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On the lassi�ation of inverse limits of tent mapsbyLouis Blok (Gainesville, FL), Slagjana Jakimovik (Skopje),Lois Kailhofer (Milwaukee, WI) and James Keesling (Gainesville, FL)
Abstrat. Let fs and ft be tent maps on the unit interval. In this paper we givea new proof of the fat that if the ritial points of fs and ft are periodi and the in-verse limit spaes (I, fs) and (I, ft) are homeomorphi, then s = t. This theorem was�rst proved by Kailhofer. The new proof in this paper simpli�es the proof of Kailhofer.Using the tehniques of the paper we are also able to identify ertain isotopies betweenhomeomorphisms on the inverse limit spae.1. Introdution. Given a ontinuous map f of a one-dimensional spaeto itself, one may form an inverse limit spae by using f repeatedly as thebonding map. Spaes formed in this way ommonly appear as attrators indynamial systems [1, 2, 4, 8, 12, 21℄. This motivates the study of suh in-verse systems. It is natural to try to determine when two suh inverse limitsare homeomorphi. In the ase of solenoids, there is a well known harater-ization [1, 15℄. Consider the inverse limit spae for the inverse system wherethe inverse system spaes are eah the interval and the bonding maps areeah some tent map

fs(x) = min{sx, s(1− x)}for x ∈ [0, 1] and s ∈ [1, 2]. This inverse limit spae has also been stud-ied extensively. Any unimodal map without wandering intervals, restritiveintervals, or periodi attrators is onjugate to a tent map (see e.g. [16℄).As onjugate maps have homeomorphi inverse limit spaes, the family oftent maps is more inlusive than it seems at �rst glane. Given parameters
s 6= t it is unknown whether the orresponding inverse limit spaes (I, fs)and (I, ft) ould be homeomorphi where I = [0, 1]. However, partial resultsexist [3, 6, 9, 11, 17, 20℄.
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172 L. Blok et al.In this paper we work with tent maps for whih s ∈ [
√

2, 2] and theturning point is periodi, i.e. letting c denote the turning point, there is somepositive integer n suh that fn
s (c) = c. In [13℄ and [14℄ Kailhofer proved thefollowing result.

Theorem (Kailhofer). Suppose that s, t ∈ [
√

2, 2]. Assume that the turn-ing point is periodi for both fs and ft. Then Xs is homeomorphi to Xt ifand only if s = t.In this theorem, Xs and Xt are the ores of (I, fs) and (I, ft), respetively.These will be de�ned in the next setion. The theorem implies that if (I, fs)and (I, ft) are homeomorphi, then s = t under the given assumptions.Related results appear in [3℄, [9℄, and [19℄.One an extend the same result to the whole interval s ∈ (1, 2] in thefollowing way. For s ∈ (1,
√

2], there are two intervals J1 and J2 in theore Is of fs with pairwise disjoint interiors suh that f2
s |J1

and f2
s |J2

aretopologially onjugate to fs2 |I
s2
. It follows that for s ∈ (1,

√
2], (Is, fs) isdetermined by (Is2 , fs2). Therefore, it is enough to onsider tent maps withslopes in (

√
2, 2].In the present paper we give a simpli�ed proof of Kailhofer's theorem.The proof in this paper uses some of the results in [13℄ together with somenew results. One of the results proved in this paper is of partiular interestin itself.

Isotopy Theorem. Let s ∈ (
√

2, 2). Let Is = [f2
s (c), fs(c)] be the oreof fs. Let Xs = (Is, fs) be the inverse limit of the ore. Let h be any hom-eomorphism of Xs. Then there is a positive integer n and an integer k suhthat hn is isotopi to σk where σ is the shift map on Xs.A weakened version of this theorem will be proved in the early part ofthe paper. In the simpli�ed proof of Kailhofer's theorem, we only need thata ertain homeomorphism h permutes the omposants of Xs in the sameway as σk for some integer k. If h and σk were isotopi, then it would easilyfollow that the omposants of Xs are permuted by them in the same way. Itis only at the end of the paper that we atually show that h and σk are infat isotopi.2. Preliminaries. In this setion we will reall some general de�nitionsand known bakground results needed to state and prove the main resultsof this paper.Let X be a topologial spae. X is an ar if there exists a homeomor-phism from X onto [0, 1]. The omponents of X are the maximal onnetedsubspaes of X. We de�ne N = {0, 1, 2, . . .}, N+ = {1, 2, . . .}, R = (−∞,∞)and R+ = [0,∞).



Inverse limits of tent maps 173A ontinuum is a ompat onneted metri spae. Let X be a ontinuum.The omposant of x ∈ X is the union of all proper subontinua of X thatontain x. An end ontinuum in X is a subontinuum T of X suh thatwhenever T ⊂ H, T ⊂ J for ontinua H, J ⊂ X, then either H ⊂ J or
J ⊂ H. A point x ∈ X is an endpoint of X if {x} is an end ontinuum in X.Note that endpoints are topologial invariants.Let {Xi, di}∞i=0 be a olletion of ompat metri spaes with di boundedby 1, and suh that for eah i, fi : Xi+1 → Xi is a ontinuous map. Theinverse limit spae is

{Xi, fi} =
{
x = (x0, x1, . . . )

∣∣∣ x ∈
∞∏

i=0

Xi, fi(xi+1) = xi, i ∈ N

}
,and has metri d given by

d(x, y) =
∞∑

i=0

di(xi, yi)

2i
.For eah i, πi denotes the projetion map from ∏

∞

i=0 Xi into Xi. Aninverse limit spae {Xi, fi}∞i=0 is a ontinuum if Xi is a ontinuum for every i[18, Theorem 2.4℄. If Xi = X and fi = f for all i, the inverse limit spae isdenoted (X, f), and the map σ : (X, f)→ (X, f) de�ned by σ(x0, x1, . . .) =
(f(x0), x0, x1, . . .) is known as the shift homeomorphism or as the induedhomeomorphism.A ontinuous map f : [a, b] → [a, b] is alled unimodal if there exists aunique turning or ritial point, c, suh that f |[a,c] is inreasing and f |[c,b] isdereasing. For eah x ∈ [a, b], the forward itinerary of x is I(x) = b0b1b2 · · ·where bi = R if f i(x) > c, bi = L if f i(x) < c, and bi = C if f i(x) = c,with the onvention that the itinerary stops after the �rst C. The itineraryof f(c) is known as the kneading sequene of f and it is denoted K(f).The set of itineraries is given the parity-lexiographial ordering in thefollowing way. Set L < C < R. Let W = w0w1 · · · and V = v0v1 · · · be twodistint itineraries and let k be the �rst index where the itineraries di�er. If
k = 0, then W < V if and only if w0 < v0. If k ≥ 1, and w0w1 · · ·wk−1 =
v0v1 · · · vk−1 has an even number of R's, that is, has even parity, then W < Vif and only if wk < vk; if w0w1 · · ·wk−1 = v0v1 · · · vk−1 has an odd number of
R's, that is, has odd parity, then W < V if and only if vk < wk. It is knownthat the map x 7→ I(x) is monotone, that is, if x < y, then I(x) < I(y)(f. [10℄).The modi�ed forward itinerary of f(c), denoted I ′(f(c)), is de�ned asfollows. If K(f) = a0a1 · · · is in�nite, let I ′(f(c)) = K(f). If K(f) =
a0a1 · · · an0−2C, then I ′(f(c)) = (a0a1 · · · a′n0−1)

∞, where a′n0−1 replaesthe terminal C in the kneading sequene and a0a1 · · · a′n0−1 < K(f) in theparity-lexiographial ordering.



