On the classification of inverse limits of tent maps

by
Louis Block (Gainesville, FL), Slagjana Jakimovik (Skopje), Lois Kailhofer (Milwaukee, WI) and James Keesling (Gainesville, FL)

Abstract

Let f_{s} and f_{t} be tent maps on the unit interval. In this paper we give a new proof of the fact that if the critical points of f_{s} and f_{t} are periodic and the inverse limit spaces $\left(I, f_{s}\right)$ and $\left(I, f_{t}\right)$ are homeomorphic, then $s=t$. This theorem was first proved by Kailhofer. The new proof in this paper simplifies the proof of Kailhofer. Using the techniques of the paper we are also able to identify certain isotopies between homeomorphisms on the inverse limit space.

1. Introduction. Given a continuous map f of a one-dimensional space to itself, one may form an inverse limit space by using f repeatedly as the bonding map. Spaces formed in this way commonly appear as attractors in dynamical systems $[1,2,4,8,12,21]$. This motivates the study of such inverse systems. It is natural to try to determine when two such inverse limits are homeomorphic. In the case of solenoids, there is a well known characterization [1, 15]. Consider the inverse limit space for the inverse system where the inverse system spaces are each the interval and the bonding maps are each some tent map

$$
f_{s}(x)=\min \{s x, s(1-x)\}
$$

for $x \in[0,1]$ and $s \in[1,2]$. This inverse limit space has also been studied extensively. Any unimodal map without wandering intervals, restrictive intervals, or periodic attractors is conjugate to a tent map (see e.g. [16]). As conjugate maps have homeomorphic inverse limit spaces, the family of tent maps is more inclusive than it seems at first glance. Given parameters $s \neq t$ it is unknown whether the corresponding inverse limit spaces $\left(I, f_{s}\right)$ and $\left(I, f_{t}\right)$ could be homeomorphic where $I=[0,1]$. However, partial results exist $[3,6,9,11,17,20]$.

[^0]In this paper we work with tent maps for which $s \in[\sqrt{2}, 2]$ and the turning point is periodic, i.e. letting c denote the turning point, there is some positive integer n such that $f_{s}^{n}(c)=c$. In [13] and [14] Kailhofer proved the following result.

Theorem (Kailhofer). Suppose that $s, t \in[\sqrt{2}, 2]$. Assume that the turning point is periodic for both f_{s} and f_{t}. Then X_{s} is homeomorphic to X_{t} if and only if $s=t$.

In this theorem, X_{s} and X_{t} are the cores of $\left(I, f_{s}\right)$ and $\left(I, f_{t}\right)$, respectively. These will be defined in the next section. The theorem implies that if $\left(I, f_{s}\right)$ and $\left(I, f_{t}\right)$ are homeomorphic, then $s=t$ under the given assumptions. Related results appear in [3], [9], and [19].

One can extend the same result to the whole interval $s \in(1,2]$ in the following way. For $s \in(1, \sqrt{2}]$, there are two intervals J_{1} and J_{2} in the core I_{s} of f_{s} with pairwise disjoint interiors such that $\left.f_{s}^{2}\right|_{J_{1}}$ and $\left.f_{s}^{2}\right|_{J_{2}}$ are topologically conjugate to $\left.f_{s^{2}}\right|_{I_{s^{2}}}$. It follows that for $s \in(1, \sqrt{2}],\left(I_{s}, f_{s}\right)$ is determined by $\left(I_{s^{2}}, f_{s^{2}}\right)$. Therefore, it is enough to consider tent maps with slopes in $(\sqrt{2}, 2]$.

In the present paper we give a simplified proof of Kailhofer's theorem. The proof in this paper uses some of the results in [13] together with some new results. One of the results proved in this paper is of particular interest in itself.

Isotopy Theorem. Let $s \in(\sqrt{2}, 2)$. Let $I_{s}=\left[f_{s}^{2}(c), f_{s}(c)\right]$ be the core of f_{s}. Let $X_{s}=\left(I_{s}, f_{s}\right)$ be the inverse limit of the core. Let h be any homeomorphism of X_{s}. Then there is a positive integer n and an integer k such that h^{n} is isotopic to σ^{k} where σ is the shift map on X_{s}.

A weakened version of this theorem will be proved in the early part of the paper. In the simplified proof of Kailhofer's theorem, we only need that a certain homeomorphism h permutes the composants of X_{s} in the same way as σ^{k} for some integer k. If h and σ^{k} were isotopic, then it would easily follow that the composants of X_{s} are permuted by them in the same way. It is only at the end of the paper that we actually show that h and σ^{k} are in fact isotopic.
2. Preliminaries. In this section we will recall some general definitions and known background results needed to state and prove the main results of this paper.

Let X be a topological space. X is an arc if there exists a homeomorphism from X onto $[0,1]$. The components of X are the maximal connected subspaces of X. We define $\mathbb{N}=\{0,1,2, \ldots\}, \mathbb{N}_{+}=\{1,2, \ldots\}, \mathbb{R}=(-\infty, \infty)$ and $\mathbb{R}_{+}=[0, \infty)$.

A continuum is a compact connected metric space. Let X be a continuum. The composant of $x \in X$ is the union of all proper subcontinua of X that contain x. An end continuum in X is a subcontinuum T of X such that whenever $T \subset H, T \subset J$ for continua $H, J \subset X$, then either $H \subset J$ or $J \subset H$. A point $x \in X$ is an endpoint of X if $\{x\}$ is an end continuum in X. Note that endpoints are topological invariants.

Let $\left\{X_{i}, d_{i}\right\}_{i=0}^{\infty}$ be a collection of compact metric spaces with d_{i} bounded by 1 , and such that for each $i, f_{i}: X_{i+1} \rightarrow X_{i}$ is a continuous map. The inverse limit space is

$$
\left\{X_{i}, f_{i}\right\}=\left\{\bar{x}=\left(x_{0}, x_{1}, \ldots\right) \mid \bar{x} \in \prod_{i=0}^{\infty} X_{i}, f_{i}\left(x_{i+1}\right)=x_{i}, i \in \mathbb{N}\right\}
$$

and has metric d given by

$$
d(\bar{x}, \bar{y})=\sum_{i=0}^{\infty} \frac{d_{i}\left(x_{i}, y_{i}\right)}{2^{i}}
$$

For each i, π_{i} denotes the projection map from $\prod_{i=0}^{\infty} X_{i}$ into X_{i}. An inverse limit space $\left\{X_{i}, f_{i}\right\}_{i=0}^{\infty}$ is a continuum if X_{i} is a continuum for every i [18, Theorem 2.4]. If $X_{i}=X$ and $f_{i}=f$ for all i, the inverse limit space is denoted (X, f), and the map $\sigma:(X, f) \rightarrow(X, f)$ defined by $\sigma\left(x_{0}, x_{1}, \ldots\right)=$ $\left(f\left(x_{0}\right), x_{0}, x_{1}, \ldots\right)$ is known as the shift homeomorphism or as the induced homeomorphism.

A continuous map $f:[a, b] \rightarrow[a, b]$ is called unimodal if there exists a unique turning or critical point, c, such that $\left.f\right|_{[a, c]}$ is increasing and $\left.f\right|_{[c, b]}$ is decreasing. For each $x \in[a, b]$, the forward itinerary of x is $I(x)=b_{0} b_{1} b_{2} \cdots$ where $b_{i}=R$ if $f^{i}(x)>c, b_{i}=L$ if $f^{i}(x)<c$, and $b_{i}=C$ if $f^{i}(x)=c$, with the convention that the itinerary stops after the first C. The itinerary of $f(c)$ is known as the kneading sequence of f and it is denoted $K(f)$.

The set of itineraries is given the parity-lexicographical ordering in the following way. Set $L<C<R$. Let $W=w_{0} w_{1} \cdots$ and $V=v_{0} v_{1} \cdots$ be two distinct itineraries and let k be the first index where the itineraries differ. If $k=0$, then $W<V$ if and only if $w_{0}<v_{0}$. If $k \geq 1$, and $w_{0} w_{1} \cdots w_{k-1}=$ $v_{0} v_{1} \cdots v_{k-1}$ has an even number of R 's, that is, has even parity, then $W<V$ if and only if $w_{k}<v_{k}$; if $w_{0} w_{1} \cdots w_{k-1}=v_{0} v_{1} \cdots v_{k-1}$ has an odd number of R 's, that is, has odd parity, then $W<V$ if and only if $v_{k}<w_{k}$. It is known that the map $x \mapsto I(x)$ is monotone, that is, if $x<y$, then $I(x)<I(y)$ (cf. [10]).

The modified forward itinerary of $f(c)$, denoted $I^{\prime}(f(c))$, is defined as follows. If $K(f)=a_{0} a_{1} \cdots$ is infinite, let $I^{\prime}(f(c))=K(f)$. If $K(f)=$ $a_{0} a_{1} \cdots a_{n_{0}-2} C$, then $I^{\prime}(f(c))=\left(a_{0} a_{1} \cdots a_{n_{0}-1}^{\prime}\right)^{\infty}$, where $a_{n_{0}-1}^{\prime}$ replaces the terminal C in the kneading sequence and $a_{0} a_{1} \cdots a_{n_{0}-1}^{\prime}<K(f)$ in the parity-lexicographical ordering.

Definition 2.1. Let $f: I \rightarrow I$ be a unimodal map. Let $\bar{x}=\left(x_{0}, x_{1}, \cdots\right)$ be a point in the inverse limit space (I, f) of f. The backward itinerary of \bar{x}, denoted $B(\bar{x})=b_{0} b_{1} \cdots$, is a sequence of R 's and L 's such that
(1) $b_{i}=R$ if $x_{i} \geq c$ and $b_{i}=L$ if $x_{i} \leq c$,
(2) if $x_{i}=c$ for some $i>0$, then $b_{0} b_{1} \cdots b_{i-1}=a_{i-1} a_{i-2} \cdots a_{1} a_{0}$, where $I^{\prime}(f(c))=a_{0} a_{1} \cdots$.
Define $B_{f}=\{B(\bar{x}) \mid \bar{x} \in(I, f)\}$.
Remark 2.2. Suppose that c is periodic with period n_{0}. Let $\bar{x} \in(I, f)$. If $x_{i} \neq c$ for all $i \in \mathbb{N}$, or if $x_{i}=c$ for infinitely many $i \in \mathbb{N}$, then \bar{x} has exactly one backward itinerary. If $x_{i}=c$ for finitely many $i \in \mathbb{N}$, then \bar{x} has two backward itineraries that differ at only one coordinate, $\max \left\{i \in \mathbb{N} \mid x_{i}=c\right\}$.

