). Note that
hi(Zn;) converges to h;(T) for i = 1,2. So, hi(Z) € A for i = 1,2. Since my, :
C(X,) — C([e2, c1]) is continuous, 7 (A) has length at most M/s¥ < ¢1 — ca.
Thus, A must be a proper subcontinuum of Xg. Thus, h1(Z) and hy(T) are
in the same composant of X,. This implies that hy(Cz) = h2(C5).
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Since Z is arbitrary, the above also proves the last statement of the the-
orem. m

Recall that the shift homeomorphism, o : Xy — X, is defined by

o((xo,x1,...)) = (fs(z0), z0, z1,...).
LEMMA 4.4. There is a positive integer B such that for any p € N the
number of legs in a p-gap is at most B.

Proof. Since fs is locally eventually onto, there is K € N such that if J
is an interval which contains two points in the orbit of ¢, then fX(J) = I.

Fix p € N. Let H be a p-gap and L = Ly(Ry). Let Hr be the arc
connecting the center of H and the right endpoint of H. Then 7y +1.(HR)
is an interval with one endpoint ¢ and 7y, 1|H, is @ homeomorphism. Note
also that

L
[ (Tpno+L(HR)) = Tpn (HR) = pno (H)
is an interval with one endpoint c.
If st\ﬂpn0+L(HR) is linear, then there are at most two legs in H. Suppose

fSL|7TpnO+L(HR) is not linear. There is a least n € N such that f'(7pny+r(HR))

contains two points in the orbit of ¢. This implies that H has at most 2L—"
legs. Since mpy, (HR) is a proper subset of [c2, ¢1], we have L —n < K, hence
the number of legs in H is at most 2X. m

REMARK 4.5. One might be led to conjecture that the number of distinct
types of p-gaps in Cz is ng — 1 for any p € N. However, for s such that the
kneading sequence is RLLRRRLC, there are at least eight p-gaps.

THEOREM 4.6. Let h: X; — X be a homeomorphism which maps each
endpoint, ¢; for 0 <1 < mng—1, to itself. Then there exists an integer N and
a positive number M such that d(h(Z), o™ (Z)) < M for all T € C;.

Proof. For convenience of referral, two points of any subset of C; are said
to be adjacent in that set if the arc connecting those two points contains
no other points of that set. Note that if Z and § are adjacent in &,, then
d(z,7) < sP"o.

By Lemma 3.10(5), given u, v € N, there are p, m € N such that £, m <
h(Luno,v), and there are ¢, € N such that h(Lgn, ) < Lpng,m- Fix p,m,q,r,
u,v € N such that A(Lgngr) < Lpngm < M(Lungw)-

Since Fy is g-symmetric, by Theorem 3.29, Eq,p(Fq) is p-pseudosymmetric
and hg,(Rr,) = B n(Fy)’ Let L = LP(R}NLq,p(Fq)) and t be the largest positive
integer with the property tng < png + L. Obviously ¢ > p. Since h(¢;) = ¢;
for all 0 < i < ng, we see that m,,, (E,qu p(Fq)) = Tgno(RF,), which, by Remark
3.27, is equal to c,. From Definition 3.26, we have Li(RF,) = ¢. Thus

Ly(Fr) = L(Fp) + (t—p)no = + (t = p)no = L = Lp(®, . )-
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Hence, by Lemma 3.30,

Fy = hep(Fy).
By Theorem 3.31 it follows that for every k € N,

hq,p(@q+k,0) = Dt yk,0-
By Remark 4.2, hgy, is order-preserving on the set &, for any k € N,.
From the definition of o and since o(t=970 ig order-preserving as well, it is
easy to see that o(t=9)n0 (Pg4k,0) = Priko for any k£ € Ny. Therefore, for
every T € @y 11,0, we have hy,(T) = 0(:=970(F). By Definition 3.28, for any
T € Pgy1,0, h(T) lies between two adjacent p-special points, one of which is
hqp(T). Since the distance between two special points is less than sP™0, we

have
d(h(T),c=D™(7)) = d(W(T), hgp(T)) < sP"
for any T € $41.0.

