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Affine group acting on hyperspaces of
compact convex subsets of Rn

by

Sergey A. Antonyan and Natalia Jonard-Pérez (México, D.F.)

Abstract. For every n ≥ 2, let cc(Rn) denote the hyperspace of all nonempty com-
pact convex subsets of the Euclidean space Rn endowed with the Hausdorff metric topol-
ogy. Let cb(Rn) be the subset of cc(Rn) consisting of all compact convex bodies. In this
paper we discover several fundamental properties of the natural action of the affine group
Aff(n) on cb(Rn). We prove that the space E(n) of all n-dimensional ellipsoids is an
Aff(n)-equivariant retract of cb(Rn). This is applied to show that cb(Rn) is homeomorphic
to the product Q× Rn(n+3)/2, where Q stands for the Hilbert cube. Furthermore, we in-
vestigate the action of the orthogonal group O(n) on cc(Rn). In particular, we show that if
K ⊂ O(n) is a closed subgroup that acts nontransitively on the unit sphere Sn−1, then the
orbit space cc(Rn)/K is homeomorphic to the Hilbert cube with a point removed, while
cb(Rn)/K is a contractible Q-manifold homeomorphic to the product (E(n)/K)×Q. The
orbit space cb(Rn)/Aff(n) is homeomorphic to the Banach–Mazur compactum BM(n),
while cc(Rn)/O(n) is homeomorphic to the open cone over BM(n).

1. Introduction. Let cc(Rn) denote the hyperspace of all nonempty
compact subsets of the Euclidean space Rn, n ≥ 1, equipped with the Haus-
dorff metric:

dH(A,B) = max
{

sup
b∈B

d(b, A), sup
a∈A

d(a,B)
}
,

where d is the standard Euclidean metric on Rn.
By cb(Rn) we shall denote the subspace of cc(Rn) consisting of all com-

pact convex bodies of Rn, i.e.,

cb(Rn) = {A ∈ cc(Rn) | IntA 6= ∅}.
It is easy to see that cc(R1) is homeomorphic to the closed half-plane
{(x, y) ∈ R2 | x ≤ y}, while cb(R1) is homeomorphic to R2. In [22] it was
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proved that for n ≥ 2, cc(Rn) is homeomorphic to the punctured Hilbert
cube, i.e., Hilbert cube with a point removed. Furthermore, a simple com-
bination of [6, Corollary 8] and [7, Theorem 1.4] shows that the hyper-
space B(n), consisting of all centrally symmetric (about the origin) convex
bodies A ∈ cb(Rn), n ≥ 2, is homeomorphic to Rp × Q, where Q denotes
the Hilbert cube and p = n(n+ 1)/2. However, the topological structure of
cb(Rn) has remained open.

In this paper we study the topological structure of the hyperspace cb(Rn).
Namely, we will show that cb(Rn) is homeomorphic to the product Q ×
Rn(n+3)/2. Our argument is based on some fundamental properties of the
natural action of the affine group Aff(n) on cb(Rn). We prove that Aff(n) acts
properly on cb(Rn) (Theorem 3.3). Using a well-known result in affine convex
geometry about the minimal-volume ellipsoid, we construct a convenient
global O(n)-slice L(n) for cb(Rn). Namely, as proved by F. John [17], for
each A ∈ cb(Rn) there exists a unique minimal-volume ellipsoid l(A) that
contains A (see also [15]). It turns out that the map l : cb(Rn) → E(n) is
an Aff(n)-equivariant retraction onto the subset E(n) of cb(Rn) consisting
of all n-dimensional ellipsoids (Theorem 3.6). Then the convenient global
O(n)-slice of cb(Rn) is just the inverse image L(n) = l−1(Bn) of the n-
dimensional closed Euclidean unit ball Bn = {x ∈ Rn | ‖x‖ ≤ 1}. In other
words, L(n) is the subspace of cb(Rn) consisting of all convex bodies A for
which Bn is the minimal-volume ellipsoid. This fact implies that the two orbit
spaces cb(Rn)/Aff(n) and L(n)/O(n) are homeomorphic (Corollary 3.7(2)).
Taking into account the compactness of L(n) (Proposition 3.4(d)) we recover
Macbeath’s result [20] from the early fifties to the effect that cb(Rn)/Aff(n)
is compact (Corollary 3.7(1)).

We show in Corollary 3.9 that cb(Rn) is homeomorphic (even O(n)-
equivariantly) to the product L(n) × E(n). Further, in Section 5 we prove
that L(n) is homeomorphic to the Hilbert cube (Corollary 5.9), while E(n) is
homeomorphic to Rn(n+3)/2 (Corollary 3.10). Thus, we conclude that cb(Rn)
is homeomorphic to Q× Rn(n+3)/2 (Corollary 3.11), one of the main results
of the paper.

In Corollary 3.8 we prove that the orbit space cb(Rn)/Aff(n) is home-
omorphic to the Banach–Mazur compactum BM(n). Recall that BM(n) is
the set of isometry classes of n-dimensional Banach spaces topologized by
the following metric best known in functional analysis as the Banach–Mazur
distance:

d(E,F ) = ln inf{‖T‖ · ‖T−1‖ | T : E → F is a linear isomorphism}.
These spaces were introduced in 1932 by S. Banach [11] and they continue to
be of interest. The original geometric representation of BM(n) is based on the
one-to-one correspondence between norms and odd symmetric convex bod-
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ies (see [30, p. 644] and [19, p. 1191]). A. Pełczyński’s question of whether
the Banach–Mazur compacta BM(n) are homeomorphic to the Hilbert cube
(see [30, Problem 899]) was answered negatively for n = 2 by the first au-
thor [6]; the case n ≥ 3 still remains open. The reader can find other results
concerning the Banach–Mazur compacta and related spaces in [7].

In Section 4 we study the hyperspace M(n) of all compact convex sub-
sets of the unit ball Bn which intersect the boundary sphere Sn−1. It is
established in Corollary 4.13 that for every closed subgroup K ⊂ O(n) that
acts nontransitively on Sn−1, the K-orbit space M(n)/K is homeomorphic
to the Hilbert cube. In particular, M(n) is homeomorphic to Q. On the
other hand, M0(n)/K is a Hilbert cube manifold for each closed subgroup
K ⊂ O(n), where M0(n) = M(n) \ {Bn}. In Theorem 4.16 it is established
that M(n)/O(n) is just homeomorphic to the Banach–Mazur compactum
BM(n). The main technique we develop in this section is further applied
to Section 5 as well. There we establish analogous properties of the global
O(n)-slice L(n) of the proper Aff(n)-space cb(Rn) (Proposition 5.8, Corol-
lary 5.9 and Theorem 5.11).

In Sections 6 and 7 we investigate some orbit spaces of cc(Rn) and cb(Rn).
We prove in Theorem 7.1 that if K is a closed subgroup of O(n) which acts
nontransitively on Sn−1, then cc(Rn)/K is homeomorphic to the punctured
Hilbert cube. The orbit space cc(Rn)/O(n) is homeomorphic to the open cone
over the Banach–Mazur compactum BM(n) (Theorem 7.2). Respectively,
cb(Rn)/K is a contractible Q-manifold homeomorphic to (E(n)/K) × Q
(Theorem 6.1), while the topological structure of cb(Rn)/O(n) mainly re-
mains unknown.

2. Preliminaries. We refer the reader to the monographs [12] and [23]
for basic notions of the theory of G-spaces. However we will recall here some
special definitions and results which will be used throughout the paper.

All topological spaces and topological groups are assumed to be Ty-
chonoff.

If G is a topological group and X is a G-space, for any x ∈ X we denote
by Gx the stabilizer of x, i.e., Gx = {g ∈ G | gx = x}. For a subset S ⊂ X
and a subgroup H ⊂ G, H(S) denotes the H-saturation of S, i.e., H(S) =
{hs | h ∈ H, s ∈ S}. If H(S) = S then we say that S is an H-invariant set .
In particular, G(x) denotes the G-orbit of x, i.e., G(x) = {gx ∈ X | g ∈ G}.
The orbit space is denoted by X/G.

For each subgroup H ⊂ G, the H-fixed point set XH is the set {x ∈ X |
H ⊂ Gx}. Clearly, XH is a closed subset of X.

The family of all subgroups of G that are conjugate to H is denoted by
[H], i.e., [H] = {gHg−1 | g ∈ G}. We will call [H] a G-orbit type (or simply
an orbit type). For two orbit types [H1] and [H2], one says that [H1] � [H2]
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iff H1 ⊂ gH2g
−1 for some g ∈ G. The relation � is a partial ordering on the

set of all orbit types. Since Ggx = gGxg
−1 for any x ∈ X and g ∈ G, we

have [Gx] = {Ggx | g ∈ G}.
A continuous map f : X → Y between two G-spaces is called equivariant

or a G-map if f(gx) = g(fx) for every x ∈ X and g ∈ G. If the action of G
on Y is trivial and f : X → Y is an equivariant map, then we will say that
f is an invariant map.

For any subgroup H ⊂ G, we will denote by G/H the G-space of cosets
{gH | g ∈ G} equipped with the action induced by left translations.

A G-space X is called proper (in the sense of Palais [24]) if it has an
open cover consisting of so-called small sets. A set S ⊂ X is called small if
any point x ∈ X has a neighborhood V such that the set 〈S, V 〉 = {g ∈ G |
gS ∩ V 6= ∅}, called the transporter from S to V , has compact closure in G.

Each orbit in a proper G-space is closed, and each stabilizer is compact
[24, Proposition 1.1.4]. If G is a locally compact group and Y is a proper
G-space, then for every point y ∈ Y the orbit G(y) is G-homeomorphic to
G/Gy [24, Proposition 1.1.5].

For a given topological group G, a metrizable G-space Y is called a
G-equivariant absolute neighborhood retract (denoted by Y ∈ G-ANR) if for
any metrizable G-space M containing Y as an invariant closed subset, there
exist an invariant neighborhood U of Y in M and a G-retraction r : U → Y .
If we can always take U = M , then we say Y is a G-equivariant absolute
retract (denoted by Y ∈ G-AR).

Let us recall the well known definition of a slice [24, p. 305]:

Definition 2.1. Let X be a G-space and H a closed subgroup of G. An
H-invariant subset S ⊂ X is called an H-slice in X if G(S) is open in X and
there exists a G-equivariant map f : G(S) → G/H such that S=f−1(eH).
The saturation G(S) is called a tubular set. If G(S) = X, then we say that
S is a global H-slice of X.

In the case of a compact group G one has the following intrinsic charac-
terization of H-slices. A subset S ⊂ X of a G-space X is an H-slice if and
only if it satisfies the following four conditions: (1) S isH-invariant, (2) G(S)
is open in X, (3) S is closed in G(S), (4) if g ∈ G \H then gS ∩ S = ∅ (see
[12, Ch. II, §4 and §5]).

The following is one of the fundamental results in the theory of topolog-
ical transformation groups (see, e.g., [12, Ch. II, §4 and §5]):

Theorem 2.2 (Slice Theorem). Let G be a compact Lie group, X a Ty-
chonoff G-space and x ∈ X any point. Then:

(1) There exists a Gx-slice S ⊂ X such that x ∈ S.
(2) [Gy] � [Gx] for each point y ∈ G(S).
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Let G be a compact Lie group and X a G-space. By a G-normal cover
of X, we mean a family

U = {gSµ | g ∈ G, µ ∈M}
where each Sµ is an Hµ-slice for some closed subgroup Hµ of G, the family
{G(Sµ)}µ∈M of saturations is an open cover for X and there exists a locally
finite invariant partition of unity {pµ : X → [0, 1] | µ ∈ M} subordinated
to {G(Sµ)}µ∈M . That is, each pµ is an invariant function with p−1µ ((0, 1]) ⊂
G(Sµ) and the supports {p−1µ ((0, 1]) | µ ∈ M} constitute a locally finite
family. We refer to [7] for further information on G-normal covers.

Yet another result which plays an important role in the paper is

Theorem 2.3 (Orbit Space Theorem [4]). Let G be a compact Lie group
and X a G-ANR (resp., a G-AR). Then X/G is an ANR (resp., an AR).

Let (X, d) be a metric G-space. If d(gx, gy) = d(x, y) for all x, y ∈ X and
g ∈ G, then we say that d is a G-invariant (or simply invariant) metric.

Suppose that G is a compact group acting on a metric space (X, d). If
d is G-invariant, it is well-known [23, Proposition 1.1.12] that the quotient
topology of X/G is generated by the metric

(2.1) d∗(G(x), G(y)) = inf
g∈G

d(x, gy), G(x), G(y) ∈ X/G.

