Affine group acting on hyperspaces of compact convex subsets of \mathbb{R}^{n}

by

Sergey A. Antonyan and Natalia Jonard-Pérez (México, D.F.)

Abstract

For every $n \geq 2$, let $c c\left(\mathbb{R}^{n}\right)$ denote the hyperspace of all nonempty compact convex subsets of the Euclidean space \mathbb{R}^{n} endowed with the Hausdorff metric topology. Let $c b\left(\mathbb{R}^{n}\right)$ be the subset of $c c\left(\mathbb{R}^{n}\right)$ consisting of all compact convex bodies. In this paper we discover several fundamental properties of the natural action of the affine group $\operatorname{Aff}(n)$ on $c b\left(\mathbb{R}^{n}\right)$. We prove that the space $E(n)$ of all n-dimensional ellipsoids is an $\operatorname{Aff}(n)$-equivariant retract of $c b\left(\mathbb{R}^{n}\right)$. This is applied to show that $c b\left(\mathbb{R}^{n}\right)$ is homeomorphic to the product $Q \times \mathbb{R}^{n(n+3) / 2}$, where Q stands for the Hilbert cube. Furthermore, we investigate the action of the orthogonal group $O(n)$ on $c c\left(\mathbb{R}^{n}\right)$. In particular, we show that if $K \subset O(n)$ is a closed subgroup that acts nontransitively on the unit sphere \mathbb{S}^{n-1}, then the orbit space $c c\left(\mathbb{R}^{n}\right) / K$ is homeomorphic to the Hilbert cube with a point removed, while $c b\left(\mathbb{R}^{n}\right) / K$ is a contractible Q-manifold homeomorphic to the product $(E(n) / K) \times Q$. The orbit space $c b\left(\mathbb{R}^{n}\right) / \operatorname{Aff}(n)$ is homeomorphic to the Banach-Mazur compactum $\operatorname{BM}(n)$, while $c c\left(\mathbb{R}^{n}\right) / O(n)$ is homeomorphic to the open cone over $\operatorname{BM}(n)$.

1. Introduction. Let $c c\left(\mathbb{R}^{n}\right)$ denote the hyperspace of all nonempty compact subsets of the Euclidean space $\mathbb{R}^{n}, n \geq 1$, equipped with the Hausdorff metric:

$$
d_{\mathrm{H}}(A, B)=\max \left\{\sup _{b \in B} d(b, A), \sup _{a \in A} d(a, B)\right\},
$$

where d is the standard Euclidean metric on \mathbb{R}^{n}.
By $c b\left(\mathbb{R}^{n}\right)$ we shall denote the subspace of $c c\left(\mathbb{R}^{n}\right)$ consisting of all compact convex bodies of \mathbb{R}^{n}, i.e.,

$$
c b\left(\mathbb{R}^{n}\right)=\left\{A \in c c\left(\mathbb{R}^{n}\right) \mid \operatorname{Int} A \neq \emptyset\right\} .
$$

It is easy to see that $c c\left(\mathbb{R}^{1}\right)$ is homeomorphic to the closed half-plane $\left\{(x, y) \in \mathbb{R}^{2} \mid x \leq y\right\}$, while $c b\left(\mathbb{R}^{1}\right)$ is homeomorphic to \mathbb{R}^{2}. In [22] it was

[^0]proved that for $n \geq 2, c c\left(\mathbb{R}^{n}\right)$ is homeomorphic to the punctured Hilbert cube, i.e., Hilbert cube with a point removed. Furthermore, a simple combination of [6, Corollary 8] and [7, Theorem 1.4] shows that the hyperspace $\mathcal{B}(n)$, consisting of all centrally symmetric (about the origin) convex bodies $A \in c b\left(\mathbb{R}^{n}\right)$, $n \geq 2$, is homeomorphic to $\mathbb{R}^{p} \times Q$, where Q denotes the Hilbert cube and $p=n(n+1) / 2$. However, the topological structure of $c b\left(\mathbb{R}^{n}\right)$ has remained open.

In this paper we study the topological structure of the hyperspace $c b\left(\mathbb{R}^{n}\right)$. Namely, we will show that $c b\left(\mathbb{R}^{n}\right)$ is homeomorphic to the product $Q \times$ $\mathbb{R}^{n(n+3) / 2}$. Our argument is based on some fundamental properties of the natural action of the affine group $\operatorname{Aff}(n)$ on $c b\left(\mathbb{R}^{n}\right)$. We prove that $\operatorname{Aff}(n)$ acts properly on $c b\left(\mathbb{R}^{n}\right)$ (Theorem 3.3). Using a well-known result in affine convex geometry about the minimal-volume ellipsoid, we construct a convenient global $O(n)$-slice $L(n)$ for $c b\left(\mathbb{R}^{n}\right)$. Namely, as proved by F. John [17], for each $A \in c b\left(\mathbb{R}^{n}\right)$ there exists a unique minimal-volume ellipsoid $l(A)$ that contains A (see also [15]). It turns out that the map $l: c b\left(\mathbb{R}^{n}\right) \rightarrow E(n)$ is an $\operatorname{Aff}(n)$-equivariant retraction onto the subset $E(n)$ of $c b\left(\mathbb{R}^{n}\right)$ consisting of all n-dimensional ellipsoids (Theorem 3.6). Then the convenient global $O(n)$-slice of $c b\left(\mathbb{R}^{n}\right)$ is just the inverse image $L(n)=l^{-1}\left(\mathbb{B}^{n}\right)$ of the n dimensional closed Euclidean unit ball $\mathbb{B}^{n}=\left\{x \in \mathbb{R}^{n} \mid\|x\| \leq 1\right\}$. In other words, $L(n)$ is the subspace of $c b\left(\mathbb{R}^{n}\right)$ consisting of all convex bodies A for which \mathbb{B}^{n} is the minimal-volume ellipsoid. This fact implies that the two orbit spaces $c b\left(\mathbb{R}^{n}\right) / \operatorname{Aff}(n)$ and $L(n) / O(n)$ are homeomorphic (Corollary 3.7(2)). Taking into account the compactness of $L(n)$ (Proposition $3.4(\mathrm{~d})$) we recover Macbeath's result [20] from the early fifties to the effect that $c b\left(\mathbb{R}^{n}\right) / \operatorname{Aff}(n)$ is compact (Corollary 3.7(1)).

We show in Corollary 3.9 that $c b\left(\mathbb{R}^{n}\right)$ is homeomorphic (even $O(n)$ equivariantly) to the product $L(n) \times E(n)$. Further, in Section 5 we prove that $L(n)$ is homeomorphic to the Hilbert cube (Corollary 5.9), while $E(n)$ is homeomorphic to $\mathbb{R}^{n(n+3) / 2}$ (Corollary 3.10$)$. Thus, we conclude that $c b\left(\mathbb{R}^{n}\right)$ is homeomorphic to $Q \times \mathbb{R}^{n(n+3) / 2}$ (Corollary 3.11), one of the main results of the paper.

In Corollary 3.8 we prove that the orbit space $c b\left(\mathbb{R}^{n}\right) / \operatorname{Aff}(n)$ is homeomorphic to the Banach-Mazur compactum $\operatorname{BM}(n)$. Recall that $\operatorname{BM}(n)$ is the set of isometry classes of n-dimensional Banach spaces topologized by the following metric best known in functional analysis as the Banach-Mazur distance:

$$
d(E, F)=\ln \inf \left\{\|T\| \cdot\left\|T^{-1}\right\| \mid T: E \rightarrow F \text { is a linear isomorphism }\right\}
$$

These spaces were introduced in 1932 by S. Banach [11] and they continue to be of interest. The original geometric representation of $\operatorname{BM}(n)$ is based on the one-to-one correspondence between norms and odd symmetric convex bod-
ies (see [30, p. 644] and [19, p. 1191]). A. Pełczyński's question of whether the Banach-Mazur compacta $\mathrm{BM}(n)$ are homeomorphic to the Hilbert cube (see [30, Problem 899]) was answered negatively for $n=2$ by the first author [6]; the case $n \geq 3$ still remains open. The reader can find other results concerning the Banach-Mazur compacta and related spaces in [7].

In Section 4 we study the hyperspace $M(n)$ of all compact convex subsets of the unit ball \mathbb{B}^{n} which intersect the boundary sphere \mathbb{S}^{n-1}. It is established in Corollary 4.13 that for every closed subgroup $K \subset O(n)$ that acts nontransitively on \mathbb{S}^{n-1}, the K-orbit space $M(n) / K$ is homeomorphic to the Hilbert cube. In particular, $M(n)$ is homeomorphic to Q. On the other hand, $M_{0}(n) / K$ is a Hilbert cube manifold for each closed subgroup $K \subset O(n)$, where $M_{0}(n)=M(n) \backslash\left\{\mathbb{B}^{n}\right\}$. In Theorem 4.16 it is established that $M(n) / O(n)$ is just homeomorphic to the Banach-Mazur compactum $\operatorname{BM}(n)$. The main technique we develop in this section is further applied to Section 5 as well. There we establish analogous properties of the global $O(n)$-slice $L(n)$ of the proper $\operatorname{Aff}(n)$-space $c b\left(\mathbb{R}^{n}\right)$ (Proposition 5.8, Corollary 5.9 and Theorem 5.11.

In Sections 6 and 7 we investigate some orbit spaces of $c c\left(\mathbb{R}^{n}\right)$ and $c b\left(\mathbb{R}^{n}\right)$. We prove in Theorem 7.1 that if K is a closed subgroup of $O(n)$ which acts nontransitively on \mathbb{S}^{n-1}, then $c c\left(\mathbb{R}^{n}\right) / K$ is homeomorphic to the punctured Hilbert cube. The orbit space $c c\left(\mathbb{R}^{n}\right) / O(n)$ is homeomorphic to the open cone over the Banach-Mazur compactum $\operatorname{BM}(n)$ (Theorem 7.2). Respectively, $c b\left(\mathbb{R}^{n}\right) / K$ is a contractible Q-manifold homeomorphic to $(E(n) / K) \times Q$ (Theorem 6.1), while the topological structure of $c b\left(\mathbb{R}^{n}\right) / O(n)$ mainly remains unknown.
2. Preliminaries. We refer the reader to the monographs [12] and [23] for basic notions of the theory of G-spaces. However we will recall here some special definitions and results which will be used throughout the paper.

All topological spaces and topological groups are assumed to be Tychonoff.

If G is a topological group and X is a G-space, for any $x \in X$ we denote by G_{x} the stabilizer of x, i.e., $G_{x}=\{g \in G \mid g x=x\}$. For a subset $S \subset X$ and a subgroup $H \subset G, H(S)$ denotes the H-saturation of S, i.e., $H(S)=$ $\{h s \mid h \in H, s \in S\}$. If $H(S)=S$ then we say that S is an H-invariant set. In particular, $G(x)$ denotes the G-orbit of x, i.e., $G(x)=\{g x \in X \mid g \in G\}$. The orbit space is denoted by X / G.

For each subgroup $H \subset G$, the H-fixed point set X^{H} is the set $\{x \in X \mid$ $\left.H \subset G_{x}\right\}$. Clearly, X^{H} is a closed subset of X.

The family of all subgroups of G that are conjugate to H is denoted by $[H]$, i.e., $[H]=\left\{g H g^{-1} \mid g \in G\right\}$. We will call $[H]$ a G-orbit type (or simply an orbit type). For two orbit types $\left[H_{1}\right]$ and $\left[H_{2}\right]$, one says that $\left[H_{1}\right] \preceq\left[H_{2}\right]$
iff $H_{1} \subset g H_{2} g^{-1}$ for some $g \in G$. The relation \preceq is a partial ordering on the set of all orbit types. Since $G_{g x}=g G_{x} g^{-1}$ for any $x \in X$ and $g \in G$, we have $\left[G_{x}\right]=\left\{G_{g x} \mid g \in G\right\}$.

A continuous map $f: X \rightarrow Y$ between two G-spaces is called equivariant or a G-map if $f(g x)=g(f x)$ for every $x \in X$ and $g \in G$. If the action of G on Y is trivial and $f: X \rightarrow Y$ is an equivariant map, then we will say that f is an invariant map.

For any subgroup $H \subset G$, we will denote by G / H the G-space of cosets $\{g H \mid g \in G\}$ equipped with the action induced by left translations.

A G-space X is called proper (in the sense of Palais [24]) if it has an open cover consisting of so-called small sets. A set $S \subset X$ is called small if any point $x \in X$ has a neighborhood V such that the set $\langle S, V\rangle=\{g \in G \mid$ $g S \cap V \neq \emptyset\}$, called the transporter from S to V, has compact closure in G.

Each orbit in a proper G-space is closed, and each stabilizer is compact [24, Proposition 1.1.4]. If G is a locally compact group and Y is a proper G-space, then for every point $y \in Y$ the orbit $G(y)$ is G-homeomorphic to G / G_{y} [24, Proposition 1.1.5].

For a given topological group G, a metrizable G-space Y is called a G-equivariant absolute neighborhood retract (denoted by $Y \in G$-ANR) if for any metrizable G-space M containing Y as an invariant closed subset, there exist an invariant neighborhood U of Y in M and a G-retraction $r: U \rightarrow Y$. If we can always take $U=M$, then we say Y is a G-equivariant absolute retract (denoted by $Y \in G$-AR).

Let us recall the well known definition of a slice [24, p. 305]:
Definition 2.1. Let X be a G-space and H a closed subgroup of G. An H-invariant subset $S \subset X$ is called an H-slice in X if $G(S)$ is open in X and there exists a G-equivariant map $f: G(S) \rightarrow G / H$ such that $S=f^{-1}(e H)$. The saturation $G(S)$ is called a tubular set. If $G(S)=X$, then we say that S is a global H-slice of X.

In the case of a compact group G one has the following intrinsic characterization of H-slices. A subset $S \subset X$ of a G-space X is an H-slice if and only if it satisfies the following four conditions: (1) S is H-invariant, (2) $G(S)$ is open in $X,(3) S$ is closed in $G(S)$, (4) if $g \in G \backslash H$ then $g S \cap S=\emptyset$ (see [12, Ch. II, §4 and §5]).

The following is one of the fundamental results in the theory of topological transformation groups (see, e.g., [12, Ch. II, §4 and §5]):

Theorem 2.2 (Slice Theorem). Let G be a compact Lie group, X a Tychonoff G-space and $x \in X$ any point. Then:
(1) There exists a G_{x}-slice $S \subset X$ such that $x \in S$.
(2) $\left[G_{y}\right] \preceq\left[G_{x}\right]$ for each point $y \in G(S)$.

Let G be a compact Lie group and X a G-space. By a G-normal cover of X, we mean a family

$$
\mathcal{U}=\left\{g S_{\mu} \mid g \in G, \mu \in M\right\}
$$

where each S_{μ} is an H_{μ}-slice for some closed subgroup H_{μ} of G, the family $\left\{G\left(S_{\mu}\right)\right\}_{\mu \in M}$ of saturations is an open cover for X and there exists a locally finite invariant partition of unity $\left\{p_{\mu}: X \rightarrow[0,1] \mid \mu \in M\right\}$ subordinated to $\left\{G\left(S_{\mu}\right)\right\}_{\mu \in M}$. That is, each p_{μ} is an invariant function with $\overline{p_{\mu}^{-1}((0,1])} \subset$ $G\left(S_{\mu}\right)$ and the supports $\left\{\overline{p_{\mu}^{-1}((0,1])} \mid \mu \in M\right\}$ constitute a locally finite family. We refer to [7] for further information on G-normal covers.

Yet another result which plays an important role in the paper is
Theorem 2.3 (Orbit Space Theorem [4]). Let G be a compact Lie group and X a $G-A N R$ (resp., a $G-A R$). Then X / G is an $A N R(r e s p ., ~ a n ~ A R)$.

Let (X, d) be a metric G-space. If $d(g x, g y)=d(x, y)$ for all $x, y \in X$ and $g \in G$, then we say that d is a G-invariant (or simply invariant) metric.

Suppose that G is a compact group acting on a metric space (X, d). If d is G-invariant, it is well-known [23, Proposition 1.1.12] that the quotient topology of X / G is generated by the metric

$$
\begin{equation*}
d^{*}(G(x), G(y))=\inf _{g \in G} d(x, g y), \quad G(x), G(y) \in X / G \tag{2.1}
\end{equation*}
$$

It is evident that

$$
\begin{equation*}
d^{*}(G(x), G(y)) \leq d(x, y), \quad x, y \in X \tag{2.2}
\end{equation*}
$$

In the following we will denote by d the Euclidean metric on \mathbb{R}^{n}. For any $A \subset \mathbb{R}^{n}$ and $\varepsilon>0$, we denote $N(A, \varepsilon)=\left\{x \in \mathbb{R}^{n} \mid d(x, A)<\varepsilon\right\}$. In particular, for every $x \in \mathbb{R}^{n}, N(x, \varepsilon)$ denotes the open ε-ball around x. On the other hand, if $\mathcal{C} \subset c c\left(\mathbb{R}^{n}\right)$ then for every $A \in \mathcal{C}$ we shall use $O(A, \varepsilon)$ for the ε-open ball in \mathcal{C} centered at A, i.e.,

$$
O(A, \varepsilon)=\left\{B \in \mathcal{C} \mid d_{\mathrm{H}}(A, B)<\varepsilon\right\}
$$

where d_{H} stands for the Hausdorff metric induced by d.
For every subset $A \subset X$ of a topological space X, we write ∂A and \bar{A} for, respectively, the boundary and the closure of A in X.

We will denote by \mathbb{B}^{n} the n-dimensional Euclidean closed unit ball and by \mathbb{S}^{n-1} the corresponding unit sphere, i.e.,

$$
\begin{aligned}
\mathbb{B}^{n} & =\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid \sum_{i=1}^{n} x_{i}^{2} \leq 1\right\}, \\
\mathbb{S}^{n-1} & =\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n} \mid \sum_{i=1}^{n} x_{i}^{2}=1\right\} .
\end{aligned}
$$

The Hilbert cube $[0,1]^{\infty}$ will be denoted by Q. By $c c\left(\mathbb{B}^{n}\right)$ we denote the subspace of $c c\left(\mathbb{R}^{n}\right)$ consisting of all $A \in c c\left(\mathbb{R}^{n}\right)$ such that $A \subset \mathbb{B}^{n}$. It is well known that $c c\left(\mathbb{B}^{n}\right)$ is homeomorphic to Q (see [22, Theorem 2.2]).

A Hilbert cube manifold or a Q-manifold is a separable, metrizable space that admits an open cover each member of which is homeomorphic to an open subset of Q. We refer to [14] and [21] for the theory of Q-manifolds.

A closed subset A of a metric space (X, d) is called a Z-set if the set $\{f \in C(Q, X) \mid f(Q) \cap A=\emptyset\}$ is dense in $C(Q, X)$, where $C(Q, X)$ is the space of all continuous maps from Q to X endowed with the compact-open topology. In particular, if for every $\varepsilon>0$ there exists a map $f: X \rightarrow X \backslash A$ such that $d(x, f(x))<\varepsilon$, then A is a Z-set.

