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On the 
lassi�
ation of inverse limits of tent mapsbyLouis Blo
k (Gainesville, FL), Slagjana Jakimovik (Skopje),Lois Kailhofer (Milwaukee, WI) and James Keesling (Gainesville, FL)
Abstra
t. Let fs and ft be tent maps on the unit interval. In this paper we givea new proof of the fa
t that if the 
riti
al points of fs and ft are periodi
 and the in-verse limit spa
es (I, fs) and (I, ft) are homeomorphi
, then s = t. This theorem was�rst proved by Kailhofer. The new proof in this paper simpli�es the proof of Kailhofer.Using the te
hniques of the paper we are also able to identify 
ertain isotopies betweenhomeomorphisms on the inverse limit spa
e.1. Introdu
tion. Given a 
ontinuous map f of a one-dimensional spa
eto itself, one may form an inverse limit spa
e by using f repeatedly as thebonding map. Spa
es formed in this way 
ommonly appear as attra
tors indynami
al systems [1, 2, 4, 8, 12, 21℄. This motivates the study of su
h in-verse systems. It is natural to try to determine when two su
h inverse limitsare homeomorphi
. In the 
ase of solenoids, there is a well known 
hara
ter-ization [1, 15℄. Consider the inverse limit spa
e for the inverse system wherethe inverse system spa
es are ea
h the interval and the bonding maps areea
h some tent map

fs(x) = min{sx, s(1− x)}for x ∈ [0, 1] and s ∈ [1, 2]. This inverse limit spa
e has also been stud-ied extensively. Any unimodal map without wandering intervals, restri
tiveintervals, or periodi
 attra
tors is 
onjugate to a tent map (see e.g. [16℄).As 
onjugate maps have homeomorphi
 inverse limit spa
es, the family oftent maps is more in
lusive than it seems at �rst glan
e. Given parameters
s 6= t it is unknown whether the 
orresponding inverse limit spa
es (I, fs)and (I, ft) 
ould be homeomorphi
 where I = [0, 1]. However, partial resultsexist [3, 6, 9, 11, 17, 20℄.
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172 L. Blo
k et al.In this paper we work with tent maps for whi
h s ∈ [
√

2, 2] and theturning point is periodi
, i.e. letting c denote the turning point, there is somepositive integer n su
h that fn
s (c) = c. In [13℄ and [14℄ Kailhofer proved thefollowing result.

Theorem (Kailhofer). Suppose that s, t ∈ [
√

2, 2]. Assume that the turn-ing point is periodi
 for both fs and ft. Then Xs is homeomorphi
 to Xt ifand only if s = t.In this theorem, Xs and Xt are the 
ores of (I, fs) and (I, ft), respe
tively.These will be de�ned in the next se
tion. The theorem implies that if (I, fs)and (I, ft) are homeomorphi
, then s = t under the given assumptions.Related results appear in [3℄, [9℄, and [19℄.One 
an extend the same result to the whole interval s ∈ (1, 2] in thefollowing way. For s ∈ (1,
√

2], there are two intervals J1 and J2 in the
ore Is of fs with pairwise disjoint interiors su
h that f2
s |J1

and f2
s |J2

aretopologi
ally 
onjugate to fs2 |I
s2
. It follows that for s ∈ (1,

√
2], (Is, fs) isdetermined by (Is2 , fs2). Therefore, it is enough to 
onsider tent maps withslopes in (

√
2, 2].In the present paper we give a simpli�ed proof of Kailhofer's theorem.The proof in this paper uses some of the results in [13℄ together with somenew results. One of the results proved in this paper is of parti
ular interestin itself.

Isotopy Theorem. Let s ∈ (
√

2, 2). Let Is = [f2
s (c), fs(c)] be the 
oreof fs. Let Xs = (Is, fs) be the inverse limit of the 
ore. Let h be any hom-eomorphism of Xs. Then there is a positive integer n and an integer k su
hthat hn is isotopi
 to σk where σ is the shift map on Xs.A weakened version of this theorem will be proved in the early part ofthe paper. In the simpli�ed proof of Kailhofer's theorem, we only need thata 
ertain homeomorphism h permutes the 
omposants of Xs in the sameway as σk for some integer k. If h and σk were isotopi
, then it would easilyfollow that the 
omposants of Xs are permuted by them in the same way. Itis only at the end of the paper that we a
tually show that h and σk are infa
t isotopi
.2. Preliminaries. In this se
tion we will re
all some general de�nitionsand known ba
kground results needed to state and prove the main resultsof this paper.Let X be a topologi
al spa
e. X is an ar
 if there exists a homeomor-phism from X onto [0, 1]. The 
omponents of X are the maximal 
onne
tedsubspa
es of X. We de�ne N = {0, 1, 2, . . .}, N+ = {1, 2, . . .}, R = (−∞,∞)and R+ = [0,∞).



Inverse limits of tent maps 173A 
ontinuum is a 
ompa
t 
onne
ted metri
 spa
e. Let X be a 
ontinuum.The 
omposant of x ∈ X is the union of all proper sub
ontinua of X that
ontain x. An end 
ontinuum in X is a sub
ontinuum T of X su
h thatwhenever T ⊂ H, T ⊂ J for 
ontinua H, J ⊂ X, then either H ⊂ J or
J ⊂ H. A point x ∈ X is an endpoint of X if {x} is an end 
ontinuum in X.Note that endpoints are topologi
al invariants.Let {Xi, di}∞i=0 be a 
olle
tion of 
ompa
t metri
 spa
es with di boundedby 1, and su
h that for ea
h i, fi : Xi+1 → Xi is a 
ontinuous map. Theinverse limit spa
e is

{Xi, fi} =
{
x = (x0, x1, . . . )

∣∣∣ x ∈
∞∏

i=0

Xi, fi(xi+1) = xi, i ∈ N

}
,and has metri
 d given by

d(x, y) =
∞∑

i=0

di(xi, yi)

2i
.For ea
h i, πi denotes the proje
tion map from ∏

∞

i=0 Xi into Xi. Aninverse limit spa
e {Xi, fi}∞i=0 is a 
ontinuum if Xi is a 
ontinuum for every i[18, Theorem 2.4℄. If Xi = X and fi = f for all i, the inverse limit spa
e isdenoted (X, f), and the map σ : (X, f)→ (X, f) de�ned by σ(x0, x1, . . .) =
(f(x0), x0, x1, . . .) is known as the shift homeomorphism or as the indu
edhomeomorphism.A 
ontinuous map f : [a, b] → [a, b] is 
alled unimodal if there exists aunique turning or 
riti
al point, c, su
h that f |[a,c] is in
reasing and f |[c,b] isde
reasing. For ea
h x ∈ [a, b], the forward itinerary of x is I(x) = b0b1b2 · · ·where bi = R if f i(x) > c, bi = L if f i(x) < c, and bi = C if f i(x) = c,with the 
onvention that the itinerary stops after the �rst C. The itineraryof f(c) is known as the kneading sequen
e of f and it is denoted K(f).The set of itineraries is given the parity-lexi
ographi
al ordering in thefollowing way. Set L < C < R. Let W = w0w1 · · · and V = v0v1 · · · be twodistin
t itineraries and let k be the �rst index where the itineraries di�er. If
k = 0, then W < V if and only if w0 < v0. If k ≥ 1, and w0w1 · · ·wk−1 =
v0v1 · · · vk−1 has an even number of R's, that is, has even parity, then W < Vif and only if wk < vk; if w0w1 · · ·wk−1 = v0v1 · · · vk−1 has an odd number of
R's, that is, has odd parity, then W < V if and only if vk < wk. It is knownthat the map x 7→ I(x) is monotone, that is, if x < y, then I(x) < I(y)(
f. [10℄).The modi�ed forward itinerary of f(c), denoted I ′(f(c)), is de�ned asfollows. If K(f) = a0a1 · · · is in�nite, let I ′(f(c)) = K(f). If K(f) =
a0a1 · · · an0−2C, then I ′(f(c)) = (a0a1 · · · a′n0−1)

∞, where a′n0−1 repla
esthe terminal C in the kneading sequen
e and a0a1 · · · a′n0−1 < K(f) in theparity-lexi
ographi
al ordering.



