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Abstract. Let X be a metrizable one-dimensional continuum. We describe the funda-
mental group of X as a subgroup of its Čech homotopy group. In particular, the elements of
the Čech homotopy group are represented by sequences of words. Among these sequences
the elements of the fundamental group are characterized by a simple stabilization condi-
tion. This description of the fundamental group is used to give a new algebro-combinatorial
proof of a result due to Eda on continuity properties of homomorphisms from the funda-
mental group of the Hawaiian earring to that of X.

1. Introduction. In the 1950s Curtis and Fort [6, 7, 8] studied proper-
ties of fundamental groups of locally complicated spaces. Starting with the
work of Cannon and Conner as well as Eda and Kawamura at the turn of the
millennium (see e.g. [2, 11]) the investigation of fundamental groups of such
spaces got a new impetus. Meanwhile, properties of fundamental groups of
one-dimensional (cf. for instance [1, 3, 9, 10]) and planar (see [5, 12]) spaces
were derived. Especially the description of such fundamental groups in terms
of words turned out to be useful. Cannon and Conner gave such a descrip-
tion for the fundamental group of the Hawaiian earring (see Figure 1, left),
and in Akiyama et al. [1] we gave a representation of the fundamental group
π(4) of the Sierpiński gasket 4 (see Figure 1, right) in terms of words.
Since 4 is a one-dimensional subset of R2, it is known from Eda and Kawa-
mura [11] that π(4) can be embedded in the Čech homotopy group π̌(4),
which is known to be a projective limit of free groups. In [1] we were able to
endow the projective limit defining π̌(4) with a word structure. Moreover,
we could characterize the elements of the subgroup π(4) by a simple stabi-
lizing condition. Recently, Diestel and Sprüssel [9] provided descriptions of
Freudenthal compactifications of locally finite connected graphs by similar
means.
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Fig. 1. The Hawaiian earring (left) and the Sierpiński gasket (right)—two well studied
examples of locally complicated spaces.

The first aim of this paper is to extend this kind of description to a
large class of spaces. Indeed, we are able to describe the fundamental group
of any metrizable one-dimensional continuum X in terms of words. As an
important technical tool we use a slight modification of a handle body con-
struction employed by Cannon and Conner [3]. In particular, with the help
of this construction we equip the space X with a structure that allows us
to encode loops in X by words. While in the construction for the Sierpiński
gasket 4 the letters correspond to (local) cut points of 4, in our setting
letters represent (local) cut sets. This generalization turns out appropriate
to extend the approach in [1] for the special case of the Sierpiński gasket to
the class of all metrizable one-dimensional continua.

The difference of our treatment compared with other approaches to this
topic is twofold: Firstly, we refrain from describing a loop by (an infinite
sequence of) edges but instead we use a sequence (indexed by the approxi-
mation level) of finite words whose letters correspond to the (local) cut sets
the loop crosses. Each word provides information which areas (separated by
the cut set letters) the loop traverses. In combination with the handle body
construction this finer and finer approximation to the loop as well as to the
space X from outside turns out to do the right job. It avoids complications
occurring when approximating the loop by edge sequences and the space
from inside, where usually a topological closure operation is involved. The
second new ingredient concerns the use of semigroups instead of groups.
It is due to the fact that the word sequences describing loops carry a nat-
ural projective semigroup structure and homotopy of loops is reflected by
appropriate cancelation rules applied to semigroup words. Altogether, the
semigroup structure provides the crucial tool to identify those elements in
π̌(X) which correspond to homotopy classes of X.

In the second part of the paper our description of the fundamental group
is applied in order to give a quite elementary algebro-combinatorial proof
of a result due to Eda [10]. We show that each homomorphism from the
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fundamental group of the Hawaiian earring E to the fundamental group
of a metrizable one-dimensional continuum X is induced by a continuous
mapping ψ : E → X (Theorem 5.10). Furthermore, we obtain an “infinite
homomorphism property” for such homomorphisms (Theorem 5.3).

The paper is organized as follows. In Section 2 we define the handle bod-
ies and establish some preliminary results necessary for the proof of our first
main result. As indicated above, some steps are similar to the case of the
Sierpiński gasket, other parts need different ideas in order to capture the
considerably more general situation. In Section 3 we state our description
of the fundamental group (Theorem 3.2) and finish its proof. This result
contains a simple criterion for an element of the Čech homotopy group to
belong to the fundamental group of a given space. Moreover, it allows one
to find a canonical “shortest” representative for each element of the funda-
mental group. At the end of that section we indicate how our handle body
construction applies to the Sierpiński carpet (sometimes also called Menger
curve) as an example. Section 4 contains cancelation rules for the words in
the fundamental group. These rules are important in Section 5 where we
prove Eda’s result on homomorphisms mentioned above by means of our
word description of the fundamental group. At the beginning of Section 5
for the convenience of the reader we provide guidelines to our proof of Eda’s
theorem which requires some technical effort.

2. Definition of the handles. Throughout this paper let X be a
metrizable one-dimensional continuum(1). Then (see Hurewicz and Wall-
man [15] or Cannon and Conner [3]) X can be embedded in the three-
dimensional Euclidean space and represented as the intersection of handle
bodies Hn, n ∈ N, such that

H0 ⊃ H1 ⊃ H2 ⊃ · · · ⊃
⋂
n∈N

Hn = X.

Each handle body Hn consists of finitely many 0-handles joined by finitely
many 1-handles. The 0-handles as well as the 1-handles are compact subsets
of R3 homeomorphic to a closed ball. The diameter of each of these handles
is bounded from above by 1/n in the maximum norm ‖·‖∞. Each 1-handle h
is attached to two adjacent 0-handles by an attaching disk. These attaching
disks are separated by an intermediate belt disk B(h) contained in the 1-
handle. This construction shows that Hn can be realized as a CW complex
in R3. Without loss of generality we assume that each 1-handle in Hn has
nonempty intersection with X and that each 0-handle is attached to at least

(1) Note that in view of Urysohn’s metrization theorem for compact spaces, metriz-
ability is equivalent to second-countability.
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one 1-handle (see Figure 2 for an example). Thus the connectedness of X
implies that Hn is connected.

X

Fig. 2. An example of a handle body. The set X is indicated in gray. At this level n, the
big triangle in X is “seen” to be a nontrivial loop in the handle body, while the small
circle on the left as well as the thin triangle in the center are not captured by this handle
body. To capture them, a finer handle body (i.e., a larger value of n) is needed.

Consider a fixed 0-handle h in Hn. Observe that the union U of all the
belt disks of the 1-handles attached to h forms a separator of Hn. The star
of h, St(h), is the component of Hn \ U containing h. Note that each belt
disk of Hn is contained in the boundary of exactly two stars.

With Hn we associate a graph 〈Vn, En〉 where the set Vn of vertices
consists of the 0-handles of Hn, and two vertices are connected by an edge
in En if and only if the associated 0-handles are connected by a 1-handle.
Thus the edges are in a one-to-one correspondence to the 1-handles of Hn.
Note that the graph 〈Vn, En〉 can be drawn in R3 as a deformation retract
of Hn in the following way.

For every 1-handle h of Hn choose a simple arc in h joining the attach-
ing disks. By the CW structure of the handle body there is a deformation
retraction of the 1-handle onto the union of this simple arc and the two
attaching disks. This can be done in such a way that B(h) is retracted to a
single point bh, which we will call the midpoint of B(h). By the Homotopy
Extension Theorem for CW complexes this retraction can be performed for
each 1-handle of Hn separately. Next, for every 0-handle h we choose an
arbitrary point mh (called the midpoint of h) in the interior of h and arcs
connecting mh with the end point of each arc contained in the attached re-
tracted 1-handles. The 0-handle h can be deformation retracted onto these
arcs. Again, by the Homotopy Extension Theorem for CW complexes this
retraction can be performed for each 0-handle of Hn separately. The result
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of all these deformation retractions is the deformation retraction rn which
deformation retracts Hn onto the drawing of 〈Vn, En〉.

In the following we assume without loss of generality that Hn is defined
in such a way that 〈Vn, En〉 does not contain cycles of length ≤ 2. Indeed,
cycles of length ≤ 2 can easily be ruled out by splitting a 1-handle by an
intermediate 0-handle at certain places.

Now we explicate how Hn+1 is embedded in Hn. For each n the handle
body Hn+1 lies in the interior of Hn and if a handle h′ of Hn+1 intersects
the belt disk B(h) of a 1-handle h of Hn then we may assume that h′ is
a 1-handle of Hn+1 and h′ ∩ B(h) = B(h′). In this case we call B(h) a
predecessor of B(h′).

Next we will describe loops with base point x0 ∈ X. The base point x0
is assumed to be contained in a belt disk of H0 and, as x0 ∈ X, also in a
belt disk of Hn for each n ≥ 0; indeed, without loss of generality we assume
that x0 is the midpoint of each of these belt disks.

For fixed n consider a loop fn in the pointed space (Hn, x0). The word
σn(fn) representing fn is defined over the alphabet

Dn := {B(h) | B(h) ∩X 6= ∅, h a 1-handle in Hn}
in the following way. The pre-images {f−1n (B) | B ∈ Dn} form a finite family
of disjoint compact subsets of the interval [0, 1]. Therefore this family is
separated, i.e., there is m ∈ N such that for all i ∈ {1, . . . ,m} the set
f−1n (B)∩ [(i− 1)/m, i/m] is nonempty for at most one B = Bi. We list these
letters Bi as i increases and in the arising sequence we cancel out consecutive
repetitions of letters. Thus we obtain a finite word σn(fn) := B1 . . . Bk over
Dn which is independent of the chosen m and contains all belts the loop fn
traverses in the right ordering.

Indeed, since X ⊆ Hn for all n ∈ N, for a loop f ∈ (X,x0) the word
σn(f) is defined for all n ∈ N and represents f at approximation level n.

We define the following relation ∼n on Dn. For B1, B2 ∈ Dn we write
B1 ∼n B2 if and only if B1 6= B2 and there is a 0-handle h in Hn such that
B1, B2 ⊆ St(h). We call a word B1 . . . Bk over Dn admissible if

(1) B1 = Bk and x0 ∈ B1,
(2) Bi ∼n Bi+1 (1 ≤ i ≤ k − 1).