A map $f: X \rightarrow Y$ between topological spaces is called proper if $f^{-1}(C)$ is compact for each compact set $C \subset Y$. A proper map $f: X \rightarrow Y$ between ANR's is called cell-like (abbreviated CE) if it is onto and each point inverse $f^{-1}(y)$ has the property $U V^{\infty}$: for each neighborhood U of $f^{-1}(y)$ there exists a neighborhood $V \subset U$ of $f^{-1}(y)$ such that the inclusion $V \hookrightarrow U$ is homotopic to a constant map of V into U. In particular, if $f^{-1}(y)$ is contractible, then it has the property $U V^{\infty}$ (see [14, Ch. XIII]).
3. Affine group acting properly on $c b\left(\mathbb{R}^{n}\right)$. Let (X, d) be a metric space and G a topological group acting continuously on X. Consider the hyperspace 2^{X} consisting of all nonempty compact subsets of X equipped with the Hausdorff metric topology. Define an action of G on 2^{X} by

$$
\begin{equation*}
(g, A) \mapsto g A, \quad g A=\{g a \mid a \in A\} \tag{3.1}
\end{equation*}
$$

The reader can easily verify the continuity of this action.
3.1. Properness of the $\operatorname{Aff}(n)$-action on $c b\left(\mathbb{R}^{n}\right)$. Throughout the paper, n will always denote a natural number greater than or equal to 2 .

We will denote by $\operatorname{Aff}(n)$ the group of all affine transformations of \mathbb{R}^{n}. Let us recall the definition of $\operatorname{Aff}(n)$. For every $v \in \mathbb{R}^{n}$ let $T_{v}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be the translation by v, i.e., $T_{v}(x)=v+x$ for all $x \in \mathbb{R}^{n}$. The set of all such translations is a group isomorphic to the additive group of \mathbb{R}^{n}. For every $\sigma \in G L(n)$ and $v \in \mathbb{R}^{n}$ it is easy to see that $\sigma T_{v} \sigma^{-1}=T_{\sigma(v)}$. This yields a homomorphism from $G L(n)$ to the group of all linear automorphisms of \mathbb{R}^{n}, and hence we have an (internal) semidirect product

$$
\mathbb{R}^{n} \rtimes G L(n)
$$

called the affine group of \mathbb{R}^{n} (see e.g. [2, p. 102]). Each element $g \in \operatorname{Aff}(n)$ is usually represented by $g=T_{v}+\sigma$, where $\sigma \in G L(n)$ and $v \in \mathbb{R}^{n}$, i.e.,

$$
g(x)=v+\sigma(x) \quad \text { for every } x \in \mathbb{R}^{n} .
$$

As a semidirect product, $\operatorname{Aff}(n)$ is topologized by the product topology of $\mathbb{R}^{n} \times G L(n)$, thus becoming a Lie group with two connected components. Since the topology of $G L(n)$ is the one inherited from $\mathbb{R}^{n^{2}}$, we can also consider a natural topological embedding of $\operatorname{Aff}(n)$ into $\mathbb{R}^{n} \times \mathbb{R}^{n^{2}}=\mathbb{R}^{n(n+1)}$, which will be helpful in the proof of Theorem 3.3 .

Clearly, the natural action of $\operatorname{Aff}(n)$ on \mathbb{R}^{n} is continuous. This action induces a continuous action on $2^{\mathbb{R}^{n}}$. Observe that for every $g \in \operatorname{Aff}(n)$ and $A \in c b\left(\mathbb{R}^{n}\right)$, the set $g A=\{g a \mid a \in A\}$ belongs to $c b\left(\mathbb{R}^{n}\right)$, i.e., $c b\left(\mathbb{R}^{n}\right)$ is an invariant subset of $2^{\mathbb{R}^{n}}$ and thus the restriction of the $\operatorname{Aff}(n)$-action to $c b\left(\mathbb{R}^{n}\right)$ is continuous. We will prove in Theorem 3.3 that this action is proper. First we prove the following two technical lemmas.

Lemma 3.1. Let $A \in \operatorname{cb}\left(\mathbb{R}^{n}\right)$ and let $x_{0} \in A$ be such that $\overline{N\left(x_{0}, 2 \varepsilon\right)} \subset A$ for a certain $\varepsilon>0$. If $C \in O(A, \varepsilon)$ then $N\left(x_{0}, \varepsilon\right) \subset C$.

Proof. Suppose there exists $C \in O(A, \varepsilon)$ such that $N\left(x_{0}, \varepsilon\right) \not \subset C$. Choose $x \in N\left(x_{0}, \varepsilon\right) \backslash C$. Since C is compact, there exists $z \in C$ with $d(x, z)=$ $d(x, C)$. Let H be the hyperplane through z in \mathbb{R}^{n} orthogonal to the ray $\vec{x} z$. Since C is convex, it lies in the halfspace determined by H which does not contain x. Let a be the intersection point of $\overrightarrow{z x}$ with $\partial \overline{N\left(x_{0}, 2 \varepsilon\right)} \subset A$. Evidently, $d\left(a, x_{0}\right)=2 \varepsilon$ and

$$
d(a, z)=d(a, H) \leq d(a, C) \leq d_{\mathrm{H}}(A, C)<\varepsilon
$$

Since $d\left(x_{0}, x\right)<\varepsilon$ the triangle inequality implies that

$$
\varepsilon>d(a, z)>d(a, x) \geq d\left(a, x_{0}\right)-d\left(x_{0}, x\right)>2 \varepsilon-\varepsilon=\varepsilon
$$

This contradiction proves the lemma.
Observe that $c b\left(\mathbb{R}^{n}\right)$ is not closed in $c c\left(\mathbb{R}^{n}\right)$. However, we have the following lemma:

Lemma 3.2. Let $A \in \operatorname{cb}\left(\mathbb{R}^{n}\right)$ and $x_{0} \in A$ be such that $\overline{N\left(x_{0}, 2 \varepsilon\right)} \subset A$ for a certain $\varepsilon>0$. Then $O(A, \varepsilon)$, the closure of $O(A, \varepsilon)$ in $c b\left(\mathbb{R}^{n}\right)$, is compact.

Proof. First we observe that $O(A, \varepsilon)$ is contained in $c c(K)$ for some compact convex subset $K \subset \mathbb{R}^{n}$, where $c c(K)$ stands for the hyperspace of all compact convex subsets of K. By [22], $c c(K)$ is compact, and hence the closure of $O(A, \varepsilon)$ in $c c(K)$, denoted by $[O(A, \varepsilon)]$, is also compact. So, it is enough to prove that $[O(A, \varepsilon)]$ is contained in $c b\left(\mathbb{R}^{n}\right)$.

Let $\left(D_{m}\right)_{m \in \mathbb{N}} \subset O(A, \varepsilon)$ be a sequence of compact convex bodies converging to some $D \in c c(K)$. According to Lemma 3.1, $N\left(x_{0}, \varepsilon\right) \subset D_{m}$ for every $m \in \mathbb{N}$. Suppose that $N\left(x_{0}, \varepsilon\right) \not \subset D$. Pick $x \in N\left(x_{0}, \varepsilon\right) \backslash D$ and let $\eta=d(x, D)>0$. Since $x \in D_{m}$ for each $m \in \mathbb{N}$, it is clear that $d_{\mathrm{H}}\left(D_{m}, D\right) \geq \eta$. This means that $\left(D_{m}\right)_{m \in \mathbb{N}}$ cannot converge to D, a contradiction. This proves that $N\left(x_{0}, \varepsilon\right)$ is contained in D, and therefore D has
nonempty interior, so that $D \in c b\left(\mathbb{R}^{n}\right)$. Thus, $[O(A, \varepsilon)]$ is a compact set contained in $c b\left(\mathbb{R}^{n}\right)$, which yields $\overline{O(A, \varepsilon)}=[O(A, \varepsilon)]$, and hence $\overline{O(A, \varepsilon)}$ is compact.

THEOREM 3.3. $\operatorname{Aff}(n)$ acts properly on $c b\left(\mathbb{R}^{n}\right)$.
Proof. Let $A \in c b\left(\mathbb{R}^{n}\right)$ and assume that $x_{0} \in A$ and $\varepsilon>0$ are such that $\overline{N\left(x_{0}, 2 \varepsilon\right)} \subset A$. We claim that $O(A, \varepsilon)$ is a small neighborhood of A.

Indeed, let $B \in c b\left(\mathbb{R}^{n}\right)$. Since B has nonempty interior, there are $z_{0} \in B$ and $\delta>0$ such that $\overline{N\left(z_{0}, 2 \delta\right)} \subset B$. We will prove that the transporter

$$
\Gamma=\{g \in \operatorname{Aff}(n) \mid g O(A, \varepsilon) \cap O(B, \delta) \neq \emptyset\}
$$

has compact closure in $\operatorname{Aff}(n)$.
It is sufficient to prove that Γ, viewed as a subset of $\mathbb{R}^{n} \times \mathbb{R}^{n^{2}}$, is bounded and its closure in $\operatorname{Aff}(n)$ coincides with the one in $\mathbb{R}^{n} \times \mathbb{R}^{n^{2}}$.

For every $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, let $\|x\|_{\infty}=\max _{i=1}^{n}\left|x_{i}\right|$. There exists $M>0$ such that, if $C \in O(A, \varepsilon) \cup O(B, \delta)$ then

$$
\begin{equation*}
\|c\|_{\infty} \leq M \quad \text { for all } c \in C \tag{3.2}
\end{equation*}
$$

In particular,

$$
\operatorname{diam} C=\sup _{c, c^{\prime} \in C}\left\|c-c^{\prime}\right\|_{\infty} \leq 2 M
$$

Take any $\mu \in \Gamma$. There exist $A^{\prime} \in O(A, \varepsilon)$ and $B^{\prime} \in O(B, \delta)$ with $\mu A^{\prime}=B^{\prime}$. Since μ is an affine transformation, there are $u \in \mathbb{R}^{n}$ and $\sigma \in G L(n)$ such that $\mu(x)=u+\sigma(x)$ for all $x \in \mathbb{R}^{n}$. Let $\left(\sigma_{i j}\right)$ be the matrix representing σ in the canonical basis of \mathbb{R}^{n}, and consider $\left(\sigma_{i j}\right)$ as a point in $\mathbb{R}^{n^{2}}$.

Since $\mu A^{\prime}=B^{\prime} \in O(B, \delta)$, according to inequality (3.2), $\operatorname{diam} \mu A^{\prime} \leq 2 M$. Observe that $\mu A^{\prime}=\sigma A^{\prime}+u$, and hence $\operatorname{diam} \sigma A^{\prime}=\operatorname{diam} \mu A^{\prime} \leq 2 M$. Let

$$
\xi_{i}=(0, \ldots, 0, \varepsilon / 2,0, \ldots, 0) \in \mathbb{R}^{n}
$$

where $\varepsilon / 2$ is the i th coordinate. Then, by Lemma 3.1, $\xi_{i}+x_{0} \in N\left(x_{0}, \varepsilon\right) \subset A^{\prime}$ and $-\xi_{i}+x_{0} \in N\left(x_{0}, \varepsilon\right) \subset A^{\prime}$. Since diam $\sigma A^{\prime} \leq 2 M$, we get

$$
\begin{aligned}
\left\|2 \sigma\left(\xi_{i}\right)\right\|_{\infty} & =\left\|\sigma\left(2 \xi_{i}\right)\right\|_{\infty}=\left\|\sigma\left(\left(\xi_{i}+x_{0}\right)-\left(-\xi_{i}+x_{0}\right)\right)\right\|_{\infty} \\
& =\left\|\sigma\left(\xi_{i}+x_{0}\right)-\sigma\left(-\xi_{i}+x_{0}\right)\right\|_{\infty} \leq 2 M
\end{aligned}
$$

and thus $\left\|\sigma\left(\xi_{i}\right)\right\|_{\infty} \leq M$.
However, $\sigma\left(\xi_{i}\right)=\left(\sigma_{1 i} \varepsilon / 2, \ldots, \sigma_{n i} \varepsilon / 2\right)$, and therefore $\left|\sigma_{j i} \varepsilon / 2\right| \leq M$ for all $i, j=1, \ldots, n$. Thus, $\left|\sigma_{j i}\right|<2 M / \varepsilon$.

Next, by (3.2), for every $a=\left(a_{1}, \ldots, a_{n}\right) \in A^{\prime}$ one has $\|a\|_{\infty} \leq M$. Then

$$
\|\sigma(a)\|_{\infty}=\max _{i=1}^{n}\left|\sum_{j=1}^{n} \sigma_{i j} a_{j}\right| \leq \sum_{i=1}^{n} \frac{2 M}{\varepsilon}\|a\|_{\infty} \leq \frac{2 n M^{2}}{\varepsilon}
$$

On the other hand, $\mu(a) \in B^{\prime}$, which yields

$$
M \geq\|\mu(a)\|_{\infty}=\|u+\sigma(a)\|_{\infty} \geq\|u\|_{\infty}-\|\sigma(a)\|_{\infty} \geq\|u\|_{\infty}-2 n M^{2} / \varepsilon .
$$

This implies that $\|u\|_{\infty} \leq M+2 n M^{2} / \varepsilon$, and therefore Γ, viewed as a subset of $\mathbb{R}^{n} \times \mathbb{R}^{n^{2}}$, is bounded.

To complete the proof, it remains to show that the closure of Γ in $\operatorname{Aff}(n)$ coincides with its closure in $\mathbb{R}^{n} \times \mathbb{R}^{n^{2}}$. Observe that here $\mathbb{R}^{n^{2}}$ represents the space of all real $n \times n$-matrices, i.e., the space of all linear transformations from \mathbb{R}^{n} into itself. Therefore, an element $\lambda \in \mathbb{R}^{n} \times \mathbb{R}^{n^{2}}$ represents a map which is the composition of a linear transformation followed by a translation. In this case, λ is an affine transformation iff it is surjective.

Let $\left(\lambda_{m}\right)_{m \in \mathbb{N}} \subset \Gamma$ be a sequence of affine transformations converging to some $\lambda \in \mathbb{R}^{n} \times \mathbb{R}^{n^{2}}$. We need to prove that $\lambda \in \operatorname{Aff}(n)$. Since $\lambda_{m} \in \Gamma$, there exist $A_{m} \in O(A, \varepsilon)$ and $B_{m} \in O(B, \delta)$ such that $\lambda_{m} A_{m}=B_{m}$. By Lemma 3.2, the closures $\overline{O(A, \varepsilon)}$ and $\overline{O(B, \delta)}$ are compact. Hence, we can assume that A_{m} converges to some $A_{0} \in \overline{O(A, \varepsilon)}$ and B_{m} converges to some $B_{0} \in O(B, \delta)$. Then the equality $\lambda_{m} A_{m}=B_{m}$ yields $\lambda A_{0}=B_{0}$. Since B_{0} has nonempty interior, we infer that $\operatorname{dim} B_{0}=n$, and hence the dimension of $\lambda\left(\mathbb{R}^{n}\right)$ also equals n. Thus, $\lambda\left(\mathbb{R}^{n}\right)$ is an n-dimensional hyperplane in \mathbb{R}^{n}, which is possible only if $\lambda\left(\mathbb{R}^{n}\right)=\mathbb{R}^{n}$. Thus, λ is surjective, as required.
3.2. A convenient global slice for $c b\left(\mathbb{R}^{n}\right)$. A well-known result of F. John [17] (see also [15]) in affine convex geometry states that for each $A \in c b\left(\mathbb{R}^{n}\right)$ there is a unique minimal-volume ellipsoid $l(A)$ containing A (respectively, a maximal-volume ellipsoid $j(A)$ contained in A). Nowadays $j(A)$ is called the John ellipsoid of A while $l(A)$ is called its Löwner ellipsoid. We denote by $L(n)$ (resp., $J(n)$) the subspace of $c b\left(\mathbb{R}^{n}\right)$ consisting of all convex bodies $A \in \operatorname{cb}\left(\mathbb{R}^{n}\right)$ for which the Euclidean unit ball \mathbb{B}^{n} is the Löwner ellipsoid (resp., the John ellipsoid). By $E(n)$ we denote the subset of $c b\left(\mathbb{R}^{n}\right)$ consisting of all ellipsoids. Below we consider the map $l: c b\left(\mathbb{R}^{n}\right) \rightarrow E(n)$ that sends a convex body $A \in c b\left(\mathbb{R}^{n}\right)$ to its minimal-volume ellipsoid $l(A)$. We call l the Löwner map.

Proposition 3.4. $L(n)$ has the following four properties:
(a) $L(n)$ is $O(n)$-invariant.
(b) The saturation $\operatorname{Aff}(n)(L(n))$ coincides with $c b\left(\mathbb{R}^{n}\right)$.
(c) If $g L(n) \cap L(n) \neq \emptyset$ for some $g \in \operatorname{Aff}(n)$, then $g \in O(n)$.
(d) $L(n)$ is compact.

Proof. First we prove the following
Claim. The Löwner map $l: \operatorname{cb}\left(\mathbb{R}^{n}\right) \rightarrow E(n)$ is $\operatorname{Aff}(n)$-equivariant, i.e., $l(g A)=g l(A)$ for every $g \in \operatorname{Aff}(n)$ and $A \in c b\left(\mathbb{R}^{n}\right)$.

Assume that there exist $A \in c b\left(\mathbb{R}^{n}\right)$ and $g \in \operatorname{Aff}(n)$ such that $l(g A)$ $\neq g l(A)$. Clearly, $g l(A)$ is an ellipsoid containing $g A$. Since the minimalvolume ellipsoid of $g(A)$ is unique, we infer that $\operatorname{vol}(g l(A))>\operatorname{vol}(l(g A))$.

By the same argument, $\operatorname{vol}\left(g^{-1} l(g A)\right)>\operatorname{vol}(l(A))$. Now we apply the wellknown fact that each affine transformation preserves the ratio of volumes of any pair of compact convex bodies. Thus

$$
\frac{\operatorname{vol}(l(A))}{\operatorname{vol}(A)}=\frac{\operatorname{vol}(g l(A))}{\operatorname{vol}(g A)}>\frac{\operatorname{vol}(l(g A))}{\operatorname{vol}(g A)}=\frac{\operatorname{vol}\left(g^{-1} l(g A)\right)}{\operatorname{vol}(A)}>\frac{\operatorname{vol}(l(A))}{\operatorname{vol}(A)} .
$$

This contradiction proves the claim.
(a) Let $g \in O(n)$ and $A \in L(n)$. The Claim implies that $l(g A)=g l(A)=$ $g \mathbb{B}^{n}=\mathbb{B}^{n}$, i.e., $g A \in L(n)$, so $L(n)$ is $O(n)$-invariant.
(b) Let $A \in c b\left(\mathbb{R}^{n}\right)$. There exists $g \in \operatorname{Aff}(n)$ such that $l(A)=g \mathbb{B}^{n}$. According to the Claim we have

$$
\mathbb{B}^{n}=g^{-1} l(A)=l\left(g^{-1} A\right) .
$$

Then $g^{-1} A \in L(n)$ and $A=g\left(g^{-1} A\right)$. This proves $\operatorname{Aff}(n)(L(n))=c b\left(\mathbb{R}^{n}\right)$.
(c) If there exist $g \in \operatorname{Aff}(n)$ and $A \in L(n)$ such that $g A \in L(n)$, then

$$
\mathbb{B}^{n}=l(g A)=g l(A)=g \mathbb{B}^{n} .
$$

Hence $g \in O(n)$.
(d) Clearly, $L(n) \subset c c\left(\mathbb{B}^{n}\right)$. Since $c c\left(\mathbb{B}^{n}\right)$ is compact (in fact, it is homeomorphic to the Hilbert cube [22, Theorem 2.2]), it suffices to show that $L(n)$ is closed in $c c\left(\mathbb{B}^{n}\right)$.

