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Open mapping theorems for capacities
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Abstract. For the functor of upper semicontinuous capacities in the category of
compact Hausdorff spaces and two of its subfunctors, we prove open mapping theorems.
These are counterparts of the open mapping theorem for the probability measure functor
proved by Ditor and Eifler.

1. Introduction. The notion of capacity in its general form was intro-
duced by Choquet [4]. Interest in topological properties of capacities stems,
in particular, from their important applications in mathematical economics
(see, e.g., [6–8]).

The space of upper semicontinuous capacities (see the definition below)
is introduced in [20] and it is proved therein that this construction deter-
mines a functor in the category of compact Hausdorff spaces. The functor
is systematically investigated in [19]. In particular, it is proved in [19] that
the functor of upper semicontinuous capacities has all the properties from
the definition of the normal functor in the sense of Shchepin [14] except the
preimage-preserving property.

The notion of upper semicontinuous capacity is a generalization of that
of probability measure and one can expect that some results known for mea-
sures can be carried over to capacities.

The paper is devoted to the open mapping theorem for upper semicontin-
uous capacities. The corresponding result for probability measures was first
proved by Ditor and Eifler [5] and found numerous applications. It asserts
that, for any open onto map f : X → Y of compact Hausdorff spaces, the
map Pf : PX → PY is also open, where P denotes the functor of probabil-
ity measures. (Recall that a map of topological spaces is open if the image
of every open set is also open.) Our proof is based on ideas different from
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those of Ditor and Eifler and exploits the properties of so-called Milyutin
maps; see [18] for an analogous technique. The results of the present paper
(they also include open mapping theorems for ∪-capacities and ∩-capacities)
demonstrate the universality of the method and we expect that it can also
be applied to other functors in the category of compact Hausdorff spaces.

Note that an alternative approach to the open mapping theorem for
capacities can be found in [19].

2. Upper semicontinuous capacities. We denote by Comp the cat-
egory of compact Hausdorff spaces and their continuous maps. Unless ex-
plicitly stated otherwise, all spaces and maps under consideration are from
this category. The identity functor in Comp is denoted by 1Comp.

We write A⊂cl X if A is a closed set in a space X. We denote by I the
unit segment [0, 1] with the natural topology, and 1A : A→ A is the identity
map from a set A onto itself. Let expX denote the set of all nonempty closed
subsets of a space X. If X is a compact Hausdorff space, the set expX is
endowed with the Vietoris topology, whose base consists of the sets of the
form

〈U1, . . . , Un〉 =
{
A ∈ expX

∣∣∣A ⊂ n⋃
i=1

Ui, A ∩ Ui 6= ∅, i = 1, . . . , n
}
,

where U1, . . . , Un are open subsets in X.
A capacity on a space X is a function c : expX ∪ {∅} → I with the

properties:

(1) c(∅) = 0, c(X) = 1;
(2) if F , G are closed inX and F ⊂ G, then c(F ) ≤ c(G) (monotonicity);
(3) if F ⊂ X is closed and c(F ) < a, then there exists an open set U ⊃ F

such that c(G) < a for every G ⊂ U (upper semicontinuity).

Remark. A capacity on a Hausdorff space X is often defined (e.g.
in [12]) as a function c on the set of all subsets of X, but the property
of inner regularity is demanded, which states that for any set A ⊂ X the
value c(A) is equal to the supremum of c(K) for all compact setsK ⊂ X such
that K ⊂ A. The property (3) is required only for compact sets F ⊂ X and
is called outer regularity. It is obvious that the restriction of such a capacity
to the set of all compact subsets of X satisfies (1)–(3), and any function that
satisfies (1)–(3) extends to a unique capacity in the latter sense. Thus we will
regard a capacity as a function defined for compact (= closed) subsets of X
only, but inner regularity is considered as a useful convention that extends
a capacity to all subsets.

Any probability measure on a compactum X is a capacity, but the con-
verse is false. Choose upper semicontinuous functions f1, . . . , fn : X → I
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such that max fi = 1 for all i = 1, . . . , n. Then the formulae

c(F ) = min{max f1|F , . . . ,max fn|F }

and
c′(F ) = max{inf(1− f1)|X\F , . . . , inf(1− fn)|X\F }

define capacities that are not probability measures in general.
The set of all capacities on X is denoted byMX. We endow the setMX

with the topology whose subbase consists of the sets of the form

O−(F, a) = {c ∈MX | c(F ) < a},

where F is a closed subset in X, a ∈ R, and

O+(U, a) = {c ∈MX | c(U) > a}
= {c ∈MX | c(F ) > a for some closed subset F ⊂ U},

where U is an open subset inX and a ∈ R. ThenMX is a compact Hausdorff
space.