Consider the one-parameter family of tent maps $f_{s}: I \rightarrow I, f_{s}(x)=$ $\min \{s x, s(1-x)\}, x \in I$ and $s \in[\sqrt{2}, 2]$. The tent map f_{s} is unimodal for all $s \in[\sqrt{2}, 2]$. From now on, unless otherwise specified, consider $s \in(\sqrt{2}, 2]$ fixed such that the critical point c of f_{s} has period n_{0}. Write

$$
c_{i}=f_{s}^{i}(c) \quad \text { and } \quad \bar{c}_{i}=\left(c_{i}, c_{i-1}, \ldots, c_{1}, c, c_{n_{0}-1}, \ldots, c_{i+1}\right)^{\infty}
$$

for $i=0,1, \ldots, n_{0}-1$. Set $I_{L}=\left[c_{2}, c\right], I_{R}=\left[c, c_{1}\right]$ and $I_{s}=\left[c_{2}, c_{1}\right]$. Then I_{s} is invariant under f_{s} and f_{s} is locally eventually onto on I_{s}, that is, for every nondegenerate interval $J \subset I_{s}$ there exists an $n>0$ such that $f_{s}^{n}(J)=I_{s}$. The interval I_{s} is known as the core of f_{s}. The inverse limit space of $\left(I, f_{s}\right)$ is equal to the union of $X_{s}=\left(I_{s}, f_{s}\right)$ with an open ray having X_{s} as its limit set. To denote the nth coordinate in the inverse system we use I_{n} instead of $\left(I_{s}\right)_{n}$. We know that X_{s} is indecomposable. Under the assumption that c is periodic every proper subcontinuum of X_{s} is an arc. Thus, every composant is a union of arcs.

The composant $C_{\bar{x}}$ of $\bar{x} \in X_{s}$ is the set of all points in X_{s} with backward itineraries eventually identical to $B(\bar{x})$, that is, $\bar{y} \in C_{\bar{x}}$ if and only if the backward itineraries of \bar{x} and \bar{y} differ in at most finitely many coordinates (Lemma 4.1).
3. Definitions and results from Kailhofer's paper. In this section we give several definitions introduced by Kailhofer and some of the results from her paper [13].

Definition 3.1. Let $w=w_{0} w_{1} \cdots \in B_{f_{s}}$. Define

$$
\mathcal{A}_{w}=\left\{\bar{x} \in X_{s} \mid \pi_{i}(\bar{x}) \in I_{w_{i}} \text { for all } i \in \mathbb{N}\right\}
$$

the set of points in X_{s} with backward itinerary w. Define

$$
\mathcal{A}_{w}^{n}=\sigma^{n}\left(\mathcal{A}_{w}\right)
$$

Note that $\mathcal{A}_{w}=\left\{\bar{x} \in X_{s} \mid B(\bar{x})=w\right\}$.

REmARK 3.2. Each \mathcal{A}_{w} is a nondegenerate arc contained in a single composant.

Lemma 3.3 ([13, Lemma 4]). Let $w \in B_{f_{s}}$. There exist $0 \leq i \neq j<n_{0}$ such that $\left.\pi_{0}\right|_{\mathcal{A}_{w}}$ is a homeomorphism onto $\left[c_{i}, c_{j}\right]$.

The proof of this lemma shows that for an interval $J \subset\left[c_{2}, c_{1}\right], f_{s}\left(g_{s}(J)\right)$ $\neq J$ if and only if c_{3} is in the interior of J, where g_{s} is the inverse of the $\operatorname{map} f_{s}$ restricted on $\left[c_{2}, c\right]$, but for $n \geq n_{0}, f_{s}\left(g_{s}^{n}(J)\right)=g_{s}^{n-1}(J)$.

REmARK 3.4. Note that if $\bar{x} \in X_{s}$ is an endpoint of \mathcal{A}_{w} and $\bar{x} \neq \bar{c}_{i}$ for any $i=0,1, \ldots, n_{0}-1$, then \bar{x} has two backward itineraries.

The following lemma is well known and appears in several publications. Barge and Martin in [5] describe the basic construction of endpoints in (X, f).

Lemma 3.5 ([13, Lemma 8]). The endpoints of X_{s} are $\bar{c}, \bar{c}_{1}, \ldots, \bar{c}_{n_{0}-1}$.
Remark 3.6. Each composant C in X_{s} has the property that there is a continuous bijection either from \mathbb{R}_{+}to C or from \mathbb{R} to C.

Definition 3.7. Let $p \in \mathbb{N}$ and $0 \leq j<n_{0}$. Define

$$
\Phi_{p, j}=\left\{\bar{x} \in C_{\bar{c}} \mid \pi_{p n_{0}}(\bar{x})=c_{j}\right\}, \quad \Phi_{p}=\bigcup_{j=0}^{n_{0}-1} \Phi_{p, j}
$$

The elements of Φ_{p} are called p-special points.
Definition 3.8. Let $n, m \in \mathbb{N}$. Define $E_{n}=\pi_{n}\left(\Phi_{0}\right)$ and

$$
\begin{aligned}
& P_{n, m}=\left\{z \in I_{n} \mid \exists x, y \in E_{n}, \exists k \in\left\{0,1, \ldots, 2^{m}\right\}\right. \text { such that } \\
&\left.(x, y) \cap E_{n}=\emptyset \text { and } z=\frac{k x+\left(2^{m}-k\right) y}{2^{m}}\right\} .
\end{aligned}
$$

We see that E_{n} partitions I_{n} into finitely many intervals and $P_{n, m}$ refines that partition by dividing each interval into 2^{m} subintervals.

Definition 3.9. Let $n, m \in \mathbb{N}$ and let $x \in P_{n, m}$. If $x \neq c_{2}$, set $y=$ $\max \left\{w \in P_{n, m} \mid x>w\right\}$. If $x \neq c_{1}$, set $z=\min \left\{w \in P_{n, m} \mid x<w\right\}$. Define

$$
\mathrm{l}_{n, m}^{x}= \begin{cases}(y, z) & \text { if } x \in\left(c_{2}, c_{1}\right) \\ {[x, z)} & \text { if } x=c_{2} \\ (y, z] & \text { if } x=c_{1}\end{cases}
$$

Let

$$
L_{n, m}=\left\{1_{n, m}^{x} \mid x \in P_{n, m}\right\}, \quad \mathcal{L}_{n, m}=\left\{l_{n, m}^{x} \mid l_{n, m}^{x}=\pi_{n}^{-1}\left(l_{n, m}^{x}\right), x \in P_{n, m}\right\}
$$

Let $U=\left\{U_{i}\right\}_{i=1}^{n}$ be an open cover of a topological space X. Recall that the set U is a chaining of the space X if $U_{i} \cap U_{j} \neq \emptyset$ if and only if $|i-j| \leq 1$.

Let $U=\left\{U_{i}\right\}_{i=1}^{n}$ and let $V=\left\{V_{j}\right\}_{j=1}^{m}$ be chainings of a topological space X. We say that the chaining U refines the chaining V, in symbols $U \prec V$, if for every $1 \leq i \leq n$, there is $1 \leq j \leq m$ such that $U_{i} \subset V_{j}$.

Lemma 3.10 ([13, Lemma 16]). Fix $n, m, i, j \in \mathbb{N}$. Then
(1) $L_{n, m}$ is a chaining of I_{n}.
(2) $\mathcal{L}_{n, m}$ is a chaining of X_{s}.
(3) $\mathcal{L}_{n, m} \prec \mathcal{L}_{i, j}$ if $n \geq i, m \geq j$.
(4) If $\bar{x} \in \Phi_{0}$, then there is a unique $l \in \mathcal{L}_{n, m}$ such that $\bar{x} \in l$.
(5) $\operatorname{mesh}\left(\mathcal{L}_{n, m}\right) \rightarrow 0$ as $n \rightarrow \infty$ and $m \rightarrow \infty$.

Definition 3.11. For each $p \in \mathbb{N}$, define

$$
W_{p}=\left\{\bar{x} \in C_{\bar{c}} \mid \exists \bar{x} \in \mathcal{A}_{v}^{p n_{0}} \cap \mathcal{A}_{w}^{p n_{0}}, v \neq w \in B_{f}\right\} \cup\{\bar{c}\}
$$

If $\bar{x} \in W_{p}$, then \bar{x} is called a p-wrapping point. There is a natural order on the set of all p-wrapping points with $\bar{x}<\bar{y}$ if $h^{-1}(\bar{x})<h^{-1}(\bar{y})$ for any continuous bijection $h: \mathbb{R}_{+} \rightarrow C_{\bar{c}}$.

Lemma 3.12. Fix $p \in \mathbb{N}$. Then
(1) $W_{p}=\left\{\bar{x} \in C_{\bar{c}} \mid \exists n \geq p n_{0}\right.$ such that $\left.\pi_{n}(\bar{x})=c\right\}$.
(2) $W_{p+1} \subset \Phi_{p+1} \subset W_{p}$.
(3) $\sigma^{n_{0}}\left(W_{p}\right)=W_{p+1}$.

Example 3.1. Let T be the tent map with kneading sequence $R L R R C$. Figure 1 shows the p-wrapping points and the $(p+1)$-wrapping points of $C_{\bar{c}}$.

Fig. 1. The projections of the p-wrapping points • and the ($p+1$)-wrapping points \circ

Proposition 3.13 ([13, Proposition 25]). Fix $p, m, k \in \mathbb{N}, 0 \leq k<n_{0}$. If D is a component of $C_{\bar{c}} \cap l_{n, m}^{c_{k}}$, then the closure of D is an arc and D contains exactly one element of $\Phi_{p, k}$.

Definition 3.14. Let $\bar{x} \in W_{p} \backslash\{\bar{c}\}$. Let $k \in \mathbb{N}$ be such that $p n_{0}+k=$ $\max \left\{n \mid \pi_{n}(\bar{x})=c\right\}$. Define the p-level of \bar{x} by $L_{p}(\bar{x})=k$. Set $L_{p}(\bar{c})=\infty$.

The set $\left\{L_{p}(\bar{x}) \mid \bar{x} \in W_{p} \backslash\{\bar{c}\}\right\}$ is unbounded. Note that $\bar{x} \in W_{p+1}$ if and only if $L_{p}(\bar{x}) \geq n_{0}$.

Example 3.2. Let T be the tent map with kneading sequence RLRRC. Figure 2 shows the $5 p$-projections of the p-wrapping points of $C_{\bar{c}}$, marked by \bullet, and the p-levels of the corresponding p-wrapping points of $C_{\bar{c}}$.

Fig. 2. The p-levels of the p-wrapping points of the composant of \bar{c}

Proposition 3.15 ([13, Proposition 29]). Let $p \in \mathbb{N}$ and $\bar{w}<\bar{v}$ in $C_{\bar{c}}$ be such that $\pi_{p n_{0}}(\bar{w})=\pi_{p n_{0}}(\bar{v})$. There exists a p-wrapping point \bar{z} such that $\bar{w}<$ $\bar{z}<\bar{v}$. Additionally, if both \bar{w} and \bar{v} are p-wrapping points, then there exists a p-wrapping point \bar{z} such that $\bar{w}<\bar{z}<\bar{v}$ and $L_{p}(\bar{z})>\min \left\{L_{p}(\bar{w}), L_{p}(\bar{v})\right\}$.