174 L. Blok et al.Definition 2.1. Let f : I → I be a unimodal map. Let x = (x0, x1, · · ·)be a point in the inverse limit spae (I, f) of f . The bakward itinerary of x,denoted B(x) = b0b1 · · · , is a sequene of R's and L's suh that(1) bi = R if xi ≥ c and bi = L if xi ≤ c,(2) if xi = c for some i > 0, then b0b1 · · · bi−1 = ai−1ai−2 · · · a1a0, where
I ′(f(c)) = a0a1 · · · .De�ne Bf = {B(x) | x ∈ (I, f)}.Remark 2.2. Suppose that c is periodi with period n0. Let x ∈ (I, f). If

xi 6= c for all i ∈ N, or if xi = c for in�nitely many i ∈ N, then x has exatlyone bakward itinerary. If xi = c for �nitely many i ∈ N, then x has twobakward itineraries that di�er at only one oordinate, max{i ∈ N | xi = c}.Consider the one-parameter family of tent maps fs : I → I, fs(x) =
min{sx, s(1 − x)}, x ∈ I and s ∈ [

√
2, 2]. The tent map fs is unimodal forall s ∈ [

√
2, 2]. From now on, unless otherwise spei�ed, onsider s ∈ (

√
2, 2]�xed suh that the ritial point c of fs has period n0. Write

ci = f i
s(c) and ci = (ci, ci−1, . . . , c1, c, cn0−1, . . . , ci+1)

∞for i = 0, 1, . . . , n0 − 1. Set IL = [c2, c], IR = [c, c1] and Is = [c2, c1]. Then Isis invariant under fs and fs is loally eventually onto on Is, that is, for everynondegenerate interval J ⊂ Is there exists an n > 0 suh that fn
s (J) = Is.The interval Is is known as the ore of fs. The inverse limit spae of (I, fs)is equal to the union of Xs = (Is, fs) with an open ray having Xs as its limitset. To denote the nth oordinate in the inverse system we use In instead of

(Is)n. We know that Xs is indeomposable. Under the assumption that c isperiodi every proper subontinuum of Xs is an ar. Thus, every omposantis a union of ars.The omposant Cx of x ∈ Xs is the set of all points in Xs with bakwarditineraries eventually idential to B(x), that is, y ∈ Cx if and only if thebakward itineraries of x and y di�er in at most �nitely many oordinates(Lemma 4.1).3. De�nitions and results from Kailhofer's paper. In this setionwe give several de�nitions introdued by Kailhofer and some of the resultsfrom her paper [13℄.Definition 3.1. Let w = w0w1 · · · ∈ Bfs
. De�ne

Aw = {x ∈ Xs | πi(x) ∈ Iwi
for all i ∈ N},the set of points in Xs with bakward itinerary w. De�ne

An
w = σn(Aw).Note that Aw = {x ∈ Xs | B(x) = w}.



Inverse limits of tent maps 175Remark 3.2. Eah Aw is a nondegenerate ar ontained in a singleomposant.Lemma 3.3 ([13, Lemma 4℄). Let w ∈ Bfs
. There exist 0 ≤ i 6= j < n0suh that π0|Aw

is a homeomorphism onto [ci, cj ].The proof of this lemma shows that for an interval J ⊂ [c2, c1], fs(gs(J))
6= J if and only if c3 is in the interior of J , where gs is the inverse of themap fs restrited on [c2, c], but for n ≥ n0, fs(g

n
s (J)) = gn−1

s (J).Remark 3.4. Note that if x ∈ Xs is an endpoint of Aw and x 6= ci forany i = 0, 1, . . . , n0 − 1, then x has two bakward itineraries.The following lemma is well known and appears in several publiations.Barge and Martin in [5℄ desribe the basi onstrution of endpoints in
(X, f).Lemma 3.5 ([13, Lemma 8℄). The endpoints of Xs are c, c1, . . . , cn0−1.Remark 3.6. Eah omposant C in Xs has the property that there is aontinuous bijetion either from R+ to C or from R to C.Definition 3.7. Let p ∈ N and 0 ≤ j < n0. De�ne

Φp,j = {x ∈ Cc | πpn0
(x) = cj}, Φp =

n0−1⋃

j=0

Φp,j .The elements of Φp are alled p-speial points.Definition 3.8. Let n, m ∈ N. De�ne En = πn(Φ0) and
Pn,m =

{
z ∈ In

∣∣∣∣ ∃x, y ∈ En, ∃k ∈ {0, 1, . . . , 2m} suh that
(x, y) ∩En = ∅ and z =

kx + (2m − k)y

2m

}
.We see that En partitions In into �nitely many intervals and Pn,m re�nesthat partition by dividing eah interval into 2m subintervals.Definition 3.9. Let n, m ∈ N and let x ∈ Pn,m. If x 6= c2, set y =

max{w ∈ Pn,m | x > w}. If x 6= c1, set z = min{w ∈ Pn,m | x < w}. De�ne
lxn,m =





(y, z) if x ∈ (c2, c1),
[x, z) if x = c2,
(y, z] if x = c1.Let

Ln,m = {lxn,m | x ∈ Pn,m}, Ln,m = {lxn,m | lxn,m = π−1
n (lxn,m), x ∈ Pn,m}.Let U = {Ui}ni=1 be an open over of a topologial spae X. Reall thatthe set U is a haining of the spae X if Ui∩Uj 6= ∅ if and only if |i− j| ≤ 1.



176 L. Blok et al.Let U = {Ui}ni=1 and let V = {Vj}mj=1 be hainings of a topologialspae X. We say that the haining U re�nes the haining V , in symbols
U ≺ V , if for every 1 ≤ i ≤ n, there is 1 ≤ j ≤ m suh that Ui ⊂ Vj .Lemma 3.10 ([13, Lemma 16℄). Fix n, m, i, j ∈ N. Then(1) Ln,m is a haining of In.(2) Ln,m is a haining of Xs.(3) Ln,m ≺ Li,j if n ≥ i, m ≥ j.(4) If x ∈ Φ0, then there is a unique l ∈ Ln,m suh that x ∈ l.(5) mesh(Ln,m)→ 0 as n→∞ and m→∞.Definition 3.11. For eah p ∈ N, de�ne

Wp = {x ∈ Cc | ∃x ∈ Apn0

v ∩Apn0

w , v 6= w ∈ Bf} ∪ {c}.If x ∈ Wp, then x is alled a p-wrapping point. There is a natural orderon the set of all p-wrapping points with x < y if h−1(x) < h−1(y) for anyontinuous bijetion h : R+ → Cc.Lemma 3.12. Fix p ∈ N. Then(1) Wp = {x ∈ Cc | ∃n ≥ pn0 suh that πn(x) = c}.(2) Wp+1 ⊂ Φp+1 ⊂Wp.(3) σn0(Wp) = Wp+1.

