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Coherent adequate sets and forcing square
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John Krueger (Denton, TX)

Abstract. We introduce the idea of a coherent adequate set of models, which can be
used as side conditions in forcing. As an application we define a forcing poset which adds
a square sequence on ws using finite conditions.

In previous work [3] we introduced the idea of an adequate set of models
and showed how to use adequate sets as side conditions in forcing with finite
conditions. We gave several examples of forcing with adequate sets, including
forcing posets for adding a generic function on we, adding a nonreflecting
stationary subset of wy, adding a Kurepa tree on wi, and in [4] adding a
club to a fat stationary subset of ws. The main result of the present paper
is to define a forcing poset using adequate sets which adds a [, -sequence.

The idea of using models as side conditions in forcing goes back to
Todorcevi¢ [6], where the method was applied to add generic objects of
size wy with finite approximations. In the original context of applications of
PFA, the preservation of wy was not necessary. To preserve wy, Todorcevié
introduced the requirement of a system of isomorphisms on the models in a
condition.

In the present paper we introduce the idea of a coherent adequate set
of models. A coherent adequate set is essentially an adequate set in the
sense of [3] which also satisfies the existence of a system of isomorphisms in
the sense of Todor¢evi¢. Combining these two ideas turns out to provide a
powerful method for forcing with side conditions. As an application we define
a forcing poset which adds a square sequence on wy using finite conditions.

We assume that the reader is familiar with the basic theory of adequate
sets as described in Sections 1-3 of [3]. Our treatment of coherent adequate
sets owes a lot to the presentation of nicely arranged families given by Abra-
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ham and Cummings [I]. Forcing a square sequence with finite conditions was
first achieved by Dolinar and Dzamonja [2] using the Mitchell style of models
as side conditions [5]. An important difference is that the clubs which appear
in the square sequence added by their forcing poset belong to the ground
model, whereas for us the clubs are themselves generically approximated by
finite fragments.

1. Adequate sets. In this section we review the material on adequate
sets which we will use. Throughout the paper we assume that 2% = w; and
291 = w9.

Let 7 be a bijection of wy onto H(wsz). Fix a set of definable Skolem
functions for the structure (H(ws2),€,m). For any set a C ws, let Sk(a)
denote the closure of a under these Skolem functions. Let C* be the club
set of 8 < wy such that Sk(8) Nwy = 5. Let A := C* N cof(wy). Note that
any ordinal in A is also a limit point of C*.

Let X be the set of countable M C wy such that Sk(M) Nws = M and
for all v € M, sup(C* N~) € M. Note that X is a club subset of P, (w2).
If M € X then Sk(M) = =n[M]. It follows that if M and N are in X
and N € Sk(M), then Sk(N) € Sk(M). If a and b are in X U A, then
Sk(a) N Sk(b) = Sk(a Nb) (see [3, Lemma 1.4]). This implies that if M € X
and € A, then M NpeX.

If M € X and f € ANsup(M), then min(M \ 8) is in A. Clearly
min(M \ 8) has cofinality w;. If this ordinal is not in A, then it is not a limit
point of C*. Also 8 # min(M \ ), so sup(M N B) < S < min(M \ ). Hence
sup(C* Nmin(M \ 3)) is below min(M \ 8) and is in M by the definition
of X. In particular this supremum is below 5. This is a contradiction since
B is in C*.

Let M be in X. A set K is an initial segment of M if either K = M or
there exists § € M N A such that K = M N §. So any initial segment of M
is also in X. If M and N are in X and N € Sk(M), then since N has only
countably many initial segments, they are all members of Sk(M).

Since 2¢ = wy, for all g € A, X N P(B) C Sk(B). For since cf(f) = w1,
every member of X N P(B) belongs to B, () for some v < . And since
w1 C Sk(p), we have B, () € Sk(5). In particular, if M € X and € 4,
then M N g € Sk(B).

For a set M € X, let Ap; denote the set of 8 € A such that

B = min(A \ sup(M N B)).
In other words, 8 € Ay if B € A and there are no elements of A strictly
between sup(M N ) and B. For M and N in X, Apy; N Ayx has a largest

element (see [3, Lemma 2.4]). We denote this largest element by B n,
which is called the comparison point of M and N. An important property
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of the comparison point is the following:
(M Ulim(M)) N (N UlLm(N)) C Bu,n
(see [3, Proposition 2.6]).

DEFINITION 1.1. A set A C X is adequate if for all M and N in A, either
MnNOBunN € Sk(N), NNBun € Sk(M), or MnNBun=NNBun.

Note that a set A C X is adequate iff for all M and N in A, {M, N} is
adequate. If { M, N'} is adequate, then M NGy n € Sk(N) iff MNw; < NNwy,
and MQBM,N = Nﬂ,@MJV iff M Nwy = N Nuws.

Suppose that {M, N'} is adequate. If MNBy v = NNBu,N, then MNN =
MﬂﬂMJV. And if M ﬂﬁMyN € Sk(N), then M NN = MﬂﬁMJ\f.

The next lemma records some important technical facts about compari-
son points which are used frequently. The proofs can be found in Section 3

of [3].
LEMMA 1.2.

(1) Let M € X, p € A, and suppose M C . Then Byn < B for all
NeX.

(2) Let K,M,N € X, and suppose M C N. Then fx.m < Bk N-

(3) Let M and N bein X, and B A. If Byr,n < B, then Bar,n = Bang,N -

(4) Let M and N be in X, and B € A. If N C 3, then Byu,N = Bymng,N-

Another important fact is that if {M, N} is adequate and 8 € A, then
{M N pB,N NG} is adequate (see [3, Lemma 3.3]).

LEMMA 1.3. If {M N Bun,NNPBun} is adequate, then so is {M,N}.