The length of any leg of a (t 4 1)-gap is bounded by s(*+1)"0 as T(t4+1)no
restricted to the leg is a homeomorphism. Since the number of legs in a
(t + 1)-gap is bounded by B by Lemma 4.4, it follows that the length of a
(t+1)-gap is bounded. Namely, if Z and 7 are the endpoints of a (¢ + 1)-gap,

then d(Z,y) < [, where
| = Bs(ttno,
Let N = (t—q)no and M = sP"0 + 1. Let T € Ce. If T € Pyp10, then
d(h(T),o™(Z)) < sP™ < M.

If 7 ¢ @441, then there exist ¥ and Z adjacent in &, such that the
(¢ + 1)-gap whose endpoints are  and Zz, contains Z. As 4,z € Pgq1,0, We
have h,,(¥) = o™ (y) and hy,(2Z) = oV (Z). Since h is a homeomorphism,
the arc connecting h(y) and h(Z) contains h(Z). Similarly, the arc connecting
o™V (%) and oV (Z) contains o™V (Z). Thus,

A(h(@), 0™ (7)) < max{d(o™ @), h(@)), (o™ (@), h(Z))}.
Since o sends a (g + 1)-gap to a (t + 1)-gap,
AoV (z), 0 (@) < L
Since h(7) lies between two adjacent p-special points, one of which is o
d(h(y),o™ () < .

N),

Therefore

d(oN (7)), h(Z)) < M. =
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COROLLARY 4.7. Let h : Xg — X, be a homeomorphism which maps
each endpoint, ¢; for 0 < i < ng — 1, to itself. Then there is an integer N
such that h(Cz) = o™ (Cz) for all T € X;.

We adopt the following notation. If k is a positive integer, we let F(fF)
denote the number of fixed points of f* in I.

LEMMA 4.8. Suppose \/2 < s <t < 2 and for each of the tent maps f,
and f;, the critical point is periodic with period ng. Then

F(f0) < ().

Proof. Since each point in the orbit of the critical point is a fixed point
of f;'° and the same holds for fI'°, we need only consider fixed points of f;"
and fI'® which are not in the orbit of the critical point. Suppose y is such
a fixed point of fI'°. Then the forward itinerary I(y) equals S*° for some
sequence S of length ng of L’s and R’s. By [10, Theorem I1.3.8] there is a
fixed point z of f;"° with I(z) = S*.

We complete the proof by showing that there is a sequence T of length ng
of L's and R’s such that there is a fixed point of f;"® with itinerary T°° but
no fixed point of fI'° has this itinerary. The itinerary of fs(c) is of the form
DC' where D is a sequence of length ng — 1 of L’s and R’s. We can modify
fs to construct a unimodal map g with the same kneading sequence as f;
such that on the orbit of ¢, ¢ = fs, but for a small nondegenerate interval J
with right endpoint g(c) each point of J is periodic under g with period ny.
The itinerary of a point in J other than g(c) is of the form T°°, where T is
a sequence of L’s and R’s of length ng. Moreover, T is shift maximal and T
is either DR or DL. It follows that no fixed point of fI'® has itinerary 1°°,
but by [10, Theorem I1.3.8] there is a fixed point of f;"° with itinerary 7°°. m

LEMMA 4.9. Let s € (v/2,2). For any integer m, the number of com-
posants mapped to themselves by ol is F(f").

Proof. Without loss of generality we may assume that m > 0.

Our first claim is that there is at most one periodic point in each com-
posant of Xj.