Example 3.1. Let T be the tent map with kneading sequene RLRRC.Figure 1 shows the p-wrapping points and the (p+1)-wrapping points of Cc.
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Fig. 1. The projetions of the p-wrapping points • and the (p + 1)-wrapping points ◦Proposition 3.13 ([13, Proposition 25℄). Fix p, m, k ∈ N, 0 ≤ k < n0.If D is a omponent of Cc ∩ lck
n,m, then the losure of D is an ar and Dontains exatly one element of Φp,k.



Inverse limits of tent maps 177Definition 3.14. Let x ∈ Wp\{c}. Let k ∈ N be suh that pn0 + k =
max{n | πn(x) = c}. De�ne the p-level of x by Lp(x) = k. Set Lp(c) =∞.The set {Lp(x) | x ∈Wp\{c}} is unbounded. Note that x ∈Wp+1 if andonly if Lp(x) ≥ n0.
Example 3.2. Let T be the tent map with kneading sequene RLRRC.Figure 2 shows the 5p-projetions of the p-wrapping points of Cc, markedby •, and the p-levels of the orresponding p-wrapping points of Cc.
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∞ 1 3 1 0 2 0 4 0 2 0 6 0 2 0 4 0 2 0 1 8 1 0 2 0 4 0p-level:Fig. 2. The p-levels of the p-wrapping points of the omposant of c

Proposition 3.15 ([13, Proposition 29℄). Let p ∈ N and w < v in Cc besuh that πpn0
(w) = πpn0

(v). There exists a p-wrapping point z suh that w <
z < v. Additionally , if both w and v are p-wrapping points, then there existsa p-wrapping point z suh that w < z < v and Lp(z) > min{Lp(w), Lp(v)}.Definition 3.16. Fix p ∈ N. Let H be an ar in the omposant of cwith Int(H) ∩Wp = {h1, . . . , hn−1} and ∂H = {h0, hn}.(1) The ar H is p-symmetri if πpn0

(h0) = πpn0
(hn) and Lp(hi) =

Lp(hn−i) for all 0 < i < n.(2) The ar H is p-pseudosymmetri if πpn0
(hi) = πpn0

(hn−i) for all
0 ≤ i ≤ n.If H is p-pseudosymmetri or p-symmetri, then n is even and the enterof H, denoted κH , is the point hn/2.Remark 3.17. Fix p ∈ N and let H ⊂ Cc be an ar. If H is p-pseudo-symmetri, then H is q-pseudosymmetri for all q < p. If H is p-symmetri,then H is q-symmetri for all q ∈ N suh that qn0 < pn0 + Lp(κH).



178 L. Blok et al.Proposition 3.18 ([13, Proposition 34℄). Let p ∈ N and w ∈ Wp\{c}suh that Lp(w) 6= 0. Let H be the union of all p-symmetri ars with en-ter w. There exists a p-wrapping point v ∈ H suh that Lp(v) > Lp(w).Furthermore, v is an endpoint of H.Remark 3.19. Let H be a p-symmetri ar in Cc and let L = Lp(κH).Proposition 3.18 implies that all the interior points in H have p-levels smallerthan L, hene πpn0+L|H is a homeomorphism.Definition 3.20. The set Φp,0 partitions the omposant of c into ount-ably many ars alled p-gaps.For any p-gap H, c /∈ πpn0
(Int(H)) and πpn0

(∂H) = {c}. The intersetionof any two p-gaps is at most one point.Lemma 3.21. For any p ∈ N, a p-gap is p-symmetri.Proof. Fix p ∈ N. Let H be a p-gap and ∂H = {y, z}. Let x ∈ Int(H) be a
p-wrapping point with largest p-level, say L. Suppose H is not p-symmetri.Then fs(πpn0+L(y)) 6= fs(πpn0+L(z)), hene there is a p-wrapping point
w ∈ Int(H) suh that fs(πpn0+L(w)) is equal to either fs(πpn0+L(y)) or
fs(πpn0+L(z)). This implies that πpn0

(w) = c, whih ontradits H being a
p-gap.The proof of the previous lemma is longer than the one given by Kailhofer,but it is self-ontained.Definition 3.22. Fix p, q ∈ N. Let G be a p-gap with G ∩ Wp =
{g0, g1, . . . , gn} and H be a q-gap with H ∩ Wq = {h0, h1, . . . , hm}. Thegaps G and H are of the same type if n = m and πpn0

(gi) = πqn0
(hi) for all

0 ≤ i ≤ n.Proposition 3.23 ([13, Proposition 41℄). Fix p, q ∈ N. Let G be a p-gapand H a q-gap. If Lp(κH) = Lq(κG), then G and H are of the same type.Definition 3.24. Fix p ∈ N and let G be a p-gap. The ars betweentwo onseutive p-wrapping points in G are alled legs of G.The �rst p-gap in the omposant of c is denoted Fp.Lemma 3.25. Fix p ∈ N and let G be a p-gap. Then(1) The �rst leg of G ontains a (p− 1)-gap [13, Lemma 46℄.(2) The �rst (p− 1)-gap in G is of the same type as Fp [13, Prop. 47℄.Definition 3.26. Fix p ∈ N. De�ne ϕ = Lp(κFp
).Remark 3.27. Sine the type of Fp does not depend on p, ϕ does notdepend on p. Sine Fp is ontained in the �rst leg of Fp+1, the enter of Fpis not a (p + 1)-wrapping point, hene ϕ = Lp(κFp
) < n0. Note also that

πpn0
(κFp

) = cϕ.