Given a continuous map f : X → Y of compact Hausdorff spaces, we de-
note byMf : MX →MY the map acting as follows:Mf(c)(F ) = c(f−1(F ))
for any closed subset F in Y . This map is continuous, and we obtain a functor
M in the category Comp. We let M2 = MM .

The functor M is part of the capacity monad M = (M,η, µ) that was
investigated in detail in [19].

If X is a compact Hausdorff space, then the mappings ηX : X → MX
and µX : M2X →MX are defined by the formulae

ηX(x)(F ) =
{

1, x ∈ F ,
0, x /∈ F ,

µX(C)(F ) = sup {a ∈ I | C({c ∈MX | c(F ) ≥ a}) ≥ a}

for C ∈M2X and F ∈ expX ∪ {∅}.
The collections of ηX and µX for all compacta X are natural transfor-

mations [11] η : 1Comp → M and µX : M2 → M . This means that for any
continuous map f : X → Y of compacta we have Mf ◦ ηX = ηY ◦ f and
Mf ◦ µX = µY ◦M2f . Moreover, the triple M = (M,η, µ) is a monad [19],
i.e. µX ◦MηX = µX ◦ ηMX = 1MX and µX ◦MµX = µX ◦ µMX for
each compactum X. For general questions concerning monads (also called
triples) see [11].

A capacity c on a compactum X is called a ∪-capacity if c(F ∪ G) =
max{c(F ), c(G)} for any closed sets F,G in X. The set M∪X of all ∪-
capacities on X is closed in MX, and for any continuous map of compacta
f : X → Y we have Mf(M∪X) ⊂ M∪Y . Therefore we obtain a subfunctor
M∪ of M . Moreover, the inclusions ηX(X) ⊂ M∪X and µX(M∪(M∪X)) ⊂
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M∪X allow us to define a submonad M∪ = (M∪, η∪, µ∪) of the capacity
monad M = (M,η, µ) [10].

A capacity c on a compactum X is called a ∩-capacity if c(F ∩ G) =
min{c(F ), c(G)} for any closed sets F,G in X. The set M∩X of all ∩-
capacities on X is closed in MX, and for any continuous map of compacta
f : X → Y we have Mf(M∩X) ⊂ M∩Y . Therefore we obtain a subfunc-
tor M∩ of M . The inclusions ηX(X) ⊂ M∩X and µX(M∩(M∩X)) ⊂ M∩X
allow us to define a submonad M∩ = (M∩, η∩, µ∩) of the capacity monad
M = (M,η, µ) [10].

The functors M∪ and M∩ have all the properties of normal functor (see
[14] for the definition). Similarity between M∪ and M∩ is not accidental. For
a capacity c ∈MX, the function c̃ : expX ∪{∅} → I defined by the formula

c̃(F ) = 1− sup{c(G) | G⊂cl X, G ∩ F = ∅}

is a capacity on X as well. It is called the dual capacity to c. The map
κX : MX →MX that sends each capacity to its dual is a homeomorphism.
We use the facts from [19] that κX ◦ κX = 1X and κX(M∪X) = M∩X for
any compactum X. In fact, the collection of maps (κX) for all compacta X
is a natural isomorphism between the functors M∪ and M∩.
∪-capacities are called sup-measures in [12], but we prefer a non-standard

terminology to emphasize the duality between ∪- and ∩-capacities.
Let C+(X) denote the set of all nonnegative continuous functions on X.

The Choquet integral of ϕ ∈ C+(X) with respect to c ∈ MX is defined as
follows:

Ic(ϕ) =
�
ϕ(x) dc(x) =

∞�

0

c({x ∈ X | ϕ(x) ≥ a}) da.