174 L. Blo
k et al.Definition 2.1. Let f : I → I be a unimodal map. Let x = (x0, x1, · · ·)be a point in the inverse limit spa
e (I, f) of f . The ba
kward itinerary of x,denoted B(x) = b0b1 · · · , is a sequen
e of R's and L's su
h that(1) bi = R if xi ≥ c and bi = L if xi ≤ c,(2) if xi = c for some i > 0, then b0b1 · · · bi−1 = ai−1ai−2 · · · a1a0, where
I ′(f(c)) = a0a1 · · · .De�ne Bf = {B(x) | x ∈ (I, f)}.Remark 2.2. Suppose that c is periodi
 with period n0. Let x ∈ (I, f). If

xi 6= c for all i ∈ N, or if xi = c for in�nitely many i ∈ N, then x has exa
tlyone ba
kward itinerary. If xi = c for �nitely many i ∈ N, then x has twoba
kward itineraries that di�er at only one 
oordinate, max{i ∈ N | xi = c}.Consider the one-parameter family of tent maps fs : I → I, fs(x) =
min{sx, s(1 − x)}, x ∈ I and s ∈ [

√
2, 2]. The tent map fs is unimodal forall s ∈ [

√
2, 2]. From now on, unless otherwise spe
i�ed, 
onsider s ∈ (

√
2, 2]�xed su
h that the 
riti
al point c of fs has period n0. Write

ci = f i
s(c) and ci = (ci, ci−1, . . . , c1, c, cn0−1, . . . , ci+1)

∞for i = 0, 1, . . . , n0 − 1. Set IL = [c2, c], IR = [c, c1] and Is = [c2, c1]. Then Isis invariant under fs and fs is lo
ally eventually onto on Is, that is, for everynondegenerate interval J ⊂ Is there exists an n > 0 su
h that fn
s (J) = Is.The interval Is is known as the 
ore of fs. The inverse limit spa
e of (I, fs)is equal to the union of Xs = (Is, fs) with an open ray having Xs as its limitset. To denote the nth 
oordinate in the inverse system we use In instead of

(Is)n. We know that Xs is inde
omposable. Under the assumption that c isperiodi
 every proper sub
ontinuum of Xs is an ar
. Thus, every 
omposantis a union of ar
s.The 
omposant Cx of x ∈ Xs is the set of all points in Xs with ba
kwarditineraries eventually identi
al to B(x), that is, y ∈ Cx if and only if theba
kward itineraries of x and y di�er in at most �nitely many 
oordinates(Lemma 4.1).3. De�nitions and results from Kailhofer's paper. In this se
tionwe give several de�nitions introdu
ed by Kailhofer and some of the resultsfrom her paper [13℄.Definition 3.1. Let w = w0w1 · · · ∈ Bfs
. De�ne

Aw = {x ∈ Xs | πi(x) ∈ Iwi
for all i ∈ N},the set of points in Xs with ba
kward itinerary w. De�ne

An
w = σn(Aw).Note that Aw = {x ∈ Xs | B(x) = w}.



Inverse limits of tent maps 175Remark 3.2. Ea
h Aw is a nondegenerate ar
 
ontained in a single
omposant.Lemma 3.3 ([13, Lemma 4℄). Let w ∈ Bfs
. There exist 0 ≤ i 6= j < n0su
h that π0|Aw

is a homeomorphism onto [ci, cj ].The proof of this lemma shows that for an interval J ⊂ [c2, c1], fs(gs(J))
6= J if and only if c3 is in the interior of J , where gs is the inverse of themap fs restri
ted on [c2, c], but for n ≥ n0, fs(g

n
s (J)) = gn−1

s (J).Remark 3.4. Note that if x ∈ Xs is an endpoint of Aw and x 6= ci forany i = 0, 1, . . . , n0 − 1, then x has two ba
kward itineraries.The following lemma is well known and appears in several publi
ations.Barge and Martin in [5℄ des
ribe the basi
 
onstru
tion of endpoints in
(X, f).Lemma 3.5 ([13, Lemma 8℄). The endpoints of Xs are c, c1, . . . , cn0−1.Remark 3.6. Ea
h 
omposant C in Xs has the property that there is a
ontinuous bije
tion either from R+ to C or from R to C.Definition 3.7. Let p ∈ N and 0 ≤ j < n0. De�ne

Φp,j = {x ∈ Cc | πpn0
(x) = cj}, Φp =

n0−1⋃

j=0

Φp,j .The elements of Φp are 
alled p-spe
ial points.Definition 3.8. Let n, m ∈ N. De�ne En = πn(Φ0) and
Pn,m =

{
z ∈ In

∣∣∣∣ ∃x, y ∈ En, ∃k ∈ {0, 1, . . . , 2m} su
h that
(x, y) ∩En = ∅ and z =

kx + (2m − k)y

2m

}
.We see that En partitions In into �nitely many intervals and Pn,m re�nesthat partition by dividing ea
h interval into 2m subintervals.Definition 3.9. Let n, m ∈ N and let x ∈ Pn,m. If x 6= c2, set y =

max{w ∈ Pn,m | x > w}. If x 6= c1, set z = min{w ∈ Pn,m | x < w}. De�ne
lxn,m =





(y, z) if x ∈ (c2, c1),
[x, z) if x = c2,
(y, z] if x = c1.Let

Ln,m = {lxn,m | x ∈ Pn,m}, Ln,m = {lxn,m | lxn,m = π−1
n (lxn,m), x ∈ Pn,m}.Let U = {Ui}ni=1 be an open 
over of a topologi
al spa
e X. Re
all thatthe set U is a 
haining of the spa
e X if Ui∩Uj 6= ∅ if and only if |i− j| ≤ 1.