Inverse limits of tent maps 179Now, onsider a homeomorphism h : (I, f) → (I, f) with h(c) = c. (If
h(c) = ci, where 0 < i < n0, onsider the map h = σ−i ◦ h.)Fix m, n, p, q ∈ N suh that h(Lqn0,n) ≺ Lpn0,m. If h(cj) = ci for 0 ≤
i, j < n0, then h(l

cj
qn0,n) ⊂ lci

pn0,m. This implies that h(Φq,j) ⊂ lci
pn0,m. ByProposition 3.13, every omponent of l

cj
qn0,n ontains exatly one elementof Φq,j . Sine two onseutive points of Φq lie in two di�erent links, eahomponent of lci

pn0,m ontains at most one element of h(Φq,j). Thus, h induesa one-to-one map hq,p : Φq → Φp, de�ned as follows.Definition 3.28. Fix m, n, p, q ∈ N suh that h(Lqn0,n) ≺ Lpn0,m. If
w ∈ Φq,j and h(cj) = ci for 0 ≤ i, j < n0, then hq,p(w) is de�ned as theelement of Φp,i that lies in the same omponent of lci

pn0,m as h(w).If G is an ar in the omposant of c with ∂G = {x, y} ⊂ Φq, let h̃q,p(G)be the ar between hq,p(x) and hq,p(y).Theorem 3.29 ([13, Corollary 67℄). Fix positive integers m, n, p, q suhthat h(Lqn0,n) ≺ Lpn0,m. If H is a q-pseudosymmetri ar in the omposantof c with ∂H ⊂ Φq, then h̃q,p(H) is p-pseudosymmetri.Lemma 3.30 ([13, Lemma 68℄). Let p ∈ N. Let G and H be distint
p-pseudosymmetri ars in the omposant of c suh that c ∈ G and c ∈ H.Then G ⊂ H if and only if Lp(κG) < Lp(κH).Theorem 3.31 ([13, Corollary 71℄). Fix m, n, p, q, u, v ∈ N suh that
h(Lqn0,n) ≺ Lpn0,m ≺ h(Lun0,v). If h̃q,p(Fq) = Ft for some t ∈ N, then
hq,p(Φq+k,0) = Φt+k,0 for all k ∈ N+.4. Main result. The following lemma is a well known result (see Bruksand Diamond [8℄ and Bruks and Bruin [7℄).Lemma 4.1. Suppose that A is a proper subontinuum of Xs. There isa nonnegative integer k suh that πk|A is a homeomorphism. In partiular ,
A is an ar. Moreover , for any two points x, y ∈ A, B(x) and B(y) agreeafter the �rst k entries.Proof. If there is a nonnegative integer m suh that for eah j > m,
c 6∈ πj(A), then fs|πj(A) is a homeomorphism for eah j > m, and the on-lusion follows easily. So, we may assume that c ∈ πj(A) for arbitrarily largeinteger j. Sine c is periodi under fs, it follows that for eah nonnegativeinteger j, πj(A) ontains at least one of the points c0, c1, . . . , cn0−1. Sine fsis loally eventually onto, there is a nonnegative integer k suh that for eahinteger j > k, πj(A) ontains exatly one of the points c0, c1, . . . , cn0−1.We omplete the proof by showing that for eah j > k the element of
{c0, c1, . . . , cn0−1} whih is in πj(A) is an endpoint of πj(A). In partiular, foreah j > k, c is not in the interior of πj(A), so fs|πj(A) is a homeomorphism.



180 L. Blok et al.Suppose j > k. Sine c is periodi, there is an integer m > j suh that
c1 ∈ πm(A). Sine c1 is an endpoint of Is, it follows that c1 is an endpoint of
πm(A). Sine c is not in the interior of πm(A), fs|πm(A) is a homeomorphism.Thus c2 is an endpoint of πm−1(A). If m−1 > j, we may repeat this argumentand onlude that c3 is an endpoint of πm−2(A). By repeating the argumentindutively, it follows that the element of {c0, c1, . . . , cn0−1} whih is in πj(A)is an endpoint of πj(A).Let x ∈ Xs. By Remark 3.6, there is a natural order on the elements ofthe omposant of x. With the order topology, Cx will be alled the unravelledomposant of x.Remark 4.2. Note that the map hq,p is order-preserving.We will put a spei� metri on the unravelled omposant whih is derivedfrom the inverse limit system. Let x, y be in the same omposant C ⊂ Xs.Then there is an ar A ⊂ C with endpoints x and y. By Lemma 4.1, thereis a nonnegative integer k suh that πk|A is a homeomorphism. De�ne

d(x, y) = sk|πk(x)− πk(y)|.Note that if m ≥ k, then d(x, y) = sm|πm(x)−πm(y)|. Thus, d is well de�nedfor every pair of points in the same omposant C. We may onsider (C, d)either as R+ or R depending on whether C has an endpoint or not.Theorem 4.3. Let h1, h2 : Xs → Xs be homeomorphisms whih map Ccto itself. Suppose that there is M ∈ N+ suh that d(h1(z), h2(z)) ≤ M forall z ∈ Cc. Then h1(Cx) = h2(Cx) for all x ∈ Xs. Furthermore, for every
x ∈ Xs, d(h1(x), h2(x)) ≤M .Proof. Let x ∈ Xs. If x ∈ Cc, then h1(Cc) = h2(Cc) by assumption.Suppose that x /∈ Cc. Sine Cc is dense in Xs, there is a sequene {xn}∞n=1in Cc whih onverges to x. Then hi(xn) onverges to hi(x) for i = 1, 2.Consider the unique ars An ⊂ Cc with endpoints h1(xn) and h2(xn). Byassumption the length of An in Cc is less than or equal to M . Let k > 0 bean integer suh that M ≤ sk(c1 − c2). Then πk(An) is a proper subset of
[c2, c1] sine the length of πk(An) is less than M/sk < c1 − c2.Let C(Xs) denote the spae of nonempty subontinua of Xs with theHausdor� metri. Then πk : Xs → [c2, c1] indues a ontinuous map πk :
C(Xs) → C([c2, c1]). Sine C(Xs) is a ompat metri spae, the sequene
{An} has a subsequene {Anj

} onverging to some A ∈ C(Xs). Note that
hi(xnj

) onverges to hi(x) for i = 1, 2. So, hi(x) ∈ A for i = 1, 2. Sine πk :

C(Xs)→ C([c2, c1]) is ontinuous, πk(A) has length at most M/sk < c1− c2.Thus, A must be a proper subontinuum of Xs. Thus, h1(x) and h2(x) arein the same omposant of Xs. This implies that h1(Cx) = h2(Cx).



Inverse limits of tent maps 181Sine x is arbitrary, the above also proves the last statement of the the-orem.Reall that the shift homeomorphism, σ : Xs → Xs, is de�ned by
σ((x0, x1, . . . )) = (fs(x0), x0, x1, . . . ).Lemma 4.4. There is a positive integer B suh that for any p ∈ N thenumber of legs in a p-gap is at most B.Proof. Sine fs is loally eventually onto, there is K ∈ N suh that if Jis an interval whih ontains two points in the orbit of c, then fK

s (J) = Is.Fix p ∈ N. Let H be a p-gap and L = Lp(κH). Let HR be the aronneting the enter of H and the right endpoint of H. Then πpn0+L(HR)is an interval with one endpoint c and πpn0+L|HR
is a homeomorphism. Notealso that

fL
s (πpn0+L(HR)) = πpn0

(HR) = πpn0
(H)is an interval with one endpoint c.If fL

s |πpn0+L(HR) is linear, then there are at most two legs in H. Suppose
fL

s |πpn0+L(HR) is not linear. There is a least n ∈ N suh that fn
s (πpn0+L(HR))ontains two points in the orbit of c. This implies that H has at most 2L−nlegs. Sine πpn0