Definition 3.16. Fix $p \in \mathbb{N}$. Let H be an arc in the composant of \bar{c} with $\operatorname{Int}(H) \cap W_{p}=\left\{\bar{h}_{1}, \ldots, \bar{h}_{n-1}\right\}$ and $\partial H=\left\{\bar{h}_{0}, \bar{h}_{n}\right\}$.
(1) The arc H is p-symmetric if $\pi_{p n_{0}}\left(\bar{h}_{0}\right)=\pi_{p n_{0}}\left(\bar{h}_{n}\right)$ and $L_{p}\left(\bar{h}_{i}\right)=$ $L_{p}\left(\bar{h}_{n-i}\right)$ for all $0<i<n$.
(2) The arc H is p-pseudosymmetric if $\pi_{p n_{0}}\left(\bar{h}_{i}\right)=\pi_{p n_{0}}\left(\bar{h}_{n-i}\right)$ for all $0 \leq i \leq n$.
If H is p-pseudosymmetric or p-symmetric, then n is even and the center of H, denoted $\bar{\kappa}_{H}$, is the point $\bar{h}_{n / 2}$.

Remark 3.17. Fix $p \in \mathbb{N}$ and let $H \subset C_{\bar{c}}$ be an arc. If H is p-pseudosymmetric, then H is q-pseudosymmetric for all $q<p$. If H is p-symmetric, then H is q-symmetric for all $q \in \mathbb{N}$ such that $q n_{0}<p n_{0}+L_{p}\left(\bar{\kappa}_{H}\right)$.

Proposition 3.18 ([13, Proposition 34]). Let $p \in \mathbb{N}$ and $\bar{w} \in W_{p} \backslash\{\bar{c}\}$ such that $L_{p}(\bar{w}) \neq 0$. Let H be the union of all p-symmetric arcs with center \bar{w}. There exists a p-wrapping point $\bar{v} \in H$ such that $L_{p}(\bar{v})>L_{p}(\bar{w})$. Furthermore, \bar{v} is an endpoint of H.

REmARK 3.19. Let H be a p-symmetric arc in $C_{\bar{c}}$ and let $L=L_{p}\left(\bar{\kappa}_{H}\right)$. Proposition 3.18 implies that all the interior points in H have p-levels smaller than L, hence $\left.\pi_{p n_{0}+L}\right|_{H}$ is a homeomorphism.

Definition 3.20. The set $\Phi_{p, 0}$ partitions the composant of \bar{c} into countably many arcs called p-gaps.

For any p-gap $H, c \notin \pi_{p n_{0}}(\operatorname{Int}(H))$ and $\pi_{p n_{0}}(\partial H)=\{c\}$. The intersection of any two p-gaps is at most one point.

Lemma 3.21. For any $p \in \mathbb{N}$, a p-gap is p-symmetric.
Proof. Fix $p \in \mathbb{N}$. Let H be a p-gap and $\partial H=\{\bar{y}, \bar{z}\}$. Let $\bar{x} \in \operatorname{Int}(H)$ be a p-wrapping point with largest p-level, say L. Suppose H is not p-symmetric. Then $f_{s}\left(\pi_{p n_{0}+L}(\bar{y})\right) \neq f_{s}\left(\pi_{p n_{0}+L}(\bar{z})\right)$, hence there is a p-wrapping point $\bar{w} \in \operatorname{Int}(H)$ such that $f_{s}\left(\pi_{p n_{0}+L}(\bar{w})\right)$ is equal to either $f_{s}\left(\pi_{p n_{0}+L}(\bar{y})\right)$ or $f_{s}\left(\pi_{p n_{0}+L}(\bar{z})\right)$. This implies that $\pi_{p n_{0}}(\bar{w})=c$, which contradicts H being a p-gap.

The proof of the previous lemma is longer than the one given by Kailhofer, but it is self-contained.

Definition 3.22. Fix $p, q \in \mathbb{N}$. Let G be a p-gap with $G \cap W_{p}=$ $\left\{\bar{g}_{0}, \bar{g}_{1}, \ldots, \bar{g}_{n}\right\}$ and H be a q-gap with $H \cap W_{q}=\left\{\bar{h}_{0}, \bar{h}_{1}, \ldots, \bar{h}_{m}\right\}$. The gaps G and H are of the same type if $n=m$ and $\pi_{p n_{0}}\left(\bar{g}_{i}\right)=\pi_{q n_{0}}\left(\bar{h}_{i}\right)$ for all $0 \leq i \leq n$.

Proposition 3.23 ([13, Proposition 41]). Fix $p, q \in \mathbb{N}$. Let G be a p-gap and H a q-gap. If $L_{p}\left(\bar{\kappa}_{H}\right)=L_{q}\left(\bar{\kappa}_{G}\right)$, then G and H are of the same type.

Definition 3.24. Fix $p \in \mathbb{N}$ and let G be a p-gap. The arcs between two consecutive p-wrapping points in G are called legs of G.

The first p-gap in the composant of \bar{c} is denoted F_{p}.
Lemma 3.25. Fix $p \in \mathbb{N}$ and let G be a p-gap. Then
(1) The first leg of G contains a $(p-1)$-gap [13, Lemma 46].
(2) The first $(p-1)$-gap in G is of the same type as F_{p} [13, Prop. 47].

Definition 3.26. Fix $p \in \mathbb{N}$. Define $\varphi=L_{p}\left(\bar{\kappa}_{F_{p}}\right)$.
REmARK 3.27. Since the type of F_{p} does not depend on p, φ does not depend on p. Since F_{p} is contained in the first leg of F_{p+1}, the center of F_{p} is not a $(p+1)$-wrapping point, hence $\varphi=L_{p}\left(\bar{\kappa}_{F_{p}}\right)<n_{0}$. Note also that $\pi_{p n_{0}}\left(\bar{\kappa}_{F_{p}}\right)=c_{\varphi}$.

Now, consider a homeomorphism $h:(I, f) \rightarrow(I, f)$ with $h(\bar{c})=\bar{c}$. (If $h(\bar{c})=\bar{c}_{i}$, where $0<i<n_{0}$, consider the map $\bar{h}=\sigma^{-i} \circ h$.)

Fix $m, n, p, q \in \mathbb{N}$ such that $h\left(\mathcal{L}_{q n_{0}, n}\right) \prec \mathcal{L}_{p n_{0}, m}$. If $h\left(\bar{c}_{j}\right)=\bar{c}_{i}$ for $0 \leq$ $i, j<n_{0}$, then $h\left(l_{q n_{0}, n}^{c_{j}}\right) \subset l_{p n_{0}, m}^{c_{i}}$. This implies that $h\left(\Phi_{q, j}\right) \subset l_{p n_{0}, m}^{c_{i}}$. By Proposition 3.13 , every component of $l_{q n_{0}, n}^{c_{j}}$ contains exactly one element of $\Phi_{q, j}$. Since two consecutive points of Φ_{q} lie in two different links, each component of $l_{p n_{0}, m}^{c_{i}}$ contains at most one element of $h\left(\Phi_{q, j}\right)$. Thus, h induces a one-to-one $\operatorname{map} h_{q, p}: \Phi_{q} \rightarrow \Phi_{p}$, defined as follows.

Definition 3.28. Fix $m, n, p, q \in \mathbb{N}$ such that $h\left(\mathcal{L}_{q n_{0}, n}\right) \prec \mathcal{L}_{p n_{0}, m}$. If $\bar{w} \in \Phi_{q, j}$ and $h\left(\bar{c}_{j}\right)=\bar{c}_{i}$ for $0 \leq i, j<n_{0}$, then $h_{q, p}(\bar{w})$ is defined as the element of $\Phi_{p, i}$ that lies in the same component of $l_{p_{n_{0}, m}}^{c_{i}}$ as $h(\bar{w})$.

If G is an arc in the composant of \bar{c} with $\partial G=\{\bar{x}, \bar{y}\} \subset \Phi_{q}$, let $\widetilde{h}_{q, p}(G)$ be the arc between $h_{q, p}(\bar{x})$ and $h_{q, p}(\bar{y})$.

Theorem 3.29 ([13, Corollary 67]). Fix positive integers m, n, p, q such that $h\left(\mathcal{L}_{q n_{0}, n}\right) \prec \mathcal{L}_{p n_{0}, m}$. If H is a q-pseudosymmetric arc in the composant of \bar{c} with $\partial H \subset \Phi_{q}$, then $\widetilde{h}_{q, p}(H)$ is p-pseudosymmetric.

Lemma 3.30 ([13, Lemma 68]). Let $p \in \mathbb{N}$. Let G and H be distinct p-pseudosymmetric arcs in the composant of \bar{c} such that $\bar{c} \in G$ and $\bar{c} \in H$. Then $G \subset H$ if and only if $L_{p}\left(\bar{\kappa}_{G}\right)<L_{p}\left(\bar{\kappa}_{H}\right)$.

Theorem 3.31 ([13, Corollary 71]). Fix $m, n, p, q, u, v \in \mathbb{N}$ such that $h\left(\mathcal{L}_{q n_{0}, n}\right) \prec \mathcal{L}_{p n_{0}, m} \prec h\left(\mathcal{L}_{u n_{0}, v}\right)$. If $\widetilde{h}_{q, p}\left(F_{q}\right)=F_{t}$ for some $t \in \mathbb{N}$, then $h_{q, p}\left(\Phi_{q+k, 0}\right)=\Phi_{t+k, 0}$ for all $k \in \mathbb{N}_{+}$.
4. Main result. The following lemma is a well known result (see Brucks and Diamond [8] and Brucks and Bruin [7]).

Lemma 4.1. Suppose that A is a proper subcontinuum of X_{s}. There is a nonnegative integer k such that $\left.\pi_{k}\right|_{A}$ is a homeomorphism. In particular, A is an arc. Moreover, for any two points $\bar{x}, \bar{y} \in A, B(\bar{x})$ and $B(\bar{y})$ agree after the first k entries.

Proof. If there is a nonnegative integer m such that for each $j>m$, $c \notin \pi_{j}(A)$, then $\left.f_{s}\right|_{\pi_{j}(A)}$ is a homeomorphism for each $j>m$, and the conclusion follows easily. So, we may assume that $c \in \pi_{j}(A)$ for arbitrarily large integer j. Since c is periodic under f_{s}, it follows that for each nonnegative integer $j, \pi_{j}(A)$ contains at least one of the points $c_{0}, c_{1}, \ldots, c_{n_{0}-1}$. Since f_{s} is locally eventually onto, there is a nonnegative integer k such that for each integer $j>k, \pi_{j}(A)$ contains exactly one of the points $c_{0}, c_{1}, \ldots, c_{n_{0}-1}$. We complete the proof by showing that for each $j>k$ the element of $\left\{c_{0}, c_{1}, \ldots, c_{n_{0}-1}\right\}$ which is in $\pi_{j}(A)$ is an endpoint of $\pi_{j}(A)$. In particular, for each $j>k, c$ is not in the interior of $\pi_{j}(A)$, so $\left.f_{s}\right|_{\pi_{j}(A)}$ is a homeomorphism.