Proof. Let B := fBum,n. Since § < f, Lemma 1.2(3) implies that § =
Byng,n- And as MNB C B, Lemma 1.2(4) implies that Sayns,N = Brng,Nns-
Hence 8 = Bunp,nng- In particular, (M N B) N Byng,nng = M N S and
(NNnpg)n BMQB,NOB = NNpB. Soif (MnpB)n BMﬂﬁ,Nﬁﬂ € Sk(N N B)
then M N € Sk(N), and similarly if (NN B) N Barng,nng € Sk(M N G) then
NN e Sk(M). Also the equality (M NB)NBrng,nnsg = (NNB)NBring,NAg
is equivalent to the equality M NB=NNS. n

2. Coherent adequate sets. In the basic theory of adequate sets,
we identify a set M in X' with Sk(M), and oftentimes with the structure
(Sk(M), €, 7NSk(M)), which is an elementary substructure of (H (w2), €, 7).
For any set P C H(wz) and M € X, let Py := PN Sk(M). In the context
of coherent adequate sets we are interested in the expanded structure

M = (Sk(M), €, mpr, Xar, Anr)-

Note that 9t is not necessarily an elementary substructure of (H(ws), €,
m, X, A). In general if a set in X is denoted with a particular letter, we use
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the Fraktur version of the letter to denote the above structure on its Skolem
hull.

Let M and N be in X. We say that M and N are isomorphic if the
structures 9 and O are isomorphic. In other words, M and N are isomorphic
if there exists a bijection o : Sk(M) — Sk(N) such that for all x and y
in Sk(M):

(1) zeyiff o(z) € o(y);

(2) m(z) =y iff m(o(z)) = o (y);
(3) xe X iff o(x) € X;

(4) z € Aiff o(x) € A

In particular, such a map o is an isomorphism from (Sk(M), €) to (Sk(N), €).
Since these structures model the axiom of extensionality, such an isomor-
phism is unique if it exists. In that case, let ops y denote the unique iso-
morphism from 9 to 1. Note that if M, N, and K are isomorphic, then
OMN = OKNOOMK-

For M € X, let 9 denote the transitive collapse of the structure 91, and
let o3 : M — 9 be the collapsing map. Note that M and N are isomorphic
iff 9 = M. In that case, by the uniqueness of isomorphisms we have

OM,N = a&l ooN.

Suppose that M and N are isomorphic and a € Sk(M) is countable. We
claim that oy v (a) = oa,n[a]. Since a and oy, v (a) are countable, we have
a C Sk(M) and oy, n(a) C Sk(N). Hence z € a implies oy, v (2) € on,n(a),
so that oy n[a] € oarn(a). On the other hand, if z € opr n(a), then for
some x € Sk(M), oy n(z) = z, which implies that = € a. So z € oy n|al.

LEMMA 2.1. Let M and N be isomorphic, and K € Sk(M) N X. Let
K* = oy n(K). Then oy n(Sk(K)) = Sk(K™), K and K* are isomorphic,
and O’M7NfSk<K) = O0K,K*-

Proof. Since K is countable, K* = oy n[K]. For all o € K, we have
omn(m(a)) = m(opm n()). It follows that

om,N (Sk(K)) = on N [Sk(K)] = onn[m[K]]
= 7mlom,n[K]] = 7[K*] = Sk(K™).
So o, n [ Sk(K) is a bijection from Sk(K) to Sk(K™), and it clearly preserves

the predicates €, m, X', and A. Hence oy v [ Sk(K) is an isomorphism of &
to 8. So K and K™ are isomorphic and ok g+ = opn[ Sk(K). =

LEMMA 2.2. Let M and N be isomorphic, and let K be an initial seg-
ment of M. Let K* := oy n[K]|. Then K* is an initial segment of N,
om,N[Sk(K)] = Sk(K*), K and K* are isomorphic, and op n|Sk(K)
= OK,K*-
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Proof. This is clear if M = K. Otherwise there is § € M N A such
that K = M N 3. Then oy n(8) € NN A, and easily K* = N Moy n(B).
By the argument from the previous lemma, oy n[Sk(K)] = Sk(oam n[K])
= Sk(K™), and o v | Sk(K) is an isomorphism of Sk(K') to Sk(K™*). Hence
K and K* are isomorphic, and oy v [ Sk(K) = o g+. u

Suppose that M N By n = N N By,n, and M and N are isomorphic.
Applying the previous lemma, oy n[(M N Bar,n) is an isomorphism of
M N Bar,n to the initial segment oy v[M N Bar,n] of N. But the latter initial
segment has the same order type as the initial segment N N Bas n, so it is
equal to it. Hence oy n [ Sk(M N Bar,n) is an isomorphism of Sk(M N Sa,n)
to itself, and therefore it is the identity map. But M N Sy y = M N N. In
particular, we have proven the following lemma.

LEMMA 2.3. Let {M,N} be adequate, where M and N are isomorphic
and MO By = NNPBun. Then oy n | Sk(MNN) is the identity function.

We now introduce the most important idea of the paper.

DEFINITION 2.4. Let A C X. Then A is a coherent adequate set if A is
adequate and for all M and N in A:

(1) if M N By,n = NN BN, then M and N are isomorphic;

(2) if M N Bu,n € Sk(N), then there exists N’ in A such that M €
Sk(N’) and N and N’ are isomorphic;

(3) if MQBM,N =N ﬂﬂMJv and K € AN Sk(M), then UM7N(K) e A.

Recall that if A is adequate and M and N are in A, then M N By N €
Sk(N) iff MNwi1 < NNwy, and MQBM,N = NHBM,N iff MNwi = NNwq. It
follows that a finite adequate set A is coherent iff the set {Sk(M) : M € A}
is a nicely arranged family in the sense of Definition 3.3 of [I].

Also note that if M and N are in X and are isomorphic, then M Nw; =
NNw;. For in that case oy n(w1) = w1, and therefore oy N[MNwi] = NNwy.
But this implies that M Nw; and N Nw; have the same order type and thus
are the same ordinal. Consequently, the following are equivalent for M and
N in a coherent adequate set: (1) MNwy = NNwi; (2) MNBu,n = NOBwm N
(3) M and N are isomorphic.

LEMMA 2.5. Let A be a coherent adequate set. Let M and K be in A. If
K N Brm € Sk(M), then there is K* in AN Sk(M) such that K and K*
are isomorphic and K N Bx v = K* N Br v

Proof. Since A is coherent, there exists M’ in A such that K € Sk(M)
and M and M’ are isomorphic. Let K* = oy pr(K). Since A is coherent,
we have K* € A. By Lemma 2.1, opp p [ Sk(K) is an isomorphism of Sk(K)
to Sk(K*) and is equal to o k+. And opp pr is the identity on M/ N M =
M' 0 Barmr = M N B - Since K C M, it follows that Sx ar < B -
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As OM' M fM,ﬂ,BM/7M is the identity, O'M/7M(KﬂﬂK’M) :O'M/7M[KO,BK7M]
= KNPk . Since oy v [ Sk(K) = ok i+, Lemma 2.2 implies that KNBk v
is an initial segment of K*. If v is in K*\ K and v < Sk a, then v < By s
implies that v = o7 (y) € K, which is a contradiction. So K N Br a =
K*nN BK,M- u

LEMMA 2.6. Suppose that A is a finite coherent adequate set, N € X,
and A € Sk(N). Then AU{N} is a coherent adequate set.