Suppose not. There is a composant C in X, with at least two distinct
periodic points of oy, say T = (xo,z1,...) and ¥ = (yo,¥1,...). Then there
is a positive integer k such that ¢¥(Z) = 7 and ¢¥(y) = 7. In particular,
fE(xp_1) = 2p_1 and fF(yr_1) = yr_1. Note that x,_1; # yp_1. Since T
and y are in the same composant, they have eventually the same backward
itinerary. Thus, there is some positive integer N such that for alln > N, z,
and y, are on the same side of ¢. (By this we mean either both z,, > ¢ and
Yn > ¢, or both z, < ¢ and y, < ¢.) Since T and ¥ are periodic, it follows
that for each integer j = 0,1,...,k—1, z; and y; are on the same side of c.
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Hence for each integer j > 0, fg(xk_l) and fg(yk_l) are on the same side
of c. This is impossible since z;_1 # yr_1 and fs is a tent map with a slope
s > 1. This proves the first claim.

Our next claim is that each composant mapped to itself by o7* contains
a fixed point of o

Suppose C' is a composant in X, with o*(C) = C. If Z,5 € C, then

d(o"(T), 07" (7)) = s"d(Z, 7).

S S

™ is a contraction and has a fixed point. This proves our second

Hence o,
claim.

It follows from the claims that the number of composants mapped to
themselves by o7 is equal to the number of points fixed by o7". By definition
of o, this number is equal to the number of fixed points of fI"*. By definition,

this number is F(f'"). m

THEOREM 4.10. Let s,t € (v/2,2) be such that fs and f; have periodic
critical points. Then X and X; are homeomorphic if and only if s =t.

Proof. It is well known that if X, and X; are homeomorphic and the
critical point of f, is periodic, then the critical point of f; is also periodic
with the same period. Thus, there is no loss in generality in assuming that
the period of the critical points for f; and f; are both periodic of period nyg.
Suppose s < t. Assume there is a homeomorphism g : Xg — Xj.

Consider the map h : Xy — X;, h = goo™ og~!. Then h is a homeomor-
phism, and it maps each composant with an endpoint to itself. By Corol-
lary 4.7, there is an integer N such that h(Cz) = of¥(Cz) for all T € X;.
Since ¢7'° maps each composant with an endpoint to itself, the same is true
for h. Thus ¢}¥ also maps each endpoint of X; to itself. By Lemma 4.9, the
total number of composants mapped to themselves by o7/° and hence by h
is F(f7). Thus, the same is true for V. It follows that |N| > ng and ng
divides |N|. But the number of composants mapped to themselves by a,fv is
F(fY). Thus

F(f1*) = F(f;").
On the other hand, since s < t, by Lemma 4.8, F(f) < F(f;"°). Hence
F(Y) < FU),

which is a contradiction. =

5. Proof of the Isotopy Theorem. In this section we prove the Iso-
topy Theorem stated in the introduction. We have already shown that for any
homeomorphism ¢ : Xy — X, such that g leaves all the endpoints {Ei}?:‘)gl
fixed, there is a k such that g and o* permute the composants of X in pre-
cisely the same way. It is clear that for any homeomorphism h : X; — X,
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there is an n > 0 such that A" leaves ¢; fixed for ¢ = 0,1,...,n9 — 1. Let k
be the integer such that h™ and ¢* permute the composants of X, the same
way. We now show that h” and ¥ are actually isotopic.

The following lemma is a well known fact for the experts in this field.

LEMMA 5.1. Suppose A is an arc in X not containing any endpoint of
Xs. Then there is a neighborhood V of A homeomorphic to C x I, where
C' is a Cantor set. The boundary of V will correspond to C x {0,1}. More-
over, there is a positive integer m such that w,, maps each component of V
homeomorphically onto its image in I,.

Proof. Let A be an arc in X, not containing any endpoint of X;. By the
proof of Lemma 4.1, there is a positive integer m such that for each k > m,
none of the points ¢; are in 7 (A). In particular, 7|4 is a homeomorphism.
Let Z € A, Z = (20,215 +52m,---). Let C = {7 € X5 | yo = 20, 11 = 21,
.« yYm = Zm}. Then C is compact, totally disconnected, and every point is
a limit point. Therefore C is a Cantor set.