For each loop f based at x0 the word σn(f) is obviously admissible.
We now associate with each admissible word ωn = B1 . . . Bk over Dn

a canonical loop L(ωn) in (Hn, x0). It is defined as follows. Since Bi ∼ Bi+1

and 〈Vn, En〉 has no cycles of order 2 there is a unique 0-handle attached to
the 1-handles corresponding to Bi and Bi+1. Let mi be the midpoint of this
0-handle. Connect x0 with m0 and then mi with mi+1 (i ∈ {0, . . . , k − 1})
and finally mk−1 with x0 by arcs contained in the graph 〈Vn, En〉. The
parametrization of this loop L(ωn) will mostly be irrelevant. In places where
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it becomes important (e.g. in the proof of Proposition 3.1) this will be made
explicit. Obviously, σn(L(ωn)) = ωn.

If ωn = B1 . . . Bk satisfies only condition (2) a canonical path L(ωn) is
associated with ωn in the same way. To keep the notation simple, the loop
(or path, respectively) L(ωn) will also be denoted by ωn.

Proposition 2.1. Let f : [0, 1]→ Hn be a loop based at x0. Then f and
the canonical loop σn(f) are homotopic in Hn.

Proof. First note that f is homotopic to rn ◦ f , where rn is the defor-
mation retraction of Hn onto 〈Vn, En〉. Let σn(f) = B1 . . . Bk. For every
i ∈ {1, . . . , k} there is a maximal interval [si, ti] such that rn ◦ f(si) =
rn ◦ f(ti) = rn(Bi), rn(f([si, ti]) ∩

⋃
B∈Dn

B) = {rn(Bi)} and 0 = s1 ≤ t1 <
s2 ≤ t2 < · · · < sk ≤ tk = 1. This means that the path rn ◦ f([si, ti]) is con-
tained in St(h1) ∪ Bi ∪ St(h2) where h1 and h2 are the two 0-handles with
St(h1) ∩ St(h2) = Bi. By our assumptions on the graph 〈Vn, En〉 associated
with Hn the set St(h1) ∪ Bi ∪ St(h2) is simply connected, and hence the
restriction rn ◦ f�[si, ti] is homotopic to the constant path in rn(Bi).

Moreover, the conditions on si and ti imply that rn◦f([ti, si+1]) is a sub-
set of rn(St) where St is the star of Hn whose closure contains Bi and Bi+1,
and hence rn◦f�[ti, si+1] is homotopic to the canonical path between rn(Bi)
and rn(Bi+1).

Putting the pieces together we obtain the assertion.

The set of all admissible words over Dn is called Sn. If we endow Sn with
the operation “·” defined by concatenation of words where the first letter of
the second word is omitted, we obtain a semigroup (Sn, ·).

For each n ≥ 1 define a mapping γn : Sn → Sn−1 where for ωn =
B1 . . . Bk ∈ Sn the image γn(ωn) is defined as follows. Among the letters
of ωn we omit those which have no predecessor and replace each of the
others by its predecessor. Finally, we cancel consecutive repetitions of letters.
Obviously, the resulting word is admissible and therefore belongs to Sn−1.
With these mappings γn (n ≥ 1), which are easily seen to be compatible with
concatenation, we get a projective limit of semigroups lim←−Sn := {(ωn)n≥0 |
γk(ωk) = ωk−1 for all k ≥ 1}. For n > k the mapping γnk : Sn → Sk denotes
the composition γk+1 ◦ · · · ◦ γn.

Let S(X,x0) be the set of all loops in X based at x0. The set S(X,x0)
is a groupoid with respect to the concatenation of loops. Consider a loop
f ∈ S(X,x0). Then, obviously, γn(σn(f)) = σn−1(f). Thus each sequence
(σn(f))n≥0 is contained in the projective limit lim←−Sn and we may define the
map

σ : S(X,x0)→ lim←−Sn, f 7→ (σn(f))n≥0,

which is a groupoid homomorphism.
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Our next aim is to describe how the homotopy of two loops f and g
is reflected in their word representations σn(f) and σn(g). To this end we
define the following equivalence relation ≡n on Sn.

An elementary move on subwords of words in Sn consists of substitutions
of the form

B1B2B3 ↔ B1B3 (if B1 6= B3) or B1B2B1 ↔ B1

where B1, B2 and B3 are all contained in the closure of a star St(h) for a
0-handle h ∈ Hn (see Figure 3). We say that two words ωn and ω′n in Sn are
equivalent, and write ωn ≡n ω′n, if ω′n can be obtained from ωn by finitely
many elementary moves.

h

B
3

B
1

B 2

h

B
2

B
1

Fig. 3. The left path demonstrates the elementary move B1B2B3 ↔ B1B3. The path on
the right illustrates B1B2B1 ↔ B1.

We call a word reduced if it does not contain three consecutive letters of
the form B1B2B3 where B1, B2 and B3 are all contained in the closure of a
star St(h) for a 0-handle h ∈ Hn. Let Gn be the set of reduced words in Sn.

Proposition 2.2.

(1) Every ≡n equivalence class of Sn contains a unique reduced word.
Thus the mapping Redn : Sn → Gn which assigns to each ωn the
reduced word in its ≡n class is well defined.

(2) The operation

∗ : Gn ×Gn → Gn, (ωn, ω
′
n) 7→ Redn(ωn · ω′n),

is a group operation on Gn.
(3) The group (Gn, ∗) is isomorphic to the fundamental group π(Hn, x0)

with the isomorphism ϕn : [f ]n 7→ Redn(σn(f)) where f : [0, 1]→ Hn

is a loop based at x0 and [f ]n is the homotopy class of f in Hn.
(4) The reduction map Redn : Sn → Gn is a semigroup epimorphism,

i.e., (Gn, ∗) is isomorphic to (Sn/ker(Redn), ·).
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Proof. Note that π(Hn, x0) ∼= π(〈Vn, En〉, x0) since 〈Vn, En〉 is a defor-
mation retract of Hn. Furthermore, π(〈Vn, En〉, x0) is isomorphic to a free
group F generated by the edges not contained in a fixed spanning tree of
〈Vn, En〉 (see [17, Corollary 7.35]). To each product g1 . . . gk of generators of
F we can associate a unique word by connecting the edges gi by intermediate
unique paths in the spanning tree. Obviously, the word obtained is reduced.
On the other hand, reversing this process, two different reduced words give
rise to two different products of generators of F and therefore correspond
to two nonhomotopic paths. Thus we obtain a bijective correspondence be-
tween reduced words and homotopy classes of (Hn, x0).

To prove (1) we start with an arbitrary word in Sn and apply elemen-
tary moves until we arrive at a reduced word. This shows that any ≡n class
contains at least one reduced word. However, if two different reduced words
were ≡n equivalent they could be transformed into each other by elementary
moves. Thus the loops corresponding to the reduced words would be homo-
topic, contrary to the above mentioned bijection between reduced words and
homotopy classes.

The above arguments imply that the operation ∗ is compatible with the
group operation in π(Hn, x0), which proves (2) and (3). Note that ϕn is well
defined due to Proposition 2.1. Assertion (4) follows immediately from the
definition of ∗.

For a related proof see [1, Proposition 2.3].

Now we are going to define a projective limit on the groups (Gn, ∗),
n ∈ N, and relate it to the semigroup limit lim←−Sn.

Proposition 2.3.

(1) For n ≥ 1 the map

δn : Gn → Gn−1, ωn 7→ Redn−1(γn(ωn)),

is a group homomorphism.
(2) Set

lim←−Gn := {(ωn)n≥0 | δk(ωk) = ωk−1 for all k ≥ 1}.
Then the mapping

Red : lim←−Sn → lim←−Gn, (ωn)n≥0 7→ (Redn(ωn))n≥0,

is a well defined semigroup homomorphism.

Proof. (1) Let ωn, ω
′
n ∈ Gn. A direct calculation yields

δn(ωn ∗ ω′n) = Redn−1(γn(Redn(ωn · ω′n)))

and

δn(ωn) ∗ δn(ω′n) = Redn−1(γn(ωn · ω′n)).
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Since for each αn ∈ Sn we know that αn and γn(αn) are homotopic in Hn−1,
and αn and Redn(αn) are homotopic inHn, we deduce that γn(Redn(ωn·ω′n))
and γn(ωn ·ω′n) are homotopic in Hn−1. Thus Proposition 2.2(1) implies that
δn is a homomorphism.

(2) is an immediate consequence of the commutativity of the diagram

(2.1) Sn

Redn
��

γn // Sn−1

Redn−1

��
Gn

δn // Gn−1

which follows in a straightforward manner.

Remark 2.4. Note that in contrast to the setting of the Sierpiński gasket
in [1], Gn−1 can contain loops that are no longer present in Gn. Thus, in
our general setting, the mappings δn need not be surjective.

We now consider the Čech homotopy group π̌(X,x0). For a definition we
refer to Mardešić and Segal [16] (2).

Proposition 2.5. The Čech homotopy group π̌(X,x0) is isomorphic to
lim←−Gn.

Proof. A proof of this proposition is in essence already contained in [3].
For the sake of completeness we briefly repeat the key arguments.

For a subset A of a metric space let (A)ε denote the ε-neighborhood
of A. Now we consider

Un := {(St(h))εn | h is a 0-handle of Hn}

where εn with limn εn = 0 is chosen in such a way that

St(h1) ∩ St(h2) 6= ∅ ⇔ (St(h1))εn ∩ (St(h2))εn 6= ∅

for all 0-handles h1, h2 of Hn. The family (Un)n≥0 is cofinal in the set of all
finite open coverings of X since each 1-handle of Hn has nonempty intersec-
tion with X. From this construction we conclude that the nerve (3) of Un is
a deformation retract of Hn and thus by Proposition 2.2(3) the group Gn is
the fundamental group of this nerve. This implies the result.

Remark 2.6. Note that the projective limit of fundamental groups of
handle bodies occurring in the proof of [3, Theorem 5.11] is strongly related
to our construction. Indeed, this projective limit contains the Čech homo-
topy group of (X,x0) as a subgroup. The converse inclusion may fail in the

(2) Note that in [16] the Čech homotopy group is called the shape group.

(3) For the definition of nerve see Hatcher [13, p. 257].
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setting of [3] since there it is not assumed that each 1-handle of Hn has
nonempty intersection with X. A special case of this construction is already
contained in [8, Section 3].