176 L. Blo
k et al.Let U = {Ui}ni=1 and let V = {Vj}mj=1 be 
hainings of a topologi
alspa
e X. We say that the 
haining U re�nes the 
haining V , in symbols
U ≺ V , if for every 1 ≤ i ≤ n, there is 1 ≤ j ≤ m su
h that Ui ⊂ Vj .Lemma 3.10 ([13, Lemma 16℄). Fix n, m, i, j ∈ N. Then(1) Ln,m is a 
haining of In.(2) Ln,m is a 
haining of Xs.(3) Ln,m ≺ Li,j if n ≥ i, m ≥ j.(4) If x ∈ Φ0, then there is a unique l ∈ Ln,m su
h that x ∈ l.(5) mesh(Ln,m)→ 0 as n→∞ and m→∞.Definition 3.11. For ea
h p ∈ N, de�ne

Wp = {x ∈ Cc | ∃x ∈ Apn0

v ∩Apn0

w , v 6= w ∈ Bf} ∪ {c}.If x ∈ Wp, then x is 
alled a p-wrapping point. There is a natural orderon the set of all p-wrapping points with x < y if h−1(x) < h−1(y) for any
ontinuous bije
tion h : R+ → Cc.Lemma 3.12. Fix p ∈ N. Then(1) Wp = {x ∈ Cc | ∃n ≥ pn0 su
h that πn(x) = c}.(2) Wp+1 ⊂ Φp+1 ⊂Wp.(3) σn0(Wp) = Wp+1.

Example 3.1. Let T be the tent map with kneading sequen
e RLRRC.Figure 1 shows the p-wrapping points and the (p+1)-wrapping points of Cc.
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Fig. 1. The proje
tions of the p-wrapping points • and the (p + 1)-wrapping points ◦Proposition 3.13 ([13, Proposition 25℄). Fix p, m, k ∈ N, 0 ≤ k < n0.If D is a 
omponent of Cc ∩ lck
n,m, then the 
losure of D is an ar
 and D
ontains exa
tly one element of Φp,k.



Inverse limits of tent maps 177Definition 3.14. Let x ∈ Wp\{c}. Let k ∈ N be su
h that pn0 + k =
max{n | πn(x) = c}. De�ne the p-level of x by Lp(x) = k. Set Lp(c) =∞.The set {Lp(x) | x ∈Wp\{c}} is unbounded. Note that x ∈Wp+1 if andonly if Lp(x) ≥ n0.
Example 3.2. Let T be the tent map with kneading sequen
e RLRRC.Figure 2 shows the 5p-proje
tions of the p-wrapping points of Cc, markedby •, and the p-levels of the 
orresponding p-wrapping points of Cc.
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∞ 1 3 1 0 2 0 4 0 2 0 6 0 2 0 4 0 2 0 1 8 1 0 2 0 4 0p-level:Fig. 2. The p-levels of the p-wrapping points of the 
omposant of c

Proposition 3.15 ([13, Proposition 29℄). Let p ∈ N and w < v in Cc besu
h that πpn0
(w) = πpn0

(v). There exists a p-wrapping point z su
h that w <
z < v. Additionally , if both w and v are p-wrapping points, then there existsa p-wrapping point z su
h that w < z < v and Lp(z) > min{Lp(w), Lp(v)}.Definition 3.16. Fix p ∈ N. Let H be an ar
 in the 
omposant of cwith Int(H) ∩Wp = {h1, . . . , hn−1} and ∂H = {h0, hn}.(1) The ar
 H is p-symmetri
 if πpn0

(h0) = πpn0
(hn) and Lp(hi) =

Lp(hn−i) for all 0 < i < n.(2) The ar
 H is p-pseudosymmetri
 if πpn0
(hi) = πpn0

(hn−i) for all
0 ≤ i ≤ n.If H is p-pseudosymmetri
 or p-symmetri
, then n is even and the 
enterof H, denoted κH , is the point hn/2.Remark 3.17. Fix p ∈ N and let H ⊂ Cc be an ar
. If H is p-pseudo-symmetri
, then H is q-pseudosymmetri
 for all q < p. If H is p-symmetri
,then H is q-symmetri
 for all q ∈ N su
h that qn0 < pn0 + Lp(κH).



178 L. Blo
k et al.Proposition 3.18 ([13, Proposition 34℄). Let p ∈ N and w ∈ Wp\{c}su
h that Lp(w) 6= 0. Let H be the union of all p-symmetri
 ar
s with 
en-ter w. There exists a p-wrapping point v ∈ H su
h that Lp(v) > Lp(w).Furthermore, v is an endpoint of H.Remark 3.19. Let H be a p-symmetri
 ar
 in Cc and let L = Lp(κH).Proposition 3.18 implies that all the interior points in H have p-levels smallerthan L, hen
e πpn0+L|H is a homeomorphism.Definition 3.20. The set Φp,0 partitions the 
omposant of c into 
ount-ably many ar
s 
alled p-gaps.For any p-gap H, c /∈ πpn0
(Int(H)) and πpn0

(∂H) = {c}. The interse
tionof any two p-gaps is at most one point.Lemma 3.21. For any p ∈ N, a p-gap is p-symmetri
.Proof. Fix p ∈ N. Let H be a p-gap and ∂H = {y, z}. Let x ∈ Int(H) be a
p-wrapping point with largest p-level, say L. Suppose H is not p-symmetri
.Then fs(πpn0+L(y)) 6= fs(πpn0+L(z)), hen
e there is a p-wrapping point
w ∈ Int(H) su
h that fs(πpn0+L(w)) is equal to either fs(πpn0+L(y)) or
fs(πpn0+L(z)). This implies that πpn0

(w) = c, whi
h 
ontradi
ts H being a
p-gap.The proof of the previous lemma is longer than the one given by Kailhofer,but it is self-
ontained.Definition 3.22. Fix p, q ∈ N. Let G be a p-gap with G ∩ Wp =
{g0, g1, . . . , gn} and H be a q-gap with H ∩ Wq = {h0, h1, . . . , hm}. Thegaps G and H are of the same type if n = m and πpn0

(gi) = πqn0
(hi) for all

0 ≤ i ≤ n.Proposition 3.23 ([13, Proposition 41℄). Fix p, q ∈ N. Let G be a p-gapand H a q-gap. If Lp(κH) = Lq(κG), then G and H are of the same type.Definition 3.24. Fix p ∈ N and let G be a p-gap. The ar
s betweentwo 
onse
utive p-wrapping points in G are 
alled legs of G.The �rst p-gap in the 
omposant of c is denoted Fp.Lemma 3.25. Fix p ∈ N and let G be a p-gap. Then(1) The �rst leg of G 
ontains a (p− 1)-gap [13, Lemma 46℄.(2) The �rst (p− 1)-gap in G is of the same type as Fp [13, Prop. 47℄.Definition 3.26. Fix p ∈ N. De�ne ϕ = Lp(κFp
).Remark 3.27. Sin
e the type of Fp does not depend on p, ϕ does notdepend on p. Sin
e Fp is 
ontained in the �rst leg of Fp+1, the 
enter of Fpis not a (p + 1)-wrapping point, hen
e ϕ = Lp(κFp
) < n0. Note also that