Suppose $j>k$. Since c is periodic, there is an integer $m>j$ such that $c_{1} \in \pi_{m}(A)$. Since c_{1} is an endpoint of I_{s}, it follows that c_{1} is an endpoint of $\pi_{m}(A)$. Since c is not in the interior of $\pi_{m}(A),\left.f_{s}\right|_{\pi_{m}(A)}$ is a homeomorphism. Thus c_{2} is an endpoint of $\pi_{m-1}(A)$. If $m-1>j$, we may repeat this argument and conclude that c_{3} is an endpoint of $\pi_{m-2}(A)$. By repeating the argument inductively, it follows that the element of $\left\{c_{0}, c_{1}, \ldots, c_{n_{0}-1}\right\}$ which is in $\pi_{j}(A)$ is an endpoint of $\pi_{j}(A)$.

Let $\bar{x} \in X_{s}$. By Remark 3.6, there is a natural order on the elements of the composant of \bar{x}. With the order topology, $C_{\bar{x}}$ will be called the unravelled composant of \bar{x}.

Remark 4.2. Note that the map $h_{q, p}$ is order-preserving.
We will put a specific metric on the unravelled composant which is derived from the inverse limit system. Let \bar{x}, \bar{y} be in the same composant $C \subset X_{s}$. Then there is an $\operatorname{arc} A \subset C$ with endpoints \bar{x} and \bar{y}. By Lemma 4.1, there is a nonnegative integer k such that $\left.\pi_{k}\right|_{A}$ is a homeomorphism. Define

$$
\bar{d}(\bar{x}, \bar{y})=s^{k}\left|\pi_{k}(\bar{x})-\pi_{k}(\bar{y})\right| .
$$

Note that if $m \geq k$, then $\bar{d}(\bar{x}, \bar{y})=s^{m}\left|\pi_{m}(\bar{x})-\pi_{m}(\bar{y})\right|$. Thus, \bar{d} is well defined for every pair of points in the same composant C. We may consider (C, \bar{d}) either as \mathbb{R}_{+}or \mathbb{R} depending on whether C has an endpoint or not.

THEOREM 4.3. Let $h_{1}, h_{2}: X_{s} \rightarrow X_{s}$ be homeomorphisms which map $C_{\bar{c}}$ to itself. Suppose that there is $M \in \mathbb{N}_{+}$such that $\bar{d}\left(h_{1}(\bar{z}), h_{2}(\bar{z})\right) \leq M$ for all $\bar{z} \in C_{\bar{c}}$. Then $h_{1}\left(C_{\bar{x}}\right)=h_{2}\left(C_{\bar{x}}\right)$ for all $\bar{x} \in X_{s}$. Furthermore, for every $\bar{x} \in X_{s}, \bar{d}\left(h_{1}(\bar{x}), h_{2}(\bar{x})\right) \leq M$.

Proof. Let $\bar{x} \in X_{s}$. If $\bar{x} \in C_{\bar{c}}$, then $h_{1}\left(C_{\bar{c}}\right)=h_{2}\left(C_{\bar{c}}\right)$ by assumption.
Suppose that $\bar{x} \notin C_{\bar{c}}$. Since $C_{\bar{c}}$ is dense in X_{s}, there is a sequence $\left\{\bar{x}_{n}\right\}_{n=1}^{\infty}$ in $C_{\bar{c}}$ which converges to \bar{x}. Then $h_{i}\left(\bar{x}_{n}\right)$ converges to $h_{i}(\bar{x})$ for $i=1,2$. Consider the unique $\operatorname{arcs} A_{n} \subset C_{\bar{c}}$ with endpoints $h_{1}\left(\bar{x}_{n}\right)$ and $h_{2}\left(\bar{x}_{n}\right)$. By assumption the length of A_{n} in $C_{\bar{c}}$ is less than or equal to M. Let $k>0$ be an integer such that $M \leq s^{k}\left(c_{1}-c_{2}\right)$. Then $\pi_{k}\left(A_{n}\right)$ is a proper subset of $\left[c_{2}, c_{1}\right]$ since the length of $\pi_{k}\left(A_{n}\right)$ is less than $M / s^{k}<c_{1}-c_{2}$.

Let $\mathcal{C}\left(X_{s}\right)$ denote the space of nonempty subcontinua of X_{s} with the Hausdorff metric. Then $\pi_{k}: X_{s} \rightarrow\left[c_{2}, c_{1}\right]$ induces a continuous map $\pi_{k}:$ $\mathcal{C}\left(X_{s}\right) \rightarrow \mathcal{C}\left(\left[c_{2}, c_{1}\right]\right)$. Since $\mathcal{C}\left(X_{s}\right)$ is a compact metric space, the sequence $\left\{A_{n}\right\}$ has a subsequence $\left\{A_{n_{j}}\right\}$ converging to some $A \in \mathcal{C}\left(X_{s}\right)$. Note that $h_{i}\left(\bar{x}_{n_{j}}\right)$ converges to $h_{i}(\bar{x})$ for $i=1,2$. So, $h_{i}(\bar{x}) \in A$ for $i=1,2$. Since π_{k} : $\mathcal{C}\left(X_{s}\right) \rightarrow \mathcal{C}\left(\left[c_{2}, c_{1}\right]\right)$ is continuous, $\pi_{k}(A)$ has length at most $M / s^{k}<c_{1}-c_{2}$. Thus, A must be a proper subcontinuum of X_{s}. Thus, $h_{1}(\bar{x})$ and $h_{2}(\bar{x})$ are in the same composant of X_{s}. This implies that $h_{1}\left(C_{\bar{x}}\right)=h_{2}\left(C_{\bar{x}}\right)$.

Since \bar{x} is arbitrary, the above also proves the last statement of the theorem.

Recall that the shift homeomorphism, $\sigma: X_{s} \rightarrow X_{s}$, is defined by

$$
\sigma\left(\left(x_{0}, x_{1}, \ldots\right)\right)=\left(f_{s}\left(x_{0}\right), x_{0}, x_{1}, \ldots\right)
$$

Lemma 4.4. There is a positive integer B such that for any $p \in \mathbb{N}$ the number of legs in a p-gap is at most B.

Proof. Since f_{s} is locally eventually onto, there is $K \in \mathbb{N}$ such that if J is an interval which contains two points in the orbit of c, then $f_{s}^{K}(J)=I_{s}$.

Fix $p \in \mathbb{N}$. Let H be a p-gap and $L=L_{p}\left(\bar{\kappa}_{H}\right)$. Let H_{R} be the arc connecting the center of H and the right endpoint of H. Then $\pi_{p n_{0}+L}\left(H_{R}\right)$ is an interval with one endpoint c and $\left.\pi_{p n_{0}+L}\right|_{H_{R}}$ is a homeomorphism. Note also that

$$
f_{s}^{L}\left(\pi_{p n_{0}+L}\left(H_{R}\right)\right)=\pi_{p n_{0}}\left(H_{R}\right)=\pi_{p n_{0}}(H)
$$

is an interval with one endpoint c.
If $\left.f_{s}^{L}\right|_{\pi_{p n_{0}+L}\left(H_{R}\right)}$ is linear, then there are at most two legs in H. Suppose $\left.f_{s}^{L}\right|_{\pi_{p n_{0}+L}\left(H_{R}\right)}$ is not linear. There is a least $n \in \mathbb{N}$ such that $f_{s}^{n}\left(\pi_{p n_{0}+L}\left(H_{R}\right)\right)$ contains two points in the orbit of c. This implies that H has at most 2^{L-n} legs. Since $\pi_{p n_{0}}\left(H_{R}\right)$ is a proper subset of $\left[c_{2}, c_{1}\right]$, we have $L-n<K$, hence the number of legs in H is at most 2^{K}.

REmARK 4.5. One might be led to conjecture that the number of distinct types of p-gaps in $C_{\bar{c}}$ is $n_{0}-1$ for any $p \in \mathbb{N}$. However, for s such that the kneading sequence is $R L L R R R L C$, there are at least eight p-gaps.

ThEOREM 4.6. Let $h: X_{s} \rightarrow X_{s}$ be a homeomorphism which maps each endpoint, \bar{c}_{i} for $0 \leq i \leq n_{0}-1$, to itself. Then there exists an integer N and a positive number M such that $\bar{d}\left(h(\bar{x}), \sigma^{N}(\bar{x})\right)<M$ for all $\bar{x} \in C_{\bar{c}}$.

Proof. For convenience of referral, two points of any subset of $C_{\bar{c}}$ are said to be adjacent in that set if the arc connecting those two points contains no other points of that set. Note that if \bar{x} and \bar{y} are adjacent in Φ_{p}, then $\bar{d}(\bar{x}, \bar{y})<s^{p n_{0}}$.

By Lemma 3.10(5), given $u, v \in \mathbb{N}$, there are $p, m \in \mathbb{N}$ such that $\mathcal{L}_{p n_{0}, m} \prec$ $h\left(\mathcal{L}_{u n_{0}, v}\right)$, and there are $q, r \in \mathbb{N}$ such that $h\left(\mathcal{L}_{q n_{0}, r}\right) \prec \mathcal{L}_{p n_{0}, m}$. Fix p, m, q, r, $u, v \in \mathbb{N}$ such that $h\left(\mathcal{L}_{q n_{0}, r}\right) \prec \mathcal{L}_{p n_{0}, m} \prec h\left(\mathcal{L}_{u n_{0}, v}\right)$.