(HR) is a proper subset of [c2, c1], we have L−n < K, henethe number of legs in H is at most 2K .Remark 4.5. One might be led to onjeture that the number of distinttypes of p-gaps in Cc is n0 − 1 for any p ∈ N. However, for s suh that thekneading sequene is RLLRRRLC, there are at least eight p-gaps.Theorem 4.6. Let h : Xs → Xs be a homeomorphism whih maps eahendpoint , ci for 0 ≤ i ≤ n0− 1, to itself. Then there exists an integer N anda positive number M suh that d(h(x), σN(x)) < M for all x ∈ Cc.Proof. For onveniene of referral, two points of any subset of Cc are saidto be adjaent in that set if the ar onneting those two points ontainsno other points of that set. Note that if x and y are adjaent in Φp, then
d(x, y) < spn0 .By Lemma 3.10(5), given u, v ∈ N, there are p, m ∈ N suh that Lpn0,m ≺
h(Lun0,v), and there are q, r ∈ N suh that h(Lqn0,r) ≺ Lpn0,m. Fix p, m, q, r,
u, v ∈ N suh that h(Lqn0,r) ≺ Lpn0,m ≺ h(Lun0,v).Sine Fq is q-symmetri, by Theorem 3.29, h̃q,p(Fq) is p-pseudosymmetriand hq,p(κFq

) = κ
h̃q,p(Fq)

. Let L = Lp(κh̃q,p(Fq)
) and t be the largest positiveinteger with the property tn0 < pn0 + L. Obviously t ≥ p. Sine h(ci) = cifor all 0 ≤ i < n0, we see that πpn0

(κ
h̃q,p(Fq)

) = πqn0
(κFq

), whih, by Remark3.27, is equal to cϕ. From De�nition 3.26, we have Lt(κFt
) = ϕ. Thus

Lp(κFt
) = Lt(κFt

) + (t− p)n0 = ϕ + (t− p)n0 = L = Lp(κh̃q,p(Fq)
).



182 L. Blok et al.Hene, by Lemma 3.30,
Ft = h̃q,p(Fq).By Theorem 3.31 it follows that for every k ∈ N+,

hq,p(Φq+k,0) = Φt+k,0.By Remark 4.2, hq,p is order-preserving on the set Φt+k,0 for any k ∈ N+.From the de�nition of σ and sine σ(t−q)n0 is order-preserving as well, it iseasy to see that σ(t−q)n0(Φq+k,0) = Φt+k,0 for any k ∈ N+. Therefore, forevery x ∈ Φq+1,0, we have hq,p(x) = σ(t−q)n0(x). By De�nition 3.28, for any
x ∈ Φq+1,0, h(x) lies between two adjaent p-speial points, one of whih is
hq,p(x). Sine the distane between two speial points is less than spn0 , wehave

d(h(x), σ(t−q)n0(x)) = d(h(x), hq,p(x)) < spn0for any x ∈ Φq+1,0.The length of any leg of a (t + 1)-gap is bounded by s(t+1)n0 as π(t+1)n0restrited to the leg is a homeomorphism. Sine the number of legs in a
(t + 1)-gap is bounded by B by Lemma 4.4, it follows that the length of a
(t+1)-gap is bounded. Namely, if x and y are the endpoints of a (t+1)-gap,then d(x, y) < l, where

l = Bs(t+1)n0.Let N = (t− q)n0 and M = spn0 + l. Let x ∈ Cc. If x ∈ Φq+1,0, then
d(h(x), σN(x)) < spn0 < M.If x 6∈ Φq+1,0, then there exist y and z adjaent in Φq+1,0 suh that the

(q + 1)-gap whose endpoints are y and z, ontains x. As y, z ∈ Φq+1,0, wehave hq,p(y) = σN (y) and hq,p(z) = σN (z). Sine h is a homeomorphism,the ar onneting h(y) and h(z) ontains h(x). Similarly, the ar onneting
σN (y) and σN (z) ontains σN (x). Thus,

d(h(x), σN(x)) < max{d(σN(x), h(y)), d(σN(x), h(z))}.Sine σN sends a (q + 1)-gap to a (t + 1)-gap,
d(σN(z), σN(y)) < l.Sine h(y) lies between two adjaent p-speial points, one of whih is σN (y),

d(h(y), σN(y)) < spn0 .Therefore
d(σN (x), h(y)) ≤ d(σN(x), σN(y)) + d(σN(y), h(y))

< d(σN(z), σN(y)) + d(σN(y), h(y)) < l + spn0 = M.Similarly, d(σN(x), h(z)) < M . Thus,
d(σN(x), h(x)) < M.



Inverse limits of tent maps 183Corollary 4.7. Let h : Xs → Xs be a homeomorphism whih mapseah endpoint , ci for 0 ≤ i ≤ n0 − 1, to itself. Then there is an integer Nsuh that h(Cx) = σN (Cx) for all x ∈ Xs.We adopt the following notation. If k is a positive integer, we let F (fk
s )denote the number of �xed points of fk

s in Is.Lemma 4.8. Suppose √2 < s < t < 2 and for eah of the tent maps fsand ft, the ritial point is periodi with period n0. Then
F (fn0

s ) < F (fn0

t ).Proof. Sine eah point in the orbit of the ritial point is a �xed pointof fn0

t and the same holds for fn0
s , we need only onsider �xed points of fn0

tand fn0
s whih are not in the orbit of the ritial point. Suppose y is suha �xed point of fn0

s . Then the forward itinerary I(y) equals S∞ for somesequene S of length n0 of L's and R's. By [10, Theorem II.3.8℄ there is a�xed point z of fn0

t with I(z) = S∞.We omplete the proof by showing that there is a sequene T of length n0of L's and R's suh that there is a �xed point of fn0

t with itinerary T∞ butno �xed point of fn0
s has this itinerary. The itinerary of fs(c) is of the form

DC where D is a sequene of length n0 − 1 of L's and R's. We an modify
fs to onstrut a unimodal map g with the same kneading sequene as fssuh that on the orbit of c, g = fs, but for a small nondegenerate interval Jwith right endpoint g(c) eah point of J is periodi under g with period n0.The itinerary of a point in J other than g(c) is of the form T∞, where T isa sequene of L's and R's of length n0. Moreover, T is shift maximal and Tis either DR or DL. It follows that no �xed point of fn0

s has itinerary T∞,but by [10, Theorem II.3.8℄ there is a �xed point of fn0

t with itinerary T∞.Lemma 4.9. Let s ∈ (
√

2, 2). For any integer m, the number of om-posants mapped to themselves by σm
s is F (fm

s ).Proof. Without loss of generality we may assume that m > 0.Our �rst laim is that there is at most one periodi point in eah om-posant of Xs.Suppose not. There is a omposant C in Xs with at least two distintperiodi points of σs, say x = (x0, x1, . . . ) and y = (y0, y1, . . . ). Then thereis a positive integer k suh that σk
s (x) = x and σk

s (y) = y. In partiular,
fk

s (xk−1) = xk−1 and fk
s (yk−1) = yk−1. Note that xk−1 6= yk−1. Sine xand y are in the same omposant, they have eventually the same bakwarditinerary. Thus, there is some positive integer N suh that for all n ≥ N , xnand yn are on the same side of c. (By this we mean either both xn ≥ c and

yn ≥ c, or both xn ≤ c and yn ≤ c.) Sine x and y are periodi, it followsthat for eah integer j = 0, 1, . . . , k− 1, xj and yj are on the same side of c.