Let $\left(A_{k}\right)_{k \in \mathbb{N}} \subset L(n)$ be a sequence converging to $A \in c c\left(\mathbb{B}^{n}\right)$. We will prove that $A \in L(n)$. To this end, we first prove that A has nonempty interior. If not, there exists an ($n-1$)-dimensional hyperplane $\mathcal{H} \subset \mathbb{R}^{n}$ such that $A \subset \mathcal{H}$. Let $E^{\prime} \subset \mathcal{H}$ be an $(n-1)$-dimensional ellipsoid containing A in its interior (with respect to \mathcal{H}). For any $r>0$, consider the line segment T_{r} of length r which is orthogonal to \mathcal{H} and passes through the center of E^{\prime}. Let $r>0$ be small enough that the n-dimensional ellipsoid E generated by E^{\prime} and T_{r} has volume less than $\operatorname{vol}\left(\mathbb{B}^{n}\right)$. Since A lies in the interior of E, there exists $\delta>0$ such that $N(A, \delta) \subset E$. Now, we use the fact that $\left(A_{k}\right)$ converges to A to find $m_{0} \in \mathbb{N}$ such that $A_{m_{0}} \subset N(A, \delta) \subset E$. Thus, E is an ellipsoid containing $A_{m_{0}}$ and so

$$
\operatorname{vol}\left(\mathbb{B}^{n}\right)=\operatorname{vol}\left(l\left(A_{m_{0}}\right)\right)<\operatorname{vol}(E)<\operatorname{vol}\left(\mathbb{B}^{n}\right) .
$$

This contradiction proves that A has nonempty interior.
Consequently, $l(A)$ is defined and we have to show that $l(A)=\mathbb{B}^{n}$. Suppose that $l(A) \neq \mathbb{B}^{n}$. Since $A_{k} \subset \mathbb{B}^{n}$ for every $k \in \mathbb{N}$, it follows that $A \subset \mathbb{B}^{n}$. Hence, by uniqueness of the minimal-volume ellipsoid, $\operatorname{vol}(l(A))<\operatorname{vol}\left(\mathbb{B}^{n}\right)$. Let L be an ellipsoid concentric and homothetic with $l(A)$ with ratio >1 and $\operatorname{vol}(L)<\operatorname{vol}\left(\mathbb{B}^{n}\right)$. As $l(A)$ is contained in the interior of L, the distance $d_{\mathrm{H}}(\partial L, \partial l(A))=\varepsilon$ is positive. Consider $U=N(\partial l(A), \varepsilon)$, the ε-neighborhood of $\partial l(A)$ in \mathbb{R}^{n}. Since $\left(A_{k}\right)_{k \in \mathbb{N}}$ converges to A and all the sets A_{k} are convex, $\left(\partial A_{k}\right)_{k \in \mathbb{N}}$ converges to ∂A. Therefore, there exists $k_{0} \geq 1$ such that
$\partial A_{k_{0}} \subset U$. The convexity of $A_{k_{0}}$ implies that $A_{k_{0}} \subset L$, and hence

$$
\operatorname{vol}\left(l\left(A_{k_{0}}\right)\right) \leq \operatorname{vol}(L)<\operatorname{vol}\left(\mathbb{B}^{n}\right)=\operatorname{vol}\left(l\left(A_{k_{0}}\right)\right)
$$

This contradiction proves that $A \in L(n)$, and hence $L(n)$ is closed in $c c\left(\mathbb{B}^{n}\right)$.
Remark 3.5. The first three assertions of Proposition 3.4 are easy modifications of those in [6, proof of Theorem 4], while the fourth one provides a new way of proving Macbeath's result on compactness of $c b\left(\mathbb{R}^{n}\right) / \operatorname{Aff}(n)$ (see Corollary 3.7(1)).

Theorem 3.6.
(1) The Löwner map $l: c b\left(\mathbb{R}^{n}\right) \rightarrow E(n)$ is an $\operatorname{Aff}(n)$-equivariant retraction with $L(n)=l^{-1}\left(\mathbb{B}^{n}\right)$.
(2) $L(n)$ is a compact global $O(n)$-slice for the proper $\operatorname{Aff}(n)$-space $c b\left(\mathbb{R}^{n}\right)$.

Proof. (1) In the proof of Proposition 3.4 we showed that $l: c b\left(\mathbb{R}^{n}\right)$ $\rightarrow E(n)$ is $\operatorname{Aff}(n)$-equivariant. Clearly, it is a retraction. Its continuity is a standard consequence of the above four properties in Proposition 3.4, well known in transformation groups (see [12, Ch. II, Theorems 4.2 and 4.4] for compact group actions and [24] for locally compact proper group actions). However, using the compactness of $L(n)$ we shall give here a direct proof of this fact.

Let $\left(X_{m}\right)_{m=1}^{\infty}$ be a sequence in $c b\left(\mathbb{R}^{n}\right)$ that converges to $X \in c b\left(\mathbb{R}^{n}\right)$; we write $X_{m} \rightsquigarrow X$. We must show that $l\left(X_{m}\right) \rightsquigarrow l(X)$. Assume the contrary is true. Then there exist $\varepsilon>0$ and a subsequence $\left(A_{k}\right)$ of $\left(X_{m}\right)$ such that $d_{\mathrm{H}}\left(l\left(A_{k}\right), l(A)\right) \geq \varepsilon$ for all $k=1,2, \ldots$

By Proposition $3.4(\mathrm{~b})$, there are $g, g_{k} \in \operatorname{Aff}(n), k=1,2, \ldots$, such that $A_{k}=g_{k} S_{k}$ and $A=g P$ for some $P, S_{k} \in L(n)$. Due to compactness of $L(n)$, without loss of generality, one can assume that $S_{k} \rightsquigarrow S$ for some $S \in L(n)$. Since $\operatorname{Aff}(n)$ acts properly on $c b\left(\mathbb{R}^{n}\right)$ (see Theorem 3.3), the points S and P have neighborhoods U_{S} and U_{P}, respectively, such that the transporter $\left\langle U_{S}, U_{P}\right\rangle$ has compact closure. Since $S_{k} \rightsquigarrow S$ and $g^{-1} g_{k} S_{k} \rightsquigarrow P$, it then follows that there is a natural number k_{0} such that $g^{-1} g_{k} \in\left\langle U_{S}, U_{P}\right\rangle$ for all $k \geq k_{0}$. Consequently, the sequence $\left(g^{-1} g_{k}\right)$ has a convergent subsequence. Again, it is no loss of generality to assume that $g^{-1} g_{k} \rightsquigarrow h$ for some $h \in \operatorname{Aff}(n)$. This implies that $g^{-1} g_{k} S_{k} \rightsquigarrow h S$, which together with $g^{-1} g_{k} S_{k} \rightsquigarrow P$ yields $h S=P$. But S and P belong to $L(n)$, and hence Proposition 3.4 (c) shows that $h \in O(n)$. Since $g_{k} \rightsquigarrow g h$, we get

$$
l\left(A_{k}\right)=l\left(g_{k} S_{k}\right)=g_{k} l\left(S_{k}\right)=g_{k} \mathbb{B}^{n} \rightsquigarrow g h \mathbb{B}^{n}=g \mathbb{B}^{n}=g l(S)=l(g S)=l(A),
$$

which contradicts the inequality $d_{\mathrm{H}}\left(l\left(A_{k}\right), l(A)\right) \geq \varepsilon, k=1,2, \ldots$
Hence, $l\left(X_{m}\right) \rightsquigarrow l(X)$, as required.
(2) Compactness of $L(n)$ was proved in Proposition 3.4 (d). Since $E(n)$ is the $\operatorname{Aff}(n)$-orbit of $\mathbb{B}^{n} \in c b\left(\mathbb{R}^{n}\right)$ and $O(n)$ is the stabilizer of \mathbb{B}^{n}, one has the $\operatorname{Aff}(n)$-homeomorphism $E(n) \cong \operatorname{Aff}(n) / O(n)$ (see [24, Proposition 1.1.5]). This, together with (1), yields an $\operatorname{Aff}(n)$-equivariant map $f: c b\left(\mathbb{R}^{n}\right) \rightarrow$ $\operatorname{Aff}(n) / O(n)$ such that $L(n)=f^{-1}(O(n))$. Thus, $L(n)$ is a global $O(n)$-slice for $c b\left(\mathbb{R}^{n}\right)$, as required.

Corollary 3.7.

(1) (Macbeath [20]) The $\operatorname{Aff}(n)$-orbit space $c b\left(\mathbb{R}^{n}\right) / \operatorname{Aff}(n)$ is compact.
(2) The orbit spaces $L(n) / O(n)$ and $c b\left(\mathbb{R}^{n}\right) / \operatorname{Aff}(n)$ are homeomorphic.

Proof. Let $\pi: L(n) \rightarrow c b\left(\mathbb{R}^{n}\right) / \operatorname{Aff}(n)$ be the restriction of the orbit map $c b\left(\mathbb{R}^{n}\right) \rightarrow c b\left(\mathbb{R}^{n}\right) / \operatorname{Aff}(n)$. Then π is continuous and it follows from Proposition 3.4 (b) that π is onto. This already implies the first assertion if we remember that $L(n)$ is compact (see Proposition $3.4(\mathrm{~d})$).

Further, for $A, B \in L(n)$, it follows from Proposition 3.4(c) that $\pi(A)=$ $\pi(B)$ iff A and B have the same $O(n)$-orbit. Hence, π induces a continuous bijective map $p: L(n) / O(n) \rightarrow c b\left(\mathbb{R}^{n}\right) / \operatorname{Aff}(n)$. Since $L(n) / O(n)$ is compact we conclude that p is a homeomorphism.

In Theorem 5.11 we will prove that $L(n) / O(n)$ is homeomorphic to the Banach-Mazur compactum $\operatorname{BM}(n)$. This, in combination with Corollary 3.7 implies the following:

Corollary 3.8. The $\operatorname{Aff}(n)$-orbit space $c b\left(\mathbb{R}^{n}\right) / \operatorname{Aff}(n)$ is homeomorphic to the Banach-Mazur compactum $\operatorname{BM}(n)$.

Corollary 3.9.
(1) There exists an $O(n)$-equivariant retraction $r: c b\left(\mathbb{R}^{n}\right) \rightarrow L(n)$ such that $r(A)$ belongs to the $\operatorname{Aff}(n)$-orbit of A.
(2) The diagonal product of the retractions $r: c b\left(\mathbb{R}^{n}\right) \rightarrow L(n)$ and l : $c b\left(\mathbb{R}^{n}\right) \rightarrow E(n)$ is an $O(n)$-equivariant homeomorphism

$$
c b\left(\mathbb{R}^{n}\right) \cong_{O(n)} L(n) \times E(n)
$$

Proof. (1) Recall that $O(n)$ is a maximal compact subgroup of $\operatorname{Aff}(n)$. According to the structure theorem (see [16, Ch. XV, Theorem 3.1]), there exists a closed subset $T \subset \operatorname{Aff}(n)$ such that $g T g^{-1}=T$ for every $g \in O(n)$, and the multiplication map

$$
\begin{equation*}
(t, g) \mapsto t g: T \times O(n) \rightarrow \operatorname{Aff}(n) \tag{3.3}
\end{equation*}
$$

is a homeomorphism. In our case it is easy to see that for T one can take the set of all products $A S$, where A is a translation and S is an invertible symmetric (or self-adjoint) positive operator. This follows easily from
two standard facts in linear algebra: (1) each $a \in \operatorname{Aff}(n)$ is uniquely represented as the composition of a translation $t \in \mathbb{R}^{n}$ and an invertible operator $g \in G L(n),(2)$ by the polar decomposition theorem, every $g \in G L(n)$ can be uniquely represented as the composition of a nondegenerate symmetric positive operator and an orthogonal operator (see, e.g., [18, Sections 2.3 and 2.4]).

Now we define the required $O(n)$-equivariant retraction $r: c b\left(\mathbb{R}^{n}\right) \rightarrow L(n)$. Let $f: \operatorname{Aff}(n) \rightarrow E(n)$ be defined by $f(g)=g \mathbb{B}^{n}$. Then f induces an $\operatorname{Aff}(n)-$ equivariant homeomorphism $\widetilde{f}: \operatorname{Aff}(n) / O(n) \rightarrow E(n)$ [24, Proposition 1.1.5] and f is the composition

$$
\operatorname{Aff}(n) \xrightarrow{\pi} \operatorname{Aff}(n) / O(n) \xrightarrow{\widetilde{f}} E(n),
$$

where π is the natural quotient map. By compactness of $O(n), \pi$ is closed, and hence so is f, being the composition of two closed maps.

This implies that the restriction $\left.f\right|_{T}: T \rightarrow E(n)$ is a homeomorphism. Moreover, this homeomorphism is $O(n)$-equivariant if we let $O(n)$ act on T by inner automorphisms and on $E(n)$ by the action induced from $c b\left(\mathbb{R}^{n}\right)$.

Denote by $\xi: E(n) \rightarrow T$ the inverse map f^{-1}. Then we have the following characteristic property of ξ :

$$
\begin{equation*}
[\xi(C)]^{-1} C=\mathbb{B}^{n} \quad \text { for all } C \in E(n) \tag{3.4}
\end{equation*}
$$

Next, we define

$$
r(A)=[\xi(l(A))]^{-1} A \quad \text { for every } A \in c b\left(\mathbb{R}^{n}\right)
$$

Clearly, r depends continuously on $A \in \operatorname{cb}\left(\mathbb{R}^{n}\right)$.
Since $l(r(A))=l\left([\xi(l(A))]^{-1} A\right)=[\xi(l(A))]^{-1} l(A)$, and since by (3.4), $[\xi(l(A))]^{-1} l(A)=\mathbb{B}^{n}$, we infer that $r(A) \in L(n)$. If $A \in L(n)$, then $l(A)=\mathbb{B}^{n}$ and $r(A)=[\xi(l(A))]^{-1} A=\left[\xi\left(\mathbb{B}^{n}\right)\right]^{-1} A=1 \cdot A=A$. Thus, r is a well-defined retraction on $L(n)$.

Let us check that r is $O(n)$-equivariant. Indeed, let $g \in O(n)$ and $A \in$ $c b\left(\mathbb{R}^{n}\right)$. Then $r(g A)=[\xi(l(g A))]^{-1} g A=[\xi(g l(A))]^{-1} g A$. By equivariance of ξ, one has $\xi(g l(A))=g \xi(l(A)) g^{-1}$, and hence $[\xi(g l(A))]^{-1}=g[\xi(l(A))]^{-1} g^{-1}$. Consequently,

$$
r(g A)=\left(g[\xi(l(A))]^{-1} g^{-1}\right) g A=g\left([\xi(l(A))]^{-1} A\right)=g r(A)
$$

as required. Thus, $r: \operatorname{cb}\left(\mathbb{R}^{n}\right) \rightarrow L(n)$ is an $O(n)$-retraction, and clearly $r(A)$ belongs to the $\operatorname{Aff}(n)$-orbit of A.
(2) Next we define

$$
\varphi(A)=(r(A), l(A)) \quad \text { for every } A \in c b\left(\mathbb{R}^{n}\right)
$$

Then φ is an $O(n)$-equivariant homeomorphism $c b\left(\mathbb{R}^{n}\right) \rightarrow L(n) \times E(n)$ with inverse $\varphi^{-1}((C, E))=\xi(E) C$ for every $(C, E) \in L(n) \times E(n)$.

Corollary 3.10.
(1) $E(n)$ is an $O(n)-A R$.
(2) $E(n)$ is homeomorphic to $\mathbb{R}^{n(n+3) / 2}$.

Proof. (1) follows immediately from Theorem 3.6 and from the fact that $c b\left(\mathbb{R}^{n}\right)$ is an $O(n)$-AR [8, Corollary 4.8].
(2) As observed above, $E(n)$ is homeomorphic to $\operatorname{Aff}(n) / O(n)$ (see [24, Proposition 1.1.5]). Consequently, one should prove that $\operatorname{Aff}(n) / O(n)$ is homeomorphic to $\mathbb{R}^{n(n+3) / 2}$.

Since $\operatorname{Aff}(n)$ is the semidirect product of \mathbb{R}^{n} and $G L(n)$, as a topological space $\operatorname{Aff}(n) / O(n)$ is homeomorphic to $\mathbb{R}^{n} \times G L(n) / O(n)$. The $R Q$ decomposition theorem in linear algebra states that every invertible matrix can be uniquely represented as the product of an orthogonal matrix and an upper-triangular matrix with positive elements on the diagonal (see, e.g., [13, Fact 4.2.2 and Exercise 4.3.29]). This easily implies that $G L(n) / O(n)$ is homeomorphic to $\mathbb{R}^{(n+1) n / 2}$, and hence $\operatorname{Aff}(n) / O(n)$ is homeomorphic to \mathbb{R}^{p}, where $p=n+(n+1) n / 2=n(n+3) / 2$.

In Section 5 we will prove that $L(n)$ is homeomorphic to the Hilbert cube (Corollary 5.9). This, in combination with Corollaries 3.9 and 3.10 , yields the following result, which is one of the main results of the paper:

Corollary 3.11. $c b\left(\mathbb{R}^{n}\right)$ is homeomorphic to $Q \times \mathbb{R}^{n(n+3) / 2}$.
REMARK 3.12. Using maximal-volume ellipsoids instead of minimal-volume ellipsoids, one can prove in a similar way that the subset $J(n)$, defined at the beginning of this subsection, is also a global $O(n)$-slice for $c b\left(\mathbb{R}^{n}\right)$. However, it follows from a result of H. Abels [1, Lemma 2.3] that the two global $O(n)$-slices $J(n)$ and $L(n)$ are equivalent in the sense that there exists an $\operatorname{Aff}(n)$-equivariant homeomorphism $f: c b\left(\mathbb{R}^{n}\right) \rightarrow c b\left(\mathbb{R}^{n}\right)$ such that $f(L(n))=J(n)$. Consequently, all the results stated in terms of $L(n)$ have their analogs in terms of $J(n)$, which can be proven by trivial modification of our proofs.
4. The hyperspace $M(n)$. Let us denote by $M(n)$ the $O(n)$-invariant subspace of $c c\left(\mathbb{R}^{n}\right)$ consisting of all $A \in c c\left(\mathbb{R}^{n}\right)$ such that $\max _{a \in A}\|a\|=1$. Thus, $M(n)$ consists of all compact convex subsets of \mathbb{B}^{n} which intersect the boundary sphere \mathbb{S}^{n-1}.

It is evident that $M(n)$ is closed in $c c\left(\mathbb{B}^{n}\right) \subset c c\left(\mathbb{R}^{n}\right)$. By compactness of $c c\left(\mathbb{B}^{n}\right)$ (a well-known fact) it follows that $M(n)$ is compact as well. The importance of $M(n)$ lies in the property that $c c\left(\mathbb{R}^{n}\right)$ is the open cone over $M(n)$ (see Section 7). In this section we will prove that $M(n)$ is also homeomorphic to the Hilbert cube (Corollary 4.13) and its orbit space $M(n) / O(n)$ is homeomorphic to the Banach-Mazur compactum $\operatorname{BM}(n)$ (Theorem 4.16).