Since F_{q} is q-symmetric, by Theorem 3.29, $\widetilde{h}_{q, p}\left(F_{q}\right)$ is p-pseudosymmetric and $h_{q, p}\left(\bar{\kappa}_{F_{q}}\right)=\bar{\kappa}_{\widetilde{h}_{q, p}\left(F_{q}\right)}$. Let $L=L_{p}\left(\bar{\kappa}_{\widetilde{h}_{q, p}\left(F_{q}\right)}\right)$ and t be the largest positive integer with the property $t n_{0}<p n_{0}+L$. Obviously $t \geq p$. Since $h\left(\bar{c}_{i}\right)=\bar{c}_{i}$ for all $0 \leq i<n_{0}$, we see that $\pi_{p n_{0}}\left(\bar{\kappa}_{\widetilde{h}_{q, p}\left(F_{q}\right)}\right)=\pi_{q n_{0}}\left(\bar{\kappa}_{F_{q}}\right)$, which, by Remark 3.27, is equal to c_{φ}. From Definition 3.26, we have $L_{t}\left(\bar{\kappa}_{F_{t}}\right)=\varphi$. Thus

$$
L_{p}\left(\bar{\kappa}_{F_{t}}\right)=L_{t}\left(\bar{\kappa}_{F_{t}}\right)+(t-p) n_{0}=\varphi+(t-p) n_{0}=L=L_{p}\left(\bar{\kappa}_{\widetilde{h}_{q, p}\left(F_{q}\right)}\right)
$$

Hence, by Lemma 3.30,

$$
F_{t}=\widetilde{h}_{q, p}\left(F_{q}\right)
$$

By Theorem 3.31 it follows that for every $k \in \mathbb{N}_{+}$,

$$
h_{q, p}\left(\Phi_{q+k, 0}\right)=\Phi_{t+k, 0}
$$

By Remark 4.2, $h_{q, p}$ is order-preserving on the set $\Phi_{t+k, 0}$ for any $k \in \mathbb{N}_{+}$. From the definition of σ and since $\sigma^{(t-q) n_{0}}$ is order-preserving as well, it is easy to see that $\sigma^{(t-q) n_{0}}\left(\Phi_{q+k, 0}\right)=\Phi_{t+k, 0}$ for any $k \in \mathbb{N}_{+}$. Therefore, for every $\bar{x} \in \Phi_{q+1,0}$, we have $h_{q, p}(\bar{x})=\sigma^{(t-q) n_{0}}(\bar{x})$. By Definition 3.28, for any $\bar{x} \in \Phi_{q+1,0}, h(\bar{x})$ lies between two adjacent p-special points, one of which is $h_{q, p}(\bar{x})$. Since the distance between two special points is less than $s^{p n_{0}}$, we have

$$
\bar{d}\left(h(\bar{x}), \sigma^{(t-q) n_{0}}(\bar{x})\right)=\bar{d}\left(h(\bar{x}), h_{q, p}(\bar{x})\right)<s^{p n_{0}}
$$

for any $\bar{x} \in \Phi_{q+1,0}$.
The length of any leg of a $(t+1)$-gap is bounded by $s^{(t+1) n_{0}}$ as $\pi_{(t+1) n_{0}}$ restricted to the leg is a homeomorphism. Since the number of legs in a $(t+1)$-gap is bounded by B by Lemma 4.4 , it follows that the length of a $(t+1)$-gap is bounded. Namely, if \bar{x} and \bar{y} are the endpoints of a $(t+1)$-gap, then $\bar{d}(\bar{x}, \bar{y})<l$, where

$$
l=B s^{(t+1) n_{0}}
$$

Let $N=(t-q) n_{0}$ and $M=s^{p n_{0}}+l$. Let $\bar{x} \in C_{\bar{c}}$. If $\bar{x} \in \Phi_{q+1,0}$, then

$$
\bar{d}\left(h(\bar{x}), \sigma^{N}(\bar{x})\right)<s^{p n_{0}}<M
$$

If $\bar{x} \notin \Phi_{q+1,0}$, then there exist \bar{y} and \bar{z} adjacent in $\Phi_{q+1,0}$ such that the $(q+1)$-gap whose endpoints are \bar{y} and \bar{z}, contains \bar{x}. As $\bar{y}, \bar{z} \in \Phi_{q+1,0}$, we have $h_{q, p}(\bar{y})=\sigma^{N}(\bar{y})$ and $h_{q, p}(\bar{z})=\sigma^{N}(\bar{z})$. Since h is a homeomorphism, the arc connecting $h(\bar{y})$ and $h(\bar{z})$ contains $h(\bar{x})$. Similarly, the arc connecting $\sigma^{N}(\bar{y})$ and $\sigma^{N}(\bar{z})$ contains $\sigma^{N}(\bar{x})$. Thus,

$$
\bar{d}\left(h(\bar{x}), \sigma^{N}(\bar{x})\right)<\max \left\{\bar{d}\left(\sigma^{N}(\bar{x}), h(\bar{y})\right), \bar{d}\left(\sigma^{N}(\bar{x}), h(\bar{z})\right)\right\}
$$

Since σ^{N} sends a $(q+1)$-gap to a $(t+1)$-gap,

$$
\bar{d}\left(\sigma^{N}(\bar{z}), \sigma^{N}(\bar{y})\right)<l
$$

Since $h(\bar{y})$ lies between two adjacent p-special points, one of which is $\sigma^{N}(\bar{y})$,

$$
\bar{d}\left(h(\bar{y}), \sigma^{N}(\bar{y})\right)<s^{p n_{0}} .
$$

Therefore

$$
\begin{aligned}
\bar{d}\left(\sigma^{N}(\bar{x}), h(\bar{y})\right) & \leq \bar{d}\left(\sigma^{N}(\bar{x}), \sigma^{N}(\bar{y})\right)+\bar{d}\left(\sigma^{N}(\bar{y}), h(\bar{y})\right) \\
& <\bar{d}\left(\sigma^{N}(\bar{z}), \sigma^{N}(\bar{y})\right)+\bar{d}\left(\sigma^{N}(\bar{y}), h(\bar{y})\right)<l+s^{p n_{0}}=M
\end{aligned}
$$

Similarly, $\bar{d}\left(\sigma^{N}(\bar{x}), h(\bar{z})\right)<M$. Thus,

$$
\bar{d}\left(\sigma^{N}(\bar{x}), h(\bar{x})\right)<M
$$

Corollary 4.7. Let $h: X_{s} \rightarrow X_{s}$ be a homeomorphism which maps each endpoint, \bar{c}_{i} for $0 \leq i \leq n_{0}-1$, to itself. Then there is an integer N such that $h\left(C_{\bar{x}}\right)=\sigma^{N}\left(C_{\bar{x}}\right)$ for all $\bar{x} \in X_{s}$.

We adopt the following notation. If k is a positive integer, we let $F\left(f_{s}^{k}\right)$ denote the number of fixed points of f_{s}^{k} in I_{s}.

Lemma 4.8. Suppose $\sqrt{2}<s<t<2$ and for each of the tent maps f_{s} and f_{t}, the critical point is periodic with period n_{0}. Then

$$
F\left(f_{s}^{n_{0}}\right)<F\left(f_{t}^{n_{0}}\right)
$$

Proof. Since each point in the orbit of the critical point is a fixed point of $f_{t}^{n_{0}}$ and the same holds for $f_{s}^{n_{0}}$, we need only consider fixed points of $f_{t}^{n_{0}}$ and $f_{s}^{n_{0}}$ which are not in the orbit of the critical point. Suppose y is such a fixed point of $f_{s}^{n_{0}}$. Then the forward itinerary $I(y)$ equals S^{∞} for some sequence S of length n_{0} of L 's and R 's. By [10, Theorem II.3.8] there is a fixed point z of $f_{t}^{n_{0}}$ with $I(z)=S^{\infty}$.

We complete the proof by showing that there is a sequence T of length n_{0} of L 's and R 's such that there is a fixed point of $f_{t}^{n_{0}}$ with itinerary T^{∞} but no fixed point of $f_{s}^{n_{0}}$ has this itinerary. The itinerary of $f_{s}(c)$ is of the form $D C$ where D is a sequence of length $n_{0}-1$ of L 's and R 's. We can modify f_{s} to construct a unimodal map g with the same kneading sequence as f_{s} such that on the orbit of $c, g=f_{s}$, but for a small nondegenerate interval J with right endpoint $g(c)$ each point of J is periodic under g with period n_{0}. The itinerary of a point in J other than $g(c)$ is of the form T^{∞}, where T is a sequence of L 's and R 's of length n_{0}. Moreover, T is shift maximal and T is either $D R$ or $D L$. It follows that no fixed point of $f_{s}^{n_{0}}$ has itinerary T^{∞}, but by [10, Theorem II.3.8] there is a fixed point of $f_{t}^{n_{0}}$ with itinerary T^{∞}.

Lemma 4.9. Let $s \in(\sqrt{2}, 2)$. For any integer m, the number of composants mapped to themselves by σ_{s}^{m} is $F\left(f_{s}^{m}\right)$.

Proof. Without loss of generality we may assume that $m>0$.
Our first claim is that there is at most one periodic point in each composant of X_{s}.

Suppose not. There is a composant C in X_{s} with at least two distinct periodic points of σ_{s}, say $\bar{x}=\left(x_{0}, x_{1}, \ldots\right)$ and $\bar{y}=\left(y_{0}, y_{1}, \ldots\right)$. Then there is a positive integer k such that $\sigma_{s}^{k}(\bar{x})=\bar{x}$ and $\sigma_{s}^{k}(\bar{y})=\bar{y}$. In particular, $f_{s}^{k}\left(x_{k-1}\right)=x_{k-1}$ and $f_{s}^{k}\left(y_{k-1}\right)=y_{k-1}$. Note that $x_{k-1} \neq y_{k-1}$. Since \bar{x} and \bar{y} are in the same composant, they have eventually the same backward itinerary. Thus, there is some positive integer N such that for all $n \geq N, x_{n}$ and y_{n} are on the same side of c. (By this we mean either both $x_{n} \geq c$ and $y_{n} \geq c$, or both $x_{n} \leq c$ and $y_{n} \leq c$.) Since \bar{x} and \bar{y} are periodic, it follows that for each integer $j=0,1, \ldots, k-1, x_{j}$ and y_{j} are on the same side of c.

Hence for each integer $j \geq 0, f_{s}^{j}\left(x_{k-1}\right)$ and $f_{s}^{j}\left(y_{k-1}\right)$ are on the same side of c. This is impossible since $x_{k-1} \neq y_{k-1}$ and f_{s} is a tent map with a slope $s>1$. This proves the first claim.

Our next claim is that each composant mapped to itself by σ_{s}^{m} contains a fixed point of σ_{s}^{m}.

Suppose C is a composant in X_{s} with $\sigma_{s}^{m}(C)=C$. If $\bar{x}, \bar{y} \in C$, then

$$
\bar{d}\left(\sigma_{s}^{m}(\bar{x}), \sigma_{s}^{m}(\bar{y})\right)=s^{m} \bar{d}(\bar{x}, \bar{y})
$$

Hence σ_{s}^{-m} is a contraction and has a fixed point. This proves our second claim.

It follows from the claims that the number of composants mapped to themselves by σ_{s}^{m} is equal to the number of points fixed by σ_{s}^{m}. By definition of σ_{s}, this number is equal to the number of fixed points of f_{s}^{m}. By definition, this number is $F\left(f_{s}^{m}\right)$.

ThEOREM 4.10. Let $s, t \in(\sqrt{2}, 2)$ be such that f_{s} and f_{t} have periodic critical points. Then X_{s} and X_{t} are homeomorphic if and only if $s=t$.

Proof. It is well known that if X_{s} and X_{t} are homeomorphic and the critical point of f_{s} is periodic, then the critical point of f_{t} is also periodic with the same period. Thus, there is no loss in generality in assuming that the period of the critical points for f_{s} and f_{t} are both periodic of period n_{0}. Suppose $s<t$. Assume there is a homeomorphism $g: X_{s} \rightarrow X_{t}$.