Let Jp = mm(A). Fix 7 € C. Since Jp, N {co,c1, ..., Cng—1} = 0, for this
y € C, there is a sequence {J;}°  of intervals such that y; € J; for each
i >m and fs(Ji+1) = J; for each i > m.

We can extend the sequence {J;}5°  to {J;}2, by Jo = fi"(Jm), J1 =

Ty Jme1 = fs(Jm). Then for all i = 0,1,..., fs(Jiy1) = J; and
yi € Ji.

Now .J,,, is homeomorphic to

J(y) = lin{Jla fs} C X
by the projection 7, : Xy — Ip,. Let gy : Jyy — J(7) be the inverse of this
homeomorphism.
Finally, let £ : C' x Jp, — X, be defined by £(7,t) = gy(t). Then V =
&(C x Jy,) is the required neighborhood. =

REMARK 5.2. In the above proof let x be in the Cantor set C'. Note that
the points Zy and z; corresponding to (x,0) and (z,1), respectively, are in
the same composant. Moreover, d(Zg, Z1) does not depend on 2. That is, the
lengths of the components of V are all the same in the d metric.

DEFINITION 5.3. Suppose {D;}°; is a sequence of nonempty compact
subsets of a metric space Y. Then limsup{D;} = {y € Y | for some sub-
sequence {D;;} and y;; € D;;, lim; . yi; = y}-

We let ¢ denote the length of an arc under the metric d.

LEMMA 5.4. Let {A;}5°, be a sequence of arcs in X,. Suppose A; — B
in the Hausdorff metric. Suppose also that there is an M > 0 such that
0(A;) < M for alli. Then B is an arc and {(B) < M.
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Proof. Let N be such that Ms=N<¢(Iyn)/2=1£0(15)/2=(f(c) — f?(c))/2.
Then for every k, mn(Ax) has length at most ¢(Iy)/2. Since Ay — B,
7N (Ag) — 7N (B). In particular, mn(B) is a proper subset of In. It fol-
lows that B is a proper subcontinuum of X,. By Lemma 4.1, B is an arc.

Finally, choose j large enough so that 7j|B is a homeomorphism. Then
for each k, s70(m;(Ag)) < M, and hence {(B) = s'4(m;(B)) < M. =

LEMMA 5.5. Let {A;}52, be a sequence of arcs in X with endpoints a;
and b;, respectively. Suppose that there is a positive number M such that

d(@;,b;) < M for each i. Suppose also that the sequence {@;}2, converges to
some @ € Xs. Then B =limsup{A4;} is an arc in X5 and {(B) < 2M.

Proof. Let T € B = limsup{A;}. Then there is a subsequence {4;; }]0‘;1
such that A;; — D C B in the Hausdorff metric with 7 € D. By Lemma 5.4,
{(D) < M. So, d(a,z) < M. From this it follows that B must be a proper
subcontinuum and thus an arc with the /-length of B at most 2M. w

LEMMA 5.6. Let {A;}5°, be a sequence of arcs in X, with endpoints a;
and b;, respectively. Suppose that @; — @ and by — b. Suppose also that there
is an M > 0 such that d(a;,b;) < M for all i. Then @ and b are in the
same composant of Xs. Let A denote the unique arc with endpoints @ and b.
Suppose that lim sup A; does not contain an endpoint of Xs. Then A; — A

in the Hausdorff metric.