Let us recall that a G-space X is called strictly G-contractible if there exists a G-homotopy $F: X \times[0,1] \rightarrow X$ and a G-fixed point $a \in X$ such that $F(x, 0)=x$ for all $x \in X$ and $F(x, t)=a$ if and only if $t=1$ or $x=a$.

LEMMA 4.1. $M(n)$ is strictly $O(n)$-contractible to its only $O(n)$-fixed point \mathbb{B}^{n}.

Proof. The map $F: M(n) \times[0,1] \rightarrow M(n)$ defined by

$$
F(A, t)=(1-t) A+t \mathbb{B}^{n}
$$

is the desired $O(n)$-contraction.
Consider the map $\nu: c c\left(\mathbb{R}^{n}\right) \rightarrow[0, \infty)$ defined by

$$
\begin{equation*}
\nu(A)=\max _{a \in A}\|a\|, \quad A \in c c\left(\mathbb{R}^{n}\right) \tag{4.1}
\end{equation*}
$$

Lemma 4.2. ν is a uniformly continuous $O(n)$-invariant map.
Proof. Let $\varepsilon>0$ and $A, B \in c c\left(\mathbb{R}^{n}\right)$, and suppose that $d_{\mathrm{H}}(A, B)<\varepsilon$. Let $a \in A$ be such that $\nu(A)=\|a\|$. Then there exists $b \in B$ with $\|a-b\|<\varepsilon$. Since $\|b\| \leq \nu(B)$ we have

$$
\varepsilon>\|a-b\| \geq\|a\|-\|b\| \geq \nu(A)-\nu(B)
$$

Similarly, we can prove that $\nu(B)-\nu(A)<\varepsilon$, and hence ν is uniformly continuous.

Now, if $g \in O(n)$ then $\|g x\|=\|x\|$ for every $x \in \mathbb{R}^{n}$. Thus,

$$
\nu(g A)=\max _{a^{\prime} \in g A}\left\|a^{\prime}\right\|=\max _{a \in A}\|g a\|=\max _{a \in A}\|a\|=\nu(A)
$$

This proves that ν is $O(n)$-invariant, as required.
Lemma 4.3. $M(n)$ is an $O(n)-A R$ with a unique $O(n)$-fixed point, \mathbb{B}^{n}.
Proof. By [8, Corollary 4.8], $c c\left(\mathbb{R}^{n}\right)$ is an $O(n)$-AR. Hence, $c c\left(\mathbb{R}^{n}\right) \backslash\{0\}$ is an $O(n)$-ANR. The map $r: c c\left(\mathbb{R}^{n}\right) \backslash\{0\} \rightarrow M(n)$ defined by

$$
\begin{equation*}
r(A)=\frac{1}{\nu(A)} A \tag{4.2}
\end{equation*}
$$

is an $O(n)$-retraction, where ν is defined in 4.1). Thus $M(n)$, being an $O(n)$-retract of an $O(n)$-ANR, is itself an $O(n)$-ANR. On the other hand, it was shown in Lemma 4.1 that $M(n)$ is $O(n)$-contractible to its point \mathbb{B}^{n}. Since every $O(n)$-contractible $O(n)$-ANR space is an $O(n)$-AR (see [3]) we conclude that $M(n)$ is an $O(n)$-AR.

The following lemma will be used several times:
Lemma 4.4. Let $p_{1}, \ldots, p_{k} \in \mathbb{R}^{n}$ be a finite number of points. Let $K \subset$ $O(n)$ be a closed subgroup which acts nontransitively on \mathbb{S}^{n-1}. Then the boundary of the convex hull

$$
D=\operatorname{conv}\left(K\left(p_{1}\right) \cup \cdots \cup K\left(p_{k}\right)\right)
$$

does not contain an ($n-1$)-dimensional elliptic domain, i.e., ∂D contains no open subset V which is at the same time an open connected subset of some $(n-1)$-dimensional ellipsoid surface lying in \mathbb{R}^{n}.

Proof. Assume that there exists an open subset $V \subset \partial D$ which is an $(n-1)$-dimensional elliptic domain. Recall that a convex body $A \subset \mathbb{R}^{n}$ is called strictly convex if every boundary point $a \in \partial A$ is an extreme point, that is, $A \backslash\{a\}$ is convex. Since every ellipsoid in \mathbb{R}^{n} is strictly convex, it will follow that every $v \in V$ is an extreme point of D too, as we now show.

Indeed, suppose that there are distinct points $b, c \in D$ such that v belongs to the relative interior of the line segment $[b, c]=\{\lambda b+(1-\lambda) c \mid \lambda \in[0,1]\}$. Since v is a boundary point of D, the whole segment $[b, c]$ lies in ∂D. Next, since V is open in ∂D, we infer that for b and c sufficiently close to v, the segment $[b, c]$ is contained in V. However, this is impossible because V is an elliptic domain.

Thus, we have proved that every $v \in V$ is an extreme point of D. Next, since D is the convex hull of $\bigcup_{i=1}^{k} K\left(p_{i}\right)$, each extreme point of D lies in $\bigcup_{i=1}^{k} K\left(p_{i}\right)$ (see, e.g., [29, Corollary 2.6.4]). This implies that $V \subset$ $\bigcup_{i=1}^{k} K\left(p_{i}\right)$. Further, by connectedness, V is contained in only one $K\left(p_{i}\right)$. However, we now show this is impossible.

Indeed, since $K\left(p_{i}\right)$ lies on the $(n-1)$-sphere $\partial N\left(0,\left\|p_{i}\right\|\right)$ centered at the origin and having radius $\left\|p_{i}\right\|, V$ should be a domain in this sphere. As $K\left(p_{i}\right)$ is a homogeneous compact space, there exists a finite cover $\left\{V_{1}, \ldots, V_{m}\right\}$ of $K\left(p_{i}\right)$, where each V_{j} is homeomorphic to V. Then, by the Domain Invariance Theorem (see, e.g., [26, Ch. 4, Section 7, Theorem 16]), each V_{j} is open in $\partial N\left(0,\left\|p_{i}\right\|\right)$. Hence, $V_{1} \cup \cdots \cup V_{m}=K\left(p_{i}\right)$ is open in $\partial N\left(0,\left\|p_{i}\right\|\right)$. But $K\left(p_{i}\right)$ is also compact, and therefore closed in $\partial N\left(0,\left\|p_{i}\right\|\right)$. Thus $K\left(p_{i}\right)$ is an open and closed subset of the connected space $\partial N\left(0,\left\|p_{i}\right\|\right)$, and consequently $K\left(p_{i}\right)=\partial N\left(0,\left\|p_{i}\right\|\right)$. This implies that K acts transitively on \mathbb{S}^{n-1}, which is a contradiction.

The Fell topology in $c c\left(\mathbb{R}^{n}\right)$ is generated by all sets of the form

$$
\begin{gathered}
U^{-}=\left\{A \in c c\left(\mathbb{R}^{n}\right) \mid A \cap U \neq \emptyset\right\} \quad \text { and } \\
\left(\mathbb{R}^{n} \backslash K\right)^{+}=\left\{A \in c c\left(\mathbb{R}^{n}\right) \mid A \subset \mathbb{R}^{n} \backslash K\right\}
\end{gathered}
$$

where $U \subset \mathbb{R}^{n}$ is open and $K \subset \mathbb{R}^{n}$ is compact.
It is well known that the Fell topology and the Hausdorff metric topology coincide in $c c\left(\mathbb{R}^{n}\right)$ (see, e.g., [25, Remark 2]). In particular, they coincide in $c b\left(\mathbb{R}^{n}\right)$. This will be used in the proof of the following lemma:

Lemma 4.5. Let $T \in c b\left(\mathbb{R}^{n}\right)$ be a convex body and $\mathcal{H} \subset c b\left(\mathbb{R}^{n}\right)$ a subset such that for every $A \in \mathcal{H}$, the intersection $A \cap T$ has nonempty interior.

Then the map $v: \mathcal{H} \rightarrow c b\left(\mathbb{R}^{n}\right)$ defined by

$$
v(A)=A \cap T, \quad A \in \mathcal{H}
$$

is continuous.
Proof. It is enough to show that $v^{-1}\left(U^{-}\right)$and $v^{-1}\left(\left(\mathbb{R}^{n} \backslash K\right)^{+}\right)$are open in \mathcal{H} for every open $U \subset \mathbb{R}^{n}$ and compact $K \subset \mathbb{R}^{n}$.

First, suppose that $U \subset \mathbb{R}^{n}$ is open and $A \in v^{-1}\left(U^{-}\right)$. Then $U \cap(A \cap T)$ $\neq \emptyset$. Since U is open and $A \cap T$ is a convex body, there exists a point x_{0} in the interior of $A \cap T$ such that $x_{0} \in U$. So, one can find $\delta>0$ satisfying

$$
\overline{N\left(x_{0}, 2 \delta\right)} \subset U \cap(A \cap T)
$$

In view of Lemma 3.1, if $C \in O(A, \delta) \cap \mathcal{H}$ then $N\left(x_{0}, \delta\right) \subset C$. Since $x_{0} \in$ $U \cap T$, we conclude that $U \cap v(C)=U \cap(C \cap T) \neq \emptyset$. This proves that $O(A, \delta) \cap \mathcal{H} \subset v^{-1}\left(U^{-}\right)$, and hence $v^{-1}\left(U^{-}\right)$is open in \mathcal{H}.

Consider now a compact subset $K \subset \mathbb{R}^{n}$ and suppose $A \in \mathcal{H}$ is such that $v(A) \cap K=\emptyset$. If $K \cap T=\emptyset$ then $\mathcal{H}=v^{-1}\left(\left(\mathbb{R}^{n} \backslash K\right)^{+}\right)$, which is open in \mathcal{H}. If $K \cap T \neq \emptyset$ then we define

$$
\eta=\inf \{d(a, x) \mid a \in A, x \in K \cap T\}
$$

Since $(A \cap T) \cap K=\emptyset$, we have $\eta>0$. Let $C \in O(A, \eta) \cap \mathcal{H}$ and suppose that $v(C)$ meets K. Then there exists $x_{0} \in C \cap T \cap K$. Since C belongs to the η-neighborhood of A, we can find $a \in A$ such that $d\left(a, x_{0}\right)<\eta$, contradicting the choice of η. Thus we conclude that

$$
O(A, \eta) \cap \mathcal{H} \subset v^{-1}\left(\left(\mathbb{R}^{n} \backslash K\right)^{+}\right)
$$

and hence $v^{-1}\left(\left(\mathbb{R}^{n} \backslash K\right)^{+}\right)$is open in \mathcal{H}.
Denote by $M_{0}(n)$ the complement $M(n) \backslash\left\{\mathbb{B}^{n}\right\}$.
Proposition 4.6. For each closed subgroup $K \subset O(n)$ that acts nontransitively on \mathbb{S}^{n-1} and each $\varepsilon>0$, there exists a K-equivariant map $\chi_{\varepsilon}: M(n) \rightarrow M_{0}(n)$ which is ε-close to the identity map of $M(n)$. In particular, $\chi_{\varepsilon}\left(M(n)^{K}\right) \subset M_{0}(n)^{K}$.

Proof. Let $r: c c\left(\mathbb{R}^{n}\right) \backslash\{0\} \rightarrow M(n)$ be the $O(n)$-equivariant retraction defined in (4.2). Since $M(n)$ is compact, one can find $0<\delta<\varepsilon / 2$ such that $d_{\mathrm{H}}(r(A), A)<\varepsilon / 2$ for all A in the δ-neighborhood of $M(n)$ in $c c\left(\mathbb{R}^{n}\right) \backslash\{0\}$.

Choose a convex polyhedron $P \subset \mathbb{B}^{n}$ with nonempty interior, $\delta / 4$-close to \mathbb{B}^{n}, such that all the vertices p_{1}, \ldots, p_{k} of P lie on $\mathbb{S}^{n-1}=\partial \mathbb{B}^{n}$. Then

$$
T=\operatorname{conv}\left(K\left(p_{1}\right) \cup \cdots \cup K\left(p_{k}\right)\right)
$$

is a compact convex K-invariant subset of \mathbb{R}^{n}. By Lemma 4.4, ∂T contains no $(n-1)$-dimensional elliptic domain. Furthermore,

$$
\begin{equation*}
d_{\mathrm{H}}\left(\mathbb{B}^{n}, T\right) \leq d_{\mathrm{H}}\left(\mathbb{B}^{n}, P\right)<\delta / 4 \tag{4.3}
\end{equation*}
$$

Let $h: M(n) \rightarrow M(n)$ be defined as follows:

$$
h(A)=\left\{x \in \mathbb{B}^{n} \mid d(x, A) \leq \delta / 2\right\} \quad \text { for every } A \in M(n)
$$

Clearly, $h(A) \cap T$ is a nonempty set with nonempty interior.
Then setting

$$
\chi^{\prime}(A)=h(A) \cap T
$$

we obtain a map $\chi^{\prime}: M(n) \rightarrow c c\left(\mathbb{R}^{n}\right)$. Since T is a K-fixed point of $c c\left(\mathbb{R}^{n}\right)$, we see that χ^{\prime} is K-equivariant.

Continuity of χ^{\prime} follows from the one of h and Lemma 4.5
We claim that for any $A \in M(n), \chi^{\prime}(A)$ is not a closed Euclidean ball centered at the origin.

Indeed, if $h(A) \subset T$ then $h(A) \neq \mathbb{B}^{n}$ since T is strictly contained in \mathbb{B}^{n}. In this case $\chi^{\prime}(A)=h(A) \cap T=h(A)$, and hence $\chi^{\prime}(A) \in M(n)$. However, the only Euclidean ball centered at the origin that belongs to $M(n)$ is \mathbb{B}^{n}. But $\chi^{\prime}(A)=h(A) \neq \mathbb{B}^{n}$.

If $h(A) \not \subset T$, then the boundary of $\chi^{\prime}(A)$ contains a domain lying in ∂T. Since ∂T contains no $(n-1)$-dimensional elliptic domain (as shown in Lemma 4.4, $\chi^{\prime}(A)$ is not an ellipsoid. In particular, it is not a Euclidean ball centered at the origin, and the claim is proved.

Now we assert that $\chi=r \circ \chi^{\prime}$ is the desired map. Indeed, $r(A)=\mathbb{B}^{n}$ if and only if A is a Euclidean ball centered at the origin. Since $\chi^{\prime}(A)$ is not such a ball, we infer that $\chi(A)=r\left(\chi^{\prime}(A)\right) \neq \mathbb{B}^{n}$ for every $A \in M(n)$. Thus $\chi: M(n) \rightarrow M_{0}(n)$ is a well-defined map. It is continuous and K-equivariant because χ^{\prime} and r are.

Now, if $x \in \chi^{\prime}(A)$ then $x \in h(A)$. Hence, $d(x, A) \leq \delta / 2<\delta$ and $\chi^{\prime}(A) \subset$ $N(A, \delta)$. On the other hand, if $a \in A \subset \mathbb{B}^{n}$, then by 4.3) there exists $x \in T$ such that $d(x, a)<\delta / 4<\delta / 2$. Therefore, $x \in h(A) \cap T=\chi^{\prime}(A)$, and hence $A \subset N\left(\chi^{\prime}(A), \delta / 2\right)$. This proves that $d_{\mathrm{H}}\left(A, \chi^{\prime}(A)\right)<\delta$.

By the choice of δ the last inequality implies $d_{\mathrm{H}}\left(r\left(\chi^{\prime}(A)\right), \chi^{\prime}(A)\right) \leq \varepsilon / 2$. Then for all $A \in M(n)$ we have

$$
\begin{aligned}
d_{\mathrm{H}}(\chi(A), A) & \leq d_{\mathrm{H}}\left(\chi(A), \chi^{\prime}(A)\right)+d_{\mathrm{H}}\left(\chi^{\prime}(A), A\right) \\
& =d_{\mathrm{H}}\left(r\left(\chi^{\prime}(A)\right), \chi^{\prime}(A)\right)+d_{\mathrm{H}}\left(\chi^{\prime}(A), A\right) \\
& <\varepsilon / 2+\delta<\varepsilon / 2+\varepsilon / 2=\varepsilon .
\end{aligned}
$$

This proves that χ is ε-close to the identity map of $M(n)$, and the proof is complete.

Observe that the induced action of $O(n)$ on $c c\left(\mathbb{R}^{n}\right)$ is isometric with respect to the Hausdorff metric. In particular, for every closed subgroup $K \subset O(n)$, the Hausdorff metric on $c c\left(\mathbb{R}^{n}\right)$ is K-invariant.

Let d_{H}^{*} be the metric on $M(n) / K$ induced by the Hausdorff metric on $M(n)$ as defined in 2.1):

$$
d_{\mathrm{H}}^{*}(K(A), K(B))=\inf _{k \in K} d_{\mathrm{H}}(A, k B), \quad A, B \in M(n) .
$$

Corollary 4.7. Let $K \subset O(n)$ be a closed subgroup that acts nontransitively on \mathbb{S}^{n-1}. Then
(1) the singleton $\left\{\mathbb{B}^{n}\right\}$ is a Z-set in $M(n)^{K}$,
(2) the class of $\left\{\mathbb{B}^{n}\right\}$ is a Z-set in $M(n) / K$.

Proof. The first statement follows directly from Proposition 4.6. For the second statement, take $\varepsilon>0$. By Proposition 4.6, there exists a K-map $\chi_{\varepsilon}: M(n) \rightarrow M_{0}(n)$ such that $d_{\mathrm{H}}(A, \chi(A))<\varepsilon$ for every $A \in M(n)$. This induces a continuous map $\widetilde{\chi}_{\varepsilon}: M(n) / K \rightarrow M_{0} / K$ as follows:

$$
\tilde{\chi}_{\varepsilon}(K(A))=\pi\left(\chi_{\varepsilon}(A)\right)=K\left(\xi_{\varepsilon}(A)\right), \quad A \in M(n)
$$

where $\pi: M(n) \rightarrow M(n) / K$ is the K-orbit map. By (2.2) we have

$$
d_{\mathrm{H}}^{*}\left(K\left(\chi_{\varepsilon}(A)\right), K(A)\right) \leq d_{\mathrm{H}}\left(\chi_{\varepsilon}(A), A\right)<\varepsilon
$$

and thus $\widetilde{\chi}_{\varepsilon}$ is ε-close to the identity map of $M(n) / K$.
On the other hand, since $\left\{\chi_{\varepsilon}(A)\right\} \neq\left\{\mathbb{B}^{n}\right\}=K\left(\mathbb{B}^{n}\right)$ for every $A \in M(n)$, we conclude that

$$
\tilde{\chi}_{\varepsilon}(M(n) / K) \cap\left\{\mathbb{B}^{n}\right\}=\emptyset,
$$

which proves that the class of $\left\{\mathbb{B}^{n}\right\}$ is a Z-set on $M(n) / K$.
Now, we shall give a sequence of lemmas and propositions culminating in Corollary 4.15.

Denote by $\mathcal{R}(n)$ the subspace of $M(n)$ consisting of all $A \in M(n)$ such that the contact set $A \cap \mathbb{S}^{n-1}$ has empty interior in \mathbb{S}^{n-1}.