From Proposition 2.5 we get the following result.

Proposition 2.7. The mapping

ϕ : π(X,x0)→ lim←−Gn, [f ] 7→ Red(σ(f)),

is a group monomorphism.

Proof. This follows by combining Proposition 2.5 and the fact that the
fundamental group of a one-dimensional continuum can be embedded in
its Čech homotopy group in a canonical way (cf. [11, Theorem 1.1] and [3,
Theorem 5.11]).

Summing up we arrive at the following theorem.

Theorem 2.8. The fundamental group π(X,x0) of a metrizable one-di-
mensional continuum (X,x0) is isomorphic to a subgroup of the Čech ho-
motopy group π̌(X,x0) ∼= lim←−Gn. Moreover, the following diagram com-
mutes:

S(X,x0)

[·]
��

σ // lim←−Sn

Red

��
π(X,x0)

ϕn // lim←−Gn

Our aim is now to describe the range of ϕ, which provides a description
of π(X,x0) as a subgroup of the projective limit lim←−Gn of free groups.

3. Word description of the fundamental group. We associate with
a fixed element (ωn)n≥0 = (Bn1 . . . Bnkn)n≥0 in lim←−Sn a graph G = 〈V, E〉
with vertex set V and the set E of directed edges. We think of the graph G
as organized in rows of horizontally ordered vertices: in the nth row, n ≥ 0,
we have for every letter appearing in the word ωn a corresponding vertex,
i.e., V = {(n, j) | n ≥ 0, 1 ≤ j ≤ kn}. Edges connect certain vertices in row
n to vertices in row n + 1, namely, ((n, i), (n + 1, j)) ∈ E if and only if Bni
is a predecessor of Bn+1,j and in the course of γn+1 that maps ωn+1 to ωn
the belt disk Bn+1,j is mapped to Bni. Consequently, any vertex (n, i) in
row n has at least one successor in row n + 1, and the vertex (n, i) has a
predecessor in row n− 1 if and only if the letter Bni ∈ Dn has a predecessor
in Dn−1.

The graph G is used in the proof of the following proposition.
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Proposition 3.1. For every (ωn)n≥0 ∈ lim←−Sn there exists a loop f ∈
S(X,x0) such that Red(σ(f)) = Red((ωn)n≥0), i.e., ran(Red◦σ) = ran(Red).

Proof. Let (ωn)n≥0 = (Bn1 . . . Bnkn)n≥0 be a fixed element of lim←−Sn. We

will inductively define a sequence of functions fn : [0, 1]→ Hn, n ≥ 0, such
that fn parametrizes the canonical loop associated with ωn.

We start with n = 0, ω0 = B01 . . . B0k0 , and divide [0, 1] into 2k0 − 1
subintervals of equal length by the points

0 = u01 < v01 < u02 < v02 < · · · < u0k0 < v0k0 = 1.

Define f0(t) to be constant and equal to the midpoint of the belt disk B0i

for t ∈ [u0i, v0i], 1 ≤ i ≤ k0, and f0 to parametrize the canonical path of the
word B0iB0,i+1 for t ∈ [v0i, u0,i+1], 1 ≤ i < k0. Obviously σ0(f0) = ω0.

Suppose fn is already defined in such a way that fn(t) is equal to
the midpoint of Bni for t ∈ [uni, vni], 1 ≤ i ≤ kn, fn is the canonical
path of the word BniBn,i+1 for t ∈ [vni, un,i+1], 1 ≤ i < kn, and thus
σk(fn) = γnk(σn(fn)) = γnk(ωn) = ωk for all k ≤ n. We now explain
in detail how to define fn+1(t) for t ∈ [un1, vn1] and t ∈ [vn1, un2]. In
the equality γn+1(ωn+1) = ωn we analyze the action of γn+1 on the in-
dividual letters of ωn+1: Figure 4 shows a part of the graph G we have

Bn1 Bn2 . . .

↙ ↘ ↙ ↘ . . .

Bn+1,1 . . . Bn+1,i1 Bn+1,i1+1 . . . Bn+1,i2 Bn+1,i2+1 . . . Bn+1,i3 . . .

Fig. 4

associated with (ωn)n≥0 at the beginning of this section and has the fol-
lowing interpretation: Bn+1,1 and Bn+1,i1 are the first and last letter in
ωn+1 that are mapped to the first letter Bn1 of ωn by γn+1, respectively;
Bn+1,i1+1 up to Bn+1,i2 have no predecessor in Dn and disappear by apply-
ing γn+1.

Now we define fn+1(t) for t ∈ [un1, vn1] analogously to f0 in [0, 1]: divide
[un1, vn1] into 2i1 − 1 subintervals of equal length and define fn+1 in these
subintervals alternately to be constant and equal to the midpoint of Bn+1,i

for 1 ≤ i ≤ i1, and to be the canonical path of the word Bn+1,iBn+1,i+1 for
1 ≤ i ≤ i1 − 1.

Next, the interval [vn1, un2] is divided into 2(i2−i1)+1 subintervals. Here
fn+1 alternately is equal to the canonical path of the word Bn+1,iBn+1,i+1

for i1 ≤ i ≤ i2, and is constant and equal to the midpoint of Bn+1,i for
i1 + 1 ≤ i ≤ i2.

In the same manner we proceed with the remaining intervals and obtain
a loop fn+1 satisfying our requirements.
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We compare fn with fn+1. For 1 ≤ i ≤ kn:

t ∈ [uni, vni] :


fn(t) constant and equal to the midpoint of Bni,

fn+1(t) stays in the union of Bni and the two stars

of Hn containing Bni in their closure,

and for 1 ≤ i ≤ kn − 1:

t ∈ [vni, un,i+1] :


fn(t) equal to the canonical path

of the word BniBn,i+1,

fn+1(t) stays in the star of Hn containing

Bni and Bn,i+1 in its closure.

Summing up we obtain ‖fn − fn+1‖∞ ≤ 3/n where ‖ · ‖∞ denotes the max-
imum norm for t ∈ [0, 1]. Consequently, fn converges for n → ∞ uniformly
to a continuous f : [0, 1]→ X.

By construction we have fm(uni) ∈ Bni, 1 ≤ i ≤ kn, for all m ≥ n,
and thus also f(uni) ∈ Bni, 1 ≤ i ≤ kn. This means that σn(f) contains
at least all letters appearing in the word ωn in proper order, but it may
happen that σn(f) contains further letters from Dn between the Bni, and
that some of the Bni appear more than once. To illustrate this we consider
the interval [uni, un,i+1] (see also Figure 5): let St1 and St2 be the two

St1

St2

fHuniL fHvniL

fHun,i+1L

Bni

Bn,i+1

Fig. 5

stars containing Bni in their closures. fn+1 and all fm with m ≥ n + 1
stay for t ∈ (uni, un,i+1) in the interior of the (simply connected) union
of the closures of the two stars int(St1 ∪ St2) of Hn (interior as a subset
of Hn). This implies that f = limm→∞ fm stays in the union of the closed

stars St1 ∪ St2. Hence, σn(f�[uni, un,i+1]) = BniQj1Qj2 . . . QjlBn,i+1, l ≥ 0,
where the Qjk are contained in the set of belts {Q1, . . . , QL} associated
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with the stars St1 and St2. However, since f([uni, un,i+1]) ⊆ St1 ∪ St2, all
the possibly occurring letters Qj1 . . . Qjl cancel out in the reduction process
and we obtain Redn(σn(f�[uni, un,i+1])) = BniBn,i+1, and hence altogether
Redn(σn(f)) = Redn(ωn).

Theorem 2.8 implies that π(X,x0) can be considered as a subgroup of
lim←−Gn. Now we characterize the elements of this subgroup and thus describe

π(X,x0).

Theorem 3.2. An element (ωn)n≥0 of lim←−Gn is in ran(ϕ) =ϕ(π(X,x0))

and therefore represents an element of π(X,x0) if and only if for all k ≥ 0
the sequence (γnk(ωn))n≥k is eventually constant.

In what follows, nk is an index for which γnk(ωn) = γnkk(ωnk
) for all

n ≥ nk.
Remark 3.3. Since the Freudenthal compactification of a locally finite

connected graph is a metrizable one-dimensional continuum this result con-
tains the main result of [9] (see [9, Theorem 15]) as a special case.

Recall that γnk is the composition γk+1 ◦ γk+2 ◦ · · · ◦ γn : Sn → Sk.
Analogously we define δnk to be the composition of the corresponding δi’s.

The proof of Theorem 3.2 runs along the same lines as in the case of the
Sierpiński gasket [1, Section 3.2]. However, in order to make the presentation
self-contained we recall some of the details.

Let P1 . . . Pm, Q1 . . . Qk be two words over some alphabet. We write
P1 . . . Pm � Q1 . . . Qk if there exists α : {1, . . . ,m} → {1, . . . , k}, α injective
and order preserving, such that Pi = Qα(i) for all i ∈ {1, . . . ,m}.

Lemma 3.4. Let ωn, ω
′
n ∈ Sn. Then

(1) Redn(ωn) � ωn,
(2) ωn � ω′n implies γnk(ωn) � γnk(ω′n) for all k ≤ n,
(3) if (ωk)k≥0 ∈ lim←−Gn then γnk(ωn) � γn+1,k(ωn+1) for all k ≤ n.

Proof. The assertions (1) and (2) follow from the definitions of Redn and
γnk by direct calculation; (3) is a consequence of (1) and (2).

We want to point out that by means of Proposition 3.1 the remaining
part of the proof of Theorem 3.2 can be performed purely in terms of words
in Gn and Sn and does not have to deal with loops in (X,x0). It consists
merely in collecting the facts that we have proved up to now.

Proof of Theorem 3.2. We start by proving the sufficiency of the given
condition. Put ω̄k = γnk(ωn), which is well defined for n ≥ nk, k ≥ 0, where
nk is defined after the statement of Theorem 3.2. We show that

(i) (ω̄k)k≥0 ∈ lim←−Sn, and
(ii) Red (ω̄k)k≥0 = (ωn)n≥0.
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For k ≥ 1 and n ≥ max{nk, nk−1} we obtain γk(ω̄k) = γk(γnk(ωn)) =
γn,k−1(ωn) = ω̄k−1. This shows (i).