Proof. It M € A then since M € Sk(N), M N By,ny = M, which is in
Sk(N). So AU{N} is adequate, and the requirements of being coherent are
trivially satisfied. m

LEMMA 2.7. Let A be a coherent adequate set and N € A. Then AN
Sk(N) is a coherent adequate set.

Proof. Clearly ANSk(V) is adequate, and (1) of Definition 2.4 is obvious.
(3) is also straightforward. For (2), let M and K be in A N Sk(N) and
suppose that K N S € Sk(M). Since A is coherent, there exists M’ in
A such that K € Sk(M') and M and M’ are isomorphic. As M € Sk(N),
M Nwi =M Nw < NNw;. Hence M' N By v € Sk(N). By Lemma 2.5
there exists M* in A N Sk(N) such that M’ and M* are isomorphic and
M* N BM’,N =M m,BM’,N- Now K € Sk(M/) N Sk(N) = Sk(M/ NN) =
Sk(M’ mﬁM’,N) = Sk(M* ﬁﬁM/,N). So K € Sk(M*), M* € ANSk(N), and
M* and M are isomorphic. m

LEMMA 2.8. Let A be a coherent adequate set. Suppose that N, N', and
N* are in A and are isomorphic, where N'#N*. Then oy n| Sk(N'NN*) =
on+ N[(N'NN*), and for some f € NN A, this function is an isomorphism
of Sk(N' N N*) to Sk(N 1 B). Also o x| Sk(N 1 B) = o+ Sk(N N ).

Proof. By Lemma 2.3, ons n+| Sk(N' N N*) is the identity function.
Also on/ N = on+ N © oyt n+. So for any x € Sk(N' N N*), oy n(z) =
on+N(on' N+ (2)) = on+n(x). This proves that oy n[Sk(N' N N*) =
on+ N [(N"NN*). Denote this map by o.

Since N’ # N*, N’ N N* is a proper initial segment of N’ and of N*. By
Lemma 2.2, ¢[N' N N*| is equal to N N 3 for some € NN A, and ¢ is an
isomorphism of Sk(N'NN*) to Sk(N N 3). The last statement of the lemma
follows from the fact that oy n/[ Sk(N N 3) and oy n+[ Sk(NN N 3) are both
the inverse of o. =

3. Amalgamating coherent adequate sets. One of the main meth-
ods for preserving cardinals when forcing with models as side conditions
is amalgamating conditions over elementary substructures. Proposition 3.5,
which handles amalgamation over countable substructures, will be used to
prove that the forcing poset in the next section is strongly proper and
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hence preserves wy. Proposition 3.6 covers amalgamation over models of
size w1 and will be used to prove that the forcing poset in the next section
is wo-C.cC.

The next four technical lemmas will be used to prove Proposition 3.5.

LEMMA 3.1. Let M and N be in X and suppose that M and N are iso-
morphic. If o <~y arein M and AN [a,~] =0, then AN [op (@), onr,n ()]
= 0.

Proof. Suppose for a contradiction that ¢ is in AN [oa,n (), oar,n (7)]-
Let ¢* = min(N \ ¢). Then ¢* € NN AN [oam,n(c),om,n(7)]. Therefore
onm(C*) € AN [, 7], which contradicts AN [, 7] =0. =

LEMMA 3.2. Let M and N be in X. Let o < v be ordinals, where o €
M Ulm(M) and v € NUIm(N). If AN [, 7] =0, then v < Bun-

Proof. Let B=min(A\~). Then v <sup(NNpS), so f=min(A\sup(NNJ)).
Also a < sup(M N B), and since AN [, 7] = 0, f = min(A \ sup(M N B)).
Therefore g € Ay N Ay, which implies that 8 < By n. Since v is not in 4,
it follows that v < Bar,nv. =

LEMMA 3.3. Let M, N, K, and P be in X, where M and N are iso-
morphic and K and P are in Sk(M). Let 0 := oy n, K* := 0(K), and
P* = o(P). Suppose that f = min(M \ Bk p). Then o(f) = min(N \ Sx+ p+).

Proof. Let o = sup(KNp3) and v = sup(PNS). Without loss of generality
assume that o < . Since « and « have cofinality w, they are not in A. And
as a and 7 are in M and below 3, we see that o and v are less than Sk p.
Thus o = sup(K N Sk p) and v = sup(P N Bk, p).

Since Sxp € Ax N Ap, we have fxp = min(A\ o) = min(4\ 7).
So AN {[a,v] = 0. By Lemma 3.1 it follows that AN [o(a),o(y)] = 0. Since
o(a) € im(K*) and o(y) € lim(P*), Lemma 3.2 implies that Sx« px > o (7).

By the definition of 3, sup(M N B) < Bk, p. Since Bx p = min(A\ ), it
follows that for all v/ € M N[y, 8), AN[y,~'] = 0. Hence by Lemma 3.1, for all
v e NNlo(y),0(8)), AN[o(v),7*] = 0. Therefore Sx+ p+ > sup(NNo(fB)).

We will be done if we can show that Sx+ p+ < o(f). Suppose for a con-
tradiction that Sx+ p» > o(f). Let 7 = sup(K* N Bg+ p=) and & = sup(P* N
Br+ p+). Without loss of generality assume that 7 < ¢, since the other case
follows by a symmetric argument. So Sg+ p+ = min(A \ 7) = min(A4 \ &).
Since Bg= p+ > o(f) and o(f) € A, we find that 7 and & are greater than
o(B). Also clearly AN [r,&] = 0. By Lemma 3.1, AN [o~1(7),071(¢)] = 0.
Since 07(7) € lim(K) and o7 1(¢) € lim(P), Lemma 3.2 implies that
Br.p > o 1(&). But £ > o(B) implies that o~1(¢) > B. Hence Bxp > B,
which is a contradiction. =
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LEMMA 3.4. Let M, N, K, and P be in X. Suppose that M and N
are isomorphic, and K and P are in Sk(M). If {K, P} is adequate, then

{omN(K),omn(P)} is adequate.