πpn0
(κFp

) = cϕ.
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onsider a homeomorphism h : (I, f) → (I, f) with h(c) = c. (If
h(c) = ci, where 0 < i < n0, 
onsider the map h = σ−i ◦ h.)Fix m, n, p, q ∈ N su
h that h(Lqn0,n) ≺ Lpn0,m. If h(cj) = ci for 0 ≤
i, j < n0, then h(l

cj
qn0,n) ⊂ lci

pn0,m. This implies that h(Φq,j) ⊂ lci
pn0,m. ByProposition 3.13, every 
omponent of l

cj
qn0,n 
ontains exa
tly one elementof Φq,j . Sin
e two 
onse
utive points of Φq lie in two di�erent links, ea
h
omponent of lci

pn0,m 
ontains at most one element of h(Φq,j). Thus, h indu
esa one-to-one map hq,p : Φq → Φp, de�ned as follows.Definition 3.28. Fix m, n, p, q ∈ N su
h that h(Lqn0,n) ≺ Lpn0,m. If
w ∈ Φq,j and h(cj) = ci for 0 ≤ i, j < n0, then hq,p(w) is de�ned as theelement of Φp,i that lies in the same 
omponent of lci

pn0,m as h(w).If G is an ar
 in the 
omposant of c with ∂G = {x, y} ⊂ Φq, let h̃q,p(G)be the ar
 between hq,p(x) and hq,p(y).Theorem 3.29 ([13, Corollary 67℄). Fix positive integers m, n, p, q su
hthat h(Lqn0,n) ≺ Lpn0,m. If H is a q-pseudosymmetri
 ar
 in the 
omposantof c with ∂H ⊂ Φq, then h̃q,p(H) is p-pseudosymmetri
.Lemma 3.30 ([13, Lemma 68℄). Let p ∈ N. Let G and H be distin
t
p-pseudosymmetri
 ar
s in the 
omposant of c su
h that c ∈ G and c ∈ H.Then G ⊂ H if and only if Lp(κG) < Lp(κH).Theorem 3.31 ([13, Corollary 71℄). Fix m, n, p, q, u, v ∈ N su
h that
h(Lqn0,n) ≺ Lpn0,m ≺ h(Lun0,v). If h̃q,p(Fq) = Ft for some t ∈ N, then
hq,p(Φq+k,0) = Φt+k,0 for all k ∈ N+.4. Main result. The following lemma is a well known result (see Bru
ksand Diamond [8℄ and Bru
ks and Bruin [7℄).Lemma 4.1. Suppose that A is a proper sub
ontinuum of Xs. There isa nonnegative integer k su
h that πk|A is a homeomorphism. In parti
ular ,
A is an ar
. Moreover , for any two points x, y ∈ A, B(x) and B(y) agreeafter the �rst k entries.Proof. If there is a nonnegative integer m su
h that for ea
h j > m,
c 6∈ πj(A), then fs|πj(A) is a homeomorphism for ea
h j > m, and the 
on-
lusion follows easily. So, we may assume that c ∈ πj(A) for arbitrarily largeinteger j. Sin
e c is periodi
 under fs, it follows that for ea
h nonnegativeinteger j, πj(A) 
ontains at least one of the points c0, c1, . . . , cn0−1. Sin
e fsis lo
ally eventually onto, there is a nonnegative integer k su
h that for ea
hinteger j > k, πj(A) 
ontains exa
tly one of the points c0, c1, . . . , cn0−1.We 
omplete the proof by showing that for ea
h j > k the element of
{c0, c1, . . . , cn0−1} whi
h is in πj(A) is an endpoint of πj(A). In parti
ular, forea
h j > k, c is not in the interior of πj(A), so fs|πj(A) is a homeomorphism.
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k et al.Suppose j > k. Sin
e c is periodi
, there is an integer m > j su
h that
c1 ∈ πm(A). Sin
e c1 is an endpoint of Is, it follows that c1 is an endpoint of
πm(A). Sin
e c is not in the interior of πm(A), fs|πm(A) is a homeomorphism.Thus c2 is an endpoint of πm−1(A). If m−1 > j, we may repeat this argumentand 
on
lude that c3 is an endpoint of πm−2(A). By repeating the argumentindu
tively, it follows that the element of {c0, c1, . . . , cn0−1} whi
h is in πj(A)is an endpoint of πj(A).Let x ∈ Xs. By Remark 3.6, there is a natural order on the elements ofthe 
omposant of x. With the order topology, Cx will be 
alled the unravelled
omposant of x.Remark 4.2. Note that the map hq,p is order-preserving.We will put a spe
i�
 metri
 on the unravelled 
omposant whi
h is derivedfrom the inverse limit system. Let x, y be in the same 
omposant C ⊂ Xs.Then there is an ar
 A ⊂ C with endpoints x and y. By Lemma 4.1, thereis a nonnegative integer k su
h that πk|A is a homeomorphism. De�ne

d(x, y) = sk|πk(x)− πk(y)|.Note that if m ≥ k, then d(x, y) = sm|πm(x)−πm(y)|. Thus, d is well de�nedfor every pair of points in the same 
omposant C. We may 
onsider (C, d)either as R+ or R depending on whether C has an endpoint or not.Theorem 4.3. Let h1, h2 : Xs → Xs be homeomorphisms whi
h map Ccto itself. Suppose that there is M ∈ N+ su
h that d(h1(z), h2(z)) ≤ M forall z ∈ Cc. Then h1(Cx) = h2(Cx) for all x ∈ Xs. Furthermore, for every
x ∈ Xs, d(h1(x), h2(x)) ≤M .Proof. Let x ∈ Xs. If x ∈ Cc, then h1(Cc) = h2(Cc) by assumption.Suppose that x /∈ Cc. Sin
e Cc is dense in Xs, there is a sequen
e {xn}∞n=1in Cc whi
h 
onverges to x. Then hi(xn) 
onverges to hi(x) for i = 1, 2.Consider the unique ar
s An ⊂ Cc with endpoints h1(xn) and h2(xn). Byassumption the length of An in Cc is less than or equal to M . Let k > 0 bean integer su
h that M ≤ sk(c1 − c2). Then πk(An) is a proper subset of
[c2, c1] sin
e the length of πk(An) is less than M/sk < c1 − c2.Let C(Xs) denote the spa
e of nonempty sub
ontinua of Xs with theHausdor� metri
. Then πk : Xs → [c2, c1] indu
es a 
ontinuous map πk :
C(Xs) → C([c2, c1]). Sin
e C(Xs) is a 
ompa
t metri
 spa
e, the sequen
e
{An} has a subsequen
e {Anj

} 
onverging to some A ∈ C(Xs). Note that
hi(xnj

) 
onverges to hi(x) for i = 1, 2. So, hi(x) ∈ A for i = 1, 2. Sin
e πk :

C(Xs)→ C([c2, c1]) is 
ontinuous, πk(A) has length at most M/sk < c1− c2.Thus, A must be a proper sub
ontinuum of Xs. Thus, h1(x) and h2(x) arein the same 
omposant of Xs. This implies that h1(Cx) = h2(Cx).
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e x is arbitrary, the above also proves the last statement of the the-orem.Re
all that the shift homeomorphism, σ : Xs → Xs, is de�ned by
σ((x0, x1, . . . )) = (fs(x0), x0, x1, . . . ).Lemma 4.4. There is a positive integer B su
h that for any p ∈ N thenumber of legs in a p-gap is at most B.Proof. Sin
e fs is lo
ally eventually onto, there is K ∈ N su
h that if Jis an interval whi
h 
ontains two points in the orbit of c, then fK

s (J) = Is.Fix p ∈ N. Let H be a p-gap and L = Lp(κH). Let HR be the ar

onne
ting the 
enter of H and the right endpoint of H. Then πpn0+L(HR)is an interval with one endpoint c and πpn0+L|HR
is a homeomorphism. Notealso that

fL
s (πpn0+L(HR)) = πpn0

(HR) = πpn0
(H)is an interval with one endpoint c.If fL

s |πpn0+L(HR) is linear, then there are at most two legs in H. Suppose
fL

s |πpn0+L(HR) is not linear. There is a least n ∈ N su
h that fn
s (πpn0+L(HR))
ontains two points in the orbit of c. This implies that H has at most 2L−nlegs. Sin
e πpn0