One can identify every capacity c with the corresponding Choquet inte-
gral Ic. If ϕ ∈ C+(X), we write c(ϕ) instead of Ic(ϕ). The diagonal map
c 7→ (c(ϕ))ϕ∈C+(X) embeds the set MX into the product RC+(X). We en-
dow MX with the topology induced by this embedding (weak∗ topology).
A subbase of this topology is formed by the sets of the form

O−(ϕ, a) = {c ∈MX | c(ϕ) < a} and O+(ϕ, a) = {c ∈MX | c(ϕ) > a},

where ϕ ∈ C+(X), a ∈ R. It is known [19] that the weak∗ topology on MX
coincides with the previously defined topology. The space PX of probability
measures on X endowed with the weak∗ topology is clearly a closed subspace
of MX.

For a closed subset A ⊂ X we identify a capacity c ∈ MA with its
image Mi(c) ∈ MX, where i : A ↪→ X is the inclusion map. Then MA is a
closed subspace of MX. The same identification is applicable to probability
measures.
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An onto map of compacta is open if and only if the preimage of each point
depends on this point continuously with respect to the Vietoris topology [17].
For onto maps of compact metric spaces, the property of openness of an onto
map is equivalent to that of 0-softness [15]. A map f : X → Y is 0-soft if
for any zero-dimensional paracompact space Z, a closed subset Z0 of Z and
maps g0 : Z0 → X and g : Z → Y such that f ◦ g0 = g|Z0 , there exists a
map ḡ : Z → X such that ḡ|Z0 = g0 and f ◦ ḡ = g.

Given continuous maps of compacta f : B → A and g : C → A, we denote
by B×AC the subspace {(b, c) | b ∈ B, c ∈ C, f(b) = g(c)} ⊂ B×C. Below,
the notation B ×A C is used when there is no ambiguity about the maps
f : B → A and g : C → A.

Let p1 : B ×A C → B, p2 : B ×A C → C be the restrictions of prB×C1

and prB×C2 . Then B ×A C along with p1, p2 is the pullback [11] of f , g in
the category of compacta. If u : D → B and v : D → C are such that
f ◦ u = g ◦ v, i.e. the outer square in the diagram

D

u

��

v //

h

$$HHHHHHHHH C

g

��

B ×A C
p2

;;vvvvvvvvv

p1

zzvvvvvvvvv

B
f

// A

commutes, then the map h : D → B ×A C, h(t) = (u(t), v(t)) for t ∈ D, is
called the characteristic map of this square. It is the unique map such that
p1 ◦ h = u and p2 ◦ h = v. If it is a surjection, then the square that consists
of u, v, f, g is called bicommutative [14, 15].

Recall that an inverse σ-system S = {Xα, pαβ}α,β∈A is an inverse system
satisfying the conditions:

(1) the directed set A is σ-complete (i.e., each of its countable subsets
has the least upper bound);

(2) all Xα are metrizable compacta;
(3) S is continuous, i.e., for any γ ∈ A, lim←−{Xα, pαβ}α,β<γ = Xγ

(see [14]). A morphism of a σ-system S = {Xα, pαβ}α,β∈A into a σ-system
S ′ = {X ′α, p′αβ}α,β∈A is a collection (fα)α∈A of maps such that p′αβfα =
fβpαβ for all α, β ∈ A, β ≤ α.

3. Milyutin maps. Recall that a map f : X → Y is called a Mi-
lyutin map if there exists a map s : Y → PX such that, for any y ∈ Y ,
s(y) ∈ P (f−1(y)) ⊂ PX (see [13]; the term “Milyutin map” was first used
by Shchepin [16]). It is known [13] that for any compact metrizable space
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X there exists a Milyutin map f : Z → X, where Z is a zero-dimensional
compact metrizable space.

We call a map f : X → Y a Milyutin map for capacities if there exists a
map s : Y →MX such that, for any y ∈ Y , s(y) ∈M(f−1(y)) ⊂M(X). As
PX is a subset of MX, and s(y) ∈ P (f−1(y)) implies s(y) ∈ M(f−1(y)),
we immediately obtain

Proposition 3.1. Let X be a compact metrizable space. There exists
a Milyutin map for capacities f : Z → X, where Z is a zero-dimensional
compact metrizable space.

A map f : X → Y is called a Milyutin map for ∪-capacities if there exists
a map s : Y →M∪X such that, for any y ∈ Y , s(y) ∈M∪(f−1(y)) ⊂M∪X.

Proposition 3.2. Let X be a compact metrizable space. There exists a
Milyutin map f : Z → X for ∪-capacities, where Z is a zero-dimensional
compact metrizable space.