It is evident that

(2.2) d∗(G(x), G(y)) ≤ d(x, y), x, y ∈ X.

In the following we will denote by d the Euclidean metric on Rn. For
any A ⊂ Rn and ε > 0, we denote N(A, ε) = {x ∈ Rn | d(x,A) < ε}. In
particular, for every x ∈ Rn, N(x, ε) denotes the open ε-ball around x. On
the other hand, if C ⊂ cc(Rn) then for every A ∈ C we shall use O(A, ε) for
the ε-open ball in C centered at A, i.e.,

O(A, ε) = {B ∈ C | dH(A,B) < ε},
where dH stands for the Hausdorff metric induced by d.

For every subset A ⊂ X of a topological space X, we write ∂A and A
for, respectively, the boundary and the closure of A in X.

We will denote by Bn the n-dimensional Euclidean closed unit ball and
by Sn−1 the corresponding unit sphere, i.e.,

Bn =
{

(x1, . . . , xn) ∈ Rn
∣∣∣ n∑
i=1

x2i ≤ 1
}
,

Sn−1 =
{

(x1, . . . , xn) ∈ Rn
∣∣∣ n∑
i=1

x2i = 1
}
.



104 S. A. Antonyan and N. Jonard-Pérez

The Hilbert cube [0, 1]∞ will be denoted by Q. By cc(Bn) we denote the
subspace of cc(Rn) consisting of all A ∈ cc(Rn) such that A ⊂ Bn. It is well
known that cc(Bn) is homeomorphic to Q (see [22, Theorem 2.2]).

A Hilbert cube manifold or a Q-manifold is a separable, metrizable space
that admits an open cover each member of which is homeomorphic to an
open subset of Q. We refer to [14] and [21] for the theory of Q-manifolds.

A closed subset A of a metric space (X, d) is called a Z-set if the set
{f ∈ C(Q,X) | f(Q) ∩ A = ∅} is dense in C(Q,X), where C(Q,X) is the
space of all continuous maps from Q to X endowed with the compact-open
topology. In particular, if for every ε > 0 there exists a map f : X → X \A
such that d(x, f(x)) < ε, then A is a Z-set.

A map f : X → Y between topological spaces is called proper if f−1(C)
is compact for each compact set C ⊂ Y . A proper map f : X → Y between
ANR’s is called cell-like (abbreviated CE) if it is onto and each point inverse
f−1(y) has the property UV∞: for each neighborhood U of f−1(y) there
exists a neighborhood V ⊂ U of f−1(y) such that the inclusion V ↪→ U
is homotopic to a constant map of V into U . In particular, if f−1(y) is
contractible, then it has the property UV∞ (see [14, Ch. XIII]).

3. Affine group acting properly on cb(Rn). Let (X, d) be a metric
space and G a topological group acting continuously on X. Consider the
hyperspace 2X consisting of all nonempty compact subsets of X equipped
with the Hausdorff metric topology. Define an action of G on 2X by

(3.1) (g,A) 7→ gA, gA = {ga | a ∈ A}.

The reader can easily verify the continuity of this action.

3.1. Properness of the Aff(n)-action on cb(Rn). Throughout the
paper, n will always denote a natural number greater than or equal to 2.

We will denote by Aff(n) the group of all affine transformations of Rn.
Let us recall the definition of Aff(n). For every v ∈ Rn let Tv : Rn → Rn be
the translation by v, i.e., Tv(x) = v + x for all x ∈ Rn. The set of all such
translations is a group isomorphic to the additive group of Rn. For every
σ ∈ GL(n) and v ∈ Rn it is easy to see that σTvσ−1 = Tσ(v). This yields a
homomorphism from GL(n) to the group of all linear automorphisms of Rn,
and hence we have an (internal) semidirect product

Rn oGL(n)

called the affine group of Rn (see e.g. [2, p. 102]). Each element g ∈ Aff(n)
is usually represented by g = Tv + σ, where σ ∈ GL(n) and v ∈ Rn, i.e.,

g(x) = v + σ(x) for every x ∈ Rn.
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As a semidirect product, Aff(n) is topologized by the product topology
of Rn×GL(n), thus becoming a Lie group with two connected components.
Since the topology of GL(n) is the one inherited from Rn2 , we can also
consider a natural topological embedding of Aff(n) into Rn×Rn2

= Rn(n+1),
which will be helpful in the proof of Theorem 3.3.

Clearly, the natural action of Aff(n) on Rn is continuous. This action
induces a continuous action on 2R

n . Observe that for every g ∈ Aff(n) and
A ∈ cb(Rn), the set gA = {ga | a ∈ A} belongs to cb(Rn), i.e., cb(Rn) is
an invariant subset of 2R

n and thus the restriction of the Aff(n)-action to
cb(Rn) is continuous. We will prove in Theorem 3.3 that this action is proper.
First we prove the following two technical lemmas.

Lemma 3.1. Let A ∈ cb(Rn) and let x0 ∈ A be such that N(x0, 2ε) ⊂ A
for a certain ε > 0. If C ∈ O(A, ε) then N(x0, ε) ⊂ C.

Proof. Suppose there exists C ∈ O(A, ε) such that N(x0, ε) 6⊂ C. Choose
x ∈ N(x0, ε) \ C. Since C is compact, there exists z ∈ C with d(x, z) =

d(x,C). Let H be the hyperplane through z in Rn orthogonal to the ray →xz.
Since C is convex, it lies in the halfspace determined by H which does
not contain x. Let a be the intersection point of →zx with ∂N(x0, 2ε) ⊂ A.
Evidently, d(a, x0) = 2ε and

d(a, z) = d(a,H) ≤ d(a,C) ≤ dH(A,C) < ε.

Since d(x0, x) < ε the triangle inequality implies that

ε > d(a, z) > d(a, x) ≥ d(a, x0)− d(x0, x) > 2ε− ε = ε.

This contradiction proves the lemma.

Observe that cb(Rn) is not closed in cc(Rn). However, we have the fol-
lowing lemma:

Lemma 3.2. Let A ∈ cb(Rn) and x0 ∈ A be such that N(x0, 2ε) ⊂ A for
a certain ε > 0. Then O(A, ε), the closure of O(A, ε) in cb(Rn), is compact.

Proof. First we observe that O(A, ε) is contained in cc(K) for some com-
pact convex subset K ⊂ Rn, where cc(K) stands for the hyperspace of all
compact convex subsets of K. By [22], cc(K) is compact, and hence the
closure of O(A, ε) in cc(K), denoted by [O(A, ε)], is also compact. So, it is
enough to prove that [O(A, ε)] is contained in cb(Rn).

Let (Dm)m∈N ⊂ O(A, ε) be a sequence of compact convex bodies con-
verging to some D ∈ cc(K). According to Lemma 3.1, N(x0, ε) ⊂ Dm for
every m ∈ N. Suppose that N(x0, ε) 6⊂ D. Pick x ∈ N(x0, ε) \ D and
let η = d(x,D) > 0. Since x ∈ Dm for each m ∈ N, it is clear that
dH(Dm, D) ≥ η. This means that (Dm)m∈N cannot converge to D, a con-
tradiction. This proves that N(x0, ε) is contained in D, and therefore D has
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nonempty interior, so that D ∈ cb(Rn). Thus, [O(A, ε)] is a compact set
contained in cb(Rn), which yields O(A, ε) = [O(A, ε)], and hence O(A, ε) is
compact.

Theorem 3.3. Aff(n) acts properly on cb(Rn).

Proof. Let A ∈ cb(Rn) and assume that x0 ∈ A and ε > 0 are such that
N(x0, 2ε) ⊂ A. We claim that O(A, ε) is a small neighborhood of A.

Indeed, let B ∈ cb(Rn). Since B has nonempty interior, there are z0 ∈ B
and δ > 0 such that N(z0, 2δ) ⊂ B. We will prove that the transporter

Γ = {g ∈ Aff(n) | gO(A, ε) ∩O(B, δ) 6= ∅}
has compact closure in Aff(n).

It is sufficient to prove that Γ , viewed as a subset of Rn×Rn2 , is bounded
and its closure in Aff(n) coincides with the one in Rn × Rn2 .

For every x = (x1, . . . , xn) ∈ Rn, let ‖x‖∞ = maxni=1 |xi|. There exists
M > 0 such that, if C ∈ O(A, ε) ∪O(B, δ) then
(3.2) ‖c‖∞ ≤M for all c ∈ C.
In particular,

diamC = sup
c,c′∈C

‖c− c′‖∞ ≤ 2M.

Take any µ ∈ Γ . There exist A′ ∈ O(A, ε) and B′ ∈ O(B, δ) with µA′ = B′.
Since µ is an affine transformation, there are u ∈ Rn and σ ∈ GL(n) such
that µ(x) = u+ σ(x) for all x ∈ Rn. Let (σij) be the matrix representing σ
in the canonical basis of Rn, and consider (σij) as a point in Rn2 .

Since µA′ = B′ ∈ O(B, δ), according to inequality (3.2), diamµA′ ≤ 2M.
Observe that µA′ = σA′ + u, and hence diamσA′ = diamµA′ ≤ 2M . Let

ξi = (0, . . . , 0, ε/2, 0, . . . , 0) ∈ Rn,
where ε/2 is the ith coordinate. Then, by Lemma 3.1, ξi+x0 ∈ N(x0, ε) ⊂ A′
and −ξi + x0 ∈ N(x0, ε) ⊂ A′. Since diamσA′ ≤ 2M , we get

‖2σ(ξi)‖∞ = ‖σ(2ξi)‖∞ = ‖σ((ξi + x0)− (−ξi + x0))‖∞
= ‖σ(ξi + x0)− σ(−ξi + x0)‖∞ ≤ 2M,

and thus ‖σ(ξi)‖∞ ≤M .
However, σ(ξi) = (σ1iε/2, . . . , σniε/2), and therefore |σjiε/2| ≤M for all

i, j = 1, . . . , n. Thus, |σji| < 2M/ε.
Next, by (3.2), for every a = (a1, . . . , an) ∈ A′ one has ‖a‖∞ ≤M . Then

‖σ(a)‖∞ =
n

max
i=1

∣∣∣ n∑
j=1

σijaj

∣∣∣ ≤ n∑
i=1

2M

ε
‖a‖∞ ≤

2nM2

ε
.

On the other hand, µ(a) ∈ B′, which yields
M ≥ ‖µ(a)‖∞ = ‖u+ σ(a)‖∞ ≥ ‖u‖∞ − ‖σ(a)‖∞ ≥ ‖u‖∞ − 2nM2/ε.
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This implies that ‖u‖∞ ≤M +2nM2/ε, and therefore Γ , viewed as a subset
of Rn × Rn2 , is bounded.

To complete the proof, it remains to show that the closure of Γ in Aff(n)

coincides with its closure in Rn×Rn2 . Observe that here Rn2 represents the
space of all real n × n-matrices, i.e., the space of all linear transformations
from Rn into itself. Therefore, an element λ ∈ Rn × Rn2 represents a map
which is the composition of a linear transformation followed by a translation.
In this case, λ is an affine transformation iff it is surjective.

Let (λm)m∈N ⊂ Γ be a sequence of affine transformations converging to
some λ ∈ Rn × Rn2

. We need to prove that λ ∈ Aff(n). Since λm ∈ Γ ,
there exist Am ∈ O(A, ε) and Bm ∈ O(B, δ) such that λmAm = Bm. By
Lemma 3.2, the closures O(A, ε) and O(B, δ) are compact. Hence, we can
assume that Am converges to some A0 ∈ O(A, ε) and Bm converges to some
B0 ∈ O(B, δ). Then the equality λmAm = Bm yields λA0 = B0. Since B0

has nonempty interior, we infer that dimB0 = n, and hence the dimension
of λ(Rn) also equals n. Thus, λ(Rn) is an n-dimensional hyperplane in Rn,
which is possible only if λ(Rn) = Rn. Thus, λ is surjective, as required.

3.2. A convenient global slice for cb(Rn). A well-known result of
F. John [17] (see also [15]) in affine convex geometry states that for each
A ∈ cb(Rn) there is a unique minimal-volume ellipsoid l(A) containing A
(respectively, a maximal-volume ellipsoid j(A) contained in A). Nowadays
j(A) is called the John ellipsoid of A while l(A) is called its Löwner ellipsoid.
We denote by L(n) (resp., J(n)) the subspace of cb(Rn) consisting of all
convex bodies A ∈ cb(Rn) for which the Euclidean unit ball Bn is the Löwner
ellipsoid (resp., the John ellipsoid). By E(n) we denote the subset of cb(Rn)
consisting of all ellipsoids. Below we consider the map l : cb(Rn) → E(n)
that sends a convex body A ∈ cb(Rn) to its minimal-volume ellipsoid l(A).
We call l the Löwner map.