(HR) is a proper subset of [c2, c1], we have L−n < K, hen
ethe number of legs in H is at most 2K .Remark 4.5. One might be led to 
onje
ture that the number of distin
ttypes of p-gaps in Cc is n0 − 1 for any p ∈ N. However, for s su
h that thekneading sequen
e is RLLRRRLC, there are at least eight p-gaps.Theorem 4.6. Let h : Xs → Xs be a homeomorphism whi
h maps ea
hendpoint , ci for 0 ≤ i ≤ n0− 1, to itself. Then there exists an integer N anda positive number M su
h that d(h(x), σN(x)) < M for all x ∈ Cc.Proof. For 
onvenien
e of referral, two points of any subset of Cc are saidto be adja
ent in that set if the ar
 
onne
ting those two points 
ontainsno other points of that set. Note that if x and y are adja
ent in Φp, then
d(x, y) < spn0 .By Lemma 3.10(5), given u, v ∈ N, there are p, m ∈ N su
h that Lpn0,m ≺
h(Lun0,v), and there are q, r ∈ N su
h that h(Lqn0,r) ≺ Lpn0,m. Fix p, m, q, r,
u, v ∈ N su
h that h(Lqn0,r) ≺ Lpn0,m ≺ h(Lun0,v).Sin
e Fq is q-symmetri
, by Theorem 3.29, h̃q,p(Fq) is p-pseudosymmetri
and hq,p(κFq

) = κ
h̃q,p(Fq)

. Let L = Lp(κh̃q,p(Fq)
) and t be the largest positiveinteger with the property tn0 < pn0 + L. Obviously t ≥ p. Sin
e h(ci) = cifor all 0 ≤ i < n0, we see that πpn0

(κ
h̃q,p(Fq)

) = πqn0
(κFq

), whi
h, by Remark3.27, is equal to cϕ. From De�nition 3.26, we have Lt(κFt
) = ϕ. Thus

Lp(κFt
) = Lt(κFt

) + (t− p)n0 = ϕ + (t− p)n0 = L = Lp(κh̃q,p(Fq)
).
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e, by Lemma 3.30,
Ft = h̃q,p(Fq).By Theorem 3.31 it follows that for every k ∈ N+,

hq,p(Φq+k,0) = Φt+k,0.By Remark 4.2, hq,p is order-preserving on the set Φt+k,0 for any k ∈ N+.From the de�nition of σ and sin
e σ(t−q)n0 is order-preserving as well, it iseasy to see that σ(t−q)n0(Φq+k,0) = Φt+k,0 for any k ∈ N+. Therefore, forevery x ∈ Φq+1,0, we have hq,p(x) = σ(t−q)n0(x). By De�nition 3.28, for any
x ∈ Φq+1,0, h(x) lies between two adja
ent p-spe
ial points, one of whi
h is
hq,p(x). Sin
e the distan
e between two spe
ial points is less than spn0 , wehave

d(h(x), σ(t−q)n0(x)) = d(h(x), hq,p(x)) < spn0for any x ∈ Φq+1,0.The length of any leg of a (t + 1)-gap is bounded by s(t+1)n0 as π(t+1)n0restri
ted to the leg is a homeomorphism. Sin
e the number of legs in a
(t + 1)-gap is bounded by B by Lemma 4.4, it follows that the length of a
(t+1)-gap is bounded. Namely, if x and y are the endpoints of a (t+1)-gap,then d(x, y) < l, where

l = Bs(t+1)n0.Let N = (t− q)n0 and M = spn0 + l. Let x ∈ Cc. If x ∈ Φq+1,0, then
d(h(x), σN(x)) < spn0 < M.If x 6∈ Φq+1,0, then there exist y and z adja
ent in Φq+1,0 su
h that the

(q + 1)-gap whose endpoints are y and z, 
ontains x. As y, z ∈ Φq+1,0, wehave hq,p(y) = σN (y) and hq,p(z) = σN (z). Sin
e h is a homeomorphism,the ar
 
onne
ting h(y) and h(z) 
ontains h(x). Similarly, the ar
 
onne
ting
σN (y) and σN (z) 
ontains σN (x). Thus,

d(h(x), σN(x)) < max{d(σN(x), h(y)), d(σN(x), h(z))}.Sin
e σN sends a (q + 1)-gap to a (t + 1)-gap,
d(σN(z), σN(y)) < l.Sin
e h(y) lies between two adja
ent p-spe
ial points, one of whi
h is σN (y),

d(h(y), σN(y)) < spn0 .Therefore
d(σN (x), h(y)) ≤ d(σN(x), σN(y)) + d(σN(y), h(y))

< d(σN(z), σN(y)) + d(σN(y), h(y)) < l + spn0 = M.Similarly, d(σN(x), h(z)) < M . Thus,
d(σN(x), h(x)) < M.
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h mapsea
h endpoint , ci for 0 ≤ i ≤ n0 − 1, to itself. Then there is an integer Nsu
h that h(Cx) = σN (Cx) for all x ∈ Xs.We adopt the following notation. If k is a positive integer, we let F (fk
s )denote the number of �xed points of fk

s in Is.Lemma 4.8. Suppose √2 < s < t < 2 and for ea
h of the tent maps fsand ft, the 
riti
al point is periodi
 with period n0. Then
F (fn0

s ) < F (fn0

t ).Proof. Sin
e ea
h point in the orbit of the 
riti
al point is a �xed pointof fn0

t and the same holds for fn0
s , we need only 
onsider �xed points of fn0

tand fn0
s whi
h are not in the orbit of the 
riti
al point. Suppose y is su
ha �xed point of fn0

s . Then the forward itinerary I(y) equals S∞ for somesequen
e S of length n0 of L's and R's. By [10, Theorem II.3.8℄ there is a�xed point z of fn0

t with I(z) = S∞.We 
omplete the proof by showing that there is a sequen
e T of length n0of L's and R's su
h that there is a �xed point of fn0

t with itinerary T∞ butno �xed point of fn0
s has this itinerary. The itinerary of fs(c) is of the form