Proof. Let 0 := oy N, K* = oy n(K), and P* = oy n(P). By
symmetry it suffices to consider the cases when K N g p € Sk(P) and
KNpBr,p = PNPk,p. First assume that B p > sup(M). Then KNPk p = K
and PN fBgp = P. If KN Bgp € Sk(P), then K € Sk(P). Therefore
o(K) € o(Sk(P)) = Sk(o(P)). Also if K N Bk p = PN Bk,p, then K = P,
which implies that o(K) = o(P).

Now assume that Sx p < sup(M). Let 5 := min(M\ Bk, p). Then KNS =
KNpgpand PNB=PNpkp. By Lemma 3.3, 0(8) = min(NV \ Sk~ p+).
Therefore K* No(8) = K* N Bi+ p+ and P* No(B) = P* N Pi= p+.

Suppose that K N Sx.p € Sk(P). Then K N 3 € Sk(P). Therefore
o(KNp) = K*No(B) € o(Sk(P)) = Sk(P*). So K*N P+ p+ € Sk(P*). Now
suppose that K N g p = PN Pk p. Then KN=PNpL. So K*No(p) =
o(KNpB)=c(PNpB)=P* No(B). Hence K* N Br+ p- = P* N Pg=+ p+. =

The following proposition describes amalgamation of coherent adequate
sets over countable elementary substructures. It will be used to prove that
the forcing poset in the next section is strongly proper.

PROPOSITION 3.5. Let A be a coherent adequate set and N € A. Suppose
that B is a coherent adequate set and AN Sk(N) C B C Sk(N). Let C be
the set

{MeA: NNnwi <MNuw}
U{onn(K): N € A, NNw; = N'Nuwy, K € B}.
Then C is a coherent adequate set which contains AU B.

Proof. First we prove that C' is adequate. Obviously, any two sets in
{M € A: NNw; < MNuw;} compare properly since A is adequate. Consider
M € A with NNw; < M Nwy, and L = oy n/(K) for some N’ € A with
NNwi = N Nw; and some K € B. Since N Nwi; = NNw; < M Nwy,
the set N’ N s v is either in Sk(M) or equal to M N By 7. In either case,
Sk(N"N Bar,n7) is a subset of Sk(M). Since L C N’, we have B v < Barn-
As L is in Sk(N'), L N Br,a is in Sk(N') N Sk(Bar,nr) = Sk(N' N Bar,nv).
Hence L N P, a is a member of Sk(M).

Now consider M and L such that M = oy n/(K) for some N’ € A with
NNw; = N'Nwj and some K € B, and L = oy n+(P) for some N* € A with
NNwi; = N*Nwp and some P € B. Since B is adequate, K and P compare
properly. If N’ = N*, then {M, L} is adequate by Lemma 3.4. Suppose
N’ # N*. By symmetry it suffices to consider the cases when K N g p
either is in Sk(P) or is equal to P N Bk, p.
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The sets N and N* are isomorphic, and N’ N By n+ = N* 0 fyr n+ =
N'NN*. By Lemma 2.8, oy n[N'NN* = o= y[N'NN*, and there exists
B € NNAsuch that NNG = on/ y[N'NN*]. Let 0 := on n/[ SK(NNB). By
Lemma 2.8, 0 = oy n+[ Sk(N N ) and o is an isomorphism of Sk(N N G) to
Sk(N/ﬂN*) Now O'(Kﬁﬁ) = ON,N’ [Kﬁ(Nﬂ,B)] = UN,N’[K]QO'N,N’ [Nﬂﬁ] =
MN (N, N BN’,N*) =MnN BN’,N*a and similarly O'(P N ,8) =LN ﬁN’,N*‘

Since {K, P} is adequate, so is {K N 3, P N §}. By Lemma 3.4, it fol-
lows that {o(K N B),0(P Np)} is adequate. In other words, {M N By n+,
LN Byr n+} is adequate. Since M C N’, we have 81 v < B, and since
L C N*, it follows that 8 nv < v n+. Hence Srar < Bn n+. Therefore
{M N Br,m, LN B} is adequate. By Lemma 1.3 it follows that {M, L} is
adequate.

Now we show that AU B C C and C is coherent. This statement fol-
lows immediately from Lemmas 3.8 and 3.9 of [I]; we include a proof for
completeness. If K € B, then K = oy n(K) is in C by definition. Let
M e AAIf NNnw, < MNuwp, then M € C by definition. Otherwise
M Nw < N Nwp. So there exists N/ € A isomorphic to N such that
M € Sk(N’). Let K := o+ n(M), which is in AN Sk(N) and hence in B.
Then M = oy n/(K) is in C.

Suppose that L and M are in C and LNw; = M Nwi. We will show
that L and M are isomorphic. If M Nw; > N Nwy, then L and M are in A
and hence are isomorphic. Otherwise M = oy n/(M*) and L = oy n»(L¥),
where M* and L* are in B and N’ and N” are in A and are isomorphic to V.
Then M* Nw; = L* Nwy, which implies that M™* and L* are isomorphic. It
follows that M and L are isomorphic.

Assume that L and M are in C and LNw; < M Nw;. We will show that
there is M’ in C isomorphic to M such that L € Sk(M’). If NNw; < LNwy,
then L and M are in A and we are done. Suppose that LNwi; < N Nwy <
M Nwi. Then L = oy (L") for some L* in B and N’ in A which is
isomorphic to N. Fix M’ in A which is isomorphic to M such that N’ is
either equal to M’ or is a member of Sk(M'). Then L € Sk(M') and we are
done.

Assume that M Nw; <N Nw;. Then L=oy n/(L*) and M =on nv(M¥),
where L* and M* are in B and N” and N” are in A and are both isomorphic
to N. Since L* Nwi1 < M* Nwi, there is M** in B isomorphic to M* such
that L* € Sk(M**). Then oy n/(M**) is in C, is isomorphic to M** and
hence to M, and its Skolem hull contains L.