Proposition 3.4. L(n) has the following four properties:

(a) L(n) is O(n)-invariant.
(b) The saturation Aff(n)(L(n)) coincides with cb(Rn).
(c) If gL(n) ∩ L(n) 6= ∅ for some g ∈ Aff(n), then g ∈ O(n).
(d) L(n) is compact.

Proof. First we prove the following

Claim. The Löwner map l : cb(Rn) → E(n) is Aff(n)-equivariant, i.e.,
l(gA) = gl(A) for every g ∈ Aff(n) and A ∈ cb(Rn).

Assume that there exist A ∈ cb(Rn) and g ∈ Aff(n) such that l(gA)
6= gl(A). Clearly, gl(A) is an ellipsoid containing gA. Since the minimal-
volume ellipsoid of g(A) is unique, we infer that vol(gl(A)) > vol(l(gA)).
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By the same argument, vol(g−1l(gA)) > vol(l(A)). Now we apply the well-
known fact that each affine transformation preserves the ratio of volumes of
any pair of compact convex bodies. Thus

vol(l(A))

vol(A)
=

vol(gl(A))

vol(gA)
>

vol(l(gA))

vol(gA)
=

vol(g−1l(gA))

vol(A)
>

vol(l(A))

vol(A)
.

This contradiction proves the claim.
(a) Let g ∈ O(n) and A ∈ L(n). The Claim implies that l(gA) = gl(A) =

gBn = Bn, i.e., gA ∈ L(n), so L(n) is O(n)-invariant.
(b) Let A ∈ cb(Rn). There exists g ∈ Aff(n) such that l(A) = gBn.

According to the Claim we have

Bn = g−1l(A) = l(g−1A).

Then g−1A ∈ L(n) and A = g(g−1A). This proves Aff(n)(L(n)) = cb(Rn).
(c) If there exist g ∈ Aff(n) and A ∈ L(n) such that gA ∈ L(n), then

Bn = l(gA) = gl(A) = gBn.
Hence g ∈ O(n).

(d) Clearly, L(n) ⊂ cc(Bn). Since cc(Bn) is compact (in fact, it is hom-
eomorphic to the Hilbert cube [22, Theorem 2.2]), it suffices to show that
L(n) is closed in cc(Bn).

Let (Ak)k∈N ⊂ L(n) be a sequence converging to A ∈ cc(Bn). We will
prove that A ∈ L(n). To this end, we first prove that A has nonempty
interior. If not, there exists an (n− 1)-dimensional hyperplane H ⊂ Rn such
that A ⊂ H. Let E′ ⊂ H be an (n − 1)-dimensional ellipsoid containing A
in its interior (with respect to H). For any r > 0, consider the line segment
Tr of length r which is orthogonal to H and passes through the center of E′.
Let r > 0 be small enough that the n-dimensional ellipsoid E generated by
E′ and Tr has volume less than vol(Bn). Since A lies in the interior of E,
there exists δ > 0 such that N(A, δ) ⊂ E. Now, we use the fact that (Ak)
converges to A to find m0 ∈ N such that Am0 ⊂ N(A, δ) ⊂ E. Thus, E is an
ellipsoid containing Am0 and so

vol(Bn) = vol(l(Am0)) < vol(E) < vol(Bn).

This contradiction proves that A has nonempty interior.
Consequently, l(A) is defined and we have to show that l(A) = Bn. Sup-

pose that l(A) 6= Bn. Since Ak ⊂ Bn for every k ∈ N, it follows that A ⊂ Bn.
Hence, by uniqueness of the minimal-volume ellipsoid, vol(l(A)) < vol(Bn).
Let L be an ellipsoid concentric and homothetic with l(A) with ratio > 1
and vol(L) < vol(Bn). As l(A) is contained in the interior of L, the distance
dH(∂L, ∂l(A)) = ε is positive. Consider U = N(∂l(A), ε), the ε-neighborhood
of ∂l(A) in Rn. Since (Ak)k∈N converges to A and all the sets Ak are con-
vex, (∂Ak)k∈N converges to ∂A. Therefore, there exists k0 ≥ 1 such that
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∂Ak0 ⊂ U . The convexity of Ak0 implies that Ak0 ⊂ L, and hence

vol(l(Ak0)) ≤ vol(L) < vol(Bn) = vol(l(Ak0)).

This contradiction proves that A∈L(n), and hence L(n) is closed in cc(Bn).

Remark 3.5. The first three assertions of Proposition 3.4 are easy mod-
ifications of those in [6, proof of Theorem 4], while the fourth one provides
a new way of proving Macbeath’s result on compactness of cb(Rn)/Aff(n)
(see Corollary 3.7(1)).

Theorem 3.6.

(1) The Löwner map l : cb(Rn)→ E(n) is an Aff(n)-equivariant retrac-
tion with L(n) = l−1(Bn).

(2) L(n) is a compact global O(n)-slice for the proper Aff(n)-space
cb(Rn).

Proof. (1) In the proof of Proposition 3.4 we showed that l : cb(Rn)
→ E(n) is Aff(n)-equivariant. Clearly, it is a retraction. Its continuity is a
standard consequence of the above four properties in Proposition 3.4, well
known in transformation groups (see [12, Ch. II, Theorems 4.2 and 4.4] for
compact group actions and [24] for locally compact proper group actions).
However, using the compactness of L(n) we shall give here a direct proof of
this fact.

Let (Xm)∞m=1 be a sequence in cb(Rn) that converges to X ∈ cb(Rn); we
write Xm  X. We must show that l(Xm)  l(X). Assume the contrary
is true. Then there exist ε > 0 and a subsequence (Ak) of (Xm) such that
dH(l(Ak), l(A)) ≥ ε for all k = 1, 2, . . . .

By Proposition 3.4(b), there are g, gk ∈ Aff(n), k = 1, 2, . . . , such that
Ak = gkSk and A = gP for some P, Sk ∈ L(n). Due to compactness of
L(n), without loss of generality, one can assume that Sk  S for some
S ∈ L(n). Since Aff(n) acts properly on cb(Rn) (see Theorem 3.3), the
points S and P have neighborhoods US and UP , respectively, such that the
transporter 〈US , UP 〉 has compact closure. Since Sk  S and g−1gkSk  P ,
it then follows that there is a natural number k0 such that g−1gk ∈ 〈US , UP 〉
for all k ≥ k0. Consequently, the sequence (g−1gk) has a convergent sub-
sequence. Again, it is no loss of generality to assume that g−1gk  h for
some h ∈ Aff(n). This implies that g−1gkSk  hS, which together with
g−1gkSk  P yields hS = P . But S and P belong to L(n), and hence
Proposition 3.4(c) shows that h ∈ O(n). Since gk  gh, we get

l(Ak) = l(gkSk) = gkl(Sk) = gkBn  ghBn = gBn = gl(S) = l(gS) = l(A),

which contradicts the inequality dH(l(Ak), l(A)) ≥ ε, k = 1, 2, . . . .
Hence, l(Xm) l(X), as required.
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(2) Compactness of L(n) was proved in Proposition 3.4(d). Since E(n) is
the Aff(n)-orbit of Bn ∈ cb(Rn) and O(n) is the stabilizer of Bn, one has the
Aff(n)-homeomorphism E(n) ∼= Aff(n)/O(n) (see [24, Proposition 1.1.5]).
This, together with (1), yields an Aff(n)-equivariant map f : cb(Rn) →
Aff(n)/O(n) such that L(n) = f−1(O(n)). Thus, L(n) is a global O(n)-slice
for cb(Rn), as required.

Corollary 3.7.

(1) (Macbeath [20]) The Aff(n)-orbit space cb(Rn)/Aff(n) is compact.
(2) The orbit spaces L(n)/O(n) and cb(Rn)/Aff(n) are homeomorphic.

Proof. Let π : L(n)→ cb(Rn)/Aff(n) be the restriction of the orbit map
cb(Rn) → cb(Rn)/Aff(n). Then π is continuous and it follows from Propo-
sition 3.4(b) that π is onto. This already implies the first assertion if we
remember that L(n) is compact (see Proposition 3.4(d)).

Further, for A,B ∈ L(n), it follows from Proposition 3.4(c) that π(A) =
π(B) iff A and B have the same O(n)-orbit. Hence, π induces a continuous
bijective map p : L(n)/O(n)→ cb(Rn)/Aff(n). Since L(n)/O(n) is compact
we conclude that p is a homeomorphism.

In Theorem 5.11 we will prove that L(n)/O(n) is homeomorphic to the
Banach–Mazur compactum BM(n). This, in combination with Corollary 3.7
implies the following:

Corollary 3.8. The Aff(n)-orbit space cb(Rn)/Aff(n) is homeomorphic
to the Banach–Mazur compactum BM(n).

Corollary 3.9.

(1) There exists an O(n)-equivariant retraction r : cb(Rn) → L(n) such
that r(A) belongs to the Aff(n)-orbit of A.

(2) The diagonal product of the retractions r : cb(Rn) → L(n) and l :
cb(Rn)→ E(n) is an O(n)-equivariant homeomorphism

cb(Rn) ∼=O(n) L(n)× E(n).

Proof. (1) Recall that O(n) is a maximal compact subgroup of Aff(n).
According to the structure theorem (see [16, Ch. XV, Theorem 3.1]), there
exists a closed subset T ⊂ Aff(n) such that gTg−1 = T for every g ∈ O(n),
and the multiplication map

(3.3) (t, g) 7→ tg : T ×O(n)→ Aff(n)

is a homeomorphism. In our case it is easy to see that for T one can take
the set of all products AS, where A is a translation and S is an invert-
ible symmetric (or self-adjoint) positive operator. This follows easily from
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two standard facts in linear algebra: (1) each a ∈ Aff(n) is uniquely repre-
sented as the composition of a translation t ∈ Rn and an invertible operator
g ∈ GL(n), (2) by the polar decomposition theorem, every g ∈ GL(n) can
be uniquely represented as the composition of a nondegenerate symmetric
positive operator and an orthogonal operator (see, e.g., [18, Sections 2.3
and 2.4]).

Now we define the requiredO(n)-equivariant retraction r : cb(Rn)→L(n).
Let f : Aff(n)→ E(n) be defined by f(g) = gBn. Then f induces an Aff(n)-
equivariant homeomorphism f̃ : Aff(n)/O(n)→ E(n) [24, Proposition 1.1.5]
and f is the composition

Aff(n)
π→ Aff(n)/O(n)

f̃→ E(n),

where π is the natural quotient map. By compactness of O(n), π is closed,
and hence so is f , being the composition of two closed maps.

This implies that the restriction f |T : T → E(n) is a homeomorphism.
Moreover, this homeomorphism is O(n)-equivariant if we let O(n) act on T
by inner automorphisms and on E(n) by the action induced from cb(Rn).

Denote by ξ : E(n)→ T the inverse map f−1. Then we have the following
characteristic property of ξ:

(3.4) [ξ(C)]−1C = Bn for all C ∈ E(n).

Next, we define

r(A) = [ξ(l(A))]−1A for every A ∈ cb(Rn).

Clearly, r depends continuously on A ∈ cb(Rn).
Since l(r(A)) = l([ξ(l(A))]−1A) = [ξ(l(A))]−1l(A), and since by (3.4),

[ξ(l(A))]−1l(A) = Bn, we infer that r(A) ∈ L(n). If A ∈ L(n), then l(A) = Bn
and r(A) = [ξ(l(A))]−1A = [ξ(Bn)]−1A = 1 ·A = A. Thus, r is a well-defined
retraction on L(n).

Let us check that r is O(n)-equivariant. Indeed, let g ∈ O(n) and A ∈
cb(Rn). Then r(gA)=[ξ(l(gA))]−1gA=[ξ(gl(A))]−1gA. By equivariance of ξ,
one has ξ(gl(A)) = gξ(l(A))g−1, and hence [ξ(gl(A))]−1 = g[ξ(l(A))]−1g−1.
Consequently,

r(gA) =
(
g[ξ(l(A))]−1g−1

)
gA = g

(
[ξ(l(A))]−1A

)
= gr(A),

as required. Thus, r : cb(Rn)→ L(n) is an O(n)-retraction, and clearly r(A)
belongs to the Aff(n)-orbit of A.

(2) Next we define

ϕ(A) = (r(A), l(A)) for every A ∈ cb(Rn).