For every $A \in M(n), A \cap \mathbb{S}^{n-1}$ is nonempty, and therefore there exists $a \in A \cap \mathbb{S}^{n-1}$. If $O(n)_{A}$ is the $O(n)$-stabilizer of A then $O(n)_{A}(a) \subset A \cap \mathbb{S}^{n-1}$. Therefore, if $A \neq \mathbb{B}^{n}$, the subset $O(n)_{A}(a)$ should be different from \mathbb{S}^{n-1}, and thus $O(n)_{A}$ acts nontransitively on \mathbb{S}^{n-1}.

Lemma 4.8. Let $\varepsilon>0$. For each $D \in M_{0}(n)$ there exist $A \in \mathcal{R}(n)$ such that $d_{\mathrm{H}}(D, A)<\varepsilon$ and the $O(n)$-stabilizer $O(n)_{A}$ coincides with $O(n)_{D}$.

Proof. According to Theorem 2.2, there is $0<\eta<\varepsilon$ such that if $d_{\mathrm{H}}(C, D)<\eta$ then the stabilizer $O(n)_{C}$ is conjugate to a subgroup of $O(n)_{D}$. Let $p_{1}, \ldots, p_{k} \in D$ be such that $P=\operatorname{conv}\left(\left\{p_{1}, \ldots, p_{k}\right\}\right) \in M(n)$ (it is enough to choose one of the p_{i} 's lying in $\partial D \cap \mathbb{S}^{n-1}$) and $d_{\mathrm{H}}(D, P)<\eta$. Next, we define

$$
A=\operatorname{conv}\left(O(n)_{D}\left(p_{1}\right) \cup \cdots \cup O(n)_{D}\left(p_{k}\right)\right)
$$

Clearly, $A \in M(n)$ and

$$
d_{\mathrm{H}}(D, A) \leq d_{\mathrm{H}}(D, P)<\eta<\varepsilon
$$

Since $O(n)_{D}$ acts nontransitively on \mathbb{S}^{n-1}, Lemma 4.4 show that ∂A contains no $(n-1)$-elliptic domain. In particular, $\partial A \cap \mathbb{S}^{n-1}$ has empty interior in \mathbb{S}^{n-1}, i.e., $A \in \mathcal{R}(n)$.

By the choice of η the stabilizer $O(n)_{A}$ is conjugate to a subgroup of $O(n)_{D}$. On the other hand, A is an $O(n)_{D}$-invariant subset, so that $O(n)_{D} \subset O(n)_{A}$. This implies that $O(n)_{A}=O(n)_{D}$, as required.

The following lemma is just a special case of [8, Theorem 4.5].
Lemma 4.9. Let $X \in c c\left(\mathbb{R}^{n}\right)$. For every $\varepsilon>0$, the open ball in $c c\left(\mathbb{R}^{n}\right)$ with radius ε centered at X is convex, i.e., if $\left\{A_{1}, \ldots, A_{k}\right\} \subset c c\left(\mathbb{R}^{n}\right)$ is a finite family such that for every $i=1, \ldots, k, d_{\mathrm{H}}\left(A_{i}, X\right)<\varepsilon$, then the set

$$
\sum_{i=1}^{k} t_{i} A_{i}=\left\{\sum_{i=1}^{k} t_{i} a_{i} \mid a_{i} \in A_{i}, i=1, \ldots, k\right\}
$$

is ε-close to X, where $t_{1}, \ldots, t_{k} \in[0,1]$ with $\sum_{i=1}^{k} t_{i}=1$.
The following is perhaps the key result of this section:
Proposition 4.10. For every $\varepsilon>0$, there exists an $O(n)-m a p f_{\varepsilon}$: $M_{0}(n) \rightarrow \mathcal{R}(n), \varepsilon$-close to the identity map of $M_{0}(n)$.

Proof. Let $\mathcal{V}=\{O(X, \varepsilon / 4)\}_{X \in M_{0}(n)}$ be the open cover of $M_{0}(n)$ consisting of all open balls of radius $\varepsilon / 4$. By [7, Lemma 4.1], there exists an $O(n)$-normal cover of $M_{0}(n)$ (see Section 2 for the definition),

$$
\mathcal{W}=\left\{g S_{\mu} \mid g \in O(n), \mu \in \mathcal{M}\right\}
$$

satisfying the following two conditions:
(a) \mathcal{W} is a star-refinement of \mathcal{V}, that is, for each $g S_{\mu} \in \mathcal{W}$, there exists $V \in \mathcal{V}$ that contains the star of $g S_{\mu}$ with respect to \mathcal{W}, i.e.,

$$
\operatorname{St}\left(g S_{\mu}, \mathcal{W}\right)=\bigcup\left\{h S_{\lambda} \in \mathcal{W} \mid h S_{\lambda} \cap g S_{\mu} \neq \emptyset\right\} \subset V
$$

(b) For each $\mu \in \mathcal{M}$, the set S_{μ} is an H_{μ}-slice, where H_{μ} coincides with the stabilizer $O(n)_{X_{\mu}}$ of a certain point $X_{\mu} \in S_{\mu}$.
Since $X_{\mu} \in M_{0}(n)$, we see that H_{μ} acts nontransitively on \mathbb{S}^{n-1}. Thus, by Lemma 4.8, there exists $A_{\mu} \in \mathcal{R}(n)$ which is $\varepsilon / 4$-close to X_{μ} and $O(n)_{A_{\mu}}=H_{\mu}$.

For every $\mu \in \mathcal{M}$, set $O_{\mu}=O(n)\left(S_{\mu}\right)$. Define $F_{\mu}: O_{\mu} \rightarrow O(n)\left(A_{\mu}\right)$ by

$$
F_{\mu}(g Z)=g A_{\mu}, \quad Z \in S_{\mu}, g \in O(n)
$$

Clearly F_{μ} is a well-defined continuous $O(n)$-map.
Fix an invariant locally finite partition of unity $\left\{p_{\mu}\right\}_{\mu \in \mathcal{M}}$ subordinated to the open cover $\mathcal{U}=\left\{O_{\mu}\right\}_{\mu \in \mathcal{M}}$, i.e.,

$$
\overline{p_{\mu}^{-1}((0,1])} \subset O_{\mu} \quad \text { for every } \mu \in \mathcal{M}
$$

Let $\mathcal{N}(\mathcal{U})$ be the nerve of the cover \mathcal{U} and suppose that \mathcal{M} is its vertex set. Denote by $|\mathcal{N}(\mathcal{U})|$ the geometric realization of $\mathcal{N}(\mathcal{U})$. Recall that every point $\alpha \in|\mathcal{N}(\mathcal{U})|$ can be expressed as a sum $\alpha=\sum_{\mu \in \mathcal{M}} \alpha_{\mu} v_{\mu}$, where v_{μ} is the geometric vertex corresponding to $\mu \in \mathcal{M}$ and $\alpha_{\mu}, \mu \in \mathcal{M}$, are the barycentric coordinates of α.

For a simplex σ of $\mathcal{N}(\mathcal{U})$ with vertices μ_{0}, \ldots, μ_{k}, we will use the notation $\sigma=\left\langle\mu_{0}, \ldots, \mu_{k}\right\rangle$. By $\left|\left\langle\mu_{0}, \ldots, \mu_{k}\right\rangle\right|$ we denote the corresponding geometric simplex with geometric vertices $v_{\mu_{0}}, \ldots, v_{\mu_{k}}$.

For every geometric simplex $|\sigma|=\left|\left\langle\mu_{0}, \ldots, \mu_{k}\right\rangle\right| \subset|\mathcal{N}(\mathcal{U})|$, denote by $\beta(\sigma) \in|\mathcal{N}(\mathcal{U})|$ the geometric barycenter of $|\sigma|$, i.e., $\beta(\sigma)=\sum_{\mu \in \mathcal{M}} \beta(\sigma)_{\mu} v_{\mu}$ where

$$
\beta(\sigma)_{\mu}= \begin{cases}1 /(k+1) & \text { if } \mu \in\left\{\mu_{0}, \ldots, \mu_{k}\right\} \\ 0 & \text { if } \mu \notin\left\{\mu_{0}, \ldots, \mu_{k}\right\}\end{cases}
$$

Consider the $\operatorname{map} \Psi:|\mathcal{N}(\mathcal{U})| \rightarrow|\mathcal{N}(\mathcal{U})|$ defined in each $\alpha=\sum_{\mu \in \mathcal{M}} \alpha_{\mu} v_{\mu} \in$ $|\mathcal{N}(\mathcal{U})|$ as follows: if $\left|\left\langle\mu_{0}, \ldots, \mu_{k}\right\rangle\right|$ is the carrier of α and $\alpha_{\mu_{0}} \geq \alpha_{\mu_{1}} \geq \cdots \geq$ $\alpha_{\mu_{k}}$, then

$$
\Psi(\alpha)=\sum_{\sigma \in \mathcal{N}(\mathcal{U})} \Psi(\alpha)_{\sigma} \beta(\sigma)
$$

where

$$
\Psi(\alpha)_{\sigma}= \begin{cases}(i+1)\left(\alpha_{\mu_{i}}-\alpha_{\mu_{i+1}}\right) & \text { if } \sigma=\left\langle\mu_{0}, \ldots, \mu_{i}\right\rangle, i=0, \ldots, k-1 \tag{4.4}\\ (k+1) \alpha_{\mu_{k}} & \text { if } \sigma=\left\langle\mu_{0}, \ldots, \mu_{k}\right\rangle \\ 0 & \text { if } \sigma \neq\left\langle\mu_{0}, \ldots, \mu_{i}\right\rangle, i=0, \ldots, k\end{cases}
$$

It is not difficult to see that Ψ is the identity map of $|\mathcal{N}(\mathcal{U})|$ written in the barycentric coordinates with respect to the first barycentric subdivision of $|\mathcal{N}(\mathcal{U})|$; we shall need this representation in what follows.

Let $p: M_{0}(n) \rightarrow|\mathcal{N}(\mathcal{U})|$ be the canonical map defined by

$$
p(X)=\sum_{\mu \in \mathcal{M}} p_{\mu}(X) v_{\mu}, \quad X \in M_{0}(n)
$$

Since each p_{μ} is $O(n)$-invariant, the map p is also $O(n)$-invariant.
For every simplex $\sigma=\left\langle\mu_{0}, \ldots, \mu_{k}\right\rangle \in \mathcal{N}(\mathcal{U})$ the set $V_{\sigma}=O_{\mu_{0}} \cap \cdots \cap$ $O_{\mu_{k}}$ is a nonempty open subset of $M_{0}(n)$. Continuity of the union operator and the convex hull operator (see, e.g., [21, Corollary 5.3.7] and [29, Theorem 2.7.4(iv)]) imply that the map $\Omega_{\sigma}^{\prime}: V_{\sigma} \rightarrow M_{0}(n)$ given by

$$
\Omega_{\sigma}^{\prime}(X)=\operatorname{conv}\left(\bigcup_{\mu \in \sigma} F_{\mu}(X)\right), \quad X \in V_{\sigma}
$$

is a continuous $O(n)$-map.
Observe that $\Omega_{\sigma}^{\prime}(X) \in M_{0}(n)$ and

$$
\Omega_{\sigma}^{\prime}(X) \cap \mathbb{S}^{n-1} \subset\left(\bigcup_{\mu \in \sigma} F_{\mu}(X)\right) \cap \mathbb{S}^{n-1}=\bigcup_{\mu \in \sigma}\left(F_{\mu}(X) \cap \mathbb{S}^{n-1}\right)
$$

and hence

$$
\begin{equation*}
\Omega_{\sigma}^{\prime}(X) \cap \mathbb{S}^{n-1} \quad \text { has empty interior in } \mathbb{S}^{n-1} \tag{4.5}
\end{equation*}
$$

Fix $B \in M_{0}(n)$. For each simplex σ of $\mathcal{N}(\mathcal{U})$, we extend the map Ω_{σ}^{\prime} to a function $\Omega_{\sigma}: M_{0}(n) \rightarrow M_{0}(n)$ as follows:

$$
\Omega_{\sigma}(X)= \begin{cases}\Omega_{\sigma}^{\prime}(X) & \text { if } X \in V_{\sigma} \\ B & \text { if } X \notin V_{\sigma}\end{cases}
$$

The desired $\operatorname{map} f_{\varepsilon}: M_{0}(n) \rightarrow M_{0}(n)$ can now be defined by

$$
f_{\varepsilon}(X)=\sum_{\sigma \in \mathcal{N}(\mathcal{U})} \Psi(p(X))_{\sigma} \Omega_{\sigma}(X), \quad X \in M_{0}(n)
$$

For every $X \in M_{0}(n)$, let $Q(X)$ be the subset of \mathcal{M} consisting of all $\mu \in \mathcal{M}$ such that $X \in p_{\mu}^{-1}((0,1])$. Similarly, denote by $Q^{\prime}(X)$ the subset of \mathcal{M} consisting of all $\mu \in \mathcal{M}$ such that $X \in \overline{p_{\mu}^{-1}((0,1])}$.

It is clear that $Q(X) \subset Q^{\prime}(X)$ and, by local finiteness of the cover $\left\{\overline{p_{\mu}^{-1}((0,1])}\right\}_{\mu \in \mathcal{M}}$, both sets are finite. Moreover, it follows from 4.4 that $\Psi(p(X))_{\sigma}=0$ whenever $\sigma \not \subset Q^{\prime}(X)$.

Then, for every $X \in M_{0}(n)$ we have

$$
\begin{equation*}
f_{\varepsilon}(X)=\sum_{\substack{\sigma \in \mathcal{N}(\mathcal{U}) \\ \sigma \subset Q(X)}} \Psi(p(X))_{\sigma} \Omega_{\sigma}(X)=\sum_{\substack{\sigma \mathcal{N}(\mathcal{U}) \\ \sigma \subset Q^{\prime}(X)}} \Psi(p(X))_{\sigma} \Omega_{\sigma}(X) \tag{4.6}
\end{equation*}
$$

To see the continuity of f_{ε}, fix $C \in M_{0}(n)$ and define

$$
V=\left(\bigcap_{\mu \in Q^{\prime}(C)} O_{\mu}\right) \backslash \bigcup_{\mu \notin Q^{\prime}(C)} \overline{p_{\mu}^{-1}((0,1])}
$$

Since the family $\left\{p_{\mu}^{-1}((0,1])\right\}_{\mu \in \mathcal{M}}$ is locally finite, $\bigcup_{\mu \notin Q^{\prime}(C)} \overline{p_{\mu}^{-1}((0,1])}$ is closed, and therefore V is a neighborhood of C. It is evident that $Q(X) \subset$ $Q^{\prime}(C)$ for every $X \in V$. Using 4.6, we infer that

$$
f_{\varepsilon}(X)=\sum_{\substack{\sigma \in \mathcal{N}(\mathcal{U}) \\ \sigma \subset Q^{\prime}(C)}} \Psi(p(X))_{\sigma} \Omega_{\sigma}(X) \quad \text { for every } X \in V
$$

Observe that $V \subset V_{\sigma}$ for every simplex $\sigma \in \mathcal{N}(\mathcal{U})$ such that $\sigma \subset Q^{\prime}(C)$, and hence $\left.\Omega_{\sigma}\right|_{V}=\left.\Omega_{\sigma}^{\prime}\right|_{V}$ is continuous.

On the other hand, $\Psi(p(X))_{\sigma}$ is just the $\beta(\sigma)$ th barycentric coordinate of $\Psi(p(X))$. Thus, for every $\sigma \in \mathcal{N}(\mathcal{U})$, the map $X \mapsto \Psi(p(X))_{\sigma}$ depends continuously on X. So, $\left.f_{\varepsilon}\right|_{V}$ is a finite sum of continuous functions and so it is also continuous in V. Consequently, f_{ε} is continuous at $C \in M_{0}(n)$, as required.

If $g \in O(n)$ and $X \in M_{0}(n)$, then

$$
\begin{aligned}
f_{\varepsilon}(g X) & =\sum_{\substack{\sigma \in \mathcal{N}(\mathcal{U}) \\
\sigma \subset Q(X)}} \Psi(p(g X))_{\sigma} \Omega_{\sigma}(g X)=\sum_{\substack{\sigma \in \mathcal{N}(\mathcal{U}) \\
\sigma \subset Q(X)}} \Psi(p(X))_{\sigma} \Omega_{\sigma}^{\prime}(g X) \\
& =\sum_{\sigma \in \mathcal{N}(\mathcal{U})} \Psi(p(X))_{\sigma}\left(g \Omega_{\sigma}^{\prime}(X)\right)=g\left(\sum_{\substack{\sigma \in \mathcal{N}(\mathcal{U}) \\
\sigma \subset Q(X)}} \Psi(p(X))_{\sigma} \Omega_{\sigma}^{\prime}(X)\right) \\
& =g\left(\sum_{\substack{\sigma \in \mathcal{N}(\mathcal{U}) \\
\sigma \subset Q(X)}} \Psi(p(X))_{\sigma} \Omega_{\sigma}(X)\right)=g f_{\varepsilon}(X),
\end{aligned}
$$

which shows that f_{ε} is $O(n)$-equivariant.
To see that $f_{\varepsilon}(X) \in M_{0}(n)$, suppose that

$$
Q(X)=\left\{\mu_{0}, \ldots, \mu_{k}\right\} \quad \text { and } \quad p_{\mu_{0}}(X) \geq p_{\mu_{1}}(X) \geq \cdots \geq p_{\mu_{k}}(X)
$$

Then, by (4.4) and 4.6), the set $f_{\varepsilon}(X)$ can be seen as a convex sum:

$$
\begin{aligned}
f_{\varepsilon}(X)= & (k+1) p_{\mu_{k}}(X) \Omega_{\left\langle\mu_{0}, \ldots, \mu_{k}\right\rangle}(X) \\
& +\sum_{i=0}^{k-1}(i+1)\left(p_{\mu_{i}}(X)-p_{\mu_{i+1}}(X)\right) \Omega_{\left\langle\mu_{0}, \ldots, \mu_{i}\right\rangle}(X) \\
= & (k+1) p_{\mu_{k}}(X) \Omega_{\left\langle\mu_{0}, \ldots, \mu_{k}\right\rangle}^{\prime}(X) \\
& +\sum_{i=0}^{k-1}(i+1)\left(p_{\mu_{i}}(X)-p_{\mu_{i+1}}(X)\right) \Omega_{\left\langle\mu_{0}, \ldots, \mu_{i}\right\rangle}^{\prime}(X) .
\end{aligned}
$$

Thus, $f_{\varepsilon}(X)$ is a convex subset contained in \mathbb{B}^{n}. Furthermore, observe that $F_{\mu_{0}}(X) \subset \Omega_{\left\langle\mu_{0}, \ldots, \mu_{i}\right\rangle}^{\prime}(X)$ for every $i=0, \ldots, k$. This implies that

$$
\begin{aligned}
F_{\mu_{0}}(X)= & (k+1) p_{\mu_{k}}(X) F_{\mu_{0}}(X)+\sum_{i=0}^{k-1}(i+1)\left(p_{\mu_{i}}(X)-p_{\mu_{i+1}}(X) g\right) F_{\mu_{0}}(X) \\
\subset & (k+1) p_{\mu_{k}}(X) \Omega_{\left\langle\mu_{0}, \ldots, \mu_{k}\right\rangle}^{\prime}(X) \\
& +\sum_{i=0}^{k-1}(i+1)\left(p_{\mu_{i}}(X)-p_{\mu_{i+1}}(X)\right) \Omega_{\left\langle\mu_{0}, \ldots, \mu_{i}\right\rangle}^{\prime}(X) \\
= & f_{\varepsilon}(X)
\end{aligned}
$$

Since $F_{\mu_{0}}(X) \in M_{0}(n)$, the inclusion $F_{\mu_{0}}(X) \subset f_{\varepsilon}(X)$ yields $f_{\varepsilon}(X) \in M_{0}(n)$.
On the other hand, the contact set $f_{\varepsilon}(X) \cap \mathbb{S}^{n-1}$ is contained in

$$
\left(\bigcup_{i=0}^{k} \Omega_{\left\langle\mu_{0}, \ldots, \mu_{i}\right\rangle}^{\prime}(X)\right) \cap \mathbb{S}^{n-1}=\bigcup_{i=0}^{k}\left(\Omega_{\left\langle\mu_{0}, \ldots, \mu_{i}\right\rangle}^{\prime}(X) \cap \mathbb{S}^{n-1}\right)
$$

Further, since by 4.5 , each $\Omega_{\left\langle\mu_{0}, \ldots, \mu_{i}\right\rangle}^{\prime}(X) \cap \mathbb{S}^{n-1}$ has empty interior in \mathbb{S}^{n-1},
we infer that the finite union $\bigcup_{i=0}^{k}\left(\Omega_{\left\langle\mu_{0}, \ldots, \mu_{i}\right\rangle}^{\prime}(X) \cap \mathbb{S}^{n-1}\right)$ also has empty interior in \mathbb{S}^{n-1}. This shows that $f_{\varepsilon}(X) \cap \mathbb{S}^{n-1}$ has empty interior in \mathbb{S}^{n-1}, as required.