Proof. By the proof of Theorem 4.3, @ and b are in the same composant of
X, and d(a@, b) < M. Let A be the unique arc with endpoints @ and b. Let B =
limsup{A4;}. By Lemma 5.5, B is an arc with /(B) < 2M. By assumption
B does not contain an endpoint of X;. So, let V' be the neighborhood of B
given by Lemma 5.1. Then there is an N such that for alln > N, A, C V
since B is the limsup{ 4;}. Therefore for each i > N, A; C {y;} x I for some
y; € C. Furthermore, A; is the subinterval of {7;} x I joining the endpoints.
Let @,b € {7} x I. Then

lim A,-:A:Bc{y}xl. L]

11— 00

DEFINITION 5.7. Consider J x C' C R? where C is the standard middle-
third Cantor set and J = [—1, 1]. Define an equivalence relation ~ on J x C
by (t,1) ~ (—t,1) for all t € J. Let Q@ = J x C/~. We will think of @
as the union of two sets E and F' defined in the following way. Let F =
(CU(—C)) x[1,2] C R% Let F be a Cantor set of semicircles with centers at
(0, 1) joining each point of C'x {1} with the corresponding point of —C'x {1}.
See Figure 3. Now in the Cantor set C, let Cy be the set of points in C' in
the interval between 0 and 1/3, inclusive. Let C] be the set of points in C'
between 2/3 and 7/9, inclusive. For higher k, let Cj be the subset of C
containing the points between (3¥ —1)/3% and (3¥+1 — 2)/3k*1  inclusive.
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=

Fig. 3. Neighborhood of ¢

Then {C}}2, is a disjoint collection of Cantor sets with Cj, — 1 in C and
C = U2 G U1},

LEMMA 5.8. Suppose that A is an arc in X; which contains an end-
point of Xs. Then there is a neighborhood V' of A homeomorphic to ) =
Cx J/~.

Proof. There is no loss of generality in assuming that ¢ is the endpoint
of A. Let A, be the set of points in Cz with the same backward itinerary,
w, and such that ¢ € A,. We know that A, is a nondegenerate arc with
¢ as one endpoint and some Z as the other endpoint, and that w4, is a
homeomorphism onto [, ¢;| or [¢;, ¢] for some 1 < i < nyg.

Define

Dy ={Z € X; | mpy(T) = c and 7;(T) # ¢ for all i > ng}.

The set Dy is compact, totally disconnected and every point is a limit point,
so Dy is a Cantor set.

Let T € Dy. Then m,,(Z) = ¢ and m;(Z) # ¢ for all i > ng. There are
two arcs Az and Bz in X containing T as an endpoint, such that m,,(Az) =
Tng (Aw), and such that m,,(Az) and m,,(Bz) are symmetric about c.

Similarly, for any & € N U {0}, define

Dy, = {7 € X | T(kt1)no(T) = ¢ and 7;(T) # c for all i > (k + 1)no}.

Then, for any k& € N U {0}, the set Dy is a Cantor set. For any T € Dy,
there are two arcs Az and Bz in X, containing T as an endpoint, such that
7T(k+1)nO(Af) = 7T(k+1)nO(Aw): and such that T('(kJrl)nO(Af) and T(k+1)no (Bz)
are symmetric about c.
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Let
v=J {AEUBE

T e [j Dk} UA,.
k=0

Let (a,b) be the open interval containing ¢ such that f™((a,b)) is [¢,¢;) or
(¢i, c], where m(Ay) is [¢, ¢] or [¢;, ¢]. Then each point of 7, ((a,b)) is in V.
Hence every point of A, except Z is an interior point of V.

Observe that D = (| J,—, Dx) U {¢}.

Define a map h : V — @ in the following way. For every k € N U {0},
h sends Dj homeomorphically onto Cj. For every T € Dy, Az is mapped
linearly onto [—1,0] x {h(Z)}, and Bz is mapped linearly onto [0, 1] x {h(Z)},
and A, is mapped linearly to [—1,0] x {1}. Then A is 1-1, continuous and
onto, hence it is a homeomorphism.