Then ϕ is an O(n)-equivariant homeomorphism cb(Rn)→ L(n)× E(n) with
inverse ϕ−1((C,E)) = ξ(E)C for every (C,E) ∈ L(n)× E(n).
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Corollary 3.10.

(1) E(n) is an O(n)-AR.
(2) E(n) is homeomorphic to Rn(n+3)/2.

Proof. (1) follows immediately from Theorem 3.6 and from the fact that
cb(Rn) is an O(n)-AR [8, Corollary 4.8].

(2) As observed above, E(n) is homeomorphic to Aff(n)/O(n) (see [24,
Proposition 1.1.5]). Consequently, one should prove that Aff(n)/O(n) is
homeomorphic to Rn(n+3)/2.

Since Aff(n) is the semidirect product of Rn and GL(n), as a topolog-
ical space Aff(n)/O(n) is homeomorphic to Rn × GL(n)/O(n). The RQ-
decomposition theorem in linear algebra states that every invertible matrix
can be uniquely represented as the product of an orthogonal matrix and an
upper-triangular matrix with positive elements on the diagonal (see, e.g.,
[13, Fact 4.2.2 and Exercise 4.3.29]). This easily implies that GL(n)/O(n) is
homeomorphic to R(n+1)n/2, and hence Aff(n)/O(n) is homeomorphic to Rp,
where p = n+ (n+ 1)n/2 = n(n+ 3)/2.

In Section 5 we will prove that L(n) is homeomorphic to the Hilbert cube
(Corollary 5.9). This, in combination with Corollaries 3.9 and 3.10, yields
the following result, which is one of the main results of the paper:

Corollary 3.11. cb(Rn) is homeomorphic to Q× Rn(n+3)/2.

Remark 3.12. Using maximal-volume ellipsoids instead of minimal-vol-
ume ellipsoids, one can prove in a similar way that the subset J(n), defined
at the beginning of this subsection, is also a global O(n)-slice for cb(Rn).
However, it follows from a result of H. Abels [1, Lemma 2.3] that the two
global O(n)-slices J(n) and L(n) are equivalent in the sense that there ex-
ists an Aff(n)-equivariant homeomorphism f : cb(Rn) → cb(Rn) such that
f(L(n)) = J(n). Consequently, all the results stated in terms of L(n) have
their analogs in terms of J(n), which can be proven by trivial modification
of our proofs.

4. The hyperspace M(n). Let us denote by M(n) the O(n)-invariant
subspace of cc(Rn) consisting of all A ∈ cc(Rn) such that maxa∈A ‖a‖ = 1.
Thus, M(n) consists of all compact convex subsets of Bn which intersect the
boundary sphere Sn−1.

It is evident that M(n) is closed in cc(Bn) ⊂ cc(Rn). By compactness of
cc(Bn) (a well-known fact) it follows that M(n) is compact as well. The im-
portance ofM(n) lies in the property that cc(Rn) is the open cone overM(n)
(see Section 7). In this section we will prove that M(n) is also homeomor-
phic to the Hilbert cube (Corollary 4.13) and its orbit space M(n)/O(n) is
homeomorphic to the Banach–Mazur compactum BM(n) (Theorem 4.16).
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Let us recall that a G-space X is called strictly G-contractible if there
exists a G-homotopy F : X × [0, 1] → X and a G-fixed point a ∈ X such
that F (x, 0) = x for all x ∈ X and F (x, t) = a if and only if t = 1 or x = a.

Lemma 4.1. M(n) is strictly O(n)-contractible to its only O(n)-fixed
point Bn.

Proof. The map F : M(n)× [0, 1]→M(n) defined by

F (A, t) = (1− t)A+ tBn

is the desired O(n)-contraction.

Consider the map ν : cc(Rn)→ [0,∞) defined by

(4.1) ν(A) = max
a∈A
‖a‖, A ∈ cc(Rn).

Lemma 4.2. ν is a uniformly continuous O(n)-invariant map.

Proof. Let ε > 0 and A,B ∈ cc(Rn), and suppose that dH(A,B) < ε. Let
a ∈ A be such that ν(A) = ‖a‖. Then there exists b ∈ B with ‖a − b‖ < ε.
Since ‖b‖ ≤ ν(B) we have

ε > ‖a− b‖ ≥ ‖a‖ − ‖b‖ ≥ ν(A)− ν(B).

Similarly, we can prove that ν(B) − ν(A) < ε, and hence ν is uniformly
continuous.

Now, if g ∈ O(n) then ‖gx‖ = ‖x‖ for every x ∈ Rn. Thus,
ν(gA) = max

a′∈gA
‖a′‖ = max

a∈A
‖ga‖ = max

a∈A
‖a‖ = ν(A).

This proves that ν is O(n)-invariant, as required.

Lemma 4.3. M(n) is an O(n)-AR with a unique O(n)-fixed point, Bn.
Proof. By [8, Corollary 4.8], cc(Rn) is an O(n)-AR. Hence, cc(Rn) \ {0}

is an O(n)-ANR. The map r : cc(Rn) \ {0} →M(n) defined by

(4.2) r(A) =
1

ν(A)
A

is an O(n)-retraction, where ν is defined in (4.1). Thus M(n), being an
O(n)-retract of an O(n)-ANR, is itself an O(n)-ANR. On the other hand,
it was shown in Lemma 4.1 that M(n) is O(n)-contractible to its point Bn.
Since every O(n)-contractible O(n)-ANR space is an O(n)-AR (see [3]) we
conclude that M(n) is an O(n)-AR.

The following lemma will be used several times:

Lemma 4.4. Let p1, . . . , pk ∈ Rn be a finite number of points. Let K ⊂
O(n) be a closed subgroup which acts nontransitively on Sn−1. Then the
boundary of the convex hull

D = conv(K(p1) ∪ · · · ∪K(pk))
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does not contain an (n−1)-dimensional elliptic domain, i.e., ∂D contains no
open subset V which is at the same time an open connected subset of some
(n− 1)-dimensional ellipsoid surface lying in Rn.

Proof. Assume that there exists an open subset V ⊂ ∂D which is an
(n − 1)-dimensional elliptic domain. Recall that a convex body A ⊂ Rn is
called strictly convex if every boundary point a ∈ ∂A is an extreme point,
that is, A \ {a} is convex. Since every ellipsoid in Rn is strictly convex, it
will follow that every v ∈ V is an extreme point of D too, as we now show.

Indeed, suppose that there are distinct points b, c ∈ D such that v belongs
to the relative interior of the line segment [b, c] = {λb+ (1−λ)c | λ ∈ [0, 1]}.
Since v is a boundary point of D, the whole segment [b, c] lies in ∂D. Next,
since V is open in ∂D, we infer that for b and c sufficiently close to v, the
segment [b, c] is contained in V . However, this is impossible because V is an
elliptic domain.

Thus, we have proved that every v ∈ V is an extreme point of D.
Next, since D is the convex hull of

⋃k
i=1K(pi), each extreme point of D

lies in
⋃k
i=1K(pi) (see, e.g., [29, Corollary 2.6.4]). This implies that V ⊂⋃k

i=1K(pi). Further, by connectedness, V is contained in only one K(pi).
However, we now show this is impossible.

Indeed, since K(pi) lies on the (n−1)-sphere ∂N(0, ‖pi‖) centered at the
origin and having radius ‖pi‖, V should be a domain in this sphere. As K(pi)
is a homogeneous compact space, there exists a finite cover {V1, . . . , Vm} of
K(pi), where each Vj is homeomorphic to V . Then, by the Domain Invariance
Theorem (see, e.g., [26, Ch. 4, Section 7, Theorem 16]), each Vj is open
in ∂N(0, ‖pi‖). Hence, V1 ∪ · · · ∪ Vm = K(pi) is open in ∂N(0, ‖pi‖). But
K(pi) is also compact, and therefore closed in ∂N(0, ‖pi‖). Thus K(pi) is an
open and closed subset of the connected space ∂N(0, ‖pi‖), and consequently
K(pi) = ∂N(0, ‖pi‖). This implies that K acts transitively on Sn−1, which
is a contradiction.

The Fell topology in cc(Rn) is generated by all sets of the form

U− = {A ∈ cc(Rn) | A ∩ U 6= ∅} and

(Rn \K)+ = {A ∈ cc(Rn) | A ⊂ Rn \K},

where U ⊂ Rn is open and K ⊂ Rn is compact.
It is well known that the Fell topology and the Hausdorff metric topology

coincide in cc(Rn) (see, e.g., [25, Remark 2]). In particular, they coincide in
cb(Rn). This will be used in the proof of the following lemma:

Lemma 4.5. Let T ∈ cb(Rn) be a convex body and H ⊂ cb(Rn) a subset
such that for every A ∈ H, the intersection A ∩ T has nonempty interior.
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Then the map υ : H → cb(Rn) defined by

υ(A) = A ∩ T, A ∈ H,
is continuous.

Proof. It is enough to show that υ−1(U−) and υ−1((Rn \K)+) are open
in H for every open U ⊂ Rn and compact K ⊂ Rn.

First, suppose that U ⊂ Rn is open and A ∈ υ−1(U−). Then U ∩ (A∩T )
6= ∅. Since U is open and A ∩ T is a convex body, there exists a point x0 in
the interior of A ∩ T such that x0 ∈ U . So, one can find δ > 0 satisfying

N(x0, 2δ) ⊂ U ∩ (A ∩ T ).

In view of Lemma 3.1, if C ∈ O(A, δ) ∩ H then N(x0, δ) ⊂ C. Since x0 ∈
U ∩ T , we conclude that U ∩ υ(C) = U ∩ (C ∩ T ) 6= ∅. This proves that
O(A, δ) ∩H ⊂ υ−1(U−), and hence υ−1(U−) is open in H.

Consider now a compact subset K ⊂ Rn and suppose A ∈ H is such that
υ(A) ∩K = ∅. If K ∩ T = ∅ then H = υ−1((Rn \K)+), which is open in H.
If K ∩ T 6= ∅ then we define

η = inf{d(a, x) | a ∈ A, x ∈ K ∩ T}.
Since (A∩T )∩K = ∅, we have η > 0. Let C ∈ O(A, η)∩H and suppose that
υ(C) meets K. Then there exists x0 ∈ C ∩ T ∩K. Since C belongs to the
η-neighborhood of A, we can find a ∈ A such that d(a, x0) < η, contradicting
the choice of η. Thus we conclude that

O(A, η) ∩H ⊂ υ−1((Rn \K)+),

and hence υ−1((Rn \K)+) is open in H.
Denote by M0(n) the complement M(n) \ {Bn}.
Proposition 4.6. For each closed subgroup K ⊂ O(n) that acts non-

transitively on Sn−1 and each ε > 0, there exists a K-equivariant map
χε : M(n) → M0(n) which is ε-close to the identity map of M(n). In par-
ticular, χε(M(n)K) ⊂M0(n)K .

Proof. Let r : cc(Rn) \ {0} → M(n) be the O(n)-equivariant retraction
defined in (4.2). Since M(n) is compact, one can find 0 < δ < ε/2 such that
dH(r(A), A) < ε/2 for all A in the δ-neighborhood of M(n) in cc(Rn) \ {0}.

Choose a convex polyhedron P ⊂ Bn with nonempty interior, δ/4-close
to Bn, such that all the vertices p1, . . . , pk of P lie on Sn−1 = ∂Bn. Then

T = conv(K(p1) ∪ · · · ∪K(pk))

is a compact convex K-invariant subset of Rn. By Lemma 4.4, ∂T contains
no (n− 1)-dimensional elliptic domain. Furthermore,

(4.3) dH(Bn, T ) ≤ dH(Bn, P ) < δ/4.
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Let h : M(n)→M(n) be defined as follows:

h(A) = {x ∈ Bn | d(x,A) ≤ δ/2} for every A ∈M(n).

Clearly, h(A) ∩ T is a nonempty set with nonempty interior.
Then setting

χ′(A) = h(A) ∩ T

we obtain a map χ′ : M(n)→ cc(Rn). Since T is a K-fixed point of cc(Rn),
we see that χ′ is K-equivariant.

Continuity of χ′ follows from the one of h and Lemma 4.5.
We claim that for any A ∈ M(n), χ′(A) is not a closed Euclidean ball

centered at the origin.
Indeed, if h(A) ⊂ T then h(A) 6= Bn since T is strictly contained in Bn.

In this case χ′(A) = h(A) ∩ T = h(A), and hence χ′(A) ∈ M(n). However,
the only Euclidean ball centered at the origin that belongs to M(n) is Bn.
But χ′(A) = h(A) 6= Bn.