It remains only to prove that $d_{\mathrm{H}}\left(X, f_{\varepsilon}(X)\right)<\varepsilon$ for every $X \in M_{0}(n)$.
Since $f_{\varepsilon}(X)$ is a convex sum of the sets $\Omega_{\left\langle\mu_{0}, \ldots, \mu_{i}\right\rangle}(X)$ for $i=0, \ldots, k$, according to Lemma 4.9 it is enough to prove that $\Omega_{\left\langle\mu_{0}, \ldots, \mu_{i}\right\rangle}(X)$ is ε-close to X for every $i=0, \ldots, k$.

Recall that $\Omega_{\left\langle\mu_{0}, \ldots, \mu_{i}\right\rangle}(X)=\operatorname{conv}\left(\bigcup_{j=0}^{i} F_{\mu_{j}}(X)\right)$, and hence we have only to prove that $d_{\mathrm{H}}\left(X, F_{\mu_{j}}(X)\right)<\varepsilon$ for each j.

For this purpose, suppose that $g_{j} \in O(n)$ is such that $F_{\mu_{j}}(X)=g_{j} A_{\mu_{j}}$. Then $X \in g_{j} S_{\mu_{j}}$ and $g_{j} X_{\mu_{j}} \in g_{j} S_{\mu_{j}}$.

Since \mathcal{W} is a star-refinement of \mathcal{V}, there exists $Z \in M_{0}(n)$ such that $\operatorname{St}(X, \mathcal{W})=\bigcup\left\{g S_{\mu} \in \mathcal{W} \mid X \in g S_{\mu}\right\} \subset O(Z, \varepsilon / 4)$. In particular,

$$
\begin{equation*}
d_{\mathrm{H}}(X, Z)<\varepsilon / 4 \quad \text { and } \quad d_{\mathrm{H}}\left(g_{j} X_{\mu_{j}}, Z\right)<\varepsilon / 4 \tag{4.7}
\end{equation*}
$$

This implies that $d_{\mathrm{H}}\left(g_{j} X_{\mu_{j}}, X\right)<\varepsilon / 2$. By the choice of $A_{\mu_{j}}$, we see that $d_{\mathrm{H}}\left(A_{\mu_{j}}, X_{\mu_{j}}\right)<\varepsilon / 4$. Since the Hausdorff metric is $O(n)$-invariant we get

$$
d_{\mathrm{H}}\left(g_{j} A_{\mu_{j}}, g_{j} X_{\mu_{j}}\right)=d_{\mathrm{H}}\left(A_{\mu_{j}}, X_{\mu_{j}}\right)<\varepsilon / 4
$$

and hence

$$
\begin{aligned}
d_{\mathrm{H}}\left(X, F_{\mu_{j}}(X)\right)=d_{\mathrm{H}}\left(X, g_{j} A_{\mu_{j}}\right) & \leq d_{\mathrm{H}}\left(X, g_{j} X_{\mu_{j}}\right)+d_{\mathrm{H}}\left(g_{j} X_{\mu_{j}}, g_{j} A_{\mu_{j}}\right) \\
& <\varepsilon / 2+\varepsilon / 4<\varepsilon
\end{aligned}
$$

as required.
Proposition 4.11. For every $\varepsilon>0$, there is an $O(n)-m a p h_{\varepsilon}: M_{0}(n) \rightarrow$ $M_{0}(n) \backslash \mathcal{R}(n), \varepsilon$-close to the identity map of $M_{0}(n)$.

Proof. Define a continuous map $\gamma: M_{0}(n) \rightarrow \mathbb{R}$ by

$$
\gamma(A)=\frac{1}{2} \min \left\{\varepsilon, d_{\mathrm{H}}\left(\mathbb{B}^{n}, A\right)\right\} \quad \text { for every } A \in M_{0}(n)
$$

Let $h_{\varepsilon}(A)$ be the closed $\gamma(A)$-neighborhood of A in \mathbb{B}^{n}, i.e.,

$$
h_{\varepsilon}(A)=A_{\gamma(A)}=\left\{x \in \mathbb{B}^{n} \mid d(x, A) \leq \gamma(A)\right\}, \quad A \in M_{0}(n)
$$

By the choice of $\gamma(A)$, the set $h_{\varepsilon}(A)$ is different from \mathbb{B}^{n}, and since $A \subset$ $h_{\varepsilon}(A)$, we see that $h_{\varepsilon}(A) \in M_{0}(n)$. Even more, $h_{\varepsilon}(A) \cap \mathbb{S}^{n-1}$ has nonempty interior in \mathbb{S}^{n-1}. Thus, $h_{\varepsilon}(A) \in M_{0}(n) \backslash \mathcal{R}(n)$.

By [7. Lemma 5.3], $d_{\mathrm{H}}\left(A, A_{\gamma(A)}\right)<\gamma_{A}<\varepsilon$, which implies that h_{ε} is ε-close to the identity map of $M_{0}(n)$.

Let us check the continuity of h_{ε}. For any $A, C \in M_{0}(n)$,

$$
d_{\mathrm{H}}\left(h_{\varepsilon}(A), h_{\varepsilon}(C)\right)=d_{\mathrm{H}}\left(A_{\gamma(A)}, C_{\gamma(C)}\right) \leq d_{\mathrm{H}}\left(A_{\gamma(A)}, A_{\gamma(C)}\right)+d_{\mathrm{H}}\left(A_{\gamma(C)}, C_{\gamma(C)}\right)
$$

But

$$
d_{\mathrm{H}}\left(A_{\gamma(A)}, A_{\gamma(C)}\right) \leq|\gamma(A)-\gamma(C)| \quad \text { and } \quad d_{\mathrm{H}}\left(A_{\gamma(C)}, C_{\gamma(C)}\right) \leq d_{\mathrm{H}}(A, C)
$$

(see, e.g., [7, Lemma 5.3]). Consequently,

$$
d_{\mathrm{H}}\left(h_{\varepsilon}(A), h_{\varepsilon}(C)\right) \leq|\gamma(A)-\gamma(C)|+d_{\mathrm{H}}(A, C)
$$

Now the continuity of γ implies the one of h_{ε}. .
As a consequence of Propositions 4.10 and 4.11 we have the following corollaries.

Corollary 4.12. For any closed subgroup $K \subset O(n)$, the K-orbit space $M_{0}(n) / K$ is a Q-manifold.

Proof. Consider the metric on $M_{0}(n) / K$ induced by d_{H} according to 2.1.
Clearly, $M_{0}(n)$ is a locally compact space, and thus $M_{0}(n) / K$ is also locally compact. Since $M(n)$ is an $O(n)-\mathrm{AR}$, and $M_{0}(n)$ is an open $O(n)$ invariant set in $M(n)$, we infer that $M_{0}(n)$ is an $O(n)$-ANR. This in turn implies that $M_{0}(n)$ is a K-ANR (see, e.g., [28]). Then, by Theorem 2.3 , $M_{0}(n) / K$ is an ANR.

According to Toruńczyk's Characterization Theorem [27, Theorem 1], it remains to check that for every $\varepsilon>0$, there exist continuous maps $\widetilde{f}_{\varepsilon}, \widetilde{h}_{\varepsilon}$: $M_{0}(n) / K \rightarrow M_{0}(n) / K, \varepsilon$-close to the identity map of $M_{0}(n) / K$ such that the images $\operatorname{Im} \widetilde{f}_{\varepsilon}$ and $\operatorname{Im} \widetilde{h}_{\varepsilon}$ are disjoint.

Let f_{ε} and h_{ε} be the $O(n)$-maps from Propositions 4.10 and 4.11, respectively. They induce continuous maps $\widetilde{f}_{\varepsilon}: M_{0}(n) / K \rightarrow M_{0}(n) / K$ and $\widetilde{h}_{\varepsilon}: M_{0}(n) / K \rightarrow M_{0}(n) / K$. Since $\operatorname{Im} \widetilde{f}_{\varepsilon}=\left(\operatorname{Im} f_{\varepsilon}\right) / K, \operatorname{Im} \widetilde{h}_{\varepsilon}=\left(\operatorname{Im} h_{\varepsilon}\right) / K$ and $\operatorname{Im} f_{\varepsilon} \cap \operatorname{Im} h_{\varepsilon}=\emptyset$, we infer that $\operatorname{Im} \widetilde{f}_{\varepsilon} \cap \operatorname{Im} \widetilde{h}_{\varepsilon}=\emptyset$.

On the other hand, since f_{ε} and h_{ε} are ε-close to the identity map of $M_{0}(n)$, using inequality 2.2 , we see that $\widetilde{f}_{\varepsilon}$ and $\widetilde{h}_{\varepsilon}$ are ε-close to the identity map of $M_{0}(n) / K$.

Corollary 4.13. For any closed subgroup $K \subset O(n)$ that acts nontransitively on \mathbb{S}^{n-1}, the K-orbit space $M(n) / K$ is a Hilbert cube. In particular, $M(n)$ is homeomorphic to Q.

Proof. We have already seen in Corollary 4.7 that $\left\{\mathbb{B}^{n}\right\}$ is a Z-set in $M(n) / K$. Observe that the Q-manifold $M_{0}(n) / K$ can be seen as the complement $(M(n) / K) \backslash\left\{\mathbb{B}^{n}\right\}$. It then follows from [27, §3] that $M(n) / K$ is also a Q-manifold. Furthermore, $M(n) / K$ is compact and contractible. But since the only compact contractible Q-manifold is the Hilbert cube (see [21, Theorem 7.5.8]), we conclude that $M(n) / K$ is homeomorphic to Q.

Corollary 4.14. For any closed subgroup $K \subset O(n)$ that acts nontransitively on \mathbb{S}^{n-1}, the K-fixed point set $M(n)^{K}$ is homeomorphic to the Hilbert cube.

Proof. Since $M(n)$ is compact and $M(n)^{K}$ is closed in $M(n)$, we see that $M(n)^{K}$ is also compact. By Theorem 4.3, $M(n)$ is an $O(n)-\mathrm{AR}$. This,
in combination with [9, Theorem 3.7], implies that $M(n)^{K}$ is an AR. In particular, $M(n)^{K}$ is contractible.

Let f_{ε} and h_{ε} be the $O(n)$-maps from Propositions 4.10 and 4.11, respectively. By equivariance, we have

$$
f_{\varepsilon}\left(M_{0}(n)^{K}\right) \subset M_{0}(n)^{K} \quad \text { and } \quad h_{\varepsilon}\left(M_{0}(n)^{K}\right) \subset M_{0}(n)^{K} .
$$

By Toruńczyk's Characterization Theorem [27, Theorem 1], $M_{0}(n)^{K}$ is a Q-manifold. But $M_{0}(n)^{K}=M(n)^{K} \backslash\left\{\mathbb{B}^{n}\right\}$ and Corollary 4.7 implies that $\left\{\mathbb{B}^{n}\right\}$ is a Z-set in $M(n)^{K}$. This shows that $M(n)^{K}$ is also a Q-manifold (see [27, §3]). Furthermore, $M(n)^{K}$ is compact and contractible. Since the only compact contractible Q-manifold is the Hilbert cube (see [21, Theorem 7.5.8]), we conclude that $M(n)^{K}$ is homeomorphic to Q.

We summarize all the above results about the $O(n)$-space $M(n)$ in the following corollary:

Corollary 4.15. $M(n)$ is a Hilbert cube endowed with an $O(n)$-action satisfying the following properties:
(1) $M(n)$ is an $O(n)-A R$ with a unique $O(n)$-fixed point, \mathbb{B}^{n},
(2) $M(n)$ is strictly $O(n)$-contractible to \mathbb{B}^{n},
(3) for a closed subgroup $K \subset O(n)$, the set $M(n)^{K}$ equals the singleton $\left\{\mathbb{B}^{n}\right\}$ if and only if K acts transitively on \mathbb{S}^{n-1}, and $M(n)^{K}$ is homeomorphic to the Hilbert cube whenever $M(n)^{K} \neq\left\{\mathbb{B}^{n}\right\}$,
(4) for any closed subgroup $K \subset O(n)$, the K-orbit space $M_{0}(n) / K$ is a Q-manifold.
This corollary in combination with [10, Theorem 3.3] yields
Theorem 4.16. The orbit space $M(n) / O(n)$ is homeomorphic to the Banach-Mazur compactum $\operatorname{BM}(n)$.
5. Some properties of $L(n)$. Recall that $L(n)$ is the hyperspace of all compact convex bodies for which the Euclidean unit ball is the minimumvolume ellipsoid of Löwner.

In 77 the subset $L^{\prime}(n)$ of $L(n)$ consisting of all $A \in L(n)$ with $A=-A$ was studied. It turns out that $L(n)$ enjoys all the properties of $L^{\prime}(n)$ established in [7, and an easy modification of the method developed in [7, Section 5] allows one to establish similar properties of $L(n)$. However, for completeness, we shall provide in this section some more specific details and appropriate new references.

Proposition 5.1. $L(n)$ is an $O(n)-A R$.
Proof. It was proved in [8, Corollary 4.8] that $c b\left(\mathbb{R}^{n}\right)$ is an $O(n)$-AR. Since $L(n)$ is a global $O(n)$-slice in $c b\left(\mathbb{R}^{n}\right)$, according to Corollary 3.9(2),
there exists an $O(n)$-equivariant retraction $r: c b\left(\mathbb{R}^{n}\right) \rightarrow L(n)$. This implies that $L(n)$ is also an $O(n)-\mathrm{AR}$.

Proposition 5.2. The map $F: L(n) \times[0,1] \rightarrow L(n)$ defined by

$$
F(A, t)=(1-t) A+t \mathbb{B}^{n}
$$

is an $O(n)$-strict contraction such that $F(A, 1)=\mathbb{B}^{n}$. In particular, for every closed subgroup $K \subset O(n)$, the orbit space $L(n) / K$ is contractible to its point \mathbb{B}^{n}.

Proof. It is evident that F satisfies the first assertion of the proposition. Letting $\widetilde{F}(K(A), t)=K(F(A, t))$ we obtain a deformation of $L(n) / K$ to the point $\mathbb{B}^{n} \in L(n) / K$, thus proving that $L(n) / K$ is contractible.

By $\mathcal{P}(n)$ we will denote the subset of $L(n)$ consisting of all compact convex bodies $A \in L(n)$ such that $A \cap \partial \mathbb{B}^{n}$ has empty interior in $\partial \mathbb{B}^{n}=\mathbb{S}^{n-1}$.

Denote by $L_{0}(n)$ the complement $L(n) \backslash\left\{\mathbb{B}^{n}\right\}$.
Lemma 5.3. Let $\varepsilon>0$. For each convex body $X \in L_{0}(n)$, there exists a convex body $A \in \mathcal{P}(n)$ such that $d_{\mathrm{H}}(X, A)<\varepsilon$ and the $O(n)$-stabilizer $O(n)_{A}$ coincides with $O(n)_{X}$.

Although the proof of Lemma 5.3 is similar to the one of Lemma 4.8, there is a significant difference, and for this reason we present a complete proof here.

Proof. Let $r: c b\left(\mathbb{R}^{n}\right) \rightarrow L(n)$ be the $O(n)$-equivariant retraction used in the proof of Proposition 5.1 (cf. Corollary $3.9(2))$. By Theorem 2.2 , there is a $O(n)_{X}$-slice S such that $X \in S$ and $\left[O(n)_{C}\right] \preceq\left[O(n)_{X}\right]$ whenever $C \in O(n)(S)$. Since $O(n)(S)$ is open, there exists $0<\eta<\varepsilon$ such that $O(X, \eta) \subset O(n)(S)$. In particular, if $C \in O(X, \eta)$ then $\left[O(n)_{C}\right] \preceq\left[O(n)_{X}\right]$.

Since $L(n)$ is compact, there exists $0<\delta<\eta / 2$ such that $d_{\mathrm{H}}(r(C), C)<$ $\eta / 2$ for every C in the δ-neighborhood of $L(n)$.

Let $p_{1}, \ldots, p_{k} \in \partial X$ be such that $P=\operatorname{conv}\left(\left\{p_{1}, \ldots, p_{k}\right\}\right)$ has nonempty interior in \mathbb{R}^{n} and $d_{\mathrm{H}}(P, X)<\delta$. Set

$$
D=\operatorname{conv}\left(O(n)_{X}\left(p_{1}\right) \cup \cdots \cup O(n)_{X}\left(p_{k}\right)\right)
$$

Since $P \subset D$, we see that D has nonempty interior, and hence $D \in c b\left(\mathbb{R}^{n}\right)$. Since $O(n)_{X}$ acts nontransitively on \mathbb{S}^{n-1}, Lemma 4.4 states that ∂D contains no $(n-1)$-elliptic domain. In particular, $D \cap \partial l(D)$ contains no elliptic domain (recall that here $l(D)$ denotes the minimal-volume ellipsoid containing D).