Now the neighborhood V' that we just created may not contain the given
arc A. However, for k > 1, applying the shift map k times, o*"0(V'), will cre-
ate a longer and thinner neighborhood of the same form with (72, o*0 (V)
dense in X,. Thus, there will be some k for which ¢*™0 (V) will contain A. m

REMARK 5.9. In the above proof ((A,) = ((A;z) = {(Bz) for every
T € Dy and every k € N U {0}. Furthermore, there are arbitrarily small
neighborhoods of ¢ homeomorphic to @ for which this is true.

THEOREM 5.10. Suppose that hy and ho are homeomorphisms of X such
that hi(¢) = ha(¢) = ¢. Suppose also that there is an M > 0 such that
d(h1(y), h2(y)) < M for each § € Cs. Suppose that T; — T in Xs. Let A;
be the unique arc joining hi(T;) and ho(ZT;). Let A be the unique arc joining
hi(Z) and ho(T). Then A; — A in the Hausdorff metric.

Proof. We assume the hypotheses and notation of the theorem.

CASE 1: The composant containing T does not contain an endpoint. In
this case Lemma 5.6 applies since limsup{4;}°; must be in the composant
of T which does not contain an endpoint of X,. Thus, we have 4; — A in
this case.

CASE 2: T € C;, for some i with T # ¢;. By Theorem 4.3, hi(Z) and
ho(Z) are in the same composant, and this composant must be C¢; for some j.
Let J = [e,¢;] be an arc in Cz, such that hi(Z) € J, ho(Z) € J, d(e, hi(T)) >
M +1, d(e, ha(T)) > M +1. Let V be a neighborhood of J as in Lemma 5.8.

Consider the arc hy '(J)Uhy *(J) in Cz,. Let W be a neighborhood of this
arc as in Lemma 5.8. By shrinking V' in the “vertical” direction if necessary,
we may assume that hi' (V) U hy (V) C W. Let K be a component of V
which does not contain ¢;. By the central point of K we mean the unique
point of K which corresponds to a point of the form (0,y) in [—1,1] x C as
in Definition 5.7.
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We may assume that T, € hy (V) N hy }(V) for each n. Since hy(F,) —
hi(Z) and hi(Zy) — ha(T), it follows from Remark 5.9 that for n sufficiently
large, the d-distance from hi(Z,) to either endpoint of the component of V
containing hy(Z,) is greater than M 4+ 1. Since d(hi(Zn), ho(Zn)) < M,
it follows that hi(Z,) and ho(T,) lie in the same component of V for n
sufficiently large. Without loss of generality, we assume that this holds for
each n.

For each positive integer n, let K, denote the component of V' which
contains hj(Z,) and ho(Z,), and let w, denote the central point of K,.
Let 3§, = h{'(w,) and Z, = h, '(@,). Then 7, and %, lie in the same
component of W as z,. Since z,, — 7, y,, — ¢;, and Z, — ¢;, it follows that
for n sufficiently large, Z,, does not lie between %, and Z, in a component
of W. Again, we may assume that this holds for each n.

For each positive integer n, let K,, = [a,, b,]. We may assume that
d(@p,Wy) > M +1 and d(b,,w,) > M + 1

for each n.

We claim that for each positive n, hi(Z,) and ha(Z,) lie on the same
side of w,, in K,,. We prove this by contradiction. Suppose that h,(Z,) and
ha(T,,) lie on opposite sides of w,, for some n. Recall that K,, = [@y, b,] and
suppose without loss of generality that hi(Z,) lies on the same side of w,
as ay,. There is a point p,, € W with hi(p,) = @,. Moreover, D,,, Tp, U,,, and
Zp, lie in the same component of W, and in this component, p,, is on one side
of Z,,, while §,, and Zz,, are on the other side.

Now, using the monotonicity of he on a component, we see that the
arc in X with endpoints h(p,,) and he(p,,) contains both @, and @, This
implies that d(h1(p,,), ha(P,)) > M +1. This is a contradiction and the claim
is established. Since A; C V for each i, it follows from the special form of V'
and the claim that A; — A.