Proof. Actually, the proof is a modification of that of [1, Lemma 8] (see
also [2] and [3]). One can easily construct a sequence (Wn)n∈ω, where each
Wn is a finite set of pairs (A,B) such that:

(1) W0 = {(X,X)};
(2) A,B ⊂cl X, A ⊂ IntB for any (A,B) ∈ Wn, n ∈ ω;
(3) diamB < 1/n for any (A,B) ∈ Wn, n ∈ N;
(4) {A | (A,B) ∈ Wn} is a cover of X for each n ∈ ω.
We denote by

∐
the topological sum of disjoint copies of topological

spaces. Let Xn =
∐
{B | (A,B) ∈ Wn}, n ∈ ω, in particular, X0 = X.

Define a map fn : Xn → X so that its restriction to each B for (A,B) ∈ Wn

is the inclusion map B ↪→ X. Denote by Z the subspace of
∏
n∈ωXn that

consists of all (xn) such that there exists x0 ∈ X with fn(xn) = x0 for each
n ∈ N.

Let pk : Z → Xk be the kth projection: pk((xn)) = xk, and denote
p0 : Z → X by f . It is obvious that Z is a zero-dimensional metrizable
compactum, and f is a continuous surjective map.

We also choose a sequence of continuous maps ϕn : Xn → I, n ∈ N, such
that for any (A,B) ∈ Wn we have ϕn(A) ⊂ {1}, ϕn(B \ IntB) ⊂ {0} (IntB
is taken in X, but A and B \ IntB are regarded as subsets of Xn).

For any x ∈ X define a function cx : expZ ∪ {∅} → I by the formula

cx(F ) = sup{inf{ϕk(xk) | k = 1, 2, . . . } | (xn) ∈ F, f((xn)) = x}
(here we assume sup ∅ = 0).

All sets Ok,a = ϕ−1
k ((−∞, a)) for a ∈ R, k ∈ N are open in the cor-

responding Xk. If cx(F ) < a, then for any z = (xn) ∈ f−1(x) ∩ F we
can fix kz ∈ {1, 2, . . . } such that ϕkz(xkz) < a, thus (xkz) ∈ Okz ,a. Then
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{p−1
kz

(Okz ,a) | z ∈ f−1(x)∩F} is an open cover of the compactum f−1(x)∩F ,
therefore we can choose a finite subcover p−1

k1
(Ok1,a), . . . , p

−1
km

(Okm,a), with
all ki being pairwise distinct. Let

W = p−1
k1

(Ok1,a) ∪ · · · ∪ p
−1
km

(Okm,a) ∪ (Z \ f−1(x)).

Then W is an open neighborhood of F .
If G ⊂cl Z and G ⊂ W , choose any z′ = (x′n) ∈ G ∩ f−1(x). Then

x′ki
∈ Oki,a for some i ∈ {1, . . . ,m}, and

inf{ϕk(x′k) | k ∈ N} ≤ ϕki
(x′ki

) < a.

This implies cx(G) < a, and cx is a capacity on X. It is straightforward to
show that cx is a ∪-capacity and cx ∈M(f−1(x)).

Define a map s : X →M∪Z by the formula s(x) = cx. To prove the con-
tinuity of s, consider the preimages under s of subbase elements O−(F, a) =
{c ∈MX | c(F ) < a}, where F is a closed subset in X, a ∈ R, a ≤ 1, and of

O+(U, a) = {c ∈MX | c(U) > a}
= {c ∈MX | c(F ) > a for some closed subset F ⊂ U},

where U is an open subset in X, a ∈ R, a ≥ 0.
Let x ∈ s−1(O−(F, a)), i.e. cx(F ) < a, and let Ok1,a, . . . , Okm,a be the

open sets defined above. The set

V = X \ f(F \ (p−1
k1

(Ok1,a) ∪ · · · ∪ p
−1
km

(Okm,a)))

is open and contains x. If x′ ∈ V , z′ = (x′n) ∈ F , f(z′) = x′, then x′ki
∈ Oki,a

for some i ∈ {1, . . . ,m}. Thus
inf{ϕk(x′k) | k = 1, 2, . . . } ≤ ϕki

(x′ki
) < a

again, and cx′(F ) < a, i.e. x′ ∈ s−1(O−(F, a)). This implies that the preim-
age s−1(O−(F, a)) is open.