Consider the map $h: X_{t} \rightarrow X_{t}, h=g \circ \sigma_{s}^{n_{0}} \circ g^{-1}$. Then h is a homeomorphism, and it maps each composant with an endpoint to itself. By Corollary 4.7 , there is an integer N such that $h\left(C_{\bar{x}}\right)=\sigma_{t}^{N}\left(C_{\bar{x}}\right)$ for all $\bar{x} \in X_{t}$. Since $\sigma_{s}^{n_{0}}$ maps each composant with an endpoint to itself, the same is true for h. Thus σ_{t}^{N} also maps each endpoint of X_{t} to itself. By Lemma 4.9, the total number of composants mapped to themselves by $\sigma_{s}^{n_{0}}$ and hence by h is $F\left(f_{s}^{n_{0}}\right)$. Thus, the same is true for σ_{t}^{N}. It follows that $|N| \geq n_{0}$ and n_{0} divides $|N|$. But the number of composants mapped to themselves by σ_{t}^{N} is $F\left(f_{t}^{N}\right)$. Thus

$$
F\left(f_{s}^{n_{0}}\right)=F\left(f_{t}^{N}\right)
$$

On the other hand, since $s<t$, by Lemma 4.8, $F\left(f_{s}^{n_{0}}\right)<F\left(f_{t}^{n_{0}}\right)$. Hence

$$
F\left(f_{t}^{N}\right)<F\left(f_{t}^{n_{0}}\right)
$$

which is a contradiction.
5. Proof of the Isotopy Theorem. In this section we prove the Isotopy Theorem stated in the introduction. We have already shown that for any homeomorphism $g: X_{s} \rightarrow X_{s}$ such that g leaves all the endpoints $\left\{\bar{c}_{i}\right\}_{i=0}^{n_{0}-1}$ fixed, there is a k such that g and σ^{k} permute the composants of X_{s} in precisely the same way. It is clear that for any homeomorphism $h: X_{s} \rightarrow X_{s}$,
there is an $n>0$ such that h^{n} leaves \bar{c}_{i} fixed for $i=0,1, \ldots, n_{0}-1$. Let k be the integer such that h^{n} and σ^{k} permute the composants of X_{s} the same way. We now show that h^{n} and σ^{k} are actually isotopic.

The following lemma is a well known fact for the experts in this field.
Lemma 5.1. Suppose A is an arc in X_{s} not containing any endpoint of X_{s}. Then there is a neighborhood V of A homeomorphic to $C \times I$, where C is a Cantor set. The boundary of V will correspond to $C \times\{0,1\}$. Moreover, there is a positive integer m such that π_{m} maps each component of V homeomorphically onto its image in I_{m}.

Proof. Let A be an arc in X_{s} not containing any endpoint of X_{s}. By the proof of Lemma 4.1, there is a positive integer m such that for each $k \geq m$, none of the points c_{i} are in $\pi_{k}(A)$. In particular, $\left.\pi_{k}\right|_{A}$ is a homeomorphism. Let $\bar{z} \in A, \bar{z}=\left(z_{0}, z_{1}, \ldots, z_{m}, \ldots\right)$. Let $C=\left\{\bar{y} \in X_{s} \mid y_{0}=z_{0}, y_{1}=z_{1}\right.$, $\left.\ldots, y_{m}=z_{m}\right\}$. Then C is compact, totally disconnected, and every point is a limit point. Therefore C is a Cantor set.

Let $J_{m}=\pi_{m}(A)$. Fix $\bar{y} \in C$. Since $J_{m} \cap\left\{c_{0}, c_{1}, \ldots, c_{n_{0}-1}\right\}=\emptyset$, for this $\bar{y} \in C$, there is a sequence $\left\{J_{i}\right\}_{i=m}^{\infty}$ of intervals such that $y_{i} \in J_{i}$ for each $i \geq m$ and $f_{s}\left(J_{i+1}\right)=J_{i}$ for each $i \geq m$.

We can extend the sequence $\left\{J_{i}\right\}_{i=m}^{\infty}$ to $\left\{J_{i}\right\}_{i=0}^{\infty}$ by $J_{0}=f_{s}^{m}\left(J_{m}\right), J_{1}=$ $f_{s}^{m-1}\left(J_{m}\right), \ldots, J_{m-1}=f_{s}\left(J_{m}\right)$. Then for all $i=0,1, \ldots, f_{s}\left(J_{i+1}\right)=J_{i}$ and $y_{i} \in J_{i}$.

Now J_{m} is homeomorphic to

$$
J(\bar{y})=\lim _{\rightleftarrows}\left\{J_{i}, f_{s}\right\} \subset X_{s}
$$

by the projection $\pi_{m}: X_{s} \rightarrow I_{m}$. Let $g_{\bar{y}}: J_{m} \rightarrow J(\bar{y})$ be the inverse of this homeomorphism.

Finally, let $\xi: C \times J_{m} \rightarrow X_{s}$ be defined by $\xi(\bar{y}, t)=g_{\bar{y}}(t)$. Then $V=$ $\xi\left(C \times J_{m}\right)$ is the required neighborhood.

Remark 5.2. In the above proof let x be in the Cantor set C. Note that the points \bar{z}_{0} and \bar{z}_{1} corresponding to $(x, 0)$ and $(x, 1)$, respectively, are in the same composant. Moreover, $\bar{d}\left(\bar{z}_{0}, \bar{z}_{1}\right)$ does not depend on x. That is, the lengths of the components of V are all the same in the \bar{d} metric.

DEFINITION 5.3. Suppose $\left\{D_{i}\right\}_{i=1}^{\infty}$ is a sequence of nonempty compact subsets of a metric space Y. Then $\lim \sup \left\{D_{i}\right\}=\{y \in Y \mid$ for some subsequence $\left\{D_{i_{j}}\right\}$ and $\left.y_{i_{j}} \in D_{i_{j}}, \lim _{j \rightarrow \infty} y_{i_{j}}=y\right\}$.

We let $\bar{\ell}$ denote the length of an arc under the metric \bar{d}.
Lemma 5.4. Let $\left\{A_{i}\right\}_{i=1}^{\infty}$ be a sequence of arcs in X_{s}. Suppose $A_{i} \rightarrow B$ in the Hausdorff metric. Suppose also that there is an $M>0$ such that $\bar{\ell}\left(A_{i}\right) \leq M$ for all i. Then B is an arc and $\bar{\ell}(B) \leq M$.

Proof. Let N be such that $M s^{-N} \leq \ell\left(I_{N}\right) / 2=\ell\left(I_{s}\right) / 2=\left(f(c)-f^{2}(c)\right) / 2$. Then for every $k, \pi_{N}\left(A_{k}\right)$ has length at most $\ell\left(I_{N}\right) / 2$. Since $A_{k} \rightarrow B$, $\pi_{N}\left(A_{k}\right) \rightarrow \pi_{N}(B)$. In particular, $\pi_{N}(B)$ is a proper subset of I_{N}. It follows that B is a proper subcontinuum of X_{s}. By Lemma 4.1, B is an arc.

Finally, choose j large enough so that $\left.\pi_{j}\right|_{B}$ is a homeomorphism. Then for each $k, s^{j} \ell\left(\pi_{j}\left(A_{k}\right)\right) \leq M$, and hence $\bar{\ell}(B)=s^{j} \ell\left(\pi_{j}(B)\right) \leq M$. ■

LEMmA 5.5. Let $\left\{A_{i}\right\}_{i=1}^{\infty}$ be a sequence of arcs in X_{s} with endpoints \bar{a}_{i} and \bar{b}_{i}, respectively. Suppose that there is a positive number M such that $\bar{d}\left(\bar{a}_{i}, \bar{b}_{i}\right) \leq M$ for each i. Suppose also that the sequence $\left\{\bar{a}_{i}\right\}_{i=1}^{\infty}$ converges to some $\bar{a} \in X_{s}$. Then $B=\limsup \left\{A_{i}\right\}$ is an arc in X_{s} and $\bar{\ell}(B) \leq 2 M$.

Proof. Let $\bar{x} \in B=\lim \sup \left\{A_{i}\right\}$. Then there is a subsequence $\left\{A_{i_{j}}\right\}_{j=1}^{\infty}$ such that $A_{i_{j}} \rightarrow D \subset B$ in the Hausdorff metric with $\bar{x} \in D$. By Lemma 5.4, $\bar{\ell}(D) \leq M$. So, $\bar{d}(\bar{a}, \bar{x}) \leq M$. From this it follows that B must be a proper subcontinuum and thus an arc with the $\bar{\ell}$-length of B at most $2 M$.

Lemma 5.6. Let $\left\{A_{i}\right\}_{i=1}^{\infty}$ be a sequence of arcs in X_{s} with endpoints \bar{a}_{i} and \bar{b}_{i}, respectively. Suppose that $\bar{a}_{i} \rightarrow \bar{a}$ and $\bar{b}_{i} \rightarrow \bar{b}$. Suppose also that there is an $M>0$ such that $\bar{d}\left(\bar{a}_{i}, \bar{b}_{i}\right) \leq M$ for all i. Then \bar{a} and \bar{b} are in the same composant of X_{s}. Let A denote the unique arc with endpoints \bar{a} and \bar{b}. Suppose that $\lim \sup A_{i}$ does not contain an endpoint of X_{s}. Then $A_{i} \rightarrow A$ in the Hausdorff metric.

Proof. By the proof of Theorem 4.3, \bar{a} and \bar{b} are in the same composant of X_{s} and $\bar{d}(\bar{a}, \bar{b}) \leq M$. Let A be the unique arc with endpoints \bar{a} and \bar{b}. Let $B=$ $\lim \sup \left\{A_{i}\right\}$. By Lemma $5.5, B$ is an arc with $\bar{\ell}(B) \leq 2 M$. By assumption B does not contain an endpoint of X_{s}. So, let V be the neighborhood of B given by Lemma 5.1. Then there is an N such that for all $n \geq N, A_{n} \subset V$ since B is the $\lim \sup \left\{A_{i}\right\}$. Therefore for each $i \geq N, A_{i} \subset\left\{\bar{y}_{i}\right\} \times I$ for some $\bar{y}_{i} \in C$. Furthermore, A_{i} is the subinterval of $\left\{\bar{y}_{i}\right\} \times I$ joining the endpoints. Let $\bar{a}, \bar{b} \in\{\bar{y}\} \times I$. Then

$$
\lim _{i \rightarrow \infty} A_{i}=A=B \subset\{\bar{y}\} \times I
$$

Definition 5.7. Consider $J \times C \subset \mathbb{R}^{2}$ where C is the standard middlethird Cantor set and $J=[-1,1]$. Define an equivalence relation \sim on $J \times C$ by $(t, 1) \sim(-t, 1)$ for all $t \in J$. Let $Q=J \times C / \sim$. We will think of Q as the union of two sets E and F defined in the following way. Let $E=$ $(C \cup(-C)) \times[1,2] \subset \mathbb{R}^{2}$. Let F be a Cantor set of semicircles with centers at $(0,1)$ joining each point of $C \times\{1\}$ with the corresponding point of $-C \times\{1\}$. See Figure 3. Now in the Cantor set C, let C_{0} be the set of points in C in the interval between 0 and $1 / 3$, inclusive. Let C_{1} be the set of points in C between $2 / 3$ and $7 / 9$, inclusive. For higher k, let C_{k} be the subset of C containing the points between $\left(3^{k}-1\right) / 3^{k}$ and $\left(3^{k+1}-2\right) / 3^{k+1}$, inclusive.