DC where D is a sequen
e of length n0 − 1 of L's and R's. We 
an modify
fs to 
onstru
t a unimodal map g with the same kneading sequen
e as fssu
h that on the orbit of c, g = fs, but for a small nondegenerate interval Jwith right endpoint g(c) ea
h point of J is periodi
 under g with period n0.The itinerary of a point in J other than g(c) is of the form T∞, where T isa sequen
e of L's and R's of length n0. Moreover, T is shift maximal and Tis either DR or DL. It follows that no �xed point of fn0

s has itinerary T∞,but by [10, Theorem II.3.8℄ there is a �xed point of fn0

t with itinerary T∞.Lemma 4.9. Let s ∈ (
√

2, 2). For any integer m, the number of 
om-posants mapped to themselves by σm
s is F (fm

s ).Proof. Without loss of generality we may assume that m > 0.Our �rst 
laim is that there is at most one periodi
 point in ea
h 
om-posant of Xs.Suppose not. There is a 
omposant C in Xs with at least two distin
tperiodi
 points of σs, say x = (x0, x1, . . . ) and y = (y0, y1, . . . ). Then thereis a positive integer k su
h that σk
s (x) = x and σk

s (y) = y. In parti
ular,
fk

s (xk−1) = xk−1 and fk
s (yk−1) = yk−1. Note that xk−1 6= yk−1. Sin
e xand y are in the same 
omposant, they have eventually the same ba
kwarditinerary. Thus, there is some positive integer N su
h that for all n ≥ N , xnand yn are on the same side of c. (By this we mean either both xn ≥ c and

yn ≥ c, or both xn ≤ c and yn ≤ c.) Sin
e x and y are periodi
, it followsthat for ea
h integer j = 0, 1, . . . , k− 1, xj and yj are on the same side of c.
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e for ea
h integer j ≥ 0, f j
s (xk−1) and f j

s (yk−1) are on the same sideof c. This is impossible sin
e xk−1 6= yk−1 and fs is a tent map with a slope
s > 1. This proves the �rst 
laim.Our next 
laim is that ea
h 
omposant mapped to itself by σm

s 
ontainsa �xed point of σm
s .Suppose C is a 
omposant in Xs with σm

s (C) = C. If x, y ∈ C, then
d(σm

s (x), σm
s (y)) = smd(x, y).Hen
e σ−m

s is a 
ontra
tion and has a �xed point. This proves our se
ond
laim.It follows from the 
laims that the number of 
omposants mapped tothemselves by σm
s is equal to the number of points �xed by σm

s . By de�nitionof σs, this number is equal to the number of �xed points of fm
s . By de�nition,this number is F (fm

s ).Theorem 4.10. Let s, t ∈ (
√

2, 2) be su
h that fs and ft have periodi

riti
al points. Then Xs and Xt are homeomorphi
 if and only if s = t.Proof. It is well known that if Xs and Xt are homeomorphi
 and the
riti
al point of fs is periodi
, then the 
riti
al point of ft is also periodi
with the same period. Thus, there is no loss in generality in assuming thatthe period of the 
riti
al points for fs and ft are both periodi
 of period n0.Suppose s < t. Assume there is a homeomorphism g : Xs → Xt.Consider the map h : Xt → Xt, h = g ◦σn0
s ◦g−1. Then h is a homeomor-phism, and it maps ea
h 
omposant with an endpoint to itself. By Corol-lary 4.7, there is an integer N su
h that h(Cx) = σN

t (Cx) for all x ∈ Xt.Sin
e σn0
s maps ea
h 
omposant with an endpoint to itself, the same is truefor h. Thus σN

t also maps ea
h endpoint of Xt to itself. By Lemma 4.9, thetotal number of 
omposants mapped to themselves by σn0
s and hen
e by his F (fn0

s ). Thus, the same is true for σN
t . It follows that |N | ≥ n0 and n0divides |N |. But the number of 
omposants mapped to themselves by σN

t is
F (fN

t ). Thus
F (fn0

s ) = F (fN
t ).On the other hand, sin
e s < t, by Lemma 4.8, F (fn0

s ) < F (fn0

t ). Hen
e
F (fN

t ) < F (fn0

t ),whi
h is a 
ontradi
tion.5. Proof of the Isotopy Theorem. In this se
tion we prove the Iso-topy Theorem stated in the introdu
tion. We have already shown that for anyhomeomorphism g : Xs → Xs su
h that g leaves all the endpoints {ci}n0−1
i=0�xed, there is a k su
h that g and σk permute the 
omposants of Xs in pre-
isely the same way. It is 
lear that for any homeomorphism h : Xs → Xs,
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h that hn leaves ci �xed for i = 0, 1, . . . , n0 − 1. Let kbe the integer su
h that hn and σk permute the 
omposants of Xs the sameway. We now show that hn and σk are a
tually isotopi
.The following lemma is a well known fa
t for the experts in this �eld.Lemma 5.1. Suppose A is an ar
 in Xs not 
ontaining any endpoint of
Xs. Then there is a neighborhood V of A homeomorphi
 to C × I, where
C is a Cantor set. The boundary of V will 
orrespond to C × {0, 1}. More-over , there is a positive integer m su
h that πm maps ea
h 
omponent of Vhomeomorphi
ally onto its image in Im.Proof. Let A be an ar
 in Xs not 
ontaining any endpoint of Xs. By theproof of Lemma 4.1, there is a positive integer m su
h that for ea
h k ≥ m,none of the points ci are in πk(A). In parti
ular, πk|A is a homeomorphism.Let z ∈ A, z = (z0, z1, . . . , zm, . . . ). Let C = {y ∈ Xs | y0 = z0, y1 = z1,
. . . , ym = zm}. Then C is 
ompa
t, totally dis
onne
ted, and every point isa limit point. Therefore C is a Cantor set.Let Jm = πm(A). Fix y ∈ C. Sin
e Jm ∩ {c0, c1, . . . , cn0−1} = ∅, for this
y ∈ C, there is a sequen
e {Ji}∞i=m of intervals su
h that yi ∈ Ji for ea
h
i ≥ m and fs(Ji+1) = Ji for ea
h i ≥ m.We 
an extend the sequen
e {Ji}∞i=m to {Ji}∞i=0 by J0 = fm

s (Jm), J1 =
fm−1

s (Jm), . . . , Jm−1 = fs(Jm). Then for all i = 0, 1, . . . , fs(Ji+1) = Ji and
yi ∈ Ji.Now Jm is homeomorphi
 to