Now assume that M, K, and L are in C, M Nw; = KNwj, and L €
C N Sk(M). We will show that oas, k(L) € C. First assume that N Nw; <
M Nwi. Then M and K are in A. If L € A then we are done. So assume
that L = oy n/(L*) for some L* in B and N’ in A isomorphic to N. Fix J in
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A isomorphic to M such that N’ is either equal to J or a member of Sk(.J).
Let N” :=o;m(N’) and let N := opr g (N”). Then N” and N are in A.
So oy nw(L*) € C. Since L is in Sk(J) N Sk(M), we have oy (L) = L.
Then oy nw(L*) = onunm(on v (onn (LF)) = onnnw(on v (L)) =
O'M,K(O'J,M(L)) = O’MJ((L). So O'M,K(L) e C.

Finally, assume that M Nw; < N Nwi. Then M = oy n/(M*), K =
on N (K*), and L = onnw(L*), where M*, K*, and L* are in B, and
N', N” and N are in A and are isomorphic to N. Since L € Sk(M),
we have L € Sk(N') N Sk(N""). So on n(L) = onm (L) = L*. Therefore
O'M,M*(L) = JN’,N(L) = L*. Then O'M7K(L) = UK*,K(UM*,K*(UM,M* (L))) =
ok k(ome k(L)) = onnv(0m+k+(L)). Since L* € B, on+ k+(L*) € B.
Hence on yv(oa k< (L)) € C. So opr(L) € C. m

The next result describes amalgamation of coherent adequate sets over
models of size wy. It will be used to show that the forcing poset in the next
section is we-c.c.

PROPOSITION 3.6. Let A be a coherent adequate set and € A. Let
At ={M e A: M\B#0} and A~ :=={M € A: M C B}. Suppose that
g* € BNA and for all M € A, sup(M N B) < B*. Assume that there exists
a map M — M’ from A%t into X NSk(B) such that for all M and K in A™:

(1) M and M’ are isomorphic and M N B* = M' N B*;
(2) K € Sk(M) iff K" € Sk(M'");

(3) if K € Sk(M) then oy m(K) = K';

(4) A~U{M’': M € A"} is a coherent adequate set.

Then C := AU{M': M € A"} is a coherent adequate set.

Proof. Note that by assumption (1), o a [5* is the identity function
for all M € AT. Let us begin by proving that C is adequate. Note that if
M € AT, then M and M’ have the same order type, which is larger than the
order type of M N B* = M’ N *; it follows that M'\ 5* is nonempty. There-
fore C' is the union of the three disjoint sets A=, AT, and {M': M € A*}.
By (4) and the fact that A is adequate, it suffices to compare a set in AT
with a set in {M': M € A'}.

Let K and M be in A", and let us compare K and M’. Since M’ C 3,
Br.mr < by Lemma 1.2(1). Hence Bx ar = Brng,m by Lemma 1.2(3). But
KNp = Knp* which implies by Lemma 1.2(1, 4) that Sx v = Brng,mr =
Brng= Mg < B*. Also KN p* = K'Np* and M' N p* = M N B. Now
B = Brng* Mg+, and since K N * C K and M’ N * C M, it follows
that Bx v < Br,m-

We split into cases depending on the comparison of K and M. Suppose
that KNPk v € Sk(M). Since Br ar < B*, Bi,um, it follows that KNGk v €
Sk(M)NSk(B*) = Sk(MNB*) = Sk(M'NB*). Therefore KNBk ar € Sk(M').
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Now assume that MNpBx v € Sk(K). As Br ar < Br,vr, we have MNBx
€ Sk(K) But BK,M’ < fB* implies that M N BK,M’ = Mn 5K,M’- So
M' N g € Sk(K). Finally, assume that K N g = M N Br, . Since
Brm < Brm, we have K N By = M N By But By < 8%, so
MnN BK,M’ =Mn BK,M" Hence K N ﬁK7M’ =Mn BK7M’~

Now we show that C is coherent. Recall that A is the union of the three
disjoint sets AT, A=, and {M’: M € A*}. The union of the first and second
set is equal to A, which is coherent, and the union of the second and third
set is coherent by (4). Note that requirements (1) and (2) in the definition
of coherence follow immediately from these facts, except for the case of a
pair of models where one is in A" and the other is in {M': M € A*}.

Let K and M be in A™; we verify requirements (1) and (2) for K and M.
Suppose that K N Bx pr = M' N B . Then K Nwy = M Nwi. Since A is
coherent, K and M are isomorphic. Hence K and M’ are isomorphic.

Suppose that K N Bg € Sk(M'). Then K Nwi < M Nwy, so KN
Br.m € Sk(M). So there exists M* in A such that K € Sk(M*) and M and
M* are isomorphic. Hence M* and M’ are isomorphic. Now assume that
MIQBK,M/ € Sk(K) Then M'Nw; < K'Nwy, so M/ﬁﬁKQM/ € Sk(K’). Since
A U{L' : L € At} is coherent, there is K* in C such that M’ € Sk(K*)
and K* and K’ are isomorphic. Then K* and K are isomorphic.

Now we prove that requirement (3) holds of C. Let M; and M3 be in C
with My 0 Bar me = Ma 0 By M, and let K € C'NSk(M;). We will prove
that o, (K) is in C. Note that if M; and My are both in A, then so
is K, and if My and M are both in A~ U{M’': M € A"}, then so is K.
Since A and A~ U{M': M € At} are both coherent, we are done in these
cases. So again it suffices to prove (3) in the case of two sets where one is in
AT and the other is in {M': M € AT}

Assume that M; is in AT and My = M’ for some M € AT. Then M; and
M are isomorphic. Since K € Sk(M;) we have K N 3 C §*, and hence K is
in A. As A is coherent, P := o, v (K) € ANSk(M). If P € A™, then since
OM,M' fﬁ* is the identity, UM7M/(P) = P. Hence UMl,M’(K) = UM,M/(P) =P
is in A. Otherwise P € A", and by assumption (3), op v (P) = P’. So
UMl,M’(K) = O'M,M'(UMLM(K)) = UM7M/(P) =P eC.

In the last case assume that M; =M’ for some M € AT and My € A.
Since K € Sk(M'), we have K C 3, so K is not in A*. Suppose that K is
in A7. Then K is a subset of 8*, so opp p(K) = K. Hence K is in Sk(M)
N A, and therefore oprar, (K) € A since A is coherent. But opp ap, (K) =
om v, (onr v (K)) = oam,(K) € C. Otherwise K is equal to P’ for some
P € At. So P’ € Sk(M'). By assumptions (3) and (4), P € Sk(M) and
omm(P) = P’. Since P is in A and A is coherent, we have o, (P) € A.
So UM/7M2(K) = O'M/7M2(P/) = UMI,MQ(O-M7M/(P)) = O'M7M2(P) cC. m



290 J. Krueger

4. Forcing square with finite conditions. We define a forcing poset
which adds a square sequence with finite conditions, using coherent adequate
sets as side conditions.