Let $A=r(D)$. Since $A \in L(n)$ and A lies in the $\operatorname{Aff}(n)$-orbit of D (see Corollary $3.9(1))$, there exists an affine transformation g such that $A=g D$. The contact set $A \cap \mathbb{S}^{n-1}$ is the image under g of $D \cap \partial l(D)$, and thus it has empty interior in \mathbb{S}^{n-1}. Hence, $A \in \mathcal{P}(n)$. The construction of P guarantees
that $P \subset D \subset X$, and therefore

$$
d_{\mathrm{H}}(D, X) \leq d_{\mathrm{H}}(P, X)<\delta<\eta / 2
$$

By the choice of δ one has $d_{\mathrm{H}}(r(D), D)<\eta / 2$, and hence

$$
\begin{aligned}
d_{\mathrm{H}}(A, X) & \leq d_{\mathrm{H}}(A, D)+d_{\mathrm{H}}(D, X) \\
& =d_{\mathrm{H}}(r(D), D)+d_{\mathrm{H}}(D, X)<\eta / 2+\eta / 2=\eta
\end{aligned}
$$

Thus, $d_{\mathrm{H}}(A, X)<\eta<\varepsilon$, as required.
Furthermore, by the choice of $\eta, O(n)_{A}$ is conjugate to a subgroup of $O(n)_{X}$. It remains to prove that $O(n)_{X}=O(n)_{A}$. Since D is an $O(n)_{X^{-}}$ invariant subset, one has $O(n)_{X} \subset O(n)_{D}$. Also, as r is an $O(n)$-map, we have

$$
O(n)_{D} \subset O(n)_{r(D)}=O(n)_{A}
$$

Thus, $O(n)_{X} \subset O(n)_{A}$, which implies, together with $\left[O(n)_{A}\right] \preceq\left[O(n)_{X}\right]$, that $O(n)_{A}=O(n)_{X}$, as required.

Proposition 5.4. For every $\varepsilon>0$, there is an $O(n)-m a p ~ f_{\varepsilon}: L_{0}(n) \rightarrow$ $\mathcal{P}(n), \varepsilon$-close to the identity map of $L_{0}(n)$.

Proof. Repeat the proof of Proposition 4.10, replacing $M_{0}(n)$ by $L_{0}(n)$, until the construction of the family $\left\{X_{\mu}\right\}_{\mu \in \mathcal{M}}$. Next, use Lemma 5.3 to find, for every index μ, a compact set $A_{\mu}, \varepsilon / 4$-close to X_{μ}, such that $O(n)_{A_{\mu}}=H_{\mu}$.

Now repeat the rest of the proof of Proposition 4.10, replacing $M_{0}(n)$ by $L_{0}(n)$, and $\mathcal{R}(n)$ by $\mathcal{P}(n)$.

Proposition 5.5. For every $\varepsilon>0$, there is an $O(n)-$ map $h_{\varepsilon}: L_{0}(n) \rightarrow$ $L_{0}(n) \backslash \mathcal{P}(n)$, ε-close to the identity map of $L(n)$, such that $h_{\varepsilon}(A) \neq \mathbb{B}^{n}$ for every $A \in L(n)$.

Proof. Repeat the proof of Proposition 4.11, replacing $M_{0}(n)$ by $L_{0}(n)$, and $M_{0}(n) \backslash \mathcal{R}(n)$ by $L_{0}(n) \backslash \mathcal{P}(n)$.

Proposition 5.6. Let $K \subset O(n)$ be a a closed subgroup that acts nontransitively on \mathbb{S}^{n-1}. Then, for every $\varepsilon>0$, there exists a K-equivariant $\operatorname{map} \chi_{\varepsilon}: L(n) \rightarrow L_{0}(n), \varepsilon$-close to the identity map of $L(n)$.

Proof. The proof goes as the one of Proposition 4.6 if we replace $M(n)$ by $L(n), M_{0}(n)$ by $L_{0}(n), c c\left(\mathbb{R}^{n}\right)$ by $c b\left(\mathbb{R}^{n}\right)$, and the retraction r of 4.2) by the retraction $r: c b\left(\mathbb{R}^{n}\right) \rightarrow L(n)$ given in Corollary 3.9(2). We omit the details.

In the same manner that Proposition 4.6 implies Corollary 4.7, we deduce from Proposition 5.6 the following corollary:

Corollary 5.7. For every closed subgroup $K \subset O(n)$ that acts nontransitively on \mathbb{S}^{n-1},
(1) $\left\{\mathbb{B}^{n}\right\}$ is a Z-set in $L(n)^{K}$,
(2) the class of $\left\{\mathbb{B}^{n}\right\}$ is a Z-set in $L(n) / K$.

Proposition 5.8. For every closed subgroup $K \subset O(n), L_{0}(n) / K$ is a Q-manifold.

Proof. By Proposition 5.1, $L(n)$ is an $O(n)$-AR, hence a K-AR (see, e.g., [28]). Then Theorem 2.3 implies that $L(n) / K$ is an AR. Since $L_{0}(n) / K$ is open in $L(n) / K$ we conclude that $L_{0}(n) / K$ is a locally compact ANR.

According to Toruńczyk's Characterization Theorem [27, Theorem 1], it is enough to check that for every $\varepsilon>0$, there exist continuous maps $\widetilde{f}_{\varepsilon}, \widetilde{h}_{\varepsilon}: L_{0}(n) / K \rightarrow L_{0}(n) / K \varepsilon$-close to the identity map of $L_{0}(n) / K$ and with disjoint images.

Let f_{ε} and h_{ε} be the $O(n)$-maps constructed in Propositions 5.4 and 5.5 , respectively. They induce continuous maps $\widetilde{f}_{\varepsilon}: L_{0}(n) K \rightarrow L_{0}(n) / K$ and $\widetilde{h}_{\varepsilon}: L_{0}(n) / K \rightarrow L_{0}(n) / K$. Since $\operatorname{Im} \widetilde{f}_{\varepsilon}=\left(\operatorname{Im} f_{\varepsilon}\right) / K, \operatorname{Im} \widetilde{h}_{\varepsilon}=\left(\operatorname{Im} h_{\varepsilon}\right) / K$ and $\operatorname{Im} f_{\varepsilon} \cap \operatorname{Im} h_{\varepsilon}=\emptyset$, we infer that $\operatorname{Im} \widetilde{f}_{\varepsilon} \cap \operatorname{Im} \widetilde{h}_{\varepsilon}=\emptyset$. Since f_{ε} and h_{ε} are ε-close to the identity map of $L_{0}(n)$, using inequality (2.2), we conclude that $\widetilde{f}_{\varepsilon}$ and $\widetilde{h}_{\varepsilon}$ are ε-close to the identity map of $L_{0}(n) / K$, as required.

Now, Proposition 5.8, Corollary 5.7 and [27, §3] imply that $L(n) / K$ is a Q-manifold if $K \subset O(n)$ is a closed subgroup that acts nontransitively on \mathbb{S}^{n-1}. Since $L(n) / K$ is compact and contractible, we deduce from 21, Theorem 7.5.8] the following corollary:

Corollary 5.9. For every closed subgroup $K \subset O(n)$ that acts nontransitively on \mathbb{S}^{n-1}, the K-orbit space $L(n) / K$ is a Hilbert cube. In particular, $L(n)$ is a Hilbert cube.

Repeating the same steps used in the proof of Corollary 4.14, we can infer from Corollary 5.7 and Propositions 5.4 and 5.5 the following result:

Corollary 5.10. For any closed subgroup $K \subset O(n)$ that acts nontransitively on \mathbb{S}^{n-1}, the K-fixed point set $L(n)^{K}$ is homeomorphic to the Hilbert cube.

Finally, similarly to the case of $M(n)$, we can infer from all previous results of this section that $L(n)$ is a Hilbert cube endowed with an $O(n)$ action that satisfies the following conditions:
(1) $L(n)$ is an $O(n)$-AR with a unique $O(n)$-fixed point, \mathbb{B}^{n},
(2) $L(n)$ is strictly $O(n)$-contractible to \mathbb{B}^{n},
(3) for a closed subgroup $K \subset O(n)$, the set $L(n)^{K}$ equals $\left\{\mathbb{B}^{n}\right\}$ if and only if K acts transitively on \mathbb{S}^{n-1}, and $L(n)^{K}$ is homeomorphic to the Hilbert cube whenever $L(n)^{K} \neq\left\{\mathbb{B}^{n}\right\}$,
(4) for any closed subgroup $K \subset O(n)$, the K-orbit space $L_{0}(n) / K$ is a Q-manifold.

These properties in combination with [10, Theorem 3.3] yield

Theorem 5.11. The orbit space $L(n) / O(n)$ is homeomorphic to the Ba-nach-Mazur compactum $\operatorname{BM}(n)$.
6. Orbit spaces of $c b\left(\mathbb{R}^{n}\right)$. In what follows we will denote by $c b_{0}\left(\mathbb{R}^{n}\right)$ the complement

$$
c b_{0}\left(\mathbb{R}^{n}\right)=c b\left(\mathbb{R}^{n}\right) \backslash E(n)
$$

In this section we shall prove the following main result:
TheOrem 6.1. Let $K \subset O(n)$ be a closed subgroup that acts nontransitively on \mathbb{S}^{n-1}. Then:
(1) $c b_{0}\left(\mathbb{R}^{n}\right) / K$ is a Q-manifold.
(2) $c b\left(\mathbb{R}^{n}\right) / K$ is a Q-manifold homeomorphic to $(E(n) / K) \times Q$.

By Corollary 3.9 (2) we have an $O(n)$-equivariant homeomorphism

$$
c b\left(\mathbb{R}^{n}\right) \cong_{O(n)} L(n) \times E(n)
$$

Under this homeomorphism, $c b_{0}\left(\mathbb{R}^{n}\right)$ corresponds to $E(n) \times L_{0}(n)$, thus we have the $O(n)$-equivariant homeomorphism

$$
\begin{equation*}
c b\left(\mathbb{R}^{n}\right) \cong_{O(n)} L(n) \times E(n) \tag{6.1}
\end{equation*}
$$

We will consider the following $O(n)$-invariant metric on the product $E(n) \times L(n):$

$$
D\left(\left(A_{1}, E_{1}\right),\left(A_{2}, E_{2}\right)\right)=d_{\mathrm{H}}\left(A_{1}, A_{2}\right)+d_{\mathrm{H}}\left(E_{1}, E_{2}\right)
$$

Proposition 6.2. For each $\varepsilon>0$ and every closed subgroup $K \subset O(n)$ that acts nontransitively on \mathbb{S}^{n-1}, there exists a K-equivariant map η : $c b\left(\mathbb{R}^{n}\right) \rightarrow c b_{0}\left(\mathbb{R}^{n}\right)$ which is ε-close to the identity map of $c b\left(\mathbb{R}^{n}\right)$.

Proof. Let $\varepsilon>0$. By Proposition 5.6, there exists a K-map $\chi_{\varepsilon}: L(n) \rightarrow$ $L_{0}(n)$ such that $d_{\mathrm{H}}(A, \xi(A))<\varepsilon$ for every $A \in L(n)$. Then the map

$$
\eta=\chi_{\varepsilon} \times \operatorname{Id}: L(n) \times E(n) \rightarrow L_{0}(n) \times E(n)
$$

is a K-map such that

$$
D(\eta(A, E),(A, E))=d_{\mathrm{H}}(\xi(A), A)<\varepsilon
$$

The map η of Proposition 6.2 induces a map

$$
\widetilde{\eta}: \frac{L(n) \times E(n)}{K} \longrightarrow \frac{L_{0}(n) \times E(n)}{K}
$$

which, by 2.2 , is ε-close to the identity map of $\frac{L(n) \times E(n)}{K}$. This yields the following corollary:

Corollary 6.3. For every closed subgroup $K \subset O(n)$ that acts nontransitively on $\mathbb{S}^{n-1}, E(n) / K$ is a Z-set in $c b\left(\mathbb{R}^{n}\right) / K$. In particular, $E(n)$ is a Z-set in $c b\left(\mathbb{R}^{n}\right)$.

Proposition 6.4. Let $K \subset O(n)$ be a closed subgroup that acts nontransitively on \mathbb{S}^{n-1} and $\pi: L(n) \times E(n) \rightarrow E(n)$ be the second projection. Then the induced map $\widetilde{\pi}:(L(n) \times E(n)) / K \rightarrow E(n) / K$ is proper and has contractible fibers.

Proof. Consider the following commutative diagram:

where p_{1} and p_{2} are the respective K-orbit maps.
Properness of $\widetilde{\pi}$ easily follows from compactness of $L(n)$ and K. That the fibers of $\widetilde{\pi}$ are contractible follows immediately from the fact that $L(n)$ is $O(n)$-equivariantly contractible (see Proposition 5.2 .

Theorem 6.5 (R. D. Edwards). Let M be a Q-manifold and Y a locally compact $A N R$. If there exists a CE-map $f: M \rightarrow Y$, then M is homeomorphic to $Y \times Q$.

Proof. Since f is a CE-map, by a theorem of R. D. Edwards [14, Theorem 43.1] the product map

$$
f \times \operatorname{Id}: M \times Q \rightarrow Y \times Q
$$

is a near homeomorphism. According to the Stability Theorem [14, Theorem 15.1], M is homeomorphic to $M \times Q$. Thus, we have the homeomorphisms

$$
M \cong M \times Q \cong Y \times Q
$$

Proof of Theorem 6.1. (1) By (6.1), $c b_{0}\left(\mathbb{R}^{n}\right)$ is $O(n)$-homeomorphic to $L_{0}(n) \times E(n)$. This implies that the orbit spaces $c b_{0}\left(\mathbb{R}^{n}\right) / K$ and $\frac{L_{0}(n) \times E(n)}{K}$ are homeomorphic. Hence, it is enough to prove that the latter is a Q manifold.

Suppose that $\frac{L_{0}(n) \times E(n)}{K}$ is equipped with the metric D^{*} induced by D as defined in (2.1).

By Proposition 5.1, $L(n) \in O(n)$-AR, and by Corollary $3.9(2), E(n) \in$ $O(n)$-AR. Consequently, $L_{0}(n) \times E(n)$ is a locally compact $O(n)$-ANR, which in turn implies that $L_{0}(n) \times E(n) \in K$-AR (see, e.g., [28]). Then, by Theorem 2.3, $\frac{L_{0}(n) \times E(n)}{K}$ is a locally compact ANR.

Let f_{ε} and h_{ε} be the maps from Propositions 5.4 and 5.5, respectively. Consider the maps

$$
\begin{aligned}
& f=f_{\varepsilon} \times \operatorname{Id}: L_{0}(n) \times E(n) \rightarrow L_{0}(n) \times E(n) \\
& h=h_{\varepsilon} \times \operatorname{Id}: L_{0}(n) \times E(n) \rightarrow L_{0}(n) \times E(n)
\end{aligned}
$$

where Id denotes the identity map of $E(n)$. Since f_{ε} and h_{ε} are $O(n)$-maps with disjoint images, so are f and h. Hence they induce continuous maps

$$
\tilde{f}, \tilde{h}: \frac{L_{0}(n) \times E(n)}{K} \rightarrow \frac{L_{0}(n) \times E(n)}{K}
$$

which make the following diagrams commutative:

Since, $d_{\mathrm{H}}\left(f_{\varepsilon}(A), A\right)<\varepsilon$, we infer that

$$
D(f(A, E),(A, E))=D\left(\left(f_{\varepsilon}(A), E\right),(A, E)\right)=d_{\mathrm{H}}\left(f_{\varepsilon}(A), A\right)<\varepsilon
$$

Similarly, we can prove that $D(h(A, E),(A, E))<\varepsilon$. Thus, f and h are ε-close to the identity map of $L_{0}(n) \times E$. Next, using 2.2 we find that \widetilde{f} and \widetilde{h} are ε-close to the identity map of $\frac{L_{0}(n) \times E(n)}{K}$.

Finally, since $\operatorname{Im} \tilde{f}=(\operatorname{Im} f) / K, \operatorname{Im} \widetilde{h}=(\operatorname{Im} h) / K$ and $\operatorname{Im} f \cap \operatorname{Im} h=\emptyset$, we infer that $\operatorname{Im} \tilde{f} \cap \operatorname{Im} \widetilde{h}=\emptyset$. Consequently, by Toruńczyk's Characterization Theorem ([27, Theorem 1]), $\frac{L_{0}(n) \times E}{K}$ is a Q-manifold, as required.
(2) Since, by Corollary $3.9(2), c b\left(\mathbb{R}^{n}\right)$ and $L(n) \times E(n)$ are $O(n)$-homeomorphic, so are the K-orbit spaces $c b\left(\mathbb{R}^{n}\right) / K$ and $\frac{L(n) \times E(n)}{K}$. On the other hand, $c b\left(\mathbb{R}^{n}\right)$ is an $O(n)$-AR ([8, Corollary 4.8]), and hence a K-AR (see, e.g., [28]). Then Theorem 2.3 shows that $c b\left(\mathbb{R}^{n}\right) / K \cong \frac{L(n) \times E(n)}{K}$ is an AR. By the previous case (1), $c b_{0}\left(\mathbb{R}^{n}\right) / K$ is a Q-manifold while its complement in $c b\left(\mathbb{R}^{n}\right) / K$ is a Z-set (see Corollary 6.3). Now a result of Toruńczyk [27, §3] implies that $c b\left(\mathbb{R}^{n}\right) / K$ is a Q-manifold too.

Furthermore, by Corollary 3.10, $E(n)$ is an $O(n)$-AR, and hence a K-AR (see, e.g., [28]). Then, according to Theorem [2.3, $E(n) / K$ is an AR.

Since, by Proposition 6.4 the map

$$
\tilde{\pi}: \frac{L(n) \times E(n)}{K} \rightarrow E(n) / K
$$

is proper and has contractible fibers, it is a CE-map (see [14, Ch. XIII]) between AR's. Since $\frac{c b\left(\mathbb{R}^{n}\right)}{K} \cong \frac{L(n) \times E(n)}{K}$ is a Q-manifold, Edwards' Theorem 6.5 shows that $c b\left(\mathbb{R}^{n}\right) / K$ is homeomorphic to $(E(n) / K) \times Q$, as required.
7. Orbit spaces of $c c\left(\mathbb{R}^{n}\right)$. In this section we shall prove the following two main results:

Theorem 7.1. For every closed subgroup $K \subset O(n)$ that acts nontransitively on \mathbb{S}^{n-1}, the orbit space $c c\left(\mathbb{R}^{n}\right) / K$ is homeomorphic to the punctured Hilbert cube.

ThEOREM 7.2. The orbit space $c c\left(\mathbb{R}^{n}\right) / O(n)$ is homeomorphic to the open cone over $\mathrm{BM}(n)$.

The proofs require some preparation.
Lemma 7.3. The map ν defined in (4.1) is proper and has contractible fibers.

Proof. Clearly, ν is onto. Take a compact subset $C \subset[0, \infty)$. Let b be the supremum of C and denote by N_{b} the closed ball of radius b centered at the origin of \mathbb{R}^{n}. Clearly, $\nu^{-1}(C)$ is a closed subset of $c c\left(N_{b}\right)$. According to [22, Theorem 2.2], $c c\left(N_{b}\right)$ is compact, and thus $\nu^{-1}(C)$ is also compact. This shows that ν is a proper map.

We show that for every $t \in[0, \infty)$ the inverse image $\nu^{-1}(t)$ is contractible. Consider the homotopy $H: \nu^{-1}(t) \times[0,1] \rightarrow \nu^{-1}(t)$ defined by

$$
\begin{equation*}
H(A, s)=s N_{t}+(1-s) A, \quad A \in \nu^{-1}(t), s \in[0,1] . \tag{7.1}
\end{equation*}
$$

It is easy to see that $H(A, s) \in \nu^{-1}(t)$, and hence H defines a (strict) homotopy of $\nu^{-1}(t)$ to its point $N_{t} \in \nu^{-1}(t)$. Thus, $\nu^{-1}(t)$ is contractible, as required.