Fig. 3. Neighborhood of \bar{c}
Then $\left\{C_{k}\right\}_{i=0}^{\infty}$ is a disjoint collection of Cantor sets with $C_{k} \rightarrow 1$ in C and $C=\bigcup_{i=0}^{\infty} C_{i} \cup\{1\}$.

Lemma 5.8. Suppose that A is an arc in X_{s} which contains an endpoint of X_{s}. Then there is a neighborhood V of A homeomorphic to $Q=$ $C \times J / \sim$.

Proof. There is no loss of generality in assuming that \bar{c} is the endpoint of A. Let A_{w} be the set of points in $C_{\bar{c}}$ with the same backward itinerary, w, and such that $\bar{c} \in A_{w}$. We know that A_{w} is a nondegenerate arc with \bar{c} as one endpoint and some \bar{z} as the other endpoint, and that $\left.\pi_{0}\right|_{A_{w}}$ is a homeomorphism onto $\left[c, c_{i}\right]$ or $\left[c_{i}, c\right]$ for some $1 \leq i \leq n_{0}$.

Define

$$
D_{0}=\left\{\bar{x} \in X_{s} \mid \pi_{n_{0}}(\bar{x})=c \text { and } \pi_{i}(\bar{x}) \neq c \text { for all } i>n_{0}\right\}
$$

The set D_{0} is compact, totally disconnected and every point is a limit point, so D_{0} is a Cantor set.

Let $\bar{x} \in D_{0}$. Then $\pi_{n_{0}}(\bar{x})=c$ and $\pi_{i}(\bar{x}) \neq c$ for all $i>n_{0}$. There are two $\operatorname{arcs} A_{\bar{x}}$ and $B_{\bar{x}}$ in X_{s} containing \bar{x} as an endpoint, such that $\pi_{n_{0}}\left(A_{\bar{x}}\right)=$ $\pi_{n_{0}}\left(A_{w}\right)$, and such that $\pi_{n_{0}}\left(A_{\bar{x}}\right)$ and $\pi_{n_{0}}\left(B_{\bar{x}}\right)$ are symmetric about c.

Similarly, for any $k \in \mathbb{N} \cup\{0\}$, define

$$
D_{k}=\left\{\bar{x} \in X_{s} \mid \pi_{(k+1) n_{0}}(\bar{x})=c \text { and } \pi_{i}(\bar{x}) \neq c \text { for all } i>(k+1) n_{0}\right\} .
$$

Then, for any $k \in \mathbb{N} \cup\{0\}$, the set D_{k} is a Cantor set. For any $\bar{x} \in D_{k}$, there are two arcs $A_{\bar{x}}$ and $B_{\bar{x}}$ in X_{s} containing \bar{x} as an endpoint, such that $\pi_{(k+1) n_{0}}\left(A_{\bar{x}}\right)=\pi_{(k+1) n_{0}}\left(A_{w}\right)$, and such that $\pi_{(k+1) n_{0}}\left(A_{\bar{x}}\right)$ and $\pi_{(k+1) n_{0}}\left(B_{\bar{x}}\right)$ are symmetric about c.

Let

$$
V=\bigcup\left\{A_{\bar{x}} \cup B_{\bar{x}} \mid \bar{x} \in \bigcup_{k=0}^{\infty} D_{k}\right\} \cup A_{w}
$$

Let (a, b) be the open interval containing c such that $f^{n_{0}}((a, b))$ is $\left[c, c_{i}\right)$ or $\left(c_{i}, c\right]$, where $\pi_{0}\left(A_{w}\right)$ is $\left[c, c_{i}\right]$ or $\left[c_{i}, c\right]$. Then each point of $\pi_{n_{0}}^{-1}((a, b))$ is in V. Hence every point of A_{w} except \bar{z} is an interior point of V.

Observe that $D=\left(\bigcup_{k=0}^{\infty} D_{k}\right) \cup\{\bar{c}\}$.
Define a map $h: V \rightarrow Q$ in the following way. For every $k \in \mathbb{N} \cup\{0\}$, h sends D_{k} homeomorphically onto C_{k}. For every $\bar{x} \in D_{k}, A_{\bar{x}}$ is mapped linearly onto $[-1,0] \times\{h(\bar{x})\}$, and $B_{\bar{x}}$ is mapped linearly onto $[0,1] \times\{h(\bar{x})\}$, and A_{w} is mapped linearly to $[-1,0] \times\{1\}$. Then h is $1-1$, continuous and onto, hence it is a homeomorphism.

Now the neighborhood V that we just created may not contain the given $\operatorname{arc} A$. However, for $k>1$, applying the shift map k times, $\sigma^{k n_{0}}(V)$, will create a longer and thinner neighborhood of the same form with $\bigcup_{k=0}^{\infty} \sigma^{k n_{0}}(V)$ dense in X_{s}. Thus, there will be some k for which $\sigma^{k n_{0}}(V)$ will contain A.

REMARK 5.9. In the above proof $\bar{\ell}\left(A_{w}\right)=\bar{\ell}\left(A_{\bar{x}}\right)=\bar{\ell}\left(B_{\bar{x}}\right)$ for every $\bar{x} \in D_{k}$ and every $k \in \mathbb{N} \cup\{0\}$. Furthermore, there are arbitrarily small neighborhoods of \bar{c} homeomorphic to Q for which this is true.

ThEOREM 5.10. Suppose that h_{1} and h_{2} are homeomorphisms of X_{s} such that $h_{1}(\bar{c})=h_{2}(\bar{c})=\bar{c}$. Suppose also that there is an $M>0$ such that $\bar{d}\left(h_{1}(\bar{y}), h_{2}(\bar{y})\right) \leq M$ for each $\bar{y} \in C_{\bar{c}}$. Suppose that $\bar{x}_{i} \rightarrow \bar{x}$ in X_{s}. Let A_{i} be the unique arc joining $h_{1}\left(\bar{x}_{i}\right)$ and $h_{2}\left(\bar{x}_{i}\right)$. Let A be the unique arc joining $h_{1}(\bar{x})$ and $h_{2}(\bar{x})$. Then $A_{i} \rightarrow A$ in the Hausdorff metric.

Proof. We assume the hypotheses and notation of the theorem.
CASE 1: The composant containing \bar{x} does not contain an endpoint. In this case Lemma 5.6 applies since $\lim \sup \left\{A_{i}\right\}_{i=1}^{\infty}$ must be in the composant of \bar{x} which does not contain an endpoint of X_{s}. Thus, we have $A_{i} \rightarrow A$ in this case.

CASE 2: $\bar{x} \in C_{\bar{c}_{i}}$ for some i with $\bar{x} \neq \bar{c}_{i}$. By Theorem 4.3, $h_{1}(\bar{x})$ and $h_{2}(\bar{x})$ are in the same composant, and this composant must be $C_{\bar{c}_{j}}$ for some j. Let $J=\left[\bar{e}, \bar{c}_{j}\right]$ be an arc in $C_{\bar{c}_{j}}$ such that $h_{1}(\bar{x}) \in J, h_{2}(\bar{x}) \in J, \bar{d}\left(\bar{e}, h_{1}(\bar{x})\right)>$ $M+1, \bar{d}\left(\bar{e}, h_{2}(\bar{x})\right)>M+1$. Let V be a neighborhood of J as in Lemma 5.8.

Consider the arc $h_{1}^{-1}(J) \cup h_{2}^{-1}(J)$ in $C_{\bar{c}_{i}}$. Let W be a neighborhood of this arc as in Lemma 5.8. By shrinking V in the "vertical" direction if necessary, we may assume that $h_{1}^{-1}(V) \cup h_{2}^{-1}(V) \subset W$. Let K be a component of V which does not contain \bar{c}_{j}. By the central point of K we mean the unique point of K which corresponds to a point of the form $(0, y)$ in $[-1,1] \times C$ as in Definition 5.7.

We may assume that $\bar{x}_{n} \in h_{1}^{-1}(V) \cap h_{2}^{-1}(V)$ for each n. Since $h_{1}\left(\bar{x}_{n}\right) \rightarrow$ $h_{1}(\bar{x})$ and $h_{1}\left(\bar{x}_{n}\right) \rightarrow h_{2}(\bar{x})$, it follows from Remark 5.9 that for n sufficiently large, the \bar{d}-distance from $h_{1}\left(\bar{x}_{n}\right)$ to either endpoint of the component of V containing $h_{1}\left(\bar{x}_{n}\right)$ is greater than $M+1$. Since $\bar{d}\left(h_{1}\left(\bar{x}_{n}\right), h_{2}\left(\bar{x}_{n}\right)\right) \leq M$, it follows that $h_{1}\left(\bar{x}_{n}\right)$ and $h_{2}\left(\bar{x}_{n}\right)$ lie in the same component of V for n sufficiently large. Without loss of generality, we assume that this holds for each n.

For each positive integer n, let K_{n} denote the component of V which contains $h_{1}\left(\bar{x}_{n}\right)$ and $h_{2}\left(\bar{x}_{n}\right)$, and let \bar{w}_{n} denote the central point of K_{n}. Let $\bar{y}_{n}=h_{1}^{-1}\left(\bar{w}_{n}\right)$ and $\bar{z}_{n}=h_{2}^{-1}\left(\bar{w}_{n}\right)$. Then \bar{y}_{n} and \bar{z}_{n} lie in the same component of W as \bar{x}_{n}. Since $\bar{x}_{n} \rightarrow \bar{x}, \bar{y}_{n} \rightarrow \bar{c}_{i}$, and $\bar{z}_{n} \rightarrow \bar{c}_{i}$, it follows that for n sufficiently large, \bar{x}_{n} does not lie between \bar{y}_{n} and \bar{z}_{n} in a component of W. Again, we may assume that this holds for each n.

For each positive integer n, let $K_{n}=\left[\bar{a}_{n}, \bar{b}_{n}\right]$. We may assume that

$$
\bar{d}\left(\bar{a}_{n}, \bar{w}_{n}\right)>M+1 \quad \text { and } \quad \bar{d}\left(\bar{b}_{n}, \bar{w}_{n}\right)>M+1
$$

for each n.
We claim that for each positive $n, h_{1}\left(\bar{x}_{n}\right)$ and $h_{2}\left(\bar{x}_{n}\right)$ lie on the same side of \bar{w}_{n} in K_{n}. We prove this by contradiction. Suppose that $h_{1}\left(\bar{x}_{n}\right)$ and $h_{2}\left(\bar{x}_{n}\right)$ lie on opposite sides of \bar{w}_{n} for some n. Recall that $K_{n}=\left[\bar{a}_{n}, \bar{b}_{n}\right]$ and suppose without loss of generality that $h_{1}\left(\bar{x}_{n}\right)$ lies on the same side of \bar{w}_{n} as \bar{a}_{n}. There is a point $\bar{p}_{n} \in W$ with $h_{1}\left(\bar{p}_{n}\right)=\bar{a}_{n}$. Moreover, $\bar{p}_{n}, \bar{x}_{n}, \bar{y}_{n}$, and \bar{z}_{n} lie in the same component of W, and in this component, \bar{p}_{n} is on one side of \bar{x}_{n}, while \bar{y}_{n} and \bar{z}_{n} are on the other side.