By a triple we mean a sequence («, 7, 3), where « € A and v < 8 < a.
Given distinct triples (a, v, ) and (¢/,7/, 5’), we say that they are nonover-
lapping if either a # o/, or a = o' and [y, 8) N[y, 3') = 0; otherwise they
are overlapping. Given a triple («,~, ) and M € X, we say that («,7, )
and M are nonoverlapping if a € M implies that either v and 3 are in M
or sup(M N«) < 7; otherwise they are overlapping.

Clearly if M and N are isomorphic and a and b are nonoverlapping
triples in Sk(M), then op n(a) and oy n(b) are nonoverlapping triples.
And if K € Sk(M)NX and a and K are nonoverlapping, then o7 n(a) and
om,n(K) are nonoverlapping.

DEFINITION 4.1. Let P be the forcing poset whose conditions are pairs
(x, A) satisfying:

(1) z is a finite pairwise nonoverlapping set of triples;

(2) A is a finite coherent adequate set;

(3) for all M € A and (a,~, ) € x, M and (a, 7, 3) are nonoverlapping;

(4) if M and M" are in A and M N By = M' 0 Bas o, then for any
triple (c, v, ) € Sk(M) Nz we have oy ar ({7, B)) € .

Let (y,B) < (z,A)if z Cyand A C B.

If p=(x,A), we write z,, := = and A4, := A.
We will prove that P preserves all cardinals. For each a € A, let ¢, be a
P-name for the set

{y:3Ipe G 38 (o, 7, B) € xp) }.

We will show that each ¢, is a cofinal subset of a with order type wy, and
whenever £ is a common limit point of ¢, and ¢, ¢ NE = ¢ NE.

LEMMA 4.2. Let A be a coherent adequate set and x a set of triples. Let
y be the set

zU{op(a): MM € A, MNw; =M Nwiy, a €xnSk(M)}
Then for all N and N' in A which are isomorphic and any a €y, oy n'(a) €Y.

Proof. Let N and N’ be isomorphic sets in A, and a € y. If a € x, then
on,n(a) € y by definition. Otherwise there are M and M’ in A which are
isomorphic and b in x such that a = o (b). So a is in Sk(M') N Sk(N)
=Sk(M'NN).

First assume that M’ N By y € Sk(N). By Lemma 2.5 there is M* in
Sk(N) which is isomorphic to M’ such that M’ N Sy v = M* N B n.
In particular, a € Sk(M' N N) = Sk(M' N Sy n) = Sk(M* N Barar). By
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Lemma 2.8, oy m(a) = opp m(a) =b. So o= (b) = onme (b) = a. Let
P = O'NJ\V(M*). Then O'N7N/fSk(M*) = OM*,P- By Lemma 2.8, O'M/’p[
Sk(M/ﬂM*):UM*VPFSk(M/ﬁM*). Hence UM/,p(a):UM*,p<a):JN,N/<a).
So oum,p(b) = om= p(omm+(b)) = om=pla) = oy nr(a). Since b € z, we
have oy, p(b) € y by definition. So oy n/(a) € y.

Now suppose that M’ N By n = N N By n. Then by Lemma 2.8,
om N | Sk(M' N N) = oy n[Sk(M' N N). Since a is in Sk(M' N N), we
have oy ni(a) = omr ni(a) = o (o (b)) = oarne(b), which is in y
since b € x.

Finally assume that N N By n € Sk(M'). Fix N* € Sk(M') which is
isomorphic to N such that N N By v = N* N By v Let L= opp p(NF).
Then a € Sk(M/ NN) =Sk(N N BM’,N) = Sk(N* N BM’,N); so a € Sk(N™).
Also opp p[N* = on+,1. Hence on= 1(a) = opr p(a) = b. By Lemma 2.8,
O'N7N/fSk(N N N*) = O'N*’N/fSk(N N N*) Therefore O'NyN/(a) = O'N*7N/(a).
So on,n(a) = oy nr(a) = on+ N (on,mr (D) = ons ni(on,N+(b)) = op,ne (D),
which is in y since b € x. u

Recall that a forcing poset Q is strongly proper if for all sufficiently large
regular cardinals 6 with Q € H(#), there are club many sets N in P, (H(0))
such that for all p € N N Q there exists ¢ < p which is strongly N-generic,
which means that for any dense subset D of the forcing poset Q N N, D is
predense below ¢ in Q ([5]). Strong properness implies properness, which in
turn implies that w; is preserved.

ProOPOSITION 4.3. The forcing poset P is strongly proper.

Proof. Fix a regular cardinal 6 > wo, and let N* be a countable elemen-
tary substructure of H(f) such that P and 7 are in N* and N := N* Nws
€ X. Clearly there are club many such sets N*. Note that since 7 € N*,
Sk(N) = w[N] = N*N H(w2). In particular, PN N* C Sk(N).

Let p be a condition in N* N'P. Define ¢ = (z,, Ap U{N}). Then ¢ is a
condition and g < p. We will prove that ¢ is strongly N*-generic. So let D
be a dense subset of N* N P; we will show that D is predense below gq.

Fix r < ¢; we will find a condition w in D which is compatible with r.
Since N € A,, A, NSk(N) is a coherent adequate set by Lemma 2.7. Let
v = (z, NSk(N), A, NSk(N)). Then v is a condition in P. Since D is dense
in N*NP, we can fix w which is an extension of v in D. Then 4, NSk(N) C
Ay C Sk(N).

Let C be the set

{MeA :NNw <MnNuw}
U{onn(K): N € Ary NNwi = N'Nwi, K € Ay}

By Proposition 3.5, C is a coherent adequate set which contains A, U A,,.
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Let y be the set
(zr \ Sk(N))U{onn(a) : N € A, NNwi = N Nwy, a € zy}.

Let s := (y,C).

We claim that s is a condition and s < r, w, which completes the proof
since w is in D. If a is in xy,, then oy n(a) = a is in y. And if a is in z,
then either a is in x, \ Sk(IN), and hence is in y by definition, or else a is
in x,,, and hence is in y as just noted. So z, and z,, are subsets of y. Also
A, and A, are subsets of C'. Thus if s is a condition then s < r, w.