J(y) = lim←−{Ji, fs} ⊂ Xsby the proje
tion πm : Xs → Im. Let gy : Jm → J(y) be the inverse of thishomeomorphism.Finally, let ξ : C × Jm → Xs be de�ned by ξ(y, t) = gy(t). Then V =
ξ(C × Jm) is the required neighborhood.Remark 5.2. In the above proof let x be in the Cantor set C. Note thatthe points z0 and z1 
orresponding to (x, 0) and (x, 1), respe
tively, are inthe same 
omposant. Moreover, d(z0, z1) does not depend on x. That is, thelengths of the 
omponents of V are all the same in the d metri
.Definition 5.3. Suppose {Di}∞i=1 is a sequen
e of nonempty 
ompa
tsubsets of a metri
 spa
e Y . Then lim sup{Di} = {y ∈ Y | for some sub-sequen
e {Dij} and yij ∈ Dij , limj→∞ yij = y}.We let ℓ denote the length of an ar
 under the metri
 d.Lemma 5.4. Let {Ai}∞i=1 be a sequen
e of ar
s in Xs. Suppose Ai → Bin the Hausdor� metri
. Suppose also that there is an M > 0 su
h that
ℓ(Ai) ≤M for all i. Then B is an ar
 and ℓ(B) ≤M .
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h that Ms−N≤ ℓ(IN )/2 = ℓ(Is)/2 = (f(c)− f2(c))/2.Then for every k, πN (Ak) has length at most ℓ(IN )/2. Sin
e Ak → B,
πN (Ak) → πN (B). In parti
ular, πN (B) is a proper subset of IN . It fol-lows that B is a proper sub
ontinuum of Xs. By Lemma 4.1, B is an ar
.Finally, 
hoose j large enough so that πj|B is a homeomorphism. Thenfor ea
h k, sjℓ(πj(Ak)) ≤M , and hen
e ℓ(B) = sjℓ(πj(B)) ≤M .Lemma 5.5. Let {Ai}∞i=1 be a sequen
e of ar
s in Xs with endpoints aiand bi, respe
tively. Suppose that there is a positive number M su
h that
d(ai, bi) ≤M for ea
h i. Suppose also that the sequen
e {ai}∞i=1 
onverges tosome a ∈ Xs. Then B = lim sup{Ai} is an ar
 in Xs and ℓ(B) ≤ 2M .Proof. Let x ∈ B = lim sup{Ai}. Then there is a subsequen
e {Aij}∞j=1su
h that Aij → D ⊂ B in the Hausdor� metri
 with x ∈ D. By Lemma 5.4,
ℓ(D) ≤ M . So, d(a, x) ≤ M . From this it follows that B must be a propersub
ontinuum and thus an ar
 with the ℓ-length of B at most 2M .Lemma 5.6. Let {Ai}∞i=1 be a sequen
e of ar
s in Xs with endpoints aiand bi, respe
tively. Suppose that ai → a and bi → b. Suppose also that thereis an M > 0 su
h that d(ai, bi) ≤ M for all i. Then a and b are in thesame 
omposant of Xs. Let A denote the unique ar
 with endpoints a and b.Suppose that lim supAi does not 
ontain an endpoint of Xs. Then Ai → Ain the Hausdor� metri
.Proof. By the proof of Theorem 4.3, a and b are in the same 
omposant of
Xs and d(a, b)≤M . Let A be the unique ar
 with endpoints a and b. Let B =
lim sup{Ai}. By Lemma 5.5, B is an ar
 with ℓ(B) ≤ 2M . By assumption
B does not 
ontain an endpoint of Xs. So, let V be the neighborhood of Bgiven by Lemma 5.1. Then there is an N su
h that for all n ≥ N , An ⊂ Vsin
e B is the lim sup{Ai}. Therefore for ea
h i ≥ N , Ai ⊂ {yi}× I for some
yi ∈ C. Furthermore, Ai is the subinterval of {yi}× I joining the endpoints.Let a, b ∈ {y} × I. Then

lim
i→∞

Ai = A = B ⊂ {y} × I.Definition 5.7. Consider J ×C ⊂ R
2 where C is the standard middle-third Cantor set and J = [−1, 1]. De�ne an equivalen
e relation ∼ on J ×Cby (t, 1) ∼ (−t, 1) for all t ∈ J . Let Q = J × C/∼. We will think of Qas the union of two sets E and F de�ned in the following way. Let E =

(C∪(−C))× [1, 2] ⊂ R
2. Let F be a Cantor set of semi
ir
les with 
enters at

(0, 1) joining ea
h point of C×{1} with the 
orresponding point of −C×{1}.See Figure 3. Now in the Cantor set C, let C0 be the set of points in C inthe interval between 0 and 1/3, in
lusive. Let C1 be the set of points in Cbetween 2/3 and 7/9, in
lusive. For higher k, let Ck be the subset of C
ontaining the points between (3k − 1)/3k and (3k+1 − 2)/3k+1, in
lusive.
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Fig. 3. Neighborhood of cThen {Ck}∞i=0 is a disjoint 
olle
tion of Cantor sets with Ck → 1 in C and
C =

⋃
∞

i=0 Ci ∪ {1}.Lemma 5.8. Suppose that A is an ar
 in Xs whi
h 
ontains an end-point of Xs. Then there is a neighborhood V of A homeomorphi
 to Q =
C × J/∼.Proof. There is no loss of generality in assuming that c is the endpointof A. Let Aw be the set of points in Cc with the same ba
kward itinerary,
w, and su
h that c ∈ Aw. We know that Aw is a nondegenerate ar
 with
c as one endpoint and some z as the other endpoint, and that π0|Aw

is ahomeomorphism onto [c, ci] or [ci, c] for some 1 ≤ i ≤ n0.De�ne
D0 = {x ∈ Xs | πn0

(x) = c and πi(x) 6= c for all i > n0}.The set D0 is 
ompa
t, totally dis
onne
ted and every point is a limit point,so D0 is a Cantor set.Let x ∈ D0. Then πn0
(x) = c and πi(x) 6= c for all i > n0. There aretwo ar
s Ax and Bx in Xs 
ontaining x as an endpoint, su
h that πn0

(Ax) =
πn0

(Aw), and su
h that πn0
(Ax) and πn0

(Bx) are symmetri
 about c.Similarly, for any k ∈ N ∪ {0}, de�ne
Dk = {x ∈ Xs | π(k+1)n0

(x) = c and πi(x) 6= c for all i > (k + 1)n0}.Then, for any k ∈ N ∪ {0}, the set Dk is a Cantor set. For any x ∈ Dk,there are two ar
s Ax and Bx in Xs 
ontaining x as an endpoint, su
h that
π(k+1)n0

(Ax) = π(k+1)n0
(Aw), and su
h that π(k+1)n0

(Ax) and π(k+1)n0
(Bx)are symmetri
 about c.
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k et al.Let
V =

⋃ {
Ax ∪Bx

∣∣∣ x ∈
∞⋃

k=0

Dk

}
∪Aw.Let (a, b) be the open interval 
ontaining c su
h that fn0((a, b)) is [c, ci) or

(ci, c], where π0(Aw) is [c, ci] or [ci, c]. Then ea
h point of π−1
n0

((a, b)) is in V .Hen
e every point of Aw ex
ept z is an interior point of V .Observe that D = (
⋃

∞

k=0 Dk) ∪ {c}.De�ne a map h : V → Q in the following way. For every k ∈ N ∪ {0},
h sends Dk homeomorphi
ally onto Ck. For every x ∈ Dk, Ax is mappedlinearly onto [−1, 0]×{h(x)}, and Bx is mapped linearly onto [0, 1]×{h(x)},and Aw is mapped linearly to [−1, 0] × {1}. Then h is 1-1, 
ontinuous andonto, hen
e it is a homeomorphism.Now the neighborhood V that we just 
reated may not 
ontain the givenar
 A. However, for k > 1, applying the shift map k times, σkn0(V ), will 
re-ate a longer and thinner neighborhood of the same form with ⋃

∞

k=0 σkn0(V )dense in Xs. Thus, there will be some k for whi
h σkn0(V ) will 
ontain A.Remark 5.9. In the above proof ℓ(Aw) = ℓ(Ax) = ℓ(Bx) for every
x ∈ Dk and every k ∈ N ∪ {0}. Furthermore, there are arbitrarily smallneighborhoods of c homeomorphi
 to Q for whi
h this is true.Theorem 5.10. Suppose that h1 and h2 are homeomorphisms of Xs su
hthat h1(c) = h2(c) = c. Suppose also that there is an M > 0 su
h that
d(h1(y), h2(y)) ≤ M for ea
h y ∈ Cc. Suppose that xi → x in Xs. Let Aibe the unique ar
 joining h1(xi) and h2(xi). Let A be the unique ar
 joining
h1(x) and h2(x). Then Ai → A in the Hausdor� metri
.Proof. We assume the hypotheses and notation of the theorem.
Case 1: The 
omposant 
ontaining x does not 
ontain an endpoint. Inthis 
ase Lemma 5.6 applies sin
e lim sup{Ai}∞i=1 must be in the 
omposantof x whi
h does not 
ontain an endpoint of Xs. Thus, we have Ai → A inthis 
ase.
Case 2: x ∈ Cci

for some i with x 6= ci. By Theorem 4.3, h1(x) and
h2(x) are in the same 
omposant, and this 
omposant must be Ccj

for some j.Let J = [e, cj] be an ar
 in Ccj
su
h that h1(x) ∈ J , h2(x) ∈ J , d(e, h1(x)) >