Next we prove for ωn ∈ Gn that δnk(ωn) = Redk ◦ γnk(ωn): by (2.1) we
get δi ◦Redi = Redi−1 ◦ γi for all i ≥ 1. Iterated application of this identity
leads immediately to the claimed relation. Using this property, for k ≥ 0
and n ≥ nk, we infer Redk(ω̄k) = Redk(γnk(ωn)) = δnk(ωn) = ωk, which
proves (ii).

Due to Proposition 3.1 we can find f ∈ S(X,x0) such that Red(σ(f)) =
Red(ω̄k)k≥0 = (ωn)n≥0 and thus, using Theorem 2.8, we get

(ωn)n≥0 = Red(σ(f)) = ϕ([f ]).

Now we prove the necessity of the condition. Suppose (ωn)n≥0 ∈ ran(ϕ).
Since by Theorem 2.8, ran(ϕ) = ran(Red◦σ), there exists f ∈ S(X,x0) with
Red(σ(f)) = (ωn)n≥0. Then for all k ≥ 0 and all n ≥ k we have

σk(f) = γnk(σn(f)) � γnk(Redn(σn(f))) = γnk(ωn)

where we used (1) and (2) of Lemma 3.4. By (3) of that lemma we get

γnk(ωn) � γn+1,k(ωn+1) � · · · � σk(f),

hence (γnk(ωn))n≥k is eventually constant.

This completes the proof of Theorem 3.2.

For a word ω let |ω| denote the number of letters of ω; we call |ω| the
length of ω.

We point out that by Theorem 3.2 we do not only represent an element
[f ] ∈ π(X,x0) by the sequence Red(σ(f)) of group words. Indeed, this the-
orem also yields a unique representative of [f ] at the semigroup level which
corresponds to a distinguished loop f∗ ∈ [f ] that is minimal in the sense
that

|σk(f∗)| = min{|σk(g)| : g ∈ [f ]}

for all k ∈ N. Intuitively this means that f∗ hits a belt disk of level k only if
it is really necessary for a loop to belong to the homotopy class [f ]. In the
proof of Proposition 3.5 we will construct this loop f∗. Moreover, we will
relate f∗ explicitly to the stabilization condition in Theorem 3.2. For this
purpose we set

σk([f ]) := lim
n→∞

γnk(Redn(σn(f))).

This is well defined as the limit exists due to Theorem 3.2 and since
Redn(σn(f)) does not depend on the representative of the homotopy class [f ].

The sequence (ωn)n≥0 := (γnkk(ωn))k≥0 with nk as defined after the

statement of Theorem 3.2 is called the stabilized sequence of (ωn)n≥0 ∈
ϕ(π(X,x0)). Let (ω̄n)n≥0, (ω̄′n)n≥0 be two stabilized sequences. The stabilized
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product is defined by

(ω̄n)n≥0 ∗ (ω̄′n)n≥0 := (Redn(ω̄n · ω̄′n))n≥0.

Thus the product of two stabilized sequences is formed by concatenation
and reduction at every level, followed by stabilization.

We collect some properties of f∗ and σk.

Proposition 3.5. For an arbitrary loop f in (X,x0) we have:

(1) (σn([f ]))n≥0 is an element of lim←−Sn.

(2) There exists f∗ ∈ [f ] such that |σk(f∗)| = min{|σk(g)| : g ∈ [f ]} for
all k ∈ N. Indeed, we even have σk([f ]) � σk(f

∗) � σk(g) for each
g ∈ [f ].

(3) For any two loops f, g ∈ S(X,x0) we have

(σn([fg]))n≥0 = (σn([f ]))n≥0 ∗ (σn([g]))n≥0,

where the product on the right hand side is the stabilized product.

Remark 3.6. (a) Note that the inequality σk([f ]) � σk(f∗) in Proposi-
tion 3.5(2) can be strict. This is due to the fact that σk([f ]) can be incomplete
in a sense discussed after the proof of the proposition.

(b) By Proposition 3.5(3) the stabilized product can be interpreted as
the group operation “∗” on ϕ(π(X,x0)) in terms of the stabilized sequences.
This justifies the use of the same symbol “∗” for this operation.

Proof of Proposition 3.5. (1) is property (i) in the proof of Theorem 3.2.
Now we prove (2). To construct the loop f∗ we proceed in the same way as
in the proof of Proposition 3.1. Let fk be the canonical loop corresponding
to σk([f ]) with parametrization on the intervals [uki, vki] as specified in that
proof. Then fk converges uniformly to a loop f∗ in (X,x0) and we obtain
σk(fk) � σk(f

∗). By construction of fk we have σk(fk) = σk([f ]) and so
σk([f ]) � σk(f

∗). Finally, we have to prove that σk(f
∗) � σk(g) for all

g ∈ [f ]. For g ∈ [f ], i ≥ 0 and sufficiently large n we have

σk+i(g) = γn,k+i(σn(g)) � γn,k+i(Redn(σn(g))) = σk+i([f ]) = σk+i(fk+i).

Let σk([f ]) =: P1 . . . PL. For any additional letter Q that might occur be-
tween Pr and Pr+1 in σk(f

∗) there exists a sequence of letters Qi occurring
in σk+i(fk+i) between the level k + i successors Pir and Pi,r+1 of Pr and
Pr+1, respectively, such that the distance between Qi and Q tends to 0
as i → ∞ (here we used again that fk → f∗ uniformly; recall that let-
ters are belts). Since σk+i(g) � σk+i(fk+i) the letter Qi also appears in
σk+i(g) between Pri and Pr+1,i. Therefore, g traverses all the belts Qi and
thus also the belt Q after passing Pr and before passing Pr+1 and we obtain
P1 . . . PrQPr+1 . . . PL � σk(g). In this way we can argue inductively to prove
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that each letter occurring in σk(f
∗) also occurs in σk(g) in the respective

position. This yields σk(f
∗) � σk(g).

(3) is a direct consequence of the definition of the stabilized product.
One just has to use the fact that Redn(σn([f ])) = Redn(σn(f)), which is
item (ii) in the proof of Theorem 3.2.

An element (wn)n≥0 ∈ lim←−Sn is called complete if the corresponding
graph G defined at the beginning of the present section has the property
that any irrational cut in the horizontally ordered set of branches converges
to a point that is not contained in a belt disk. As in [1, Section 3], one
can prove that the complete elements in lim←−Sn are exactly the elements in
the range of σ, i.e., the complete elements can be represented in the form
(σk(g))k≥0 for some g ∈ S(X,x0).

Note that in general (σk(f))k≥0 is not complete and we only have σk([f ])
� σk(f∗). Indeed, (σk(f

∗))k≥0 is the completion of (σk([f ]))k≥0 in the sense
that it is the minimal (with respect to “�”) complete element of lim←−Sn
containing (σk([f ]))k≥0.

In the following example we consider a loop f where (σk([f ]))k≥0 is
incomplete. This situation occurs if there is a sequence of “holes” in the space
X that converges to a point of a given belt. This constellation cannot be
avoided for certain X. In particular, each handle body construction for a bad
set X (in the sense of [4]) gives rise to loops f with incomplete (σk([f ]))k≥0.

Example 3.7. Let X be the one-dimensional space depicted in Fig-
ure 6 and let x0 be the base point. Note that the “holes” in X accumulate
at x2. Moreover, we choose the handle body construction at each level k

x
3

x
2

x
1

x
0

B HkL
2

B HkL
1

B HkL
3

X

Fig. 6. An illustration of a situation that leads to an incomplete sequence (σk([f ]))k≥0

in the way indicated in Figure 6. In particular, the belt B2(k) contains the
point x2. We choose f to be the loop that traverses the triangle x1x2x3x1
once. Now, as B1(k), B2(k), B3(k) lie in the same star, in the reduced de-
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scription Redk(σk(f)) the letter B2(k) does not occur for any k ∈ N. Thus
B2(k) is not contained in σk([f ]) for all k. On the other hand, B2(k) is
obviously contained in σk(f). This shows that σk(f) 6= σk([f ]), and hence
(σk([f ]))k≥0 is not complete.

The next example is devoted to the Sierpiński carpet.

Example 3.8. The well known Sierpiński carpet M is depicted on the
left hand side of Figure 7. On the right hand side of this figure a handle body
construction for this set is visualized. This construction can be performed
in an analogous way at each approximation level and can be used to give
a description of the fundamental group of M in terms of words (for the
Sierpiński gasket such a description is detailed in [1]).

0-handle 1-handle

belt disk

Fig. 7. The Sierpiński carpet (left) and its handle body approximation H2 (right)

4. Cancelation. As before, let X be a metrizable one-dimensional con-
tinuum and x0 ∈ X. In this section we collect some properties of the
multiplication of elements of lim←−Gn and their corresponding stabilized se-
quences. The results split into several lemmas, and later we will mainly use
Lemma 4.3.

Let PL . . . P1 and Q1 . . . QM be two elements of Gm. We consider the
possible reductions in the product (PL . . . P1) ∗ (Q1 . . . QM ). By definition
P1 = Q1 is equal to the belt containing the base point x0. Observe that
PL . . . P1 as well as Q1 . . . QM are already reduced. Thus reduction is only
possible at the point where the two words are concatenated. The group
multiplication “∗” on Gm can naturally be extended to subwords w,w′ of
group words provided that the last letter of w lies in the same star as
the first letter of w′. We will make use of this extension throughout the
remaining part of the paper. Also, in this setting the operation “∗” means
concatenation followed by reduction.
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We start with the following reduction algorithm for the group opera-
tion “∗”. Note that with this extended notation for “∗” we may write

(PL . . . P1) ∗ (Q1 . . . QM ) = (PL . . . P1) ∗ (Q2 . . . QM ).

Now we have to deal with the following cases:

(i) The word PL . . . P1Q2 . . . QM is already reduced.
(ii) P1, Q2, Q3 lie in the same star. This is impossible because, since

P1 = Q1, it would imply that Q1, Q2, Q3 are in the same star,
which contradicts the fact that Q1 . . . QM is reduced.

(iii) P2, P1, Q2 lie in the same star. Then

(PL . . . P1) ∗ (Q2 . . . QM ) = (PL . . . P2) ∗ (Q2 . . . QM ).