CASE 3: T =¢; for some i. In this case A is just the point {¢;}. This case
is routine using the structure of the neighborhood of ¢ given in Lemma 5.8.
We leave the proof to the reader.

One of Cases 1-3 must hold so together they prove Theorem 5.10. u

THEOREM b5.11. Suppose that hy,hs : Xs — X, are homeomorphisms
which leave the endpoints of X fized. Suppose that there is an M > 0 such
that d(h1(T), h2(Z)) < M for all T € Cz. Then hy and hy are isotopic.

Proof. Let H : Xy x I — X, be defined in the following way.
Let T € X; and t € I. By Theorem 4.3, there is a unique arc A, connect-
ing h1(Z) and ho(Z). Let m € N be such that m,|4, is a homeomorphism
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into I,. Let gy, : mpn(Az) — A, be the inverse of this homeomorphism. Let
H(Z,t) = gm((1 = )T (h1(T)) + tmm(h2(T))).
If 7|4, is a homeomorphism, then

gk (1 = ) (M (T)) + tmi(h2(7)))
= gm((1 = )7 (R1(T)) + tmp(ha(T))).

So, H(7,t) is well defined. We now show that H is continuous.

Suppose that (Z;,t;) — (Z,t). Let A; be the unique arc with endpoints
hl(fi),hg(fi). Then hl(fz) — hl(f) and hg(fz) — hg(f) So, if A is the
unique arc connecting h;(Z) and ho(T), whose existence is given by Theorem
4.3, then, by Theorem 5.10, A; — A in the Hausdorff metric.

CASE 1: T is not an endpoint. In this case the arc A connecting hi(T)
and hy(T) does not contain an endpoint. Let V' be a neighborhood of A of
the form V ~ C' x I with C' a Cantor set and [ an interval as in Lemma 5.1.
Then there is an N such that for n > N, the arc A, is contained in V.
Now by Lemma 5.1, there is an m such that m,, is a homeomorphism of
each component of V' onto its image in I,,,. Therefore for this m and for all
n>N,

H(Zn,tn) = gm((1 = tn)mm (h1(ZTn)) + tnmm(h2(Zn)))
and
H(Ta t) = gm((l - t)ﬂ-m(hl(f)) + tﬂ-m(h2(j)))'
So, clearly, H(Zy,t,) — H(Z,1).

CASE 2: T is an endpoint. In this case hi(T) = ha(T) = T since the
endpoints are assumed to be fixed. Therefore A = {Z} and thus A, — {T}.
This implies that H(Z,,t,) — {T} = H(T, ).

So, H(Z,t) is a homotopy. We now show that it is an isotopy by showing
that for each ¢, hy(T) = H(Z,t) is one-to-one and onto.

First we show that h; is one-to-one. Note that h; permutes the com-
posants of X the same way that hy and hy do. So, to show that h; is
one-to-one it will suffice to show that h; restricted to a composant Cj is
one-to-one. Now C7 is the arc-component of Z. This arc-component with
the d-metric is homeomorphic to either R or R,. Fix orderings on Cz and
Ch,(z)- Now hy and hg are homeomorphisms from Cz to Cy, (z) either preserv-
ing or reversing the orders of Cz and C}, (7). However, since the d-distance
between hi and ho on Cz is bounded, these either both preserve the orders
or both reverse the orders on Cz and C},, (z) in the same way. Thus, h¢|c; is
one-to-one.

To show that h; is onto is similar. =
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We now give the proof of the Isotopy Theorem as outlined at the begin-

ning of this section.

Proof of the Isotopy Theorem. Let h : X — X be a homeomorphism.

Let n be such that h" leaves the endpoints of X fixed. By Theorem 4.6,
there is an M > 0 and there is a k € Z such that d(h"(Z),c"(Z)) < M for
all Z € Cs. By Theorem 5.11, A" and o* are isotopic. =
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