M +1, d(e, h2(x)) > M +1. Let V be a neighborhood of J as in Lemma 5.8.Consider the ar
 h−1
1 (J)∪h−1

2 (J) in Cci
. Let W be a neighborhood of thisar
 as in Lemma 5.8. By shrinking V in the �verti
al� dire
tion if ne
essary,we may assume that h−1

1 (V ) ∪ h−1
2 (V ) ⊂ W . Let K be a 
omponent of Vwhi
h does not 
ontain cj . By the 
entral point of K we mean the uniquepoint of K whi
h 
orresponds to a point of the form (0, y) in [−1, 1]× C asin De�nition 5.7.
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1 (V ) ∩ h−1

2 (V ) for ea
h n. Sin
e h1(xn)→
h1(x) and h1(xn)→ h2(x), it follows from Remark 5.9 that for n su�
ientlylarge, the d-distan
e from h1(xn) to either endpoint of the 
omponent of V
ontaining h1(xn) is greater than M + 1. Sin
e d(h1(xn), h2(xn)) ≤ M ,it follows that h1(xn) and h2(xn) lie in the same 
omponent of V for nsu�
iently large. Without loss of generality, we assume that this holds forea
h n.For ea
h positive integer n, let Kn denote the 
omponent of V whi
h
ontains h1(xn) and h2(xn), and let wn denote the 
entral point of Kn.Let yn = h−1

1 (wn) and zn = h−1
2 (wn). Then yn and zn lie in the same
omponent of W as xn. Sin
e xn → x, yn → ci, and zn → ci, it follows thatfor n su�
iently large, xn does not lie between yn and zn in a 
omponentof W . Again, we may assume that this holds for ea
h n.For ea
h positive integer n, let Kn = [an, bn]. We may assume that

d(an, wn) > M + 1 and d(bn, wn) > M + 1for ea
h n.We 
laim that for ea
h positive n, h1(xn) and h2(xn) lie on the sameside of wn in Kn. We prove this by 
ontradi
tion. Suppose that h1(xn) and
h2(xn) lie on opposite sides of wn for some n. Re
all that Kn = [an, bn] andsuppose without loss of generality that h1(xn) lies on the same side of wnas an. There is a point pn ∈W with h1(pn) = an. Moreover, pn, xn, yn, and
zn lie in the same 
omponent of W , and in this 
omponent, pn is on one sideof xn, while yn and zn are on the other side.Now, using the monotoni
ity of h2 on a 
omponent, we see that thear
 in Xs with endpoints h1(pn) and h2(pn) 
ontains both an and wn. Thisimplies that d(h1(pn), h2(pn)) > M +1. This is a 
ontradi
tion and the 
laimis established. Sin
e Ai ⊂ V for ea
h i, it follows from the spe
ial form of Vand the 
laim that Ai → A.
Case 3: x = ci for some i. In this 
ase A is just the point {cj}. This 
aseis routine using the stru
ture of the neighborhood of c given in Lemma 5.8.We leave the proof to the reader.One of Cases 1�3 must hold so together they prove Theorem 5.10.Theorem 5.11. Suppose that h1, h2 : Xs → Xs are homeomorphismswhi
h leave the endpoints of Xs �xed. Suppose that there is an M > 0 su
hthat d(h1(x), h2(x)) ≤M for all x ∈ Cc. Then h1 and h2 are isotopi
.Proof. Let H : Xs × I → Xs be de�ned in the following way.Let x ∈ Xs and t ∈ I. By Theorem 4.3, there is a unique ar
 Ax 
onne
t-ing h1(x) and h2(x). Let m ∈ N be su
h that πm|Ax

is a homeomorphism
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k et al.into Im. Let gm : πm(Ax)→ Ax be the inverse of this homeomorphism. Let
H(x, t) = gm((1− t)πm(h1(x)) + tπm(h2(x))).If πk|Ax

is a homeomorphism, then
gk((1− t)πk(h1(x)) + tπk(h2(x)))

= gm((1− t)πm(h1(x)) + tπm(h2(x))).So, H(x, t) is well de�ned. We now show that H is 
ontinuous.Suppose that (xi, ti) → (x, t). Let Ai be the unique ar
 with endpoints
h1(xi), h2(xi). Then h1(xi) → h1(x) and h2(xi) → h2(x). So, if A is theunique ar
 
onne
ting h1(x) and h2(x), whose existen
e is given by Theorem4.3, then, by Theorem 5.10, Ai → A in the Hausdor� metri
.
Case 1: x is not an endpoint. In this 
ase the ar
 A 
onne
ting h1(x)and h2(x) does not 
ontain an endpoint. Let V be a neighborhood of A ofthe form V ≈ C × I with C a Cantor set and I an interval as in Lemma 5.1.Then there is an N su
h that for n ≥ N , the ar
 An is 
ontained in V .Now by Lemma 5.1, there is an m su
h that πm is a homeomorphism ofea
h 
omponent of V onto its image in Im. Therefore for this m and for all

n ≥ N ,
H(xn, tn) = gm((1− tn)πm(h1(xn)) + tnπm(h2(xn)))and

H(x, t) = gm((1− t)πm(h1(x)) + tπm(h2(x))).So, 
learly, H(xn, tn)→ H(x, t).
Case 2: x is an endpoint. In this 
ase h1(x) = h2(x) = x sin
e theendpoints are assumed to be �xed. Therefore A = {x} and thus An → {x}.This implies that H(xn, tn)→ {x} = H(x, t).So, H(x, t) is a homotopy. We now show that it is an isotopy by showingthat for ea
h t, ht(x) = H(x, t) is one-to-one and onto.First we show that ht is one-to-one. Note that ht permutes the 
om-posants of Xs the same way that h1 and h2 do. So, to show that ht isone-to-one it will su�
e to show that ht restri
ted to a 
omposant Cx isone-to-one. Now Cx is the ar
-
omponent of x. This ar
-
omponent withthe d-metri
 is homeomorphi
 to either R or R+. Fix orderings on Cx and

Ch1(x). Now h1 and h2 are homeomorphisms from Cx to Ch1(x) either preserv-ing or reversing the orders of Cx and Ch1(x). However, sin
e the d-distan
ebetween h1 and h2 on Cx is bounded, these either both preserve the ordersor both reverse the orders on Cx and Ch1(x) in the same way. Thus, ht|Cx
isone-to-one.To show that ht is onto is similar.



Inverse limits of tent maps 191We now give the proof of the Isotopy Theorem as outlined at the begin-ning of this se
tion.Proof of the Isotopy Theorem. Let h : Xs → Xs be a homeomorphism.Let n be su
h that hn leaves the endpoints of Xs �xed. By Theorem 4.6,there is an M > 0 and there is a k ∈ Z su
h that d(hn(x), σk(x)) ≤ M forall x ∈ Cc. By Theorem 5.11, hn and σk are isotopi
.
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