(a) If P2 6= Q2 then P3, P2, Q2 and P2, Q2, Q3 are not in the same
star, since otherwise P1, P2, P3 or Q1, Q2, Q3 would be in the
same star, which is false. Hence, in this case

(PL . . . P1) ∗ (Q1 . . . QM ) = PL . . . P2Q2 . . . QM .

(b) If P2 = Q2 then we have

(PL . . . P1) ∗ (Q1 . . . QM ) = (PL . . . P2) ∗ (Q2 . . . QM )

and we may proceed iteratively in the same manner as before.

This algorithm shows that essential cancelation is only possible if a suffix
of the first word is a mirror image of a prefix of the second word, i.e., if
Q1 = P1, Q2 = P2, and so on.

We make this precise in the following lemma.

Lemma 4.1. Let PL . . . P1, Q1 . . . QM ∈ Gm. Then the operation “∗”
is given by the following procedure: Take ` maximal such that P1 . . . P` =
Q1 . . . Q`. Then

(PL . . . P1)∗ (Q1 . . . QM ) =



PL . . . P2P1Q2 . . . QM if ` = 1 and

P2, Q1, Q2 do not

lie in the same star,

PL . . . P`+1Q`+1 . . . QM if ` = 1 and

P2, Q1, Q2 lie in the

same star, or

2 ≤ ` < min{L,M},
PL . . . P` if ` = M ,

Q` . . . QM if ` = L.

This lemma follows immediately from the above considerations.
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Now we want to use the formula in Lemma 4.1 as a definition of an
operation which is also defined for semigroup words. Indeed, we define a
new operation ~ : Sm × Sm → Sm as in Lemma 4.1 with one exception: if
2 ≤ ` < min{L,M} it may happen for PL . . . P1, Q1 . . . QM ∈ Sm that P`+1

is not a neighbor of Q`+1, thus we define in this case

(PL . . . P1)~ (Q1 . . . QM ) =


PL . . . P`+1P`Q`+1 . . . QM if P`+1 is not a

neighbor of Q`+1,

PL . . . P`+1Q`+1 . . . QM if P`+1 is a

neighbor of Q`+1.

Note that the operation “~” corresponds to concatenation followed by re-
duction on the interface. Moreover, “~” agrees with “∗” on Gn.

We now relate this operation to the stabilized product.

Lemma 4.2. Let (ω̄′n)n≥0, (ω̄
′′
n)n≥0 be two stabilized sequences and let

(ω̄n)n≥0 = (ω̄′n)n≥0 ∗ (ω̄′′n)n≥0

be their stabilized product. Then on each level k ∈ N we have

(4.1) ω̄k � ω̄′k ~ ω̄′′k .
In terms of the mapping σk and loops f, g ∈ S(X,x0) this reads

σk([fg]) � σk([f ])~ σk([g]).

Proof. Let ω̄′k = PL . . . P1 and ω̄′′k = Q1 . . . QM , let n be a “stabilizing
index” satisfying γnk(Redn(ω̄n)) = ω̄k, γnk(Redn(ω̄′n)) = ω̄′k, γnk(Redn(ω̄′′n))
= ω̄′′k . Moreover, let p = Redn(ω̄′n), q = Redn(ω̄′′n) be the reduced words of
the sequences at level n.

Therefore, to show (4.1) we have to prove that γnk(p ∗ q) � γnk(p) ~
γnk(q). Let s be the maximal word with the property that p = rs and q = s̃t
(where s̃ is the reversed word of s). In the following we work out the case
1 < |s| < min{|p|, |q|}; the remaining cases can be checked easily.

According to Lemma 4.1 we have

(4.2) γnk(p ∗ q) = γnk(rt) = γnk(r) · γnk(t).
Moreover,

γnk(p)~ γnk(q) = γnk(r)γnk(s)~ γnk(s̃)γnk(t) = γnk(r)~ γnk(t).

For the last equality note that by (4.2), γnk(r)γnk(t) is an admissible word,
hence in γnk(r)γnk(s) ~ γnk(s̃)γnk(t) no letter from the part γnk(s) or its
reverse remains.

Summing up this means that our assertion is equivalent to γnk(r) ·
γnk(t) � γnk(r)~ γnk(t), and the latter is obvious.

We use Lemma 4.2 to prove the following inequality for the lengths of
stabilized products.
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Lemma 4.3. Let f, g be loops in (X,x0). Then

(4.3) |σk([fg])| ≥
∣∣ |σk([f ])| − |σk([g])|

∣∣.
Proof. Due to Lemma 4.2 and the definition of ~ we have

|σk([fg])| ≥ |σk([f ])~ σk([g])| ≥
∣∣ |σk([f ])| − |σk([g])|

∣∣.
5. Continuity of homomorphisms. As above, let X be a metriz-

able one-dimensional continuum and x0 ∈ X. In this section we provide a
new proof of a result of Eda [10, Theorem 1.1] which states that each ho-
momorphism h from the fundamental group of the Hawaiian earring E to
π(X,x0) is induced by a continuous map from E to X. The methods we
have developed in the previous sections enable us to give an almost purely
algebro-combinatorial proof of this result (though topological intuitions are
helpful to understand the idea). Before we go into details we give an outline
of our strategy.

We employ the following notation. Let o ∈ E be the point contained in
all loops of E and let Cn be the elements of π(E, o) associated with the nth
largest loop of E, n ∈ N. First, one has to better understand the structure
of a group homomorphism h : π(E, o) → F (in most cases F = π(X,x0) is
the fundamental group of the space X) defined on the fundamental group
π(E, o) of E.

Many auxiliary results (from Lemma 5.1 to Proposition 5.4) are de-
voted to the observation that the (algebraic) property of h to be a homo-
morphism has remarkable consequences which can be interpreted as con-
tinuity properties of h. An important role is played by a theorem of Hig-
man (Lemma 5.1) which states that h : π(E, o) → F does not depend on
small circles if F is free, i.e., all Cn with n sufficiently large and, even
more, all admissible infinite compositions of such Cn’s have trivial im-
age. As a consequence (due to Eda, cf. Lemma 5.2) each homomorphism
h : π(E, o)→ π(X,x0) is uniquely determined by its values on the loops Cn.
From this we derive as a byproduct Theorem 5.3, expressing that h is com-
patible with the inverse group limit involved. For the remaining parts Propo-
sition 5.4 is crucial. It asserts that for elements a ∈ π(E, o) which are small
in the above sense the image h(a) is also uniformly small in an appropri-
ate sense, namely: there is a finite upper bound for the number of letters
in σm(h(a)) if a is restricted to the condition Redn0(σn0(a)) = e for suf-
ficiently large n0 = n0(m). A main tool in the proof of Proposition 5.4 is
Lemma 4.3.

The continuity interpretation from the preceding paragraph suggests
that, for n→∞, h(Cn) tends to the homotopy class of the constant loop in a
specific way. Loosely speaking, the imagined picture behind is that for large
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n the minimal representative hn of the homotopy class h(Cn) can be decom-
posed into a path t from x0 to some point x∗, followed by a small loop yn
based at x∗ and then the converse path t−1 of t, that is, hn = tynt

−1, where
the path t does not depend on n. The technical effort to make this intuition
rigorous is substantial and requires the considerations from Propositions 5.5
to 5.9. Proposition 5.5 essentially shows that, given any approximation level,
for large enough n the digital representation of yn at this level requires no
more than one letter, so indeed yn is small. Proposition 5.7 takes care of
the fact that for increasing n the possible variation in the combinatorial fine
structure is small and completely under control. Proposition 5.8 guaran-
tees in a combinatorial way the existence of t and, as a consequence, of x∗.
Proposition 5.9 shows that for n→∞ the loops yn based at x∗ tend to the
constant loop.

With these auxiliary tools it is more or less straightforward to prove The-
orem 5.10. Given any homomorphism h : π(E, o) → π(X,x0) consider the
point x∗ and the loops yn according to the above construction. Appropriate
parametrizations of Cn and yn produce a continuous mapping ψ : E → X
which induces a homomorphism ψ∗ : π(E, o) → π(X,x∗). With this homo-
morphism we finally obtain h = χt ◦ ψ∗ where χt : π(X,x∗) → π(X,x0),
[f ] 7→ [tft−1].

Now we start to pursue the program outlined so far. Let Wn be the
set of subwords of elements of Sn and define lim←−Wn with bonding maps
defined analogous to γnk. With no risk of confusion, these maps will again
be called γnk. Recall that |ω| denotes the number of letters of the word ω,
and ω̃ its reversed word; Λ is the empty word. Moreover, in each group we
denote the neutral element by e.

In the following we will use a basic result of Higman [14, Theorem 1]
(see also Eda [10, Lemma 3.1]).

Lemma 5.1. Let F be an arbitrary free group and Fn be the (free) sub-
group of π(E, o) generated by the n largest loops C1, . . . , Cn of the Hawaiian
earring. For each homomorphism h : π(E, o) → F there exist k0 ∈ N and
a homomorphism h̄ from Fk0 to F such that h = h̄ ◦ qk0 where qk0 is the
canonical epimorphism of π(E, o) onto Fk0.

Next, we mention the following result of Eda [10, Lemma 3.15]. It is an
immediate consequence of Lemma 5.1 and the fact that π(X,x0) ↪→ π̌(X,x0)
(see [11]).

Lemma 5.2. Let (X,x0) be a metrizable one-dimensional continuum. If
two homomorphisms h and h′ from π(E, o) to π(X,x0) coincide on all Cn
then they are equal. Consequently, ran(h) is finitely generated if and only if
the kernel of h contains almost all Cn, n ∈ N.
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Recall that any element in π(E, o) can be represented in the form
(Cα(i))i∈I where (I,≤) is a countable linearly ordered set and α : I → N is

such that α−1(n) is a finite subset of I for all n ∈ N (cf. [2]).

Before we state our next result, which can be interpreted as an “infinite
homomorphism property”, we have to define infinite products in lim←−Gn.
Let (I,≤) be a countable linearly ordered set and ((ωi`)`≥0)i∈I be a family
(indexed by I) of elements in lim←−Gn with the property that for all ` ≥ 0
there exists a finite subset I` of I such that for all i ∈ I \ I` we have ωi` = e.
In this case we define

∗
i∈I

(ωi`)`≥0 =
(
∗
i∈I`

ωi`

)
`≥0

.