184 L. Blok et al.Hene for eah integer j ≥ 0, f j
s (xk−1) and f j

s (yk−1) are on the same sideof c. This is impossible sine xk−1 6= yk−1 and fs is a tent map with a slope
s > 1. This proves the �rst laim.Our next laim is that eah omposant mapped to itself by σm

s ontainsa �xed point of σm
s .Suppose C is a omposant in Xs with σm

s (C) = C. If x, y ∈ C, then
d(σm

s (x), σm
s (y)) = smd(x, y).Hene σ−m

s is a ontration and has a �xed point. This proves our seondlaim.It follows from the laims that the number of omposants mapped tothemselves by σm
s is equal to the number of points �xed by σm

s . By de�nitionof σs, this number is equal to the number of �xed points of fm
s . By de�nition,this number is F (fm

s ).Theorem 4.10. Let s, t ∈ (
√

2, 2) be suh that fs and ft have periodiritial points. Then Xs and Xt are homeomorphi if and only if s = t.Proof. It is well known that if Xs and Xt are homeomorphi and theritial point of fs is periodi, then the ritial point of ft is also periodiwith the same period. Thus, there is no loss in generality in assuming thatthe period of the ritial points for fs and ft are both periodi of period n0.Suppose s < t. Assume there is a homeomorphism g : Xs → Xt.Consider the map h : Xt → Xt, h = g ◦σn0
s ◦g−1. Then h is a homeomor-phism, and it maps eah omposant with an endpoint to itself. By Corol-lary 4.7, there is an integer N suh that h(Cx) = σN

t (Cx) for all x ∈ Xt.Sine σn0
s maps eah omposant with an endpoint to itself, the same is truefor h. Thus σN

t also maps eah endpoint of Xt to itself. By Lemma 4.9, thetotal number of omposants mapped to themselves by σn0
s and hene by his F (fn0

s ). Thus, the same is true for σN
t . It follows that |N | ≥ n0 and n0divides |N |. But the number of omposants mapped to themselves by σN

t is
F (fN

t ). Thus
F (fn0

s ) = F (fN
t ).On the other hand, sine s < t, by Lemma 4.8, F (fn0

s ) < F (fn0

t ). Hene
F (fN

t ) < F (fn0

t ),whih is a ontradition.5. Proof of the Isotopy Theorem. In this setion we prove the Iso-topy Theorem stated in the introdution. We have already shown that for anyhomeomorphism g : Xs → Xs suh that g leaves all the endpoints {ci}n0−1
i=0�xed, there is a k suh that g and σk permute the omposants of Xs in pre-isely the same way. It is lear that for any homeomorphism h : Xs → Xs,



Inverse limits of tent maps 185there is an n > 0 suh that hn leaves ci �xed for i = 0, 1, . . . , n0 − 1. Let kbe the integer suh that hn and σk permute the omposants of Xs the sameway. We now show that hn and σk are atually isotopi.The following lemma is a well known fat for the experts in this �eld.Lemma 5.1. Suppose A is an ar in Xs not ontaining any endpoint of
Xs. Then there is a neighborhood V of A homeomorphi to C × I, where
C is a Cantor set. The boundary of V will orrespond to C × {0, 1}. More-over , there is a positive integer m suh that πm maps eah omponent of Vhomeomorphially onto its image in Im.Proof. Let A be an ar in Xs not ontaining any endpoint of Xs. By theproof of Lemma 4.1, there is a positive integer m suh that for eah k ≥ m,none of the points ci are in πk(A). In partiular, πk|A is a homeomorphism.Let z ∈ A, z = (z0, z1, . . . , zm, . . . ). Let C = {y ∈ Xs | y0 = z0, y1 = z1,
. . . , ym = zm}. Then C is ompat, totally disonneted, and every point isa limit point. Therefore C is a Cantor set.Let Jm = πm(A). Fix y ∈ C. Sine Jm ∩ {c0, c1, . . . , cn0−1} = ∅, for this
y ∈ C, there is a sequene {Ji}∞i=m of intervals suh that yi ∈ Ji for eah
i ≥ m and fs(Ji+1) = Ji for eah i ≥ m.We an extend the sequene {Ji}∞i=m to {Ji}∞i=0 by J0 = fm

s (Jm), J1 =
fm−1

s (Jm), . . . , Jm−1 = fs(Jm). Then for all i = 0, 1, . . . , fs(Ji+1) = Ji and
yi ∈ Ji.Now Jm is homeomorphi to

J(y) = lim←−{Ji, fs} ⊂ Xsby the projetion πm : Xs → Im. Let gy : Jm → J(y) be the inverse of thishomeomorphism.Finally, let ξ : C × Jm → Xs be de�ned by ξ(y, t) = gy(t). Then V =
ξ(C × Jm) is the required neighborhood.Remark 5.2. In the above proof let x be in the Cantor set C. Note thatthe points z0 and z1 orresponding to (x, 0) and (x, 1), respetively, are inthe same omposant. Moreover, d(z0, z1) does not depend on x. That is, thelengths of the omponents of V are all the same in the d metri.Definition 5.3. Suppose {Di}∞i=1 is a sequene of nonempty ompatsubsets of a metri spae Y . Then lim sup{Di} = {y ∈ Y | for some sub-sequene {Dij} and yij ∈ Dij , limj→∞ yij = y}.We let ℓ denote the length of an ar under the metri d.Lemma 5.4. Let {Ai}∞i=1 be a sequene of ars in Xs. Suppose Ai → Bin the Hausdor� metri. Suppose also that there is an M > 0 suh that
ℓ(Ai) ≤M for all i. Then B is an ar and ℓ(B) ≤M .