If h(A) 6⊂ T , then the boundary of χ′(A) contains a domain lying in ∂T .
Since ∂T contains no (n − 1)-dimensional elliptic domain (as shown in
Lemma 4.4), χ′(A) is not an ellipsoid. In particular, it is not a Euclidean
ball centered at the origin, and the claim is proved.

Now we assert that χ = r ◦ χ′ is the desired map. Indeed, r(A) = Bn if
and only if A is a Euclidean ball centered at the origin. Since χ′(A) is not
such a ball, we infer that χ(A) = r(χ′(A)) 6= Bn for every A ∈ M(n). Thus
χ : M(n)→M0(n) is a well-defined map. It is continuous and K-equivariant
because χ′ and r are.

Now, if x ∈ χ′(A) then x ∈ h(A). Hence, d(x,A) ≤ δ/2 < δ and χ′(A) ⊂
N(A, δ). On the other hand, if a ∈ A ⊂ Bn, then by (4.3) there exists x ∈ T
such that d(x, a) < δ/4 < δ/2. Therefore, x ∈ h(A) ∩ T = χ′(A), and hence
A ⊂ N(χ′(A), δ/2). This proves that dH(A,χ′(A)) < δ.

By the choice of δ the last inequality implies dH(r(χ′(A)), χ′(A)) ≤ ε/2.
Then for all A ∈M(n) we have

dH(χ(A), A) ≤ dH(χ(A), χ′(A)) + dH(χ′(A), A)

= dH
(
r(χ′(A)), χ′(A)

)
+ dH(χ′(A), A)

< ε/2 + δ < ε/2 + ε/2 = ε.

This proves that χ is ε-close to the identity map of M(n), and the proof is
complete.

Observe that the induced action of O(n) on cc(Rn) is isometric with
respect to the Hausdorff metric. In particular, for every closed subgroup
K ⊂ O(n), the Hausdorff metric on cc(Rn) is K-invariant.



Affine group acting on hyperspaces 117

Let d∗H be the metric on M(n)/K induced by the Hausdorff metric on
M(n) as defined in (2.1):

d∗H(K(A),K(B)) = inf
k∈K

dH(A, kB), A,B ∈M(n).

Corollary 4.7. Let K ⊂ O(n) be a closed subgroup that acts nontran-
sitively on Sn−1. Then

(1) the singleton {Bn} is a Z-set in M(n)K ,
(2) the class of {Bn} is a Z-set in M(n)/K.

Proof. The first statement follows directly from Proposition 4.6. For the
second statement, take ε > 0. By Proposition 4.6, there exists a K-map
χε : M(n) → M0(n) such that dH(A,χ(A)) < ε for every A ∈ M(n). This
induces a continuous map χ̃ε : M(n)/K →M0/K as follows:

χ̃ε(K(A)) = π(χε(A)) = K(ξε(A)), A ∈M(n),

where π : M(n)→M(n)/K is the K-orbit map. By (2.2) we have

d∗H
(
K(χε(A)),K(A)

)
≤ dH(χε(A), A) < ε,

and thus χ̃ε is ε-close to the identity map of M(n)/K.
On the other hand, since {χε(A)} 6= {Bn} = K(Bn) for every A ∈M(n),

we conclude that
χ̃ε(M(n)/K) ∩ {Bn} = ∅,

which proves that the class of {Bn} is a Z-set on M(n)/K.

Now, we shall give a sequence of lemmas and propositions culminating
in Corollary 4.15.

Denote by R(n) the subspace of M(n) consisting of all A ∈ M(n) such
that the contact set A ∩ Sn−1 has empty interior in Sn−1.

For every A ∈ M(n), A ∩ Sn−1 is nonempty, and therefore there exists
a ∈ A∩Sn−1. If O(n)A is the O(n)-stabilizer of A then O(n)A(a) ⊂ A∩Sn−1.
Therefore, if A 6= Bn, the subset O(n)A(a) should be different from Sn−1,
and thus O(n)A acts nontransitively on Sn−1.

Lemma 4.8. Let ε > 0. For each D ∈ M0(n) there exist A ∈ R(n) such
that dH(D,A) < ε and the O(n)-stabilizer O(n)A coincides with O(n)D.

Proof. According to Theorem 2.2, there is 0 < η < ε such that if
dH(C,D) < η then the stabilizer O(n)C is conjugate to a subgroup of O(n)D.
Let p1, . . . , pk ∈ D be such that P = conv({p1, . . . , pk}) ∈M(n) (it is enough
to choose one of the pi’s lying in ∂D ∩ Sn−1) and dH(D,P ) < η. Next, we
define

A = conv
(
O(n)D(p1) ∪ · · · ∪O(n)D(pk)

)
.

Clearly, A ∈M(n) and

dH(D,A) ≤ dH(D,P ) < η < ε.
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Since O(n)D acts nontransitively on Sn−1, Lemma 4.4 show that ∂A
contains no (n − 1)-elliptic domain. In particular, ∂A ∩ Sn−1 has empty
interior in Sn−1, i.e., A ∈ R(n).

By the choice of η the stabilizer O(n)A is conjugate to a subgroup
of O(n)D. On the other hand, A is an O(n)D-invariant subset, so that
O(n)D ⊂ O(n)A. This implies that O(n)A = O(n)D, as required.

The following lemma is just a special case of [8, Theorem 4.5].

Lemma 4.9. Let X ∈ cc(Rn). For every ε > 0, the open ball in cc(Rn)
with radius ε centered at X is convex, i.e., if {A1, . . . , Ak} ⊂ cc(Rn) is
a finite family such that for every i = 1, . . . , k, dH(Ai, X) < ε, then the
set

k∑
i=1

tiAi =
{ k∑
i=1

tiai

∣∣∣ ai ∈ Ai, i = 1, . . . , k
}

is ε-close to X, where t1, . . . , tk ∈ [0, 1] with
∑k

i=1 ti = 1.

The following is perhaps the key result of this section:

Proposition 4.10. For every ε > 0, there exists an O(n)-map fε :
M0(n)→ R(n), ε-close to the identity map of M0(n).

Proof. Let V = {O(X, ε/4)}X∈M0(n) be the open cover of M0(n) con-
sisting of all open balls of radius ε/4. By [7, Lemma 4.1], there exists an
O(n)-normal cover of M0(n) (see Section 2 for the definition),

W = {gSµ | g ∈ O(n), µ ∈M}
satisfying the following two conditions:

(a) W is a star-refinement of V, that is, for each gSµ ∈ W, there exists
V ∈ V that contains the star of gSµ with respect to W, i.e.,

St(gSµ,W) =
⋃
{hSλ ∈ W | hSλ ∩ gSµ 6= ∅} ⊂ V.

(b) For each µ ∈M, the set Sµ is an Hµ-slice, where Hµ coincides with
the stabilizer O(n)Xµ of a certain point Xµ ∈ Sµ.

Since Xµ ∈ M0(n), we see that Hµ acts nontransitively on Sn−1. Thus,
by Lemma 4.8, there exists Aµ ∈ R(n) which is ε/4-close to Xµ and
O(n)Aµ = Hµ.

For every µ ∈M, set Oµ = O(n)(Sµ). Define Fµ : Oµ → O(n)(Aµ) by

Fµ(gZ) = gAµ, Z ∈ Sµ, g ∈ O(n).

Clearly Fµ is a well-defined continuous O(n)-map.
Fix an invariant locally finite partition of unity {pµ}µ∈M subordinated

to the open cover U = {Oµ}µ∈M, i.e.,

p−1µ ((0, 1]) ⊂ Oµ for every µ ∈M.
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Let N (U) be the nerve of the cover U and suppose thatM is its vertex
set. Denote by |N (U)| the geometric realization of N (U). Recall that every
point α ∈ |N (U)| can be expressed as a sum α =

∑
µ∈M αµvµ, where vµ

is the geometric vertex corresponding to µ ∈ M and αµ, µ ∈ M, are the
barycentric coordinates of α.

For a simplex σ of N (U) with vertices µ0, . . . , µk, we will use the notation
σ = 〈µ0, . . . , µk〉. By |〈µ0, . . . , µk〉| we denote the corresponding geometric
simplex with geometric vertices vµ0 , . . . , vµk .

For every geometric simplex |σ| = |〈µ0, . . . , µk〉| ⊂ |N (U)|, denote by
β(σ) ∈ |N (U)| the geometric barycenter of |σ|, i.e., β(σ) =

∑
µ∈M β(σ)µvµ

where

β(σ)µ =

{
1/(k + 1) if µ ∈ {µ0, . . . , µk},
0 if µ /∈ {µ0, . . . , µk}.

Consider the map Ψ : |N (U)|→ |N (U)| defined in each α=
∑

µ∈M αµvµ ∈
|N (U)| as follows: if |〈µ0, . . . , µk〉| is the carrier of α and αµ0 ≥ αµ1 ≥ · · · ≥
αµk , then

Ψ(α) =
∑

σ∈N (U)

Ψ(α)σβ(σ)

where

(4.4) Ψ(α)σ =


(i+ 1)(αµi − αµi+1) if σ = 〈µ0, . . . , µi〉, i = 0, . . . , k − 1,
(k + 1)αµk if σ = 〈µ0, . . . , µk〉,
0 if σ 6= 〈µ0, . . . , µi〉, i = 0, . . . , k.

It is not difficult to see that Ψ is the identity map of |N (U)| written in
the barycentric coordinates with respect to the first barycentric subdivision
of |N (U)|; we shall need this representation in what follows.

Let p : M0(n)→ |N (U)| be the canonical map defined by

p(X) =
∑
µ∈M

pµ(X)vµ, X ∈M0(n).

Since each pµ is O(n)-invariant, the map p is also O(n)-invariant.
For every simplex σ = 〈µ0, . . . , µk〉 ∈ N (U) the set Vσ = Oµ0 ∩ · · · ∩

Oµk is a nonempty open subset of M0(n). Continuity of the union operator
and the convex hull operator (see, e.g., [21, Corollary 5.3.7] and [29, The-
orem 2.7.4(iv)]) imply that the map Ω′σ : Vσ →M0(n) given by

Ω′σ(X) = conv
(⋃
µ∈σ

Fµ(X)
)
, X ∈ Vσ,

is a continuous O(n)-map.
Observe that Ω′σ(X) ∈M0(n) and

Ω′σ(X) ∩ Sn−1 ⊂
( ⋃
µ∈σ

Fµ(X)
)
∩ Sn−1 =

⋃
µ∈σ

(Fµ(X) ∩ Sn−1),
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and hence

(4.5) Ω′σ(X) ∩ Sn−1 has empty interior inSn−1.

Fix B ∈ M0(n). For each simplex σ of N (U), we extend the map Ω′σ to
a function Ωσ : M0(n)→M0(n) as follows:

Ωσ(X) =

{
Ω′σ(X) if X ∈ Vσ,
B if X /∈ Vσ.

The desired map fε : M0(n)→M0(n) can now be defined by

fε(X) =
∑

σ∈N (U)

Ψ(p(X))σΩσ(X), X ∈M0(n).

For every X ∈ M0(n), let Q(X) be the subset of M consisting of all
µ ∈ M such that X ∈ p−1µ ((0, 1]). Similarly, denote by Q′(X) the subset of
M consisting of all µ ∈M such that X ∈ p−1µ ((0, 1]).

It is clear that Q(X) ⊂ Q′(X) and, by local finiteness of the cover
{p−1µ ((0, 1])}µ∈M, both sets are finite. Moreover, it follows from (4.4) that
Ψ(p(X))σ = 0 whenever σ 6⊂ Q′(X).

Then, for every X ∈M0(n) we have

(4.6) fε(X) =
∑

σ∈N (U)
σ⊂Q(X)

Ψ(p(X))σΩσ(X) =
∑
σN (U)
σ⊂Q′(X)

Ψ(p(X))σΩσ(X).

To see the continuity of fε, fix C ∈M0(n) and define

V =
( ⋂
µ∈Q′(C)

Oµ

)
\

⋃
µ/∈Q′(C)

p−1µ ((0, 1]).

Since the family {p−1µ ((0, 1])}µ∈M is locally finite,
⋃
µ/∈Q′(C) p

−1
µ ((0, 1]) is

closed, and therefore V is a neighborhood of C. It is evident that Q(X) ⊂
Q′(C) for every X ∈ V . Using (4.6), we infer that

fε(X) =
∑

σ∈N (U)
σ⊂Q′(C)

Ψ(p(X))σΩσ(X) for every X ∈ V.

Observe that V ⊂ Vσ for every simplex σ ∈ N (U) such that σ ⊂ Q′(C), and
hence Ωσ|V = Ω′σ|V is continuous.