Let x ∈ s−1(O+(U, a)) for a ≥ 0, i.e. there exist b > a, z = (xn) ∈
f−1(x) ∩ U such that ϕk(xk) > b for all k ∈ N. We can choose an open
neighborhood of the form V = p−1

k1
(V1)∩ · · · ∩p−1

km
(Vm) such that z ∈ V ⊂ U

and all Vi are open in the corresponding Xki
. If xki

∈ B ⊂ Xki
for (A,B) ∈

Wki
, then ϕki

(xki
) > b > 0 implies xki

∈ IntB. Let

V ′i = Vi ∩ IntB ∩ ϕ−1
ki

((b,∞)), V ′ = fk1(V ′1) ∩ · · · ∩ fkm(V ′m).

Then V ′ is an open neighborhood of x in X, and for any x′ ∈ V ′ we choose
z′ = (x′n) such that

x′k =
{
t ∈ V ′i such that fk(t) = x′ if k ∈ {k1, . . . , km},
any t ∈ Xk such that fk(t) = x′, ϕk(t) = 1 if k /∈ {k1, . . . , km}.

In the latter case t exists due to (4) and properties of ϕk. Then z′ ∈ V ⊂
U and ϕk(x′k) > b for all k = 1, 2, . . . , thus cx′(U) ≥ b > a, and x′ ∈
s−1(O+(U, a)). This implies that the preimage s−1(O+(U, a)) is open as well,
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and the map s : X → M∪Z is continuous. Thus s is the required Milyutin
map for ∪-capacities.

Recall that a capacity c ∈ MX is a ∩-capacity if and only if κX(c)
is a ∪-capacity. It is also obvious that c ∈ MA for A ⊂cl X if and only if
κX(c) ∈MA.

This allows us to easily obtain a statement dual to the previous one. A
map f : X → Y is called a Milyutin map for ∩-capacities if there exists a
map s : Y →M∩X such that for any y ∈ Y , s(y) ∈M∩(f−1(y)) ⊂M∩X.

Proposition 3.3. Let X be a compact metrizable space. There exists a
Milyutin map f : Z → X for ∩-capacities, where Z is a zero-dimensional
compact metrizable space.

Proof. Let f : Z → X be the Milyutin map for ∪-capacities, that was
constructed in the previous theorem, and suppose s : X → M∪Z satisfies
the condition s(x) ∈ M∪(f−1(x)) ⊂ M∪Z for all x ∈ X. Then the map
s′ = κX ◦ s : X → M∩Z satisfies the condition s′(x) ∈ M∩(f−1(x)) ⊂ M∩Z
for all x ∈ X. Thus f is also a Milyutin map for ∩-capacities.

Remark. It is obvious that if Z̃ is a zero-dimensional metrizable com-
pactum, r : Z̃ → Z is a retraction and f : Z → X is a Milyutin map for
either of the above mentioned functors, then f ◦ r : Z̃ → X is a Milyutin
map as well. Any metrizable zero-dimensional compactum Z is a retract of
Z × C ∼= C, therefore we can assume in the last three propositions that
Z = C.

4. Open mapping theorems. The following is the main result of the
paper.

Theorem 4.1. Let f : X → Y be an open continuous map of compact
Hausdorff spaces. Then the map Mf : MX →MY is also open.

Proof. For any cartesian product X1×· · ·×Xn we denote by prX1×···×Xn
i

its projection onto the ith factor and by prX1×···×Xn
ij its projection onto the

product of the ith and jth factors.
By Shchepin’s spectral theorem [15, 17] an open surjective map of com-

pacta is induced by a morphism of σ-systems with all components being open
surjective maps of metrizable compacta. Thus it is sufficient to consider the
case of metrizable X and Y . We first assume that X and Y are finite, and
f : X → Y is surjective. Then the mapMf : MX →MY is an affine map of
convex subsets of linear spaces. These sets, being the convex hulls of finite
sets, are convex polyhedra, which implies the openness of Mf .