186 L. Blok et al.Proof. Let N be suh that Ms−N≤ ℓ(IN )/2 = ℓ(Is)/2 = (f(c)− f2(c))/2.Then for every k, πN (Ak) has length at most ℓ(IN )/2. Sine Ak → B,
πN (Ak) → πN (B). In partiular, πN (B) is a proper subset of IN . It fol-lows that B is a proper subontinuum of Xs. By Lemma 4.1, B is an ar.Finally, hoose j large enough so that πj|B is a homeomorphism. Thenfor eah k, sjℓ(πj(Ak)) ≤M , and hene ℓ(B) = sjℓ(πj(B)) ≤M .Lemma 5.5. Let {Ai}∞i=1 be a sequene of ars in Xs with endpoints aiand bi, respetively. Suppose that there is a positive number M suh that
d(ai, bi) ≤M for eah i. Suppose also that the sequene {ai}∞i=1 onverges tosome a ∈ Xs. Then B = lim sup{Ai} is an ar in Xs and ℓ(B) ≤ 2M .Proof. Let x ∈ B = lim sup{Ai}. Then there is a subsequene {Aij}∞j=1suh that Aij → D ⊂ B in the Hausdor� metri with x ∈ D. By Lemma 5.4,
ℓ(D) ≤ M . So, d(a, x) ≤ M . From this it follows that B must be a propersubontinuum and thus an ar with the ℓ-length of B at most 2M .Lemma 5.6. Let {Ai}∞i=1 be a sequene of ars in Xs with endpoints aiand bi, respetively. Suppose that ai → a and bi → b. Suppose also that thereis an M > 0 suh that d(ai, bi) ≤ M for all i. Then a and b are in thesame omposant of Xs. Let A denote the unique ar with endpoints a and b.Suppose that lim supAi does not ontain an endpoint of Xs. Then Ai → Ain the Hausdor� metri.Proof. By the proof of Theorem 4.3, a and b are in the same omposant of
Xs and d(a, b)≤M . Let A be the unique ar with endpoints a and b. Let B =
lim sup{Ai}. By Lemma 5.5, B is an ar with ℓ(B) ≤ 2M . By assumption
B does not ontain an endpoint of Xs. So, let V be the neighborhood of Bgiven by Lemma 5.1. Then there is an N suh that for all n ≥ N , An ⊂ Vsine B is the lim sup{Ai}. Therefore for eah i ≥ N , Ai ⊂ {yi}× I for some
yi ∈ C. Furthermore, Ai is the subinterval of {yi}× I joining the endpoints.Let a, b ∈ {y} × I. Then

lim
i→∞

Ai = A = B ⊂ {y} × I.Definition 5.7. Consider J ×C ⊂ R
2 where C is the standard middle-third Cantor set and J = [−1, 1]. De�ne an equivalene relation ∼ on J ×Cby (t, 1) ∼ (−t, 1) for all t ∈ J . Let Q = J × C/∼. We will think of Qas the union of two sets E and F de�ned in the following way. Let E =

(C∪(−C))× [1, 2] ⊂ R
2. Let F be a Cantor set of semiirles with enters at

(0, 1) joining eah point of C×{1} with the orresponding point of −C×{1}.See Figure 3. Now in the Cantor set C, let C0 be the set of points in C inthe interval between 0 and 1/3, inlusive. Let C1 be the set of points in Cbetween 2/3 and 7/9, inlusive. For higher k, let Ck be the subset of Containing the points between (3k − 1)/3k and (3k+1 − 2)/3k+1, inlusive.
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Fig. 3. Neighborhood of cThen {Ck}∞i=0 is a disjoint olletion of Cantor sets with Ck → 1 in C and
C =

⋃
∞

i=0 Ci ∪ {1}.Lemma 5.8. Suppose that A is an ar in Xs whih ontains an end-point of Xs. Then there is a neighborhood V of A homeomorphi to Q =
C × J/∼.Proof. There is no loss of generality in assuming that c is the endpointof A. Let Aw be the set of points in Cc with the same bakward itinerary,
w, and suh that c ∈ Aw. We know that Aw is a nondegenerate ar with
c as one endpoint and some z as the other endpoint, and that π0|Aw

is ahomeomorphism onto [c, ci] or [ci, c] for some 1 ≤ i ≤ n0.De�ne
D0 = {x ∈ Xs | πn0

(x) = c and πi(x) 6= c for all i > n0}.The set D0 is ompat, totally disonneted and every point is a limit point,so D0 is a Cantor set.Let x ∈ D0. Then πn0
(x) = c and πi(x) 6= c for all i > n0. There aretwo ars Ax and Bx in Xs ontaining x as an endpoint, suh that πn0

(Ax) =
πn0

(Aw), and suh that πn0
(Ax) and πn0

(Bx) are symmetri about c.Similarly, for any k ∈ N ∪ {0}, de�ne
Dk = {x ∈ Xs | π(k+1)n0

(x) = c and πi(x) 6= c for all i > (k + 1)n0}.Then, for any k ∈ N ∪ {0}, the set Dk is a Cantor set. For any x ∈ Dk,there are two ars Ax and Bx in Xs ontaining x as an endpoint, suh that
π(k+1)n0

(Ax) = π(k+1)n0
(Aw), and suh that π(k+1)n0

(Ax) and π(k+1)n0
(Bx)are symmetri about c.



188 L. Blok et al.Let
V =

⋃ {
Ax ∪Bx

∣∣∣ x ∈
∞⋃

k=0

Dk

}
∪Aw.Let (a, b) be the open interval ontaining c suh that fn0((a, b)) is [c, ci) or

(ci, c], where π0(Aw) is [c, ci] or [ci, c]. Then eah point of π−1
n0

((a, b)) is in V .Hene every point of Aw exept z is an interior point of V .Observe that D = (
⋃

∞

k=0 Dk) ∪ {c}.De�ne a map h : V → Q in the following way. For every k ∈ N ∪ {0},
h sends Dk homeomorphially onto Ck. For every x ∈ Dk, Ax is mappedlinearly onto [−1, 0]×{h(x)}, and Bx is mapped linearly onto [0, 1]×{h(x)},and Aw is mapped linearly to [−1, 0] × {1}. Then h is 1-1, ontinuous andonto, hene it is a homeomorphism.Now the neighborhood V that we just reated may not ontain the givenar A. However, for k > 1, applying the shift map k times, σkn0(V ), will re-ate a longer and thinner neighborhood of the same form with ⋃

∞

k=0 σkn0(V )dense in Xs. Thus, there will be some k for whih σkn0(V ) will ontain A.Remark 5.9. In the above proof ℓ(Aw) = ℓ(Ax) = ℓ(Bx) for every
x ∈ Dk and every k ∈ N ∪ {0}. Furthermore, there are arbitrarily smallneighborhoods of c homeomorphi to Q for whih this is true.Theorem 5.10. Suppose that h1 and h2 are homeomorphisms of Xs suhthat h1(c) = h2(c) = c. Suppose also that there is an M > 0 suh that
d(h1(y), h2(y)) ≤ M for eah y ∈ Cc. Suppose that xi → x in Xs. Let Aibe the unique ar joining h1(xi) and h2(xi). Let A be the unique ar joining
h1(x) and h2(x). Then Ai → A in the Hausdor� metri.Proof. We assume the hypotheses and notation of the theorem.
Case 1: The omposant ontaining x does not ontain an endpoint. Inthis ase Lemma 5.6 applies sine lim sup{Ai}∞i=1 must be in the omposantof x whih does not ontain an endpoint of Xs. Thus, we have Ai → A inthis ase.
Case 2: x ∈ Cci

for some i with x 6= ci. By Theorem 4.3, h1(x) and
h2(x) are in the same omposant, and this omposant must be Ccj

for some j.Let J = [e, cj] be an ar in Ccj
suh that h1(x) ∈ J , h2(x) ∈ J , d(e, h1(x)) >

M +1, d(e, h2(x)) > M +1. Let V be a neighborhood of J as in Lemma 5.8.Consider the ar h−1
1 (J)∪h−1

2 (J) in Cci
. Let W be a neighborhood of thisar as in Lemma 5.8. By shrinking V in the �vertial� diretion if neessary,we may assume that h−1

1 (V ) ∪ h−1
2 (V ) ⊂ W . Let K be a omponent of Vwhih does not ontain cj . By the entral point of K we mean the uniquepoint of K whih orresponds to a point of the form (0, y) in [−1, 1]× C asin De�nition 5.7.