(1) We show that y is a set of nonoverlapping triples. So let ap and aq
be in y. Let ag = (ag,0,P0) and a1 = (a1,71,P1). If ag # aq, then ag
and a; are nonoverlapping, so assume that ag = ay. If ag and ay are both
in z, \ Sk(N), then they are nonoverlapping since r is a condition.

Suppose that ag € x, \ Sk(N) and a1 = oy n/(a) for some a € z
and N’ in A, which is isomorphic to N. Since ag € N’, either v9 and Sy
are in N'; or sup(N' N ap) < 70. In the latter case, 51 < 79 and hence
ap and aj are nonoverlapping. In the former case, ag is in Sk(N') N ;.
Hence a* := onv n(ap) is in Sk(N) Nz, C x4. So a* and a are nonover-
lapping. Therefore their images under oy n/, namely ag and a;, are non-
overlapping.

Now suppose that ag = oy n/(aj) and a1 = on n=(a]), where afy and a]
are in x,, and N’ and N* are isomorphic in A,. If N’ = N*, then since
ap and a] are nonoverlapping, so are their images under oy n+, namely
ap and ay. Suppose N # N’. By Lemma 2.8, fix 5 € N N A such that
onN' | SK(NNS) = on = Sk(NNP) is an isomorphism of NN to N'NN*.
But op = o1 implies that Sy y+ > ap. Hence ag and a; are in Sk(N'NN*).
Since a and a] are nonoverlapping, their images under on /[ Sk(N N ),
namely ag and a7, are also nonoverlapping.

(2) We already noted that C is a finite coherent adequate set.

(3) Let M be in C and a in y; we will show that M and @ are nonover-
lapping. If M Nw; > NNw; and a is in z, \ Sk(V), then we are done since
r is a condition. Let a = («a,~, 8). If a ¢ M, then a and M are nonoverlap-
ping, so assume that @ € M. We will show that either v and § are in M or
sup(M Na) < 7.

Suppose that M Nw; > N Nw; and a = onn(a*) for some N’ in
A, isomorphic to N and some a* in z,. Since M Nw; > N’ N wq, either
N’ ﬂﬁN/7M € Sk(M) or N’ ﬂﬁN/’M = MﬁﬁN/’M. But « € M N N’, so
Bnrar > «. Thus v and 8 are in N N By 3 and hence in M.

Assume that M = oy n/(K), where N’ € A, is isomorphic to N and
K € Ay, and a € x, \ Sk(N). Since M C N’, it follows that a« € N'. So
either v and 8 are in N’ or sup(N’ N a) < ~v. In the latter case, clearly
sup(M Na) < v and we are done. Otherwise a is a member of Sk(N'). So
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b:=onn(a) € z, NSk(N) C x,. Therefore K and b are nonoverlapping.
Hence their images under oy v, namely M and a, are nonoverlapping.

In the final case, suppose that M = oy n/(K), where N’ € A, is
isomorphic to N and K € A,, and a = oy n+(b) for some N* in A,
isomorphic to N and some b in z,. So K and b are nonoverlapping. If
N’ = N*, then the images of K and b under oy v, namely M and a, are
nonoverlapping. Otherwise by Lemma 2.8 we can fix 8 € N N A such that
on,N' | SK(NNB) = on,n+| Sk(NN ) is an isomorphism of N N5 to N'NN*.
Asa e M, aisin N'N N*. Since N'N N* is an initial segment of N' and
N*, it follows that a € Sk(N' N N*). Hence b is in Sk(N N ). Therefore
a=onn+(b) = on /(D). Soaand M are the images of b and K under oy nv,
and b and K are nonoverlapping. Thus a and M are nonoverlapping.

(4) By Lemma 4.2 it suffices to show that y is equal to the set

Uz U{opar(a) : M, M' € C, MNw; = M'Nwi, a € (z,Uz,)NSk(M)}.

Clearly y is a subset of this set. It was noted above that z,.Ux,, C y. Suppose
that M and M’ are isomorphic sets in C' and a € (2, U x,,) N Sk(M). We
will show that a* := o (a) € y.

Suppose that M Nw; > N Nwi. Then also M’ Nw; > N Nwy. If a is
in z,, then we are done since r is a condition. Suppose that a is in x,.
Fix N* in Sk(M) which is isomorphic to N and such that N N Sy n =
N*ﬂﬁM’N. Then a € Sk(Nﬂ,BMJ\[) = Sk(N*ﬂﬁM’N). Let P := O’M7M/(N*).
So onmr [ Sk(N*)=0on= p. By Lemma 2.8, a7 (a) = on=.p(a) = on,p(a),
which is in y by definition.

Now assume that M Nw; = N Nwy. Then M, M’, and N are all iso-
morphic. If a € z, then we are done since r is a condition. Suppose that
a € xy,. Since a € Sk(M) N Sk(N) = Sk(M N N), by Lemma 2.8 we have
om,m(a) = on oy (a), which is in y by definition.

Finally, suppose that M Nw; < N Nwi. By the definition of C, M =
on,n'(K) for some N’ in A, which is isomorphic to N and some K € A,.
Then also M’ = oy n+(P) for some N* in A, which is isomorphic to N
and some P € A,,. Since a is in Sk(M), a is in Sk(N’). We claim that b :=
on',N(a) is in x,,. If @ € x,, then since  is a condition, b is in z, NSk(/N) and
hence in z,. Otherwise a is in 2, and hence in Sk(N’)NSk(N) = Sk(N'NN).
But onv [ Sk(N' N N) is the identity, so b = a.

We see that O'N/’NfSk(M) = OM,K and O']\p«J\ﬁSk(M’) = oM/ .P- And
oMM = Op M/ 00K PO K = ONN+00FK,po(on N[ Sk(M)). So oprar(a) =
O’N7N*(UK7P(UN/7N(CL))) = ON,N* (J}gp(b)). Since b € T, and K and P are
in Ay, ok, p(b) is in z,. Hence oprp(a) = on v+ (ok,p(b)) is in y by defi-
nition. m

PRrROPOSITION 4.4. The forcing poset P is wa-c.c.
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Proof. Fix 6 > ws regular and let N* be an elementary substructure of
H(0) of size w; such that 7, X', A, and P are in N* and §:= N*Nwy € A.
Since 7 € N*, we have N* N H(wz) = 7[N* Nwe] = 78] = Sk(B). In
particular, N* NP C Sk(8). Note that since X N P(3) C Sk(3), it follows
that N*N&X = P(B)NX =Sk(B)NX.