Note that since ωi,`−1 6= e implies ωi` 6= e we have

δ`

(
∗
i∈I`

ωi`

)
= ∗

i∈I`
ωi,`−1 = ∗

i∈I`−1

ωi,`−1,

hence the product is an element of lim←−Gn.

If (ωi`)`≥0 lies in ϕ(π(X,x0)) for all i ∈ I and moreover the product
∗i∈I(ωi`)`≥0 is in ϕ(π(X,x0)), we can extend this notion of an infinite prod-
uct also to the corresponding elements in π(X,x0).

Theorem 5.3. Let (X,x0) be a metrizable one-dimensional continuum.
Then for each homomorphism h from π(E, o) to π(X,x0) and for each ele-
ment (Cα(i))i∈I ∈ π(E, o) the product ∗i∈I h(Cα(i)) is a well defined element
in π(X,x0) and we have

h((Cα(i))i∈I) = ∗
i∈I

h(Cα(i)).

Proof. We have to show that the product (v`)`≥0 := ∗i∈I ϕ(h(Cα(i))) is
well defined in lim←−Gn. For this purpose we set (ωn`)`≥0 = ϕ(h(Cn)) for each

n ∈ N. For ` ∈ N let p` : lim←−Gn → G` denote the canonical projection in the
projective limit and h` = p` ◦ϕ ◦h : π(E, o)→ G`. Lemma 5.1 applied to h`
implies that there exists k` with the following property: For any countable
linearly ordered set (J,≤) and β : J → N with |β−1(k)| <∞ we have

h`((Cβ(j))j∈J) = h`((Cβ(j))j∈J`) = ∗
j∈J`

h`(Cβ(j))

where J` :=
⋃
k<k`

β−1(k). In particular, we deduce for all k ≥ k` that
ωk` = h`(Ck) = h`(e) = e, and thus

h`((Cα(i))i∈I) = h`((Cα(i))i∈I`) = ∗
i∈I`

h`(Cα(i)) = ∗
i∈I`

ωα(i)`

with I` :=
⋃
k<k`

α−1(k). Now we obtain v` = p`(∗i∈I(ωα(i)`′)`′≥0) =
∗i∈I` ωα(i)` = h`((Cα(i))i∈I), which shows that (v`)`≥0 as an (infinite) product
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is well defined in lim←−Gn and moreover

∗
i∈I

ϕ(h(Cα(i))) = (v`)`≥0 = (h`((Cα(i))i∈I))`≥0 = ϕ(h(Cα(i))i∈I).

Transferring this equality back to π(X,x0) with ϕ−1 we are done.

Let m ∈ N be fixed. The following proposition shows that the number
of level m letters in words corresponding to h(a) ∈ π(X,x0) is uniformly
bounded provided that a ∈ π(E, o) contains only loops which are sufficiently
small.

Proposition 5.4 (cf. [10, Lemma 3.11]). Let h : π(E, o)→ π(X,x0) be
a homomorphism. Then for all m ∈ N there exists n0 = n0(m) such that

sup{|σm(h(a))| | a ∈ π(E, o) with Redn0(σn0(a)) = e} <∞.

Proof. The proof is done by contradiction. Suppose there exists m ∈ N
such that for all n ∈ N,

sup{|σm(h(a))| | a ∈ π(E, o) with Redn(σn(a)) = e} =∞.

Then we may choose a0, a1, . . . ∈ π(E, o) in such a way that for each i ∈ N
we have

(i) Redi(σi(ai)) = e,
(ii) |σm(h(ai))| > |σm(h(ai−1))|.

Note that because of (i) and Theorem 3.2 for an arbitrary sequence 0 ≤
j0 < j1 < j2 < · · · the product aj0aj1aj2 . . . is an element of π(E, o).

Let i0 = 1, `0 = 1 and for r ≥ 0 define ir+1 and `r+1 inductively in
the following way. Suppose i0, . . . , ir and `0, . . . , `r are already chosen; then
there exists ir+1 > ir such that

(iii) 2|σm(h(ai1 . . . air))| < |σm(h(air+1))| (by (ii)),
(iv) Red`r(σ`r(h(air+1aj0aj1 . . .)) = e for all sequences (j0, j1, . . .) with

ir+1 < j0 < j1 < · · · (by Lemma 5.1).

Now choose `r+1 > `r such that

(v) σm(h(ai0 . . . air+1)) = γ`r+1m(Red`r+1(σ`r+1(h(ai0 . . . air+1)))).

Using (4.3) assertion (iii) implies that

(vi) |σm(h(ai0 . . . air))| < |σm(h(ai0 . . . air+1))|.

In the following we consider the element a := ai0ai1ai2 . . . ∈ π(E, o). Since
1 = `0 < `1 < · · · there exists r ≥ 1 such that

σm(h(a)) = γ`rm(Red`r(σ`r(h(a)))) = γ`r+1m(Red`r+1(σ`r+1(h(a)))).
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With this choice of r we obtain

|σm(h(a))| = |γ`rm(Red`r(σ`r(h(a))))|
= |γ`rm(Red`r(σ`r(h(ai0 . . . air)))

∗ Red`r(σ`r(h(air+1air+2 . . .))))|
(iv)
= |γ`rm(Red`r(σ`r(h(ai0 . . . air))))|
(v)
= |σm(h(ai0 . . . air))|
(vi)
< |σm(h(ai0 . . . air+1))|
(v)
= |γ`r+1m(Red`r+1(σ`r+1(h(ai0 . . . air+1))))|
(iv)
= |γ`r+1m(Red`r+1(σ`r+1(h(ai0 . . . air+1)))

∗ Red`r+1(σ`r+1(h(air+2air+3 . . .))))|
= |γ`r+1m(Red`r+1(σ`r+1(h(a))))| = |σm(h(a))|.

Since this is absurd we get the desired contradiction.

In the next proposition we have to investigate the elements h(Cn) in
more detail.

Proposition 5.5. Fix m ∈ N, choose n0 = n0(m) as in Proposition 5.4
and for n ≥ n0 write σm(h(Cn)) in the form σm(h(Cn)) = pnqnp̃n with
pn := Pn1 . . . PnJn, Jn ≥ 0, and qn := Qn0Qn1 . . . QnKnQn0 such that Kn ≥
−1 is as small as possible. Furthermore, let ωn = (ωn`)`≥0 = ϕ(h(Cn)), and
for all ` with γ`m(ωn`) = pnqnp̃n let qn` be the largest subword of ωn` which
is projected to (the central part) qn by γ`m, i.e., satisfies γ`m(qn`) = qn.

Then there exists `0 = `0(n,m) such that for all ` ≥ `0 the word ωn` can
be written as

(5.1) ωn` = pn`qn`p̃n`.

Moreover, qn = Qn0, i.e., the canonical path associated with qn` is contained
in the union of two stars of level m linked by Qn0.

Remark 5.6. Concerning the notation in Proposition 5.5 note that

(1) the word pn may be empty whereas qn always contains at least one
letter,

(2) Kn = −1 means that qn = Qn0, and, due to the definition of qn, the
cases Kn = 0 (qn is not admissible) and Kn = 1 (the minimality condition
on Kn is violated) cannot occur.

Proof of Proposition 5.5. The assertions are trivially true for h(Cn) = e.
Thus we may assume that h(Cn) 6= e. Recall that n0 is chosen as in Propo-
sition 5.4 depending on the fixed level m and let `0 satisfy γ`0m(ωn`0) =
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σm(h(Cn)). By the definition of qn` the word ωn` has a well defined rep-
resentation of the form ωn` = pn`qn`p

′
n` such that γ`m(pn`) = γn`(p

′
n`) =

Pn1 . . . PnJn . We prove the proposition by showing the following two asser-
tions for all ` ≥ `0:

(i) p′n` = p̃n`,
(ii) Kn = −1.

For (i), assume p′n` 6= p̃n` for some ` ≥ `0. (Note that this implies that at
least one of the words pn`, p

′
n` is nonempty and thus Jn ≥ 1.) Then we have

σm(h(C2
n)) = γ`m(pn`qn`p

′
n` ∗ pn`qn`p′n`)

� Pn1 . . . (PnJnQn0 . . . QnKnQn0)(PnJnQn0 . . . QnKnQn0)PnJn . . . Pn1,

where the inequality is due to the assumption p′n` 6= p̃n`, which implies that
from the part p′n` ∗ pn` at least two successors of the letter PnJn in level `
remain and possible further cancelations with qn` on the left or on the right
(which can occur if p′n` is a suffix of p̃n`, or vice versa) stop as soon as
successors of Qn0 in qn` appear.

Iterating this procedure we get

σm(h(Cjn)) = γ`m(ωjn`)

� Pn1 . . . Pn,Jn−1(PnJnQn0Qn1 . . . QnKnQn0)
jPnJn . . . Pn1.

Since the length of the right hand side is not bounded in j this contradicts
Proposition 5.4. Thus p′n` = p̃n` and (i) is shown for ` ≥ `0.

Now we prove (ii). By (i) and Lemma 4.2 we have

σm(h(C2
n)) = γ`m(pn`qn`p̃n` ∗ pn`qn`p̃n`)
� (Pn1 . . . PnJnQn0 . . . QnKnQn0PnJn . . . Pn1)

~ (Pn1 . . . PnJnQn0 . . . QnKnQn0PnJn . . . Pn1).

Suppose Kn ≥ 2. Note that by the minimality of Kn we have QnKn 6=
Qn1. There occur two (slightly) different cases: QnKn can be a neighbor of
Qn1 or not. We work out in detail the first case, the latter can be treated

similarly (4). In any of the two cases we haveQnKnQn0 6= Q̃n0Qn1. Therefore,
if QnKn is a neighbor of Qn1 we obtain

σm(h(C2
n)) � Pn1 . . . PnJnQn0 . . . QnKnQn1 . . . QnKnQn0PnJn . . . Pn1.

Iteration yields

σm(h(Cjn)) = γ`m(ωjn`) � Pn1 . . . PnJnQn0(Qn1 . . . QnKn)jQn0PnJn . . . Pn1.

This contradicts Proposition 5.4, and thus Kn = −1, which yields (ii).

(4) The only difference is that in the latter case, between QnKn and Qn1 the letter
Qn0 has to be added.
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In the following proposition we will compare the tails pn` of ωn` when
` is fixed and n varies.