Inverse limits of tent maps 189We may assume that xn ∈ h−1
1 (V ) ∩ h−1

2 (V ) for eah n. Sine h1(xn)→
h1(x) and h1(xn)→ h2(x), it follows from Remark 5.9 that for n su�ientlylarge, the d-distane from h1(xn) to either endpoint of the omponent of Vontaining h1(xn) is greater than M + 1. Sine d(h1(xn), h2(xn)) ≤ M ,it follows that h1(xn) and h2(xn) lie in the same omponent of V for nsu�iently large. Without loss of generality, we assume that this holds foreah n.For eah positive integer n, let Kn denote the omponent of V whihontains h1(xn) and h2(xn), and let wn denote the entral point of Kn.Let yn = h−1

1 (wn) and zn = h−1
2 (wn). Then yn and zn lie in the sameomponent of W as xn. Sine xn → x, yn → ci, and zn → ci, it follows thatfor n su�iently large, xn does not lie between yn and zn in a omponentof W . Again, we may assume that this holds for eah n.For eah positive integer n, let Kn = [an, bn]. We may assume that

d(an, wn) > M + 1 and d(bn, wn) > M + 1for eah n.We laim that for eah positive n, h1(xn) and h2(xn) lie on the sameside of wn in Kn. We prove this by ontradition. Suppose that h1(xn) and
h2(xn) lie on opposite sides of wn for some n. Reall that Kn = [an, bn] andsuppose without loss of generality that h1(xn) lies on the same side of wnas an. There is a point pn ∈W with h1(pn) = an. Moreover, pn, xn, yn, and
zn lie in the same omponent of W , and in this omponent, pn is on one sideof xn, while yn and zn are on the other side.Now, using the monotoniity of h2 on a omponent, we see that thear in Xs with endpoints h1(pn) and h2(pn) ontains both an and wn. Thisimplies that d(h1(pn), h2(pn)) > M +1. This is a ontradition and the laimis established. Sine Ai ⊂ V for eah i, it follows from the speial form of Vand the laim that Ai → A.
Case 3: x = ci for some i. In this ase A is just the point {cj}. This aseis routine using the struture of the neighborhood of c given in Lemma 5.8.We leave the proof to the reader.One of Cases 1�3 must hold so together they prove Theorem 5.10.Theorem 5.11. Suppose that h1, h2 : Xs → Xs are homeomorphismswhih leave the endpoints of Xs �xed. Suppose that there is an M > 0 suhthat d(h1(x), h2(x)) ≤M for all x ∈ Cc. Then h1 and h2 are isotopi.Proof. Let H : Xs × I → Xs be de�ned in the following way.Let x ∈ Xs and t ∈ I. By Theorem 4.3, there is a unique ar Ax onnet-ing h1(x) and h2(x). Let m ∈ N be suh that πm|Ax

is a homeomorphism



190 L. Blok et al.into Im. Let gm : πm(Ax)→ Ax be the inverse of this homeomorphism. Let
H(x, t) = gm((1− t)πm(h1(x)) + tπm(h2(x))).If πk|Ax

is a homeomorphism, then
gk((1− t)πk(h1(x)) + tπk(h2(x)))

= gm((1− t)πm(h1(x)) + tπm(h2(x))).So, H(x, t) is well de�ned. We now show that H is ontinuous.Suppose that (xi, ti) → (x, t). Let Ai be the unique ar with endpoints
h1(xi), h2(xi). Then h1(xi) → h1(x) and h2(xi) → h2(x). So, if A is theunique ar onneting h1(x) and h2(x), whose existene is given by Theorem4.3, then, by Theorem 5.10, Ai → A in the Hausdor� metri.
Case 1: x is not an endpoint. In this ase the ar A onneting h1(x)and h2(x) does not ontain an endpoint. Let V be a neighborhood of A ofthe form V ≈ C × I with C a Cantor set and I an interval as in Lemma 5.1.Then there is an N suh that for n ≥ N , the ar An is ontained in V .Now by Lemma 5.1, there is an m suh that πm is a homeomorphism ofeah omponent of V onto its image in Im. Therefore for this m and for all

n ≥ N ,
H(xn, tn) = gm((1− tn)πm(h1(xn)) + tnπm(h2(xn)))and

H(x, t) = gm((1− t)πm(h1(x)) + tπm(h2(x))).So, learly, H(xn, tn)→ H(x, t).
Case 2: x is an endpoint. In this ase h1(x) = h2(x) = x sine theendpoints are assumed to be �xed. Therefore A = {x} and thus An → {x}.This implies that H(xn, tn)→ {x} = H(x, t).So, H(x, t) is a homotopy. We now show that it is an isotopy by showingthat for eah t, ht(x) = H(x, t) is one-to-one and onto.First we show that ht is one-to-one. Note that ht permutes the om-posants of Xs the same way that h1 and h2 do. So, to show that ht isone-to-one it will su�e to show that ht restrited to a omposant Cx isone-to-one. Now Cx is the ar-omponent of x. This ar-omponent withthe d-metri is homeomorphi to either R or R+. Fix orderings on Cx and

Ch1(x). Now h1 and h2 are homeomorphisms from Cx to Ch1(x) either preserv-ing or reversing the orders of Cx and Ch1(x). However, sine the d-distanebetween h1 and h2 on Cx is bounded, these either both preserve the ordersor both reverse the orders on Cx and Ch1(x) in the same way. Thus, ht|Cx
isone-to-one.To show that ht is onto is similar.



Inverse limits of tent maps 191We now give the proof of the Isotopy Theorem as outlined at the begin-ning of this setion.Proof of the Isotopy Theorem. Let h : Xs → Xs be a homeomorphism.Let n be suh that hn leaves the endpoints of Xs �xed. By Theorem 4.6,there is an M > 0 and there is a k ∈ Z suh that d(hn(x), σk(x)) ≤ M forall x ∈ Cc. By Theorem 5.11, hn and σk are isotopi.
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