Let C denote the Cantor set. Let us prove that the map M(prC×C1 ) is
open. To this end, represent C as lim←−{Ci, fij}, where Ci are finite sets and
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fij : Ci → Cj are surjections for i ≥ j. According to [14], in order to prove
that M(prC×C1 ) is open, it is sufficient to prove that the diagram

M(Ci × Ci)

Mpr
Ci×Ci
1

��

M(fij×fij) // M(Cj × Cj)

Mpr
Cj×Cj
1

��
MCi

Mfij) // MCj

is bicommutative.
Let (c′, c′′) ∈M(Cj×Cj)×M(Cj)M(Ci) and c=Mfij(c′)=MprCj×Cj

1 (c′′).
Given A ⊂ Cj , find B ⊂ Ci and D ⊂ Cj×Cj such that fij(B) = prCj×Cj

1 (D)
= A and c′(B) = c′′(D) = c(A). Let

α(A,B,D) = (prCi×Ci
1 , fij × fij)−1(B ×A D) ⊂ Ci × Ci.

Define ĉ ∈ M(Ci × Ci) as follows: given X ⊂ Ci × Ci, let ĉ(X) be the
maximal value of c(A), where A ⊂ Cj is such that there exist B,D as above,
for which X ⊃ α(A,B,D). It is easy to see that ĉ is well-defined and

MprCi×Ci
1 (ĉ) = c′, M(fij × fij)(ĉ) = c′′.

Therefore, the map MprC×C1 : M(C × C)→MC is open.
Let X be a metrizable compactum and K ⊂ C ×X a closed subset such

that the restriction π : K → C of prC×X1 is an open onto map. We choose a
continuous surjection ϕ : C → X and by the 0-openness of π we can add a
dotted arrow to the following commutative diagram (i is the inclusion):

(1C × ϕ)−1(K)
1C×ϕ //

� _

i

��

K

π

��
C × C

prC×C
1 //

h

88

C

Then prC×C1 = π ◦h impliesMprC×C1 = Mπ ◦Mh. The functorM preserves
the property of h being surjective, thus Mπ is open as well (see also [9,
Lemma 1]).

Now, consider an open surjective map f : X → Y of compact metrizable
spaces. Let p : Z → Y be a Milyutin map, where Z is a compact metrizable
zero-dimensional space. We may assume that Z is homeomorphic to the
Cantor set and s : Y → MZ is a map such that s(y) ∈ M(p−1(y)), thus
Mp ◦ s(y) = ηY (y), for every y ∈ Y . Let

K = Z ×Y X = {(z, x) ∈ Z ×X | p(z) = f(x)}.

Denote by π1 : K → Z and π2 : K → X the restrictions to K of prZ×X1 and
prZ×X2 . Since f is open, the preimage π−1

1 (z) = {z}×f−1(p(z)) is nonempty
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and depends on z ∈ Z continuously, which implies that π1 : K → Z is open
and surjective. By the above Mπ1 : MK →MZ is also open and surjective.

For every x ∈ X let ix : Z → Z × X be defined by ix(z) = (z, x).
It is obvious that all values of the map g : X → M(Z × X) defined by
g(x) = Mix(s(f(x))) are contained in MK.

Consider a sequence (ci) inMY converging to c0 and c̃0 ∈MX such that
Mf(c̃0) = c0. Let c̃′0 = µK ◦Mg(c̃0).

Recall that (M,η, µ) is a triple, thus we have

Mπ2(c̃′0) = MprZ×X2 ◦ µ(Z ×X) ◦Mg(c̃0))

= µX ◦M2prZ×X2 ◦Mg(c̃0) = µX ◦MηX(c̃0) = c̃0.

For every i = 0, 1, . . . , define c′i = µZ ◦Ms(ci). Then

Mp(c′i) = Mp ◦ µZ ◦Ms(ci) = µY ◦M2p ◦Ms(ci)
= µY ◦M(Mp ◦ s)(ci) = µY ◦MηY (ci) = ci.

We also have

Mπ1(c̃′0) = MprZ×X1 ◦ µ(Z ×X) ◦Mg(c̃0)

= µZ ◦M2prZ×X1 ◦Mg(c̃0) = µZ ◦M(MprZ×X1 ◦ g)(c̃0)
= µZ ◦M(s ◦ f)(c̃0) = µZ ◦Ms ◦Mf(c̃0)
= µZ ◦Ms(c0) = c′0.

By the openness of the map Mπ1 : MK →MZ, there exists a sequence (c̃′i)
in MK such that limi→∞ c̃

′
i = c̃′0 and Mπ1(c̃′i) = c′i. Denote c̃i = Mπ2(c̃′i),

i = 1, 2, . . . . Then

lim
i→∞

c̃i = lim
i→∞

Mπ2(c̃′i) = Mπ2( lim
i→∞

c̃′i) = Mπ2(c̃′0) = c̃0.