Proposition 5.7. With notation as in Proposition 5.5, write qn` in the
form qn` = rn`sn`r̃n` with rn` maximal. Then for all n, n′ ≥ n0 = n0(m) and
for all ` ≥ max{`0(n,m), `0(n

′,m)} with ωn`, ωn′` 6= e we have:

(1) pn′` is a prefix of pn` or vice versa, and moreover
∣∣ |γ`m(pn`)| −

|γ`m(pn′`)|
∣∣ ≤ 1.

(2) If pn′` is a prefix of pn` and |γ`m(pn`)|−|γ`m(pn′`)| = 1, i.e., γ`m(pn`)
= Pn1 . . . PnJn and γ`m(pn′`) = Pn1 . . . Pn,Jn−1, then

(a) γ`m(ωn′`)=Pn1 . . . Pn,Jn−1PnJnPn,Jn−1 . . . Pn1, i.e., Qn′0=PnJn,
(b) pn` is a prefix of pn′`rn′` and in p̃n` ∗ (pn′`rn′`sn′`) only the first

letter is a successor of a letter from Dm.

(3) If pn′` is a prefix of pn` and |γ`m(pn`)| = |γ`m(pn′`)|, i.e., γ`m(pn`) =
γ`m(pn′`) = Pn1 . . . PnJn, then Qn0 = Qn′0 and pn` = pn′`.

Proof. (1) We first deal with the case that pn′` is the empty word Λ, i.e.,
Jn′ = 0. Then we have σm(h(Cn′)) = Qn′0 and ωn′` = qn′` = rn′`sn′`r̃n′`.
Since ωn′` 6= e we know that sn′` contains at least three letters.

Now assume Jn = |γ`m(pn`)| ≥ 2 and consider the element

(ωn` ∗ ωn′`)2 = (pn`qn`p̃n`) ∗ (rn′`sn′`r̃n′`) ∗ (pn`qn`p̃n`) ∗ (rn′`sn′`r̃n′`).

In particular, we study cancelation in the part p̃n` ∗ (rn′`sn′`r̃n′`) ∗ pn`: This
amounts to a conjugation of the nontrivial loop rn′`sn′`r̃n′`, and due to the
fact that rn′`sn′`r̃n′` contains only successors of a single letter from Dm the
reduction process stops—at the latest—at the last occurrence of a level `
successor of Pn2 in p̃n` and at the first occurrence of the same successor of
Pn2 in pn`, respectively, and in between there remain at least three letters
which all lie in the two m-stars attached to Qn′0. So, when we apply γ`m we
obtain

γ`m(( pn`︸︷︷︸
↓

PnJn

qn`︸︷︷︸
↓

Qn0

p̃n`) ∗ (rn′`sn′`r̃n′`) ∗ (pn`︸ ︷︷ ︸
↓

PnJn

qn`︸︷︷︸
↓

Qn0

p̃n`) ∗ (rn′`sn′`r̃n′`)︸ ︷︷ ︸
↓

PnJn

)

� PnJn(Qn0PnJn)2.

By iteration we get |σm(h((CnCn′)
i))| ≥ 2i+ 1, which contradicts Proposi-

tion 5.4, hence Jn ≤ 1 and (1) is proved in the special case pn′` = Λ.
Next we deal with the case pn`, pn′` 6= Λ, i.e., Jn, Jn′ ≥ 1, and we assume

that neither pn′` is a prefix of pn` nor vice versa. We consider ωn` ∗ ωn′` =
(pn`rn`sn`r̃n`p̃n`) ∗ (pn′`rn′`sn′`r̃n′`p̃n′`). Due to our assumption at the inner

part p̃n` ∗ pn′` we get p̃n` ∗ pn′` = P
(`)
nJn

sP
(`)
n′Jn′

where P
(`)
nJn

and P
(`)
n′Jn′

are

level ` successors of PnJn and Pn′Jn′ , respectively, and s is a word which can
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be empty if P
(`)
nJn
6= P

(`)
n′Jn′

. Obeying Lemma 4.1 the cancelation stops here,

and r̃n` on the left and rn` on the right remain unchanged. Applying γ`m
we obtain

γ`m(ωn` ∗ ωn′`) = γ`m( pn`︸︷︷︸
↓

PnJn

rn`sn`r̃n`︸ ︷︷ ︸
↓

Qn0

P
(`)
nJn

sP
(`)
n′Jn′︸ ︷︷ ︸

↓
PnJn ...Pn′Jn′

rn′`sn′`r̃n′`︸ ︷︷ ︸
↓

Qn′0

pn′`︸︷︷︸
↓

Pn′Jn′

)

� PnJnQn0PnJn . . . Pn′Jn′Qn′0Pn′Jn′ .

Iterating this we end up with |σm(h((CnCn′)
i))| ≥ 4i, contrary to Proposi-

tion 5.4.

So now we may suppose that pn`, pn′` 6= Λ and without loss of generality
pn′` is a prefix of pn`. Assume |γ`m(pn`)| − |γ`m(pn′`)| = j ≥ 2. Then p̃n` ∗
pn′` = t̃n` where tn` is a suffix of pn` beginning with a level ` successor of
Pn,Jn−j , and further containing successors of Pn,Jn−k, 0 ≤ k ≤ j − 1. Using
this we get

(ωn` ∗ ωn′`)2 = ((pn`qn`p̃n`) ∗ (pn′`rn′`sn′`r̃n′`p̃n′`))
2

= (pn`qn`t̃n`) ∗ (rn′`sn′`r̃n′`) ∗ (tn`qn`t̃n`) ∗ (rn′`sn′`r̃n′`p̃n′`),

and we can proceed in the same way as in the first part of this proof (case
pn′` = Λ) to show that |σm(h((CnCn′)

i))| is not bounded for i→∞, a con-
tradiction. Thus |γ`m(pn`)| − |γ`m(pn′`)| ≤ 1 and (1) is proved.

(2)(a) Let as before p̃n` ∗ pn′` = t̃n` and assume Qn′0 6= PnJn . Now we
have

ωn` ∗ ωn′` = (pn`qn`p̃n`) ∗ (pn′`rn′`sn′`r̃n′`p̃n′`)

= (pn`qn`t̃n`) ∗ (rn′`sn′`r̃n′`p̃n′`).

Note that t̃n` begins with a successor of PnJn and due to our assumption this
letter does not appear in rn′`. On the other hand rn′`sn′` contains a successor
of Qn′0 which does not appear in t̃n`. Since in the reduction process in the
course of a group product only letters cancel out which appear in both
factors (cf. Lemma 4.1) we get

γ`m(ωn` ∗ ωn′`) � Pn1 . . . PnJnQn0PnJnQn′0Pn,Jn−1 . . . Pn1,

and again we conclude that |σm(h((CnCn′)
i))| is not bounded for i → ∞,

a contradiction. Thus we have proved Qn′0 = PnJn .

(2)(b) With notation as before we have ωn′` = pn′`rn′`sn′`r̃n′`p̃n′` and
ωn` = pn′` ∗ (tn`rn`sn`r̃n`p̃n`). Now we consider

ωin′` ∗ ωn` = (pn′`rn′`s
i
n′`r̃n′`) ∗ (tn`rn`sn`r̃n`p̃n`),

where the exponent i ∈ N will be specified later. Concerning the cancelations
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in the product we quote the following properties:

(I) The word rn`sn`r̃n` contains a successor of Qn0 and the first oc-
currence of such a letter is either in rn` or sn`. Such a letter does
not occur in rn′`s

i
n′`r̃n′` since this word among successors of let-

ters from Dm only contains successors of Qn′0 = PnJn and we have
PnJn 6= Qn0.

(II) We choose i = i0 so large that |si−1n′` | > |tn`rn`sn`|. This is possible

since due to ωn′` 6= e we have |sn′`| ≥ 3.
(III) By Lemma 4.1 we know that in a product a ∗ b of two reduced

words a and b the number of letters canceling out is the same for
a and b and that a letter P from a can cancel out only if P also
appears in b at the corresponding position.

In view of (I)–(III) we obtain

ωin′` ∗ ωn` = pn′`rn′`sn′` . . . s
(1)
n` r̃n`p̃n`

where s
(1)
n` is a suffix of sn` and

γ`m(ωin′` ∗ ωn′`) = γ`m( pn′`︸︷︷︸
↓

Pn1...Pn,Jn−1

rn′`sn′`︸ ︷︷ ︸
↓

PnJn

. . . s
(1)
n` r̃n`︸ ︷︷ ︸
↓

Qn0

p̃n`︸︷︷︸
↓

PnJn ...Pn1

)

= Pn1 . . . PnJnQn0PnJn . . . Pn1.

In view of Proposition 5.5, ωin′` ∗ ωn` must have the form ωin′` ∗ ωn` =

p
(i)
n`q

(i)
n` p̃

(i)
n` with the corresponding properties for p

(i)
n` and q

(i)
n` for all i ≥ i0.

Next we show that sn′` does not contain a successor of PnJn . Assume
the contrary; then by increasing i the last occurrence of a successor of PnJn
before the first occurrence of a successor of Qn0 in the word ωin′` ∗ ωn′` (up

to this letter all letters belong to p
(i)
n` ) can be made at an arbitrary distance

from the beginning. On the other hand, the occurrence of successors of PnJn
on the rear end of ωin′` ∗ωn` is not influenced by the choice of i. Therefore a

representation in the form ωin′` ∗ ωn` = p
(i)
n`q

(i)
n` p̃

(i)
n` with |γ`m(q

(i)
n` )| = 1 is not

possible. We conclude that sn′` cannot contain a successor of PnJn and thus
does not contain a successor of any letter from Dm at all.

The argument in the last part shows that p̃
(i)
n` = p̃n` for all i ≥ i0 and we

obtain

pn′`rn′`sn′` . . . s
(1)
n` r̃n`p̃n` = pn`q

(i)
n` p̃n`.