Since ν is $O(n)$-invariant, it induces, for every closed subgroup $K \subset O(n)$, a continuous map

$$
\widetilde{\nu}: c c\left(\mathbb{R}^{n}\right) / K \rightarrow[0, \infty)
$$

given by

$$
\widetilde{\nu}(K(A))=\nu(A), \quad K(A) \in c c\left(\mathbb{R}^{n}\right) / K
$$

Proposition 7.4. $\widetilde{\nu}$ is proper and has contractible fibers.
Proof. Clearly, $\widetilde{\nu}$ is an onto map. Let $p: c c\left(\mathbb{R}^{n}\right) \rightarrow c c\left(\mathbb{R}^{n}\right) / K$ be the K-orbit map. Then we have the following commutative diagram:

If $C \subset[0, \infty)$ is a compact set, then

$$
\widetilde{\nu}^{-1}(C)=\{K(A) \mid \nu(A) \in C\}=p\left(\nu^{-1}(C)\right)
$$

which is compact because ν is proper and p is continuous. Thus $\widetilde{\nu}$ is a proper map.

To finish the proof, let us show that $\widetilde{\nu}^{-1}(t)$ is contractible for every $t \in[0, \infty)$. Consider the homotopy H defined in 7.1). Observe that H is equivariant. Indeed, for every $g \in O(n)$ one has

$$
\begin{align*}
H(g A, s) & =s N_{t}+(1-s) g A=s g N_{t}+(1-s) g A \tag{7.2}\\
& =g\left(s N_{t}+(1-s) A\right)=g H(A, s)
\end{align*}
$$

Hence, H induces a homotopy $\widetilde{H}: \widetilde{\nu}^{-1}(t) \times[0,1] \rightarrow \widetilde{\nu}^{-1}(t)$ defined as follows:

$$
\tilde{H}(K(A), s)=K(H(A, s))
$$

Clearly, \widetilde{H} is a contraction to the point $K\left(N_{t}\right)$, which proves that $\widetilde{\nu}^{-1}(t)$ is contractible, as required.

Proposition 7.5. The complement

$$
\frac{c c\left(\mathbb{R}^{n}\right)}{K} \backslash \frac{c b\left(\mathbb{R}^{n}\right)}{K}
$$

is a Z-set in $c c\left(\mathbb{R}^{n}\right) / K$.
Proof. For every positive ε, the $\operatorname{map} \zeta_{\varepsilon}: c c\left(\mathbb{R}^{n}\right) \rightarrow c b\left(\mathbb{R}^{n}\right)$ defined by

$$
\zeta_{\varepsilon}(A)=A_{\varepsilon}=\left\{x \in \mathbb{R}^{n} \mid d(x, A) \leq \varepsilon\right\}
$$

is an $O(n)$-equivariant map which is ε-close to the identity map of $c c\left(\mathbb{R}^{n}\right)$. Hence, for every closed subgroup $K \subset O(n)$ it induces a continuous map

$$
\widetilde{\zeta}_{\varepsilon}: c c\left(\mathbb{R}^{n}\right) / K \rightarrow c b\left(\mathbb{R}^{n}\right) / K
$$

Since the Hausdorff metric d_{H} is $O(n)$-invariant, it induces a metric in $c c\left(\mathbb{R}^{n}\right) / K$ as in 2.1). Then, by 2.2 , the map $\widetilde{\zeta}_{\varepsilon}$ is ε-close to the identity map of $c c\left(\mathbb{R}^{n}\right) / K$. This proves that

$$
\frac{c c\left(\mathbb{R}^{n}\right) \backslash c b\left(\mathbb{R}^{n}\right)}{K}=\frac{c c\left(\mathbb{R}^{n}\right)}{K} \backslash \frac{c b\left(\mathbb{R}^{n}\right)}{K}
$$

is a Z-set in $c c\left(\mathbb{R}^{n}\right) / K$.
Proof of Theorem 7.1. Since by Theorem 6.1, $c b\left(\mathbb{R}^{n}\right) / K$ is a Q-manifold and the complement $\frac{c c\left(\mathbb{R}^{n}\right)}{K} \backslash \frac{c b\left(\mathbb{R}^{n}\right)}{K}$ is a Z-set, it follows from [27, §3] that $c c\left(\mathbb{R}^{n}\right) / K$ is also a Q-manifold.

Next, since by Proposition 7.4 , the $\operatorname{map} \widetilde{\nu}: c c\left(\mathbb{R}^{n}\right) / K \rightarrow[0, \infty)$ is proper and has contractible fibers, it is a CE-map (see [14, Ch. XIII]). Then we can use Edwards' Theorem 6.5 to conclude that $c c\left(\mathbb{R}^{n}\right) / K$ is homeomorphic to $[0, \infty) \times Q$. As shown in the proof of [14, Theorem 12.2], the product $[0, \infty) \times Q$ is homeomorphic to the punctured Hilbert cube, which completes the proof.

Now we turn to the proof of Theorem 7.2.
The open cone over a topological space X is defined to be the quotient space

$$
\mathrm{OC}(X)=X \times[0, \infty) / X \times\{0\}
$$

We will denote by $[A, t]$ the equivalence class of the pair $(A, t) \in X \times[0, \infty)$ in this quotient space. It is evident that $[A, t]=\left[A^{\prime}, t^{\prime}\right]$ iff $t=0=t^{\prime}$ or $A=A^{\prime}$ and $t=t^{\prime}$. For convenience, the class $[A, 0]$ will be denoted by θ.

Denote the open cone over $M(n)$ by $\widetilde{M}(n)$. The orthogonal group $O(n)$ acts continuously on $\widetilde{M}(n)$ by the rule

$$
g *[A, t]=[g A, t] .
$$

Proposition 7.6. The hyperspace $c c\left(\mathbb{R}^{n}\right)$ is $O(n)$-homeomorphic to $\widetilde{M}(n)$.

Proof. Define $\Phi: c c\left(\mathbb{R}^{n}\right) \rightarrow \widetilde{M}(n)$ by

$$
\Phi(A)= \begin{cases}\theta & \text { if } A=\{0\} \\ {[r(A), \nu(A)]} & \text { if } A \neq\{0\}\end{cases}
$$

where ν and r are the maps defined in 4.1 and 4.2), respectively.
Since r is $O(n)$-equivariant and ν is $O(n)$-invariant, we infer that Φ is $O(n)$-equivariant.

Clearly, Φ is a bijection with $\Phi^{-1}: \widetilde{M}(n) \rightarrow c c\left(\mathbb{R}^{n}\right)$ given by

$$
\Phi^{-1}([A, t])=t A
$$

Continuity of $\left.\Phi\right|_{c c\left(\mathbb{R}^{n}\right) \backslash\{0\}}$ and $\left.\Phi^{-1}\right|_{\widetilde{M}(n) \backslash\{\theta\}}$ is evident. Let us prove simultaneously the continuity of Φ at $\{0\}$ and the continuity of Φ^{-1} at θ.

Let $\varepsilon>0$ and let O_{ε} be the open ε-ball in $c c\left(\mathbb{R}^{n}\right)$ centered at $\{0\}$. Denote $U_{\varepsilon}=\{[A, t] \in \widetilde{M}(n) \mid t<\varepsilon\}$. Since U_{ε} is an open neighborhood of θ in $\widetilde{M}(n)$, it is enough to prove that $\Phi\left(O_{\varepsilon}\right)=U_{\varepsilon}$.

If $B \in O_{\varepsilon}$ then $B \subset N(\{0\}, \varepsilon)$, and hence $\nu(B)<\varepsilon$. This proves that $\Phi(B)=[r(B), \nu(B)] \in U_{\varepsilon}$, implying that

$$
\begin{equation*}
\Phi\left(O_{\varepsilon}\right) \subset U_{\varepsilon} \tag{7.3}
\end{equation*}
$$

On the other hand, if $[A, t] \in U_{\varepsilon}$ then $t<\varepsilon$, implying that $t A \subset$ $N(\{0\}, \varepsilon)$. This shows that for every $a \in A, d(t a, 0)<\varepsilon$. In particular, $0 \in N(t A, \varepsilon)$, and hence $d_{\mathrm{H}}(\{0\}, t A)<\varepsilon$. Thus, $\Phi^{-1}\left(U_{\varepsilon}\right) \subset O_{\varepsilon}$ and

$$
\begin{equation*}
U_{\varepsilon}=\Phi\left(\Phi^{-1}\left(U_{\varepsilon}\right)\right) \subset \Phi\left(O_{\varepsilon}\right) \tag{7.4}
\end{equation*}
$$

Combining (7.3) and (7.4) we get $\Phi(O(\{0\}, \varepsilon))=U_{\varepsilon}$.
Since Φ is an $O(n)$-homeomorphism, it induces a homeomorphism between $c c\left(\mathbb{R}^{n}\right) / O(n)$ and $\widetilde{M}(n) / O(n)$. Thus, we have

Corollary 7.7. The orbit spaces $c c\left(\mathbb{R}^{n}\right) / O(n)$ and $\widetilde{M}(n) / O(n)$ are homeomorphic.

LEMmA 7.8. For every closed subgroup $K \subset O(n)$, the orbit space $\widetilde{M}(n) / K$ is homeomorphic to the open cone over $M(n) / K$.

Proof. The map $\Psi: \widetilde{M}(n) / K \rightarrow \mathrm{OC}(M(n) / K)$ defined by

$$
\Psi(K[A, t])=[K(A), t]
$$

is a homeomorphism.
Proof of Theorem [7.2. According to Corollary 7.7 and Lemma 7.8 , the orbit space $c c\left(\mathbb{R}^{n}\right) / O(n)$ is homeomorphic to the open cone $\mathrm{OC}(M(n) / O(n))$. By Corollary 4.16, $M(n) / O(n)$ is homeomorphic to the Banach-Mazur compactum $\operatorname{BM}(n)$, and hence $c c\left(\mathbb{R}^{n}\right) / O(n)$ is homeomorphic to $\operatorname{OC}(\operatorname{BM}(n))$, as required.
7.1. Conic structure of $c c\left(\mathbb{R}^{n}\right)$ and related spaces. It is easy to see that \mathbb{R}^{n} is $O(n)$-homeomorphic to the open cone over \mathbb{S}^{n-1}. This conic structure induces a conic structure in $c c\left(\mathbb{R}^{n}\right)$, as shown in Proposition 7.6 .

Furthermore, the $O(n)$-homeomorphism between $c c\left(\mathbb{R}^{n}\right)$ and $\widetilde{M}(n)$, in combination with Lemma 7.8, yields the following:

Theorem 7.9. For every closed subgroup $K \subset O(n)$, the K-orbit space $c c\left(\mathbb{R}^{n}\right) / K$ is homeomorphic to the open cone $O C(M(n) / K)$.

On the other hand, if we restrict the $O(n)$-homeomorphism from Proposition 7.6 to $c c\left(\mathbb{B}^{n}\right)$, we get an $O(n)$-homeomorphism between $c c\left(\mathbb{B}^{n}\right)$ and the cone over $M(n)$.

As in Lemma 7.8, we can prove that the K-orbit space of the cone over $M(n)$ is homeomorphic to the cone over $M(n) / K$ for every closed subgroup K of $O(n)$. This implies the following result:

Proposition 7.10. For every closed subgroup $K \subset O(n)$, the K-orbit space cc $\left(\mathbb{B}^{n}\right) / K$ is homeomorphic to the cone over $M(n) / K$.

Corollary 7.11. For every closed subgroup $K \subset O(n)$ that acts nontransitively on \mathbb{S}^{n-1}, the K-orbit space $c c\left(\mathbb{B}^{n}\right) / K$ is homeomorphic to the Hilbert cube.

Proof. By Proposition 7.10, $c c\left(\mathbb{B}^{n}\right) / K$ is homeomorphic to the cone over $M(n) / K$. Since K acts nontransitively on \mathbb{S}^{n-1}, we infer from Corollary 4.13 that $M(n) / K$ is homeomorphic to the Hilbert cube. Thus, $c c\left(\mathbb{B}^{n}\right) / K$ is homeomorphic to the cone over Q, which according to [14, Theorem 12.2] is homeomorphic to Q itself.

On the other hand, Theorem 4.16 and Proposition 7.10 imply our final result:

Corollary 7.12. The orbit space $c c\left(\mathbb{B}^{n}\right) / O(n)$ is homeomorphic to the cone over the Banach-Mazur compactum $\operatorname{BM}(n)$.

It is well known that $\operatorname{BM}(n)$ is an absolute retract for all $n \geq 2$ (see [5) and the only compact absolute retract that is homeomorphic to its own cone is the Hilbert cube (see, e.g., [21, Theorem 8.3.2]). Therefore, it follows
from Corollary 7.12 and Theorem 4.16 that Pełczyński's question of whether $\operatorname{BM}(n)$ is homeomorphic to Q is equivalent to the following one:

Question 7.13. Are $c c\left(\mathbb{B}^{n}\right) / O(n)$ and $M(n) / O(n)$ homeomorphic?
In conclusion we would like to formulate two more questions suggested by the referee of this paper.

QUESTION 7.14. What is the topological type of the pair $\left(c c\left(\mathbb{R}^{n}\right), c b\left(\mathbb{R}^{n}\right)\right)$?
For any $0 \leq k \leq n$, define

$$
c c_{\geq k}\left(\mathbb{R}^{n}\right)=\left\{A \in c c\left(\mathbb{R}^{n}\right) \mid \operatorname{dim} A \geq k\right\}
$$

and observe that $c b\left(\mathbb{R}^{n}\right)=c c_{\geq n}\left(\mathbb{R}^{n}\right)$ and $c c\left(\mathbb{R}^{n}\right)=c c_{\geq 0}\left(\mathbb{R}^{n}\right)$.
QUESTION 7.15. What is the topological structure of the spaces $c c \geq k\left(\mathbb{R}^{n}\right)$ and of the complements $c c_{k}\left(\mathbb{R}^{n}\right)=c c_{\geq k}\left(\mathbb{R}^{n}\right) \backslash c c_{\geq k+1}\left(\mathbb{R}^{n}\right)$ for $0 \leq k<n$?

Acknowledgments. The authors are grateful to the referee for the careful reading of the manuscript and for drawing their attention to Questions 7.14 and 7.15 .

The authors were supported by CONACYT grants 165195 and 207212, respectively.

References

[1] H. Abels, Parallelizability of proper actions, global K-slices and maximal compact subgroups, Math. Anal. 212 (1974), 1-19.
[2] J. L. Alperin and R. B. Bell, Groups and Representations, Grad. Texts in Math. 162, Springer, New York, 1995.
[3] S. A. Antonyan, Retracts in the categories of G-spaces, Izv. Akad. Nauk Arm. SSR. Ser. Mat. 15 (1980), 365-378 (in Russian); English transl.: Soviet J. Contemp. Math. Anal. 15 (1980), 30-43.
[4] S. A. Antonyan, Retraction properties of an orbit space, Mat. Sb. 137 (1988), 300-318 (in Russian); English transl.: Math. USSR-Sb. 65 (1990), 305-321.
[5] S. A. Antonyan, The Banach-Mazur compacta are absolute retracts, Bull. Polish Acad. Sci. Math. 46 (1998), 113-119.
[6] S. A. Antonyan, The topology of the Banach-Mazur compactum, Fund. Math. 166 (2000), 209-232.
[7] S. A. Antonyan, West's problem on equivariant hyperspaces and Banach-Mazur compacta, Trans. Amer. Math. Soc. 355 (2003), 3379-3404.
[8] S. A. Antonyan, Extending equivariant maps into spaces with convex structures, Topology Appl. 153 (2005), 261-275.
[9] S. A. Antonyan, A characterization of equivariant absolute extensors and the equivariant Dugundji theorem, Houston J. Math. 31 (2005), 451-462.
[10] S. A. Antonyan, New topological models for Banach-Mazur compacta, J. Math. Sci. 146 (2007), 5465-5473.
[11] S. Banach, Théorie des Opérations Linéaires, Monografje Mat., Warszawa, 1932.
[12] G. E. Bredon, Introduction to Compact Transformation Groups, Academic Press, New York, 1972.
[13] O. Bretscher, Linear Algebra with Applications, Prentice-Hall, Upper Saddle River, NJ, 1997.
[14] T. A. Chapman, Lectures on Hilbert Cube Manifolds, CBMS Reg. Conf. Ser. Math. 28, Amer. Math. Soc., Providence, RI, 1975.
[15] L. Danzer, D. Laugwitz und H. Lenz, Über das Löwnersche Ellipsoid und sein Analogon unter den einem Eikörper einbeschriebenen Ellipsoiden, Arch. Math. (Basel) 8 (1957), 214-219.
[16] G. Hochschild, The Structure of Lie Groups, Holden-Day, San Francisco, 1965.
[17] F. John, Extremum problems with inequalities as subsidiary conditions, in: F. John, Collected Papers, Vol. 2, J. Moser (ed.), Birkhäuser, 1985, 543-560.
[18] I. Kaplansky, Linear Algebra and Geometry. A second course, Dover Publ., New York, 1974.
[19] J. Lindenstrauss and V. D. Millman, The local theory of normed spaces and its applications to convexity, in: Handbook of Convex Geometry, P. M. Gruber and J. M. Wills (eds.), Elsevier, Amsterdam, 1993, 1149-1220.
[20] A. M. Macbeath, A compactness theorem for affine equivalence-classes of convex regions, Canad. J. Math. 3 (1951), 54-61.
[21] J. van Mill, Infinite-Dimensional Topology: Prerequisites and Introduction, NorthHolland Math. Library 43, North-Holland, Amsterdam, 1989.
[22] S. B. Nadler, Jr., J. E. Quinn and N. M. Stavrakas, Hyperspaces of compact convex sets, Pacific J. Math. 83 (1979), 441-462.
[23] R. Palais, The classification of G-spaces, Mem. Amer. Math. Soc. 36 (1960).
[24] R. Palais, On the existence of slices for actions of non-compact Lie groups, Ann. of Math. 73 (1961), 295-323.
[25] K. Sakai and Z. Yang, The space of closed convex sets in Euclidean spaces with the Fell topology, Bull. Polish Acad. Sci. 55 (2007), 139-143.
[26] E. H. Spanier, Algebraic Topology, McGraw-Hill, New York, 1966.
[27] H. Toruńczyk, On CE-images of the Hilbert cube and characterization of Q-manifolds, Fund. Math. 106 (1980), 31-40.
[28] J. de Vries, Topics in the theory of topological groups, in: Topological Structures II, Math. Centre Tracts 116, Math. Centrum, Amsterdam, 1979, 291-304.
[29] R. Webster, Convexity, Oxford Univ. Press, Oxford, 1994.
[30] J. E. West, Open problems in infinite-dimensional topology, in: Open Problems in Topology, J. van Mill and G. Reed (eds.), North-Holland, Amsterdam, 1990, 524-586.

Sergey A. Antonyan, Natalia Jonard-Pérez
Departamento de Matemáticas
Facultad de Ciencias
Universidad Nacional Autónoma de México
04510 México Distrito Federal, México
E-mail: antonyan@unam.mx
nat@ciencias.unam.mx

Received 7 April 2012;
in revised form 17 October 2012, 22 May 2013 and 25 September 2013

[^0]: 2010 Mathematics Subject Classification: Primary 57N20, 57S10, 46B99; Secondary 55P91, 54B20, 54C55.
 Key words and phrases: convex set, hyperspace, affine group, proper action, slice, orbit space, Banach-Mazur compacta, Q-manifold.