On the other hand, Ψ(p(X))σ is just the β(σ)th barycentric coordinate
of Ψ(p(X)). Thus, for every σ ∈ N (U), the map X 7→ Ψ(p(X))σ depends
continuously on X. So, fε|V is a finite sum of continuous functions and so
it is also continuous in V . Consequently, fε is continuous at C ∈ M0(n), as
required.
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If g ∈ O(n) and X ∈M0(n), then

fε(gX) =
∑

σ∈N (U)
σ⊂Q(X)

Ψ(p(gX))σΩσ(gX) =
∑

σ∈N (U)
σ⊂Q(X)

Ψ(p(X))σΩ
′
σ(gX)

=
∑

σ∈N (U)

Ψ(p(X))σ(gΩ′σ(X)) = g
( ∑
σ∈N (U)
σ⊂Q(X)

Ψ(p(X))σΩ
′
σ(X)

)

= g
( ∑
σ∈N (U)
σ⊂Q(X)

Ψ(p(X))σΩσ(X)
)

= gfε(X),

which shows that fε is O(n)-equivariant.
To see that fε(X) ∈M0(n), suppose that

Q(X) = {µ0, . . . , µk} and pµ0(X) ≥ pµ1(X) ≥ · · · ≥ pµk(X).

Then, by (4.4) and (4.6), the set fε(X) can be seen as a convex sum:

fε(X) = (k + 1)pµk(X)Ω〈µ0,...,µk〉(X)

+

k−1∑
i=0

(i+ 1)(pµi(X)− pµi+1(X))Ω〈µ0,...,µi〉(X)

= (k + 1)pµk(X)Ω′〈µ0,...,µk〉(X)

+

k−1∑
i=0

(i+ 1)(pµi(X)− pµi+1(X))Ω′〈µ0,...,µi〉(X).

Thus, fε(X) is a convex subset contained in Bn. Furthermore, observe that
Fµ0(X) ⊂ Ω′〈µ0,...,µi〉(X) for every i = 0, . . . , k. This implies that

Fµ0(X) = (k + 1)pµk(X)Fµ0(X) +

k−1∑
i=0

(i+ 1)(pµi(X)− pµi+1(X)g)Fµ0(X)

⊂ (k + 1)pµk(X)Ω′〈µ0,...,µk〉(X)

+

k−1∑
i=0

(i+ 1)(pµi(X)− pµi+1(X))Ω′〈µ0,...,µi〉(X)

= fε(X).

Since Fµ0(X) ∈M0(n), the inclusion Fµ0(X) ⊂ fε(X) yields fε(X) ∈M0(n).
On the other hand, the contact set fε(X) ∩ Sn−1 is contained in( k⋃

i=0

Ω′〈µ0,...,µi〉(X)
)
∩ Sn−1 =

k⋃
i=0

(Ω′〈µ0,...,µi〉(X) ∩ Sn−1).

Further, since by (4.5), each Ω′〈µ0,...,µi〉(X)∩Sn−1 has empty interior in Sn−1,
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we infer that the finite union
⋃k
i=0(Ω

′
〈µ0,...,µi〉(X) ∩ Sn−1) also has empty

interior in Sn−1. This shows that fε(X) ∩ Sn−1 has empty interior in Sn−1,
as required.

It remains only to prove that dH(X, fε(X)) < ε for every X ∈M0(n).
Since fε(X) is a convex sum of the sets Ω〈µ0,...,µi〉(X) for i = 0, . . . , k,

according to Lemma 4.9 it is enough to prove that Ω〈µ0,...,µi〉(X) is ε-close
to X for every i = 0, . . . , k.

Recall that Ω〈µ0,...,µi〉(X) = conv(
⋃i
j=0 Fµj (X)), and hence we have only

to prove that dH(X,Fµj (X)) < ε for each j.
For this purpose, suppose that gj ∈ O(n) is such that Fµj (X) = gjAµj .

Then X ∈ gjSµj and gjXµj ∈ gjSµj .
Since W is a star-refinement of V, there exists Z ∈ M0(n) such that

St(X,W) =
⋃
{gSµ ∈ W | X ∈ gSµ} ⊂ O(Z, ε/4). In particular,

(4.7) dH(X,Z) < ε/4 and dH(gjXµj , Z) < ε/4.

This implies that dH(gjXµj , X) < ε/2. By the choice of Aµj , we see that
dH(Aµj , Xµj ) < ε/4. Since the Hausdorff metric is O(n)-invariant we get

dH(gjAµj , gjXµj ) = dH(Aµj , Xµj ) < ε/4,

and hence

dH(X,Fµj (X)) = dH(X, gjAµj ) ≤ dH(X, gjXµj ) + dH(gjXµj , gjAµj )

< ε/2 + ε/4 < ε,

as required.

Proposition 4.11. For every ε > 0, there is an O(n)-map hε : M0(n)→
M0(n) \ R(n), ε-close to the identity map of M0(n).

Proof. Define a continuous map γ : M0(n)→ R by

γ(A) = 1
2 min{ε, dH(Bn, A)} for every A ∈M0(n).

Let hε(A) be the closed γ(A)-neighborhood of A in Bn, i.e.,
hε(A) = Aγ(A) = {x ∈ Bn | d(x,A) ≤ γ(A)}, A ∈M0(n).

By the choice of γ(A), the set hε(A) is different from Bn, and since A ⊂
hε(A), we see that hε(A) ∈M0(n). Even more, hε(A) ∩ Sn−1 has nonempty
interior in Sn−1. Thus, hε(A) ∈M0(n) \ R(n).

By [7, Lemma 5.3], dH(A,Aγ(A)) < γA < ε, which implies that hε is
ε-close to the identity map of M0(n).

Let us check the continuity of hε. For any A,C ∈M0(n),

dH(hε(A), hε(C)) = dH(Aγ(A), Cγ(C)) ≤ dH(Aγ(A), Aγ(C))+dH(Aγ(C), Cγ(C)).

But

dH(Aγ(A), Aγ(C)) ≤ |γ(A)− γ(C)| and dH(Aγ(C), Cγ(C)) ≤ dH(A,C)
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(see, e.g., [7, Lemma 5.3]). Consequently,

dH(hε(A), hε(C)) ≤ |γ(A)− γ(C)|+ dH(A,C).

Now the continuity of γ implies the one of hε.

As a consequence of Propositions 4.10 and 4.11 we have the following
corollaries.

Corollary 4.12. For any closed subgroup K ⊂ O(n), the K-orbit space
M0(n)/K is a Q-manifold.

Proof. Consider the metric onM0(n)/K induced by dH according to (2.1).
Clearly, M0(n) is a locally compact space, and thus M0(n)/K is also

locally compact. Since M(n) is an O(n)-AR, and M0(n) is an open O(n)-
invariant set in M(n), we infer that M0(n) is an O(n)-ANR. This in turn
implies that M0(n) is a K-ANR (see, e.g., [28]). Then, by Theorem 2.3,
M0(n)/K is an ANR.

According to Toruńczyk’s Characterization Theorem [27, Theorem 1], it
remains to check that for every ε > 0, there exist continuous maps f̃ε, h̃ε :
M0(n)/K → M0(n)/K, ε-close to the identity map of M0(n)/K such that
the images Im f̃ε and Im h̃ε are disjoint.

Let fε and hε be the O(n)-maps from Propositions 4.10 and 4.11, re-
spectively. They induce continuous maps f̃ε : M0(n)/K → M0(n)/K and
h̃ε : M0(n)/K → M0(n)/K. Since Im f̃ε = (Im fε)/K, Im h̃ε = (Imhε)/K

and Im fε ∩ Imhε = ∅, we infer that Im f̃ε ∩ Im h̃ε = ∅.
On the other hand, since fε and hε are ε-close to the identity map

of M0(n), using inequality (2.2), we see that f̃ε and h̃ε are ε-close to the
identity map of M0(n)/K.

Corollary 4.13. For any closed subgroup K ⊂ O(n) that acts nontran-
sitively on Sn−1, the K-orbit space M(n)/K is a Hilbert cube. In particular,
M(n) is homeomorphic to Q.

Proof. We have already seen in Corollary 4.7 that {Bn} is a Z-set in
M(n)/K. Observe that the Q-manifold M0(n)/K can be seen as the com-
plement (M(n)/K) \ {Bn}. It then follows from [27, §3] that M(n)/K is
also a Q-manifold. Furthermore, M(n)/K is compact and contractible. But
since the only compact contractible Q-manifold is the Hilbert cube (see [21,
Theorem 7.5.8]), we conclude that M(n)/K is homeomorphic to Q.

Corollary 4.14. For any closed subgroup K ⊂ O(n) that acts non-
transitively on Sn−1, the K-fixed point set M(n)K is homeomorphic to the
Hilbert cube.

Proof. Since M(n) is compact and M(n)K is closed in M(n), we see
that M(n)K is also compact. By Theorem 4.3, M(n) is an O(n)-AR. This,
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in combination with [9, Theorem 3.7], implies that M(n)K is an AR. In
particular, M(n)K is contractible.

Let fε and hε be the O(n)-maps from Propositions 4.10 and 4.11, respec-
tively. By equivariance, we have

fε(M0(n)K) ⊂M0(n)K and hε(M0(n)K) ⊂M0(n)K .

By Toruńczyk’s Characterization Theorem [27, Theorem 1], M0(n)K is
a Q-manifold. But M0(n)K = M(n)K \ {Bn} and Corollary 4.7 implies that
{Bn} is a Z-set in M(n)K . This shows that M(n)K is also a Q-manifold
(see [27, §3]). Furthermore, M(n)K is compact and contractible. Since the
only compact contractible Q-manifold is the Hilbert cube (see [21, The-
orem 7.5.8]), we conclude that M(n)K is homeomorphic to Q.

We summarize all the above results about the O(n)-space M(n) in the
following corollary:

Corollary 4.15. M(n) is a Hilbert cube endowed with an O(n)-action
satisfying the following properties:

(1) M(n) is an O(n)-AR with a unique O(n)-fixed point, Bn,
(2) M(n) is strictly O(n)-contractible to Bn,
(3) for a closed subgroup K ⊂ O(n), the set M(n)K equals the single-

ton {Bn} if and only if K acts transitively on Sn−1, and M(n)K is
homeomorphic to the Hilbert cube whenever M(n)K 6= {Bn},

(4) for any closed subgroup K ⊂ O(n), the K-orbit space M0(n)/K is a
Q-manifold.

This corollary in combination with [10, Theorem 3.3] yields

Theorem 4.16. The orbit space M(n)/O(n) is homeomorphic to the
Banach–Mazur compactum BM(n).

5. Some properties of L(n). Recall that L(n) is the hyperspace of all
compact convex bodies for which the Euclidean unit ball is the minimum-
volume ellipsoid of Löwner.

In [7] the subset L′(n) of L(n) consisting of all A ∈ L(n) with A = −A
was studied. It turns out that L(n) enjoys all the properties of L′(n) es-
tablished in [7], and an easy modification of the method developed in [7,
Section 5] allows one to establish similar properties of L(n). However, for
completeness, we shall provide in this section some more specific details and
appropriate new references.

Proposition 5.1. L(n) is an O(n)-AR.

Proof. It was proved in [8, Corollary 4.8] that cb(Rn) is an O(n)-AR.
Since L(n) is a global O(n)-slice in cb(Rn), according to Corollary 3.9(2),
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there exists an O(n)-equivariant retraction r : cb(Rn) → L(n). This implies
that L(n) is also an O(n)-AR.

Proposition 5.2. The map F : L(n)× [0, 1]→ L(n) defined by

F (A, t) = (1− t)A+ tBn

is an O(n)-strict contraction such that F (A, 1) = Bn. In particular, for every
closed subgroup K ⊂ O(n), the orbit space L(n)/K is contractible to its
point Bn.

Proof. It is evident that F satisfies the first assertion of the proposition.
Letting F̃ (K(A), t) = K(F (A, t)) we obtain a deformation of L(n)/K to the
point Bn ∈ L(n)/K, thus proving that L(n)/K is contractible.

By P(n) we will denote the subset of L(n) consisting of all compact
convex bodies A ∈ L(n) such that A∩∂Bn has empty interior in ∂Bn = Sn−1.

Denote by L0(n) the complement L(n) \ {Bn}.
Lemma 5.3. Let ε > 0. For each convex body X ∈ L0(n), there exists a

convex body A ∈ P(n) such that dH(X,A) < ε and the O(n)-stabilizer O(n)A
coincides with O(n)X .