Comparing the prefixes of the left and the right side in this equation and
taking into account that sn′` does not contain successors of PnJn we deduce
that pn` is a prefix of pn′`rn′` and also p̃n` ∗ (pn′`rn′`sn′`) does not (except
for the first letter) contain a successor of a letter from Dm.
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(3) Assume Qn′0 6= Qn0; then with the same notation and similar argu-
ments we get

γ`m(ωn′` ∗ ωn′`) = γ`m
(
( pn′`︸︷︷︸

↓
Pn1...PnJn

rn′`sn′`r̃n′`︸ ︷︷ ︸
↓

Qn′0

) ∗ ( tn`︸︷︷︸
↓

PnJn

rn`sn`r̃n`︸ ︷︷ ︸
↓

Qn0

p̃n`︸︷︷︸
↓

PnJn ...Pn1

)
)

� Pn1 . . . PnJnQn′0Qn0PnJn . . . Pn1.
Thus |σm(h((CnCn′)

i))| → ∞ for i→∞ contrary to Proposition 5.4, hence
Qn0 = Qn′0.

In the case pn` 6= pn′` we would get

γ`m(ωn′` ∗ ωn′`) = Pn1 . . . PnJnQn0PnJnQn0PnJn . . . Pn1,

which, once more, leads to a contradiction to Proposition 5.4.

Employing the same notation as before we can consider the following
two sets:

Nm1 := {n ≥ n0(m) | σm(h(Cn)) = Pn1 . . . PnJnQn0PnJn . . . Pn1},
Nm2 := {n ≥ n0(m) | σm(h(Cn)) = Pn1 . . . Pn,Jn−1PnJnPn,Jn−1 . . . Pn1}.

We may choose the letters Pn1, . . . , PnJn , Qn0 in such a way that always
Nm1 6= ∅ whereas Nm2 may be empty. Moreover, if Nm1 is finite, we enlarge
n0(m) and readjust the letters so that Nm1 is infinite and n0(m) ∈ Nm1.
Proceeding inductively on m we may assume that n0(m) ≤ n0(m + 1).
According to Proposition 5.7 we have Nm1 ∪Nm2 = {n ∈ N | n ≥ n0(m)}.

Now the dependence on m of pn` occurring in the statement of Proposi-
tion 5.5 becomes important. Note that n0, `0, Jn, pn`, qn` in Propositions 5.5
and 5.7 depend on m while ωn` is independent of m. Below we will indicate

this dependence on m by using a superscript (m), e.g., ωn` = p
(m)
n` q

(m)
n` p̃

(m)
n` .

By Proposition 5.7 for all n, n′ ≥ n0(m) satisfying ωn`, ωn′` 6= e we have

p
(m)
n` = p

(m)
n′` if n, n′ ∈ Nm1, and p

(m)
n` is a prefix of p

(m)
n′` r

(m)
n′` if n ∈ Nm1 and

n′ ∈ Nm2. Note that n = n0(m) satisfies ωn` 6= e if σm(h(Ck)) 6= e for at
least one k ≥ n0(m).

So, for ` ≥ `0(n0(m),m) we define t
(m)
` := p

(m)
n0(m)`. Then for all n ≥ n0(m)

and ` ≥ `0(n,m) satisfying ωn` 6= e we obtain a representation of the form

ωn` = t
(m)
` y

(m)
n` t̃

(m)
` with |γ`m(y

(m)
n` )| ≤ 1, and for n∈Nm1 we have p

(m)
n` = t

(m)
` .

Proposition 5.8.For all m≥ 0 and `≥max{`0(n0(m),m), `0(n0(m+1),
m+ 1)} we have:

(1) t
(m)
` is a prefix of t

(m+1)
` .

(2) t̃
(m)
` ∗t(m+1)

` contains only letters which (as belts) lie in the two closed

m-stars attached to Q
(m)
n0 .

(3) For all `′ > ` ≥ `0(n0(m),m) we have δ`′`(t
(m)
`′ ) = t

(m)
` .
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Proof. (1) Since n0(m+1) ≥ n0(m), we have representations of the form

ωn0(m+1)` = p
(m)
n0(m+1)` q

(m)
n0(m+1)` p̃

(m)
n0(m+1)` = p

(m+1)
n0(m+1)` q

(m+1)
n0(m+1)` p̃

(m+1)
n0(m+1)`.

Assuming that p
(m)
n0(m+1)` is not a prefix of p

(m+1)
n0(m+1)` immediately leads

to the conclusion that q
(m+1)
n0(m+1)` contains successors of more than one let-

ter from Dm and therefore also successors of more than one letter from

Dm+1, which contradicts Proposition 5.5. Therefore p
(m)
n0(m+1)` is always a

prefix of p
(m+1)
n0(m+1)`. By definition we have t

(m+1)
` = p

(m+1)
n0(m+1)`. Now we

show that t
(m)
` = p

(m)
n0(m+1)`, which yields (1). By the choice of n0(m + 1),

|σm+1(h(Cn0(m+1)))| is maximal among all |σm+1(h(Cn))| for n ≥ n0(m+1).
Therefore also |σm(h(Cn0(m+1)))| = |γm+1(σm+1(h(Cn0(m+1))))| is maximal
among all |σm(h(Cn))| for n ≥ n0(m + 1). Since |Nm1| = ∞ we know that
this maximum equals |σm(h(Cn0(m)))|. So with Proposition 5.7 we obtain

γ`m(ωn0(m+1)`) = σm(h(Cn0(m+1))) = σm(h(Cn0(m))),

and this implies t
(m)
` = p

(m)
n0(m+1)`.

(2) From the representation we got in the proof of (1),

ωn0(m+1)` = t
(m)
` q

(m)
n0(m+1)` t̃

(m)
` = t

(m+1)
` q

(m+1)
n0(m+1)` t̃

(m+1)
` ,

we find that t̃
(m)
` ∗ t(m+1)

` = p̃
(m)
n` ∗ p

(m+1)
n` is a word beginning with a level `

successor of P
(m)
nJn

followed by a prefix of q
(m)
n` , which yields the assertion.

(3) follows immediately from

δ`′`(p
(m)
n`′ q

(m)
n`′ p̃

(m)
n`′ ) = δ`′`(ωn`′) = ωn` = p

(m)
n` q

(m)
n` p̃

(m)
n`

and the properties of p
(m)
n` = t

(m)
` for n ∈ Nm1 proved in Proposition 5.5.

If we now define t
(m)
` := δ`0(n0(m),m)`(t

(m)
`0(n0(m),m)) for 0 ≤ ` < `0(m), by

Proposition 5.8(3) we arrive at a sequence (t
(m)
` )`≥0 satisfying δ`′`(t

(m)
`′ ) =

t
(m)
` for all `′ > ` ≥ 0. Thus this sequence (t

(m)
` )`≥0 corresponds to a canoni-

cal path t(m) from the base point x0 to some point x∗m lying in the belt P
(m)
nJn

.

Due to Proposition 5.8(1) the path t(m) is a prefix section of the path
t(m+1), and Proposition 5.8(2) implies that t(m) converges for m → ∞ to a
path t from the base point x0 to some point x∗ = limm→∞ x

∗
m in X. Prop-

erty (2) also implies that x∗ lies in one of the two closed m-stars attached

to Q
(m)
n0 for all m ≥ 0. This path t has a word representation of the form

(t`)`≥0 such that t
(m)
` is a prefix of t` and t̃

(m)
` ∗ t` can contain successors of
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at most three different letters from Dm, which are P
(m)

nJ
(m)
n

, Q
(m)
n0 and another

neighbor P (m) of Q
(m)
n0 in Dm which contains x∗ (cf. Proposition 5.8(2)).

Let hn denote the minimal loop representing the homotopy class h(Cn)
considered in Proposition 3.5(2). In the next proposition we will show that
the path t is such that the loop t−1hn t in (X,x∗) is homotopic to a loop
that stays arbitrarily near to x∗ when n tends to infinity.

Proposition 5.9. For n tending to infinity the minimal representative
of the homotopy class of the loop t−1hnt in π(X,x∗) tends to the constant
loop x∗.

Proof. We show that for all m ≥ 0 and for all n ≥ n0(m) the word
σm(t−1hn t) contains only letters which (as belts) lie in the two m-stars

attached to Q
(m)
n0 . This proves the assertion.

The loop t−1hn t corresponds to the sequence (t̃` ∗ωn` ∗ t`)`≥0 := (x`)`≥0.

For ` ≥ `0(n,m) we have x` = t̃` ∗ (t
(m)
` y

(m)
n` t̃

(m)
` ) ∗ t`. Employing the con-

siderations before Proposition 5.9 we obtain

σm(t−1hn t) = γ`m(x`) � P (m)Q
(m)
n0 P

(m)

nJ
(m)
n

Q
(m)
n0 P

(m)

nJ
(m)
n

Q
(m)
n0 P

(m)

and we are done.

In the following main result of this section we use the conjugacy map
χz : π(X,x∗) → π(X,x0), χz([f ]) = [zfz−1], where z is a path from x0
to x∗.

Theorem 5.10 (Eda [10, Theorem 1.1]). Let (X,x0) be a metrizable
one-dimensional continuum. Then for each homomorphism h from π(E, o)
to π(X,x0) there exists a point x∗ ∈ X, a path t from x0 to x∗ and a
continuous map ψ : E → X such that h = χt ◦ψ∗, i.e., h is conjugate to the
homomorphism ψ∗ : π(E, o)→ π(X,x∗) induced by ψ.

If the range of h is not finitely generated, then x∗ is unique and t is
unique up to homotopy relative to the end points.

Proof. Let t be the path corresponding to the sequence (t`)`≥0 defined
before Proposition 5.9 and hn be the minimal representative of the homotopy
class h(Cn). We fix parametrizations hn(x) and Cn(x), x ∈ [0, 1], of t−1hn t
and Cn, respectively, where we assume that Cn(x) is injective. This can be
used to define the mapping ψ : E → X by ψ(Cn(x)) = hn(x).

First we consider the case where ran(h) is finitely generated. By Lem-
ma 5.2, h(Cn) = e is the neutral element for all but finitely many n ∈ N.
Then obviously ψ is continuous and h = ψ∗. In this case the result follows
by setting x∗ = x0 and t the constant path in x0.

Now assume that ran(h) is not finitely generated and without loss of
generality h(Cn) 6= e for all n ∈ N. Proposition 5.9 implies that the sequence
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of paths (t−1hn t)n∈N converges to the constant path x∗. This implies that
ψ is continuous also in this case. Observing that

h(Cn) = [t t−1 hn t t
−1] = χt([t

−1 hn t]) = χt(ψ∗(Cn))

proves the existence part of the assertion.

The uniqueness of x∗, ψ∗ and t is easily derived in the same way as in
the proof of [10, Theorem 1.1].
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