Now, using the monotonicity of h_{2} on a component, we see that the arc in X_{s} with endpoints $h_{1}\left(\bar{p}_{n}\right)$ and $h_{2}\left(\bar{p}_{n}\right)$ contains both \bar{a}_{n} and \bar{w}_{n}. This implies that $\bar{d}\left(h_{1}\left(\bar{p}_{n}\right), h_{2}\left(\bar{p}_{n}\right)\right)>M+1$. This is a contradiction and the claim is established. Since $A_{i} \subset V$ for each i, it follows from the special form of V and the claim that $A_{i} \rightarrow A$.

CASE 3: $\bar{x}=\bar{c}_{i}$ for some i. In this case A is just the point $\left\{\bar{c}_{j}\right\}$. This case is routine using the structure of the neighborhood of \bar{c} given in Lemma 5.8. We leave the proof to the reader.

One of Cases $1-3$ must hold so together they prove Theorem 5.10.
Theorem 5.11. Suppose that $h_{1}, h_{2}: X_{s} \rightarrow X_{s}$ are homeomorphisms which leave the endpoints of X_{s} fixed. Suppose that there is an $M>0$ such that $\bar{d}\left(h_{1}(\bar{x}), h_{2}(\bar{x})\right) \leq M$ for all $\bar{x} \in C_{\bar{c}}$. Then h_{1} and h_{2} are isotopic.

Proof. Let $H: X_{s} \times I \rightarrow X_{s}$ be defined in the following way.
Let $\bar{x} \in X_{s}$ and $t \in I$. By Theorem 4.3, there is a unique arc A_{x} connecting $h_{1}(\bar{x})$ and $h_{2}(\bar{x})$. Let $m \in \mathbb{N}$ be such that $\left.\pi_{m}\right|_{A_{x}}$ is a homeomorphism
into I_{m}. Let $g_{m}: \pi_{m}\left(A_{x}\right) \rightarrow A_{x}$ be the inverse of this homeomorphism. Let

$$
H(\bar{x}, t)=g_{m}\left((1-t) \pi_{m}\left(h_{1}(\bar{x})\right)+t \pi_{m}\left(h_{2}(\bar{x})\right)\right)
$$

If $\left.\pi_{k}\right|_{A_{x}}$ is a homeomorphism, then

$$
\begin{aligned}
& g_{k}\left((1-t) \pi_{k}\left(h_{1}(\bar{x})\right)+t \pi_{k}\left(h_{2}(\bar{x})\right)\right) \\
& \quad=g_{m}\left((1-t) \pi_{m}\left(h_{1}(\bar{x})\right)+t \pi_{m}\left(h_{2}(\bar{x})\right)\right)
\end{aligned}
$$

So, $H(\bar{x}, t)$ is well defined. We now show that H is continuous.
Suppose that $\left(\bar{x}_{i}, t_{i}\right) \rightarrow(\bar{x}, t)$. Let A_{i} be the unique arc with endpoints $h_{1}\left(\bar{x}_{i}\right), h_{2}\left(\bar{x}_{i}\right)$. Then $h_{1}\left(\bar{x}_{i}\right) \rightarrow h_{1}(\bar{x})$ and $h_{2}\left(\bar{x}_{i}\right) \rightarrow h_{2}(\bar{x})$. So, if A is the unique arc connecting $h_{1}(\bar{x})$ and $h_{2}(\bar{x})$, whose existence is given by Theorem 4.3 , then, by Theorem 5.10, $A_{i} \rightarrow A$ in the Hausdorff metric.

CASE 1: \bar{x} is not an endpoint. In this case the arc A connecting $h_{1}(\bar{x})$ and $h_{2}(\bar{x})$ does not contain an endpoint. Let V be a neighborhood of A of the form $V \approx C \times I$ with C a Cantor set and I an interval as in Lemma 5.1. Then there is an N such that for $n \geq N$, the arc A_{n} is contained in V. Now by Lemma 5.1, there is an m such that π_{m} is a homeomorphism of each component of V onto its image in I_{m}. Therefore for this m and for all $n \geq N$,

$$
H\left(\bar{x}_{n}, t_{n}\right)=g_{m}\left(\left(1-t_{n}\right) \pi_{m}\left(h_{1}\left(\bar{x}_{n}\right)\right)+t_{n} \pi_{m}\left(h_{2}\left(\bar{x}_{n}\right)\right)\right)
$$

and

$$
H(\bar{x}, t)=g_{m}\left((1-t) \pi_{m}\left(h_{1}(\bar{x})\right)+t \pi_{m}\left(h_{2}(\bar{x})\right)\right)
$$

So, clearly, $H\left(\bar{x}_{n}, t_{n}\right) \rightarrow H(\bar{x}, t)$.
CASE 2: \bar{x} is an endpoint. In this case $h_{1}(\bar{x})=h_{2}(\bar{x})=\bar{x}$ since the endpoints are assumed to be fixed. Therefore $A=\{\bar{x}\}$ and thus $\mathcal{A}_{n} \rightarrow\{\bar{x}\}$. This implies that $H\left(\bar{x}_{n}, t_{n}\right) \rightarrow\{\bar{x}\}=H(\bar{x}, t)$.

So, $H(\bar{x}, t)$ is a homotopy. We now show that it is an isotopy by showing that for each $t, h_{t}(\bar{x})=H(\bar{x}, t)$ is one-to-one and onto.

First we show that h_{t} is one-to-one. Note that h_{t} permutes the composants of X_{s} the same way that h_{1} and h_{2} do. So, to show that h_{t} is one-to-one it will suffice to show that h_{t} restricted to a composant $C_{\bar{x}}$ is one-to-one. Now $C_{\bar{x}}$ is the arc-component of \bar{x}. This arc-component with the \bar{d}-metric is homeomorphic to either \mathbb{R} or \mathbb{R}_{+}. Fix orderings on $C_{\bar{x}}$ and $C_{h_{1}(\bar{x})}$. Now h_{1} and h_{2} are homeomorphisms from $C_{\bar{x}}$ to $C_{h_{1}(\bar{x})}$ either preserving or reversing the orders of $C_{\bar{x}}$ and $C_{h_{1}(\bar{x})}$. However, since the \bar{d}-distance between h_{1} and h_{2} on $C_{\bar{x}}$ is bounded, these either both preserve the orders or both reverse the orders on $C_{\bar{x}}$ and $C_{h_{1}(\bar{x})}$ in the same way. Thus, $\left.h_{t}\right|_{C_{\bar{x}}}$ is one-to-one.

To show that h_{t} is onto is similar.

We now give the proof of the Isotopy Theorem as outlined at the beginning of this section.

Proof of the Isotopy Theorem. Let $h: X_{s} \rightarrow X_{s}$ be a homeomorphism. Let n be such that h^{n} leaves the endpoints of X_{s} fixed. By Theorem 4.6, there is an $M>0$ and there is a $k \in \mathbb{Z}$ such that $\bar{d}\left(h^{n}(\bar{x}), \sigma^{k}(\bar{x})\right) \leq M$ for all $\bar{x} \in C_{\bar{c}}$. By Theorem 5.11, h^{n} and σ^{k} are isotopic.

References

[1] J. M. Aarts and R. J. Fokkink, The classification of solenoids, Proc. Amer. Math. Soc. 111 (1991), 1161-1163.
[2] M. Barge, Horseshoe maps and inverse limits, Pacific J. Math. 121 (1986), 29-39.
[3] M. Barge and B. Diamond, Homeomorphisms of inverse limit spaces of one-dimensional maps, Fund. Math. 146 (1995), 171-187.
[4] M. Barge and S. Holte, Nearly one-dimensional Hénon attractors and inverse limits, Nonlinearity 8 (1995), 29-42.
[5] M. Barge and J. Martin, Endpoints of inverse limit spaces and dynamics, in: Continua with the Houston Problem Book, Lecture Notes in Pure and Appl. Math. 170, Dekker, New York, 1995, 165-182.
[6] M. Brown, Some applications of an approximation theorem for inverse limits, Proc. Amer. Math. Soc. 11 (1960), 478-483.
[7] K. Brucks and H. Bruin, Subcontinua of inverse limit spaces of unimodal maps, Fund. Math. 160 (1999), 219-246.
[8] K. Brucks and B. Diamond, A symbolic representation of inverse limit spaces for a class of unimodal maps, in: Continua with the Houston Problem Book, Lecture Notes in Pure and Appl. Math. 170, Dekker, New York, 1995, 207-226.
[9] H. Bruin, Inverse limit spaces of post-critically finite tent maps, Fund. Math. 165 (2000), 125-138.
[10] P. Collet and J.-P. Eckmann, Iterated Maps on the Interval as Dynamical Systems, Birkhäuser, Boston, 1980.
[11] W. Dębski, On topological types of the simplest indecompasable continua, Colloq. Math. 49 (1985), 203-211.
[12] S. Holte, Generalized horseshoe maps and inverse limits, Pacific J. Math. 156 (1992), 297-305.
[13] L. Kailhofer, A partial classification of inverse limit spaces of tent maps with periodic critical points, Topology Appl. 123 (2002), 235-265.
[14] -, A classification of inverse limit spaces of tent maps with periodic critical points, Fund. Math. 177 (2003), 95-120.
[15] J. Keesling, The group of homeomorphisms of a solenoid, Trans. Amer. Math. Soc. 172 (1972), 119-131.
[16] W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer, New York, 1993.
[17] J. Mioduszewski, Mappings of inverse limits, Colloq. Math. 10 (1963), 39-44.
[18] S. Nadler, Continuum Theory. An Introduction, Dekker, New York, 1992.
[19] R. C. Swanson and H. W. Volkmer, Invariants of weak equivalence in primitive matrices, Ergodic Theory Dynam. Systems 20 (2000), 611-626.
[20] W. T. Watkins, Homeomorphic classification of certain inverse limit spaces with open bonding maps, Pacific J. Math. 103 (1982), 589-601.
[21] R. F. Williams, One-dimensional nonwandering sets, Topology 6 (1967), 473-487.

Department of Mathematics
University of Florida
Gainesville, FL 32611-8105, U.S.A.
E-mail: block@math.ufl.edu
jek@math.ufl.edu
Department of Mathematics
Cyril and Methodius University
1000 Skopje, Macedonia
E-mail: sjakimovik@yahoo.com

Received 15 April 2005;
in revised form 30 August 2005

[^0]: 2000 Mathematics Subject Classification: Primary 54F15; Secondary 37E05, 37B45.
 Key words and phrases: continuum, composant, inverse limit, tent family.