Although the proof of Lemma 5.3 is similar to the one of Lemma 4.8,
there is a significant difference, and for this reason we present a complete
proof here.

Proof. Let r : cb(Rn) → L(n) be the O(n)-equivariant retraction used
in the proof of Proposition 5.1 (cf. Corollary 3.9(2)). By Theorem 2.2, there
is a O(n)X -slice S such that X ∈ S and [O(n)C ] � [O(n)X ] whenever
C ∈ O(n)(S). Since O(n)(S) is open, there exists 0 < η < ε such that
O(X, η) ⊂ O(n)(S). In particular, if C ∈ O(X, η) then [O(n)C ] � [O(n)X ].

Since L(n) is compact, there exists 0 < δ < η/2 such that dH(r(C), C) <
η/2 for every C in the δ-neighborhood of L(n).

Let p1, . . . , pk ∈ ∂X be such that P = conv({p1, . . . , pk}) has nonempty
interior in Rn and dH(P,X) < δ. Set

D = conv
(
O(n)X(p1) ∪ · · · ∪O(n)X(pk)

)
.

Since P ⊂ D, we see that D has nonempty interior, and hence D ∈ cb(Rn).
Since O(n)X acts nontransitively on Sn−1, Lemma 4.4 states that ∂D con-
tains no (n−1)-elliptic domain. In particular, D∩∂l(D) contains no elliptic
domain (recall that here l(D) denotes the minimal-volume ellipsoid contain-
ing D).

Let A = r(D). Since A ∈ L(n) and A lies in the Aff(n)-orbit of D (see
Corollary 3.9(1)), there exists an affine transformation g such that A = gD.
The contact set A∩ Sn−1 is the image under g of D∩ ∂l(D), and thus it has
empty interior in Sn−1. Hence, A ∈ P(n). The construction of P guarantees
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that P ⊂ D ⊂ X, and therefore
dH(D,X) ≤ dH(P,X) < δ < η/2.

By the choice of δ one has dH(r(D), D) < η/2, and hence
dH(A,X) ≤ dH(A,D) + dH(D,X)

= dH(r(D), D) + dH(D,X) < η/2 + η/2 = η.

Thus, dH(A,X) < η < ε, as required.
Furthermore, by the choice of η, O(n)A is conjugate to a subgroup of

O(n)X . It remains to prove that O(n)X = O(n)A. Since D is an O(n)X -
invariant subset, one has O(n)X⊂O(n)D. Also, as r is an O(n)-map, we have

O(n)D ⊂ O(n)r(D) = O(n)A.

Thus, O(n)X ⊂ O(n)A, which implies, together with [O(n)A] � [O(n)X ],
that O(n)A = O(n)X , as required.

Proposition 5.4. For every ε > 0, there is an O(n)-map fε : L0(n)→
P(n), ε-close to the identity map of L0(n).

Proof. Repeat the proof of Proposition 4.10, replacing M0(n) by L0(n),
until the construction of the family {Xµ}µ∈M. Next, use Lemma 5.3 to find,
for every index µ, a compact set Aµ, ε/4-close toXµ, such thatO(n)Aµ = Hµ.

Now repeat the rest of the proof of Proposition 4.10, replacing M0(n) by
L0(n), and R(n) by P(n).

Proposition 5.5. For every ε > 0, there is an O(n)-map hε : L0(n)→
L0(n) \ P(n), ε-close to the identity map of L(n), such that hε(A) 6= Bn for
every A ∈ L(n).

Proof. Repeat the proof of Proposition 4.11, replacing M0(n) by L0(n),
and M0(n) \ R(n) by L0(n) \ P(n).

Proposition 5.6. Let K ⊂ O(n) be a a closed subgroup that acts non-
transitively on Sn−1. Then, for every ε > 0, there exists a K-equivariant
map χε : L(n)→ L0(n), ε-close to the identity map of L(n).

Proof. The proof goes as the one of Proposition 4.6 if we replace M(n)
by L(n), M0(n) by L0(n), cc(Rn) by cb(Rn), and the retraction r of (4.2)
by the retraction r : cb(Rn) → L(n) given in Corollary 3.9(2). We omit the
details.

In the same manner that Proposition 4.6 implies Corollary 4.7, we deduce
from Proposition 5.6 the following corollary:

Corollary 5.7. For every closed subgroup K ⊂ O(n) that acts non-
transitively on Sn−1,

(1) {Bn} is a Z-set in L(n)K ,
(2) the class of {Bn} is a Z-set in L(n)/K.
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Proposition 5.8. For every closed subgroup K ⊂ O(n), L0(n)/K is a
Q-manifold.

Proof. By Proposition 5.1, L(n) is an O(n)-AR, hence a K-AR (see,
e.g., [28]). Then Theorem 2.3 implies that L(n)/K is an AR. Since L0(n)/K
is open in L(n)/K we conclude that L0(n)/K is a locally compact ANR.

According to Toruńczyk’s Characterization Theorem [27, Theorem 1],
it is enough to check that for every ε > 0, there exist continuous maps
f̃ε, h̃ε : L0(n)/K → L0(n)/K ε-close to the identity map of L0(n)/K and
with disjoint images.

Let fε and hε be the O(n)-maps constructed in Propositions 5.4 and 5.5,
respectively. They induce continuous maps f̃ε : L0(n)K → L0(n)/K and
h̃ε : L0(n)/K → L0(n)/K. Since Im f̃ε = (Im fε)/K, Im h̃ε = (Imhε)/K

and Im fε ∩ Imhε = ∅, we infer that Im f̃ε ∩ Im h̃ε = ∅. Since fε and hε are
ε-close to the identity map of L0(n), using inequality (2.2), we conclude that
f̃ε and h̃ε are ε-close to the identity map of L0(n)/K, as required.

Now, Proposition 5.8, Corollary 5.7 and [27, §3] imply that L(n)/K is
a Q-manifold if K ⊂ O(n) is a closed subgroup that acts nontransitively
on Sn−1. Since L(n)/K is compact and contractible, we deduce from [21,
Theorem 7.5.8] the following corollary:

Corollary 5.9. For every closed subgroup K ⊂ O(n) that acts nontran-
sitively on Sn−1, the K-orbit space L(n)/K is a Hilbert cube. In particular,
L(n) is a Hilbert cube.

Repeating the same steps used in the proof of Corollary 4.14, we can
infer from Corollary 5.7 and Propositions 5.4 and 5.5 the following result:

Corollary 5.10. For any closed subgroup K ⊂ O(n) that acts nontran-
sitively on Sn−1, the K-fixed point set L(n)K is homeomorphic to the Hilbert
cube.

Finally, similarly to the case of M(n), we can infer from all previous
results of this section that L(n) is a Hilbert cube endowed with an O(n)-
action that satisfies the following conditions:

(1) L(n) is an O(n)-AR with a unique O(n)-fixed point, Bn,
(2) L(n) is strictly O(n)-contractible to Bn,
(3) for a closed subgroup K ⊂ O(n), the set L(n)K equals {Bn} if and

only if K acts transitively on Sn−1, and L(n)K is homeomorphic to
the Hilbert cube whenever L(n)K 6= {Bn},

(4) for any closed subgroup K ⊂ O(n), the K-orbit space L0(n)/K is a
Q-manifold.

These properties in combination with [10, Theorem 3.3] yield
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Theorem 5.11. The orbit space L(n)/O(n) is homeomorphic to the Ba-
nach–Mazur compactum BM(n).

6. Orbit spaces of cb(Rn). In what follows we will denote by cb0(Rn)
the complement

cb0(Rn) = cb(Rn) \ E(n).

In this section we shall prove the following main result:

Theorem 6.1. Let K ⊂ O(n) be a closed subgroup that acts nontransi-
tively on Sn−1. Then:

(1) cb0(Rn)/K is a Q-manifold.
(2) cb(Rn)/K is a Q-manifold homeomorphic to (E(n)/K)×Q.
By Corollary 3.9(2) we have an O(n)-equivariant homeomorphism

cb(Rn) ∼=O(n) L(n)× E(n).

Under this homeomorphism, cb0(Rn) corresponds to E(n)× L0(n), thus we
have the O(n)-equivariant homeomorphism

(6.1) cb(Rn) ∼=O(n) L(n)× E(n).

We will consider the following O(n)-invariant metric on the product
E(n)× L(n):

D((A1, E1), (A2, E2)) = dH(A1, A2) + dH(E1, E2).

Proposition 6.2. For each ε > 0 and every closed subgroup K ⊂ O(n)
that acts nontransitively on Sn−1, there exists a K-equivariant map η :
cb(Rn)→ cb0(Rn) which is ε-close to the identity map of cb(Rn).

Proof. Let ε > 0. By Proposition 5.6, there exists a K-map χε : L(n)→
L0(n) such that dH(A, ξ(A)) < ε for every A ∈ L(n). Then the map

η = χε × Id : L(n)× E(n)→ L0(n)× E(n)

is a K-map such that

D(η(A,E), (A,E)) = dH(ξ(A), A) < ε.

The map η of Proposition 6.2 induces a map

η̃ :
L(n)× E(n)

K
−→ L0(n)× E(n)

K

which, by (2.2), is ε-close to the identity map of L(n)×E(n)
K . This yields the

following corollary:

Corollary 6.3. For every closed subgroup K ⊂ O(n) that acts non-
transitively on Sn−1, E(n)/K is a Z-set in cb(Rn)/K. In particular, E(n)
is a Z-set in cb(Rn).



Affine group acting on hyperspaces 129

Proposition 6.4. Let K ⊂ O(n) be a closed subgroup that acts non-
transitively on Sn−1 and π : L(n) × E(n) → E(n) be the second projection.
Then the induced map π̃ : (L(n) × E(n))/K → E(n)/K is proper and has
contractible fibers.

Proof. Consider the following commutative diagram:

L(n)× E(n)
π //

p1
��

E(n)

p2
��

L(n)×E(n)
K

π̃ // E(n)
K

where p1 and p2 are the respective K-orbit maps.
Properness of π̃ easily follows from compactness of L(n) and K. That

the fibers of π̃ are contractible follows immediately from the fact that L(n)
is O(n)-equivariantly contractible (see Proposition 5.2).

Theorem 6.5 (R. D. Edwards). Let M be a Q-manifold and Y a locally
compact ANR. If there exists a CE-map f : M → Y , then M is homeomor-
phic to Y ×Q.

Proof. Since f is a CE-map, by a theorem of R. D. Edwards [14, The-
orem 43.1] the product map

f × Id : M ×Q→ Y ×Q
is a near homeomorphism. According to the Stability Theorem [14, The-
orem 15.1], M is homeomorphic to M × Q. Thus, we have the homeomor-
phisms

M ∼= M ×Q ∼= Y ×Q.

Proof of Theorem 6.1. (1) By (6.1), cb0(Rn) is O(n)-homeomorphic to
L0(n)×E(n). This implies that the orbit spaces cb0(Rn)/K and L0(n)×E(n)

K
are homeomorphic. Hence, it is enough to prove that the latter is a Q-
manifold.

Suppose that L0(n)×E(n)
K is equipped with the metric D∗ induced by D

as defined in (2.1).
By Proposition 5.1, L(n) ∈ O(n)-AR, and by Corollary 3.9(2), E(n) ∈

O(n)-AR. Consequently, L0(n)×E(n) is a locally compact O(n)-ANR, which
in turn implies that L0(n)× E(n) ∈ K-AR (see, e.g., [28]). Then, by Theo-
rem 2.3, L0(n)×E(n)

K is a locally compact ANR.
Let fε and hε be the maps from Propositions 5.4 and 5.5, respectively.

Consider the maps

f = fε × Id : L0(n)× E(n)→ L0(n)× E(n),

h = hε × Id : L0(n)× E(n)→ L0(n)× E(n),
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where Id denotes the identity map of E(n). Since fε and hε are O(n)-maps
with disjoint images, so are f and h. Hence they induce continuous maps

f̃ , h̃ :
L0(n)× E(n)

K
→ L0(n)× E(n)

K

which make the following diagrams commutative:

L0(n)× E(n)
f //

p
��

L0(n)× E(n)

p
��

L0(n)× E(n)
h //

p
��

L0(n)× E(n)

p
��

L0(n)×E(n)
K

f̃ // L0(n)×E(n)
K

L0(n)×E(n)
K

h̃ // L0(n)×E(n)
K

Since, dH(fε(A), A) < ε, we infer that

D(f(A,E), (A,E)) = D((fε(A), E), (A,E)) = dH(fε(A), A) < ε

Similarly, we can prove that D(h(A,E), (A,E)) < ε. Thus, f and h are
ε-close to the identity map of L0(n) × E. Next, using (2.2) we find that f̃
and h̃ are ε-close to the identity map of L0(n)×E(n)

K .