Note also that

Mf(c̃i) = Mf ◦Mπ2(c̃′i) = M(f ◦ π2)(c̃′i) = M(p ◦ π1)(c̃′i) = Mp(c′i) = ci.

This proves that Mf is an open map.

Theorem 4.2. Let f : X → Y be an open continuous map of compact
Hausdorff spaces. Then the map M∪(f) : M∪(X)→M∪(Y ) is also open.

Proof. This theorem is a counterpart of the previous one, and the method
is the same, so we only point out the parts of the proof that cannot be
obtained mutatis mutandis.

First, for a finite compactum X the set M∪X is not convex in the usual
sense: for c1, c2 ∈M∪X and 0 < λ < 1 the function c on expX∪{∅}, defined
by c(F ) = λc1(F ) + (1 − λ)c2(F ), does not necessarily belong to M∪X.
Nevertheless, a capacity c ∈ M∪X allows a simple representation. If X =
{x1, . . . , xn}, denote αX(c) = (a1, . . . , an), where ai = c({xi}). Then c(F ) =
max{ai | xi ∈ F, 1 ≤ i ≤ n} for F ∈ expX∪{∅} (here we assume max ∅ = 0).
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All vectors αX(c) that correspond to capacities c from M∪X form a closed
subset In∗ in In that is determined by the equality max{a1, . . . , an} = 1. It
is easy to check that αX : M∪X → In∗ is a homeomorphism.

To prove that M∪ preserves openness of maps of finite compacta, it
suffices to consider only the case f : X → Y , X = {x1, . . . , xn}, Y =
{y1, . . . , yn−1}, f(x1) = y1, f(x2) = y2, . . . , f(xn−2) = yn−2, f(xn−1) =
f(xn) = yn−1. This is equivalent to proving the openness of F = αY ◦M∪f ◦
α−1
X : In∗ → In−1

∗ . Obviously,

F (a1, . . . , an) = (a1, . . . , an−2,max{an−1, an}).
Then for b = (b1, . . . , bn−1) ∈ In−1

∗ we have

F−1(b) = {b1} × · · · × {bn−2} × ({bn−1} × [0; bn−1] ∪ [0; bn−1]× {bn−1})}.
Then F−1 : In−1

∗ → exp In∗ is continuous, thus F and therefore M∪F are
open.

We also need to reprove that the characteristic map

(M∪prCi×Ci
1 ,M∪(fij × fij)) : M∪(Ci × Ci)→M∪Ci ×M∪Cj M∪(Cj × Cj)

= {(c′, c′′) ∈M∪Ci ×M∪(Cj × Cj) |M∪fij(c′) = M∪prCj×Cj

1 (c′′)}
is an onto map.

Consider a slightly more general case. Let

D
g //

f
��

C

k
��

B
h // A

be a bicommutative diagram that consists of finite compacta and subjections.
If c1 ∈ M∪B, c2 ∈ M∪C, M(h)(c1) = M(h)(c2), then define a function
ĉ : expD ∪ {∅} → I by

ĉ(F ) = max{min{c1({f(d)}), c2({g(d)})} | d ∈ F}.
It is straightforward to verify that ĉ ∈ M∪D, M∪f(ĉ) = c1, M∪g(ĉ) =
c2, i.e., the characteristic map (M∪f,M∪g) : M∪D → M∪B ×M∪A M∪C,
(M∪f,M∪g)(c) = (M∪f(c),M∪g(c)) for c ∈M∪D, is surjective.

By duality it is trivial to obtain also

Theorem 4.3. Let f : X → Y be an open continuous map of compact
Hausdorff spaces. Then the map M∩f : M∩X →M∩Y is also open.

5. Final remarks. A capacity c ∈MX is called convex (resp. concave)
if c(F ∪G)+c(F ∩G) ≥ c(F )+c(G) (resp. c(F ∪G)+c(F ∩G) ≤ c(F )+c(G))
for any closed sets F , G in X.
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We denote byM cX (resp.McX) the set of convex (resp. concave) capac-
ities on a compactum X. It is easily seen that M c and Mc are subfunctors
of the functor M . We leave it as an open question whether the maps M cf
and Mcf are open for an open map f .

Acknowledgements. The authors are sincerely indebted to the anony-
mous referee for his/her remarks.
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