Finally, since Im f̃ = (Im f)/K, Im h̃ = (Imh)/K and Im f ∩ Imh = ∅,
we infer that Im f̃∩Im h̃ = ∅. Consequently, by Toruńczyk’s Characterization
Theorem ([27, Theorem 1]), L0(n)×E

K is a Q-manifold, as required.
(2) Since, by Corollary 3.9(2), cb(Rn) and L(n)×E(n) are O(n)-homeo-

morphic, so are the K-orbit spaces cb(Rn)/K and L(n)×E(n)
K . On the other

hand, cb(Rn) is an O(n)-AR ([8, Corollary 4.8]), and hence a K-AR (see,
e.g., [28]). Then Theorem 2.3 shows that cb(Rn)/K ∼= L(n)×E(n)

K is an AR.
By the previous case (1), cb0(Rn)/K is a Q-manifold while its complement in
cb(Rn)/K is a Z-set (see Corollary 6.3). Now a result of Toruńczyk [27, §3]
implies that cb(Rn)/K is a Q-manifold too.

Furthermore, by Corollary 3.10, E(n) is an O(n)-AR, and hence a K-AR
(see, e.g., [28]). Then, according to Theorem 2.3, E(n)/K is an AR.

Since, by Proposition 6.4, the map

π̃ :
L(n)× E(n)

K
→ E(n)/K

is proper and has contractible fibers, it is a CE-map (see [14, Ch. XIII]) be-
tween AR’s. Since cb(Rn)

K
∼= L(n)×E(n)

K is a Q-manifold, Edwards’ Theorem 6.5
shows that cb(Rn)/K is homeomorphic to (E(n)/K)×Q, as required.

7. Orbit spaces of cc(Rn). In this section we shall prove the following
two main results:
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Theorem 7.1. For every closed subgroup K ⊂ O(n) that acts nontransi-
tively on Sn−1, the orbit space cc(Rn)/K is homeomorphic to the punctured
Hilbert cube.

Theorem 7.2. The orbit space cc(Rn)/O(n) is homeomorphic to the
open cone over BM(n).

The proofs require some preparation.

Lemma 7.3. The map ν defined in (4.1) is proper and has contractible
fibers.

Proof. Clearly, ν is onto. Take a compact subset C ⊂ [0,∞). Let b be
the supremum of C and denote by Nb the closed ball of radius b centered
at the origin of Rn. Clearly, ν−1(C) is a closed subset of cc(Nb). According
to [22, Theorem 2.2], cc(Nb) is compact, and thus ν−1(C) is also compact.
This shows that ν is a proper map.

We show that for every t ∈ [0,∞) the inverse image ν−1(t) is contractible.
Consider the homotopy H : ν−1(t)× [0, 1]→ ν−1(t) defined by

(7.1) H(A, s) = sNt + (1− s)A, A ∈ ν−1(t), s ∈ [0, 1].

It is easy to see that H(A, s) ∈ ν−1(t), and hence H defines a (strict) ho-
motopy of ν−1(t) to its point Nt ∈ ν−1(t). Thus, ν−1(t) is contractible, as
required.

Since ν is O(n)-invariant, it induces, for every closed subgroupK ⊂ O(n),
a continuous map

ν̃ : cc(Rn)/K → [0,∞)

given by
ν̃(K(A)) = ν(A), K(A) ∈ cc(Rn)/K.

Proposition 7.4. ν̃ is proper and has contractible fibers.

Proof. Clearly, ν̃ is an onto map. Let p : cc(Rn) → cc(Rn)/K be the
K-orbit map. Then we have the following commutative diagram:

cc(Rn)
ν //

p
��

[0,∞)

cc(Rn)
K

ν̃

::

If C ⊂ [0,∞) is a compact set, then

ν̃−1(C) = {K(A) | ν(A) ∈ C} = p(ν−1(C)),

which is compact because ν is proper and p is continuous. Thus ν̃ is a proper
map.
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To finish the proof, let us show that ν̃−1(t) is contractible for every
t ∈ [0,∞). Consider the homotopy H defined in (7.1). Observe that H is
equivariant. Indeed, for every g ∈ O(n) one has

H(gA, s) = sNt + (1− s)gA = sgNt + (1− s)gA(7.2)
= g(sNt + (1− s)A) = gH(A, s).

Hence, H induces a homotopy H̃ : ν̃−1(t)×[0, 1]→ ν̃−1(t) defined as follows:

H̃(K(A), s) = K(H(A, s)).

Clearly, H̃ is a contraction to the point K(Nt), which proves that ν̃−1(t) is
contractible, as required.

Proposition 7.5. The complement
cc(Rn)

K
\ cb(R

n)

K
is a Z-set in cc(Rn)/K.

Proof. For every positive ε, the map ζε : cc(Rn)→ cb(Rn) defined by

ζε(A) = Aε = {x ∈ Rn | d(x,A) ≤ ε}
is an O(n)-equivariant map which is ε-close to the identity map of cc(Rn).
Hence, for every closed subgroup K ⊂ O(n) it induces a continuous map

ζ̃ε : cc(Rn)/K → cb(Rn)/K.

Since the Hausdorff metric dH is O(n)-invariant, it induces a metric in
cc(Rn)/K as in (2.1). Then, by (2.2), the map ζ̃ε is ε-close to the identity
map of cc(Rn)/K. This proves that

cc(Rn) \ cb(Rn)

K
=
cc(Rn)

K
\ cb(R

n)

K
is a Z-set in cc(Rn)/K.

Proof of Theorem 7.1. Since by Theorem 6.1, cb(Rn)/K is a Q-manifold
and the complement cc(Rn)

K \ cb(R
n)

K is a Z-set, it follows from [27, §3] that
cc(Rn)/K is also a Q-manifold.

Next, since by Proposition 7.4, the map ν̃ : cc(Rn)/K → [0,∞) is proper
and has contractible fibers, it is a CE-map (see [14, Ch. XIII]). Then we
can use Edwards’ Theorem 6.5 to conclude that cc(Rn)/K is homeomorphic
to [0,∞) × Q. As shown in the proof of [14, Theorem 12.2], the product
[0,∞)×Q is homeomorphic to the punctured Hilbert cube, which completes
the proof.

Now we turn to the proof of Theorem 7.2.
The open cone over a topological space X is defined to be the quotient

space
OC(X) = X × [0,∞)/X × {0}.



Affine group acting on hyperspaces 133

We will denote by [A, t] the equivalence class of the pair (A, t) ∈ X × [0,∞)
in this quotient space. It is evident that [A, t] = [A′, t′] iff t = 0 = t′ or
A = A′ and t = t′. For convenience, the class [A, 0] will be denoted by θ.

Denote the open cone over M(n) by M̃(n). The orthogonal group O(n)

acts continuously on M̃(n) by the rule

g ∗ [A, t] = [gA, t].

Proposition 7.6. The hyperspace cc(Rn) is O(n)-homeomorphic to
M̃(n).

Proof. Define Φ : cc(Rn)→ M̃(n) by

Φ(A) =

{
θ if A = {0},
[r(A), ν(A)] if A 6= {0},

where ν and r are the maps defined in (4.1) and (4.2), respectively.
Since r is O(n)-equivariant and ν is O(n)-invariant, we infer that Φ is

O(n)-equivariant.
Clearly, Φ is a bijection with Φ−1 : M̃(n)→ cc(Rn) given by

Φ−1([A, t]) = tA.

Continuity of Φ|cc(Rn)\{0} and Φ−1|M̃(n)\{θ} is evident. Let us prove simulta-
neously the continuity of Φ at {0} and the continuity of Φ−1 at θ.

Let ε > 0 and let Oε be the open ε-ball in cc(Rn) centered at {0}. Denote
Uε = {[A, t] ∈ M̃(n) | t < ε}. Since Uε is an open neighborhood of θ in M̃(n),
it is enough to prove that Φ(Oε) = Uε.

If B ∈ Oε then B ⊂ N({0}, ε), and hence ν(B) < ε. This proves that
Φ(B) = [r(B), ν(B)] ∈ Uε, implying that

(7.3) Φ(Oε) ⊂ Uε.
On the other hand, if [A, t] ∈ Uε then t < ε, implying that tA ⊂

N({0}, ε). This shows that for every a ∈ A, d(ta, 0) < ε. In particular,
0 ∈ N(tA, ε), and hence dH({0}, tA) < ε. Thus, Φ−1(Uε) ⊂ Oε and
(7.4) Uε = Φ(Φ−1(Uε)) ⊂ Φ(Oε).

Combining (7.3) and (7.4) we get Φ(O({0}, ε)) = Uε.

Since Φ is an O(n)-homeomorphism, it induces a homeomorphism be-
tween cc(Rn)/O(n) and M̃(n)/O(n). Thus, we have

Corollary 7.7. The orbit spaces cc(Rn)/O(n) and M̃(n)/O(n) are
homeomorphic.

Lemma 7.8. For every closed subgroup K⊂O(n), the orbit space M̃(n)/K
is homeomorphic to the open cone over M(n)/K.
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Proof. The map Ψ : M̃(n)/K → OC(M(n)/K) defined by
Ψ(K[A, t]) = [K(A), t]

is a homeomorphism.

Proof of Theorem 7.2. According to Corollary 7.7 and Lemma 7.8, the or-
bit space cc(Rn)/O(n) is homeomorphic to the open cone OC(M(n)/O(n)).
By Corollary 4.16,M(n)/O(n) is homeomorphic to the Banach–Mazur com-
pactum BM(n), and hence cc(Rn)/O(n) is homeomorphic to OC(BM(n)),
as required.

7.1. Conic structure of cc(Rn) and related spaces. It is easy to
see that Rn is O(n)-homeomorphic to the open cone over Sn−1. This conic
structure induces a conic structure in cc(Rn), as shown in Proposition 7.6.

Furthermore, the O(n)-homeomorphism between cc(Rn) and M̃(n), in
combination with Lemma 7.8, yields the following:

Theorem 7.9. For every closed subgroup K ⊂ O(n), the K-orbit space
cc(Rn)/K is homeomorphic to the open cone OC(M(n)/K).

On the other hand, if we restrict the O(n)-homeomorphism from Propo-
sition 7.6 to cc(Bn), we get an O(n)-homeomorphism between cc(Bn) and
the cone over M(n).

As in Lemma 7.8, we can prove that the K-orbit space of the cone over
M(n) is homeomorphic to the cone over M(n)/K for every closed subgroup
K of O(n). This implies the following result:

Proposition 7.10. For every closed subgroup K ⊂ O(n), the K-orbit
space cc(Bn)/K is homeomorphic to the cone over M(n)/K.

Corollary 7.11. For every closed subgroup K ⊂ O(n) that acts non-
transitively on Sn−1, the K-orbit space cc(Bn)/K is homeomorphic to the
Hilbert cube.

Proof. By Proposition 7.10, cc(Bn)/K is homeomorphic to the cone over
M(n)/K. Since K acts nontransitively on Sn−1, we infer from Corollary 4.13
that M(n)/K is homeomorphic to the Hilbert cube. Thus, cc(Bn)/K is
homeomorphic to the cone over Q, which according to [14, Theorem 12.2] is
homeomorphic to Q itself.

On the other hand, Theorem 4.16 and Proposition 7.10 imply our final
result:

Corollary 7.12. The orbit space cc(Bn)/O(n) is homeomorphic to the
cone over the Banach–Mazur compactum BM(n).

It is well known that BM(n) is an absolute retract for all n ≥ 2 (see [5])
and the only compact absolute retract that is homeomorphic to its own
cone is the Hilbert cube (see, e.g., [21, Theorem 8.3.2]). Therefore, it follows
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from Corollary 7.12 and Theorem 4.16 that Pełczyński’s question of whether
BM(n) is homeomorphic to Q is equivalent to the following one:

Question 7.13. Are cc(Bn)/O(n) and M(n)/O(n) homeomorphic?
In conclusion we would like to formulate two more questions suggested

by the referee of this paper.
Question 7.14. What is the topological type of the pair (cc(Rn), cb(Rn))?
For any 0 ≤ k ≤ n, define

cc≥k(Rn) = {A ∈ cc(Rn) | dim A ≥ k}
and observe that cb(Rn) = cc≥n(Rn) and cc(Rn) = cc≥0(Rn).

Question 7.15. What is the topological structure of the spaces cc≥k(Rn)
and of the complements cck(Rn) = cc≥k(Rn) \ cc≥k+1(Rn) for 0 ≤ k < n?
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