We will prove that the empty condition is N*-generic. This implies that P
is we-c.c. by the following argument. Suppose for a contradiction that P has
a maximal antichain S of size at least wo. By elementarity we may assume
that S is in N*. Since N* has size w;, we can fix a condition s € S\ N*.
Let D be the set of conditions which are below some member of S. Then
D is dense and lies in N*. Since the empty condition is N*-generic, N* N D
is predense in P. So s is compatible with some member of N* N D. By
elementarity and the definition of D, s is compatible with some member of
N*N S, which contradicts the assumption that S is an antichain.

Note that since 2 = w; and w; € N*, we have H(w;) C N*. Fix a dense
open set D in N*; we will show that D N N* is predense in P. Let p be a
given condition. Extend p to ¢ which is in D.

Let A= :={M € A;: M C 8}. Let AT :={M € Ay : M\ 8 # 0} =
{My, ..., M}. Since A € N*, the set AN f is cofinal in 8. Fix f* in AN S
such that for all M € A,, sup(M Np) < *, and for all (a,~, () in 2, NSk(B),
a < f(*. Let R be the set of pairs (i,7) in k + 1 such that M; € Sk(M;).
Note that the objects A=, MgNgB,..., My NG, g%, and R are in N*.

For each i = 0,...,k, let 9; denote the transitive collapse of the struc-
ture M; = (Sk(M;), €, 7y, X, Ang;). And for each (4, 7) in R, let J; jy :=
oum;(M;). Note that each M; is in H(wi) and hence in N*, and therefore
each Jy; ;) is in N*.

Let ao, ..., a, enumerate the triples in z, whose first component is larger
than . Let S be the set of pairs (i, j) where i < m, j <k, and a; € Sk(M;).
For each (i, j) in S, let by; jy = o, (as).

As noted above, the following parameters all belong to N*: xz, N Sk(f),
A=, D, MoNB, ..., MgNB, m, X, A, Mo, ..., My, R, Jy; 5 for each (i, j) € R,
B*, S, and by ;y for each (i,j) € S. Let vuq, .. z4.50,....ym D€ the formula in the
language of set theory with constants for these parameters which expresses
the following:

(i) the pair
(24 N SK(B) U {yo. - ym ks A™ U o, 21}
is in D;
(ii) for each i =0,...,k, x; N G* = M; N j;

(iii) for each i = 0,...,k, the transitive collapse of (Sk(z;),€,ms,,
X,y Ag,) is equal to M;
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(iv) for any 4,j < k+ 1, z; € Sk(z;) iff (i,7) € R, and in that case,
0z, (%i) = Jiij);
(v) for each i =0,...,m, the first component of y; is above *;
(vi) for each i < m and j < k, y; € Sk(x;) iff (i,j) € S, and in that
case, oy, (yi) = by jy-
Note that H(0) &= ¢[Mo,..., M, ag,...,an]|. By elementarity we can find
M, ..., M and ay, ..., a,,in N*suchthat H(0) =p[M), ..., M, ap, ..., a,,].

Let w denote the pair

(2 VSK(B)) U{aly .. alyh, A~ U (M} ..., ML),
Then w is in D by (i).

Let us verify that the assumptions of Proposition 3.6 hold for the map
which sends M to M’ for each M € A". Let M and K be in A™. Then
(iii) implies that 9t and 9’ have the same transitive collapse and hence are
isomorphic, and (ii) implies that M’ N * =M NG =M N G*. Let M = M;
and K = M, for i,j < k. By (iv), K € Sk(M) iff (i, j) € R iff K’ € Sk(M'),
and in that case, opr(K) = Jy; ;) by definition and opp (K') = Jy; 5y by (iv).
But oMM = O']\_Jl, oonm. SO O'M’M/(K) = U&%(UM(K)) = U]\_Jl,(J@J)) = K'.
Finally, A~ U {Mg,..., M} is a coherent adequate set by (i). It follows by
Proposition 3.6 that

C:=A,U{M :Me A"}
is a coherent adequate set.
By (vi), for each ¢ < m and j < k, a; € Sk(M;) iff (i,5) € J iff
a; S Sk(Mj/) AISO, if a; € Sk(Mj), then O—Mj,M;(ai) = UM_*l(O—Mj al)) =
J

anfl(b@,j)) = aj. So oy, vt (aj) = af. Let

y:=xzqU{a):j=0,...,m}.
By (v) the first component of each a;- is above 8*. Hence any element of y
is in 2 NSk(B), {a} : j =0,...,m}, or x4\ Sk(B) depending on whether its
first component is in [0, %), [8*, 8), or [5*,w2).

We claim that s = (y, C) is a condition. Then clearly s < r, w, and since
w is in D, we are done.

(1) Let (a,v,¢) and (¢/,+',¢’) be in y; we will show that they are
nonoverlapping. If these triples are either both in z, or both in z,,, then
we are done. Otherwise we may assume that («,~, () is equal to a; for some
i = 0,...,m and (/,7,{’) is equal to a for some j = 0,...,m. Then
o/ < 8 < a, so these triples are nonoverlapping.

(2) The set C' is a finite coherent adequate set as previously noted.

(3) Let M be in C and (a, 7, () in y; we will show that they are nonover-
lapping. If o is not in M, then we are done, so assume that a € M. If
these objects are either both in ¢ or both in w, then we are done. Assume
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that M € C\ Sk(B) and («,~,¢) € y N Sk(pB). Since a is in M N 3, it is in
M' N 8*. But the triple and M’ are nonoverlapping, and since o < * this
clearly implies that the triple and M are nonoverlapping. Next assume that
M € CnSk(B) and {(a, 7, () € y\Sk(B). Then a > . But this is impossible
since M C £.

(4) Let M and K be isomorphic sets in C' and a € y N Sk(M). We will
show that oar i (a) € y. Let a = (o, 7, ().

Suppose that M € A,. Then a ¢ [3*, ), hence a € z,. If K is in A,
then we are done; otherwise K = P’ for some P € A*. Then oy p(a) €
xqg N Sk(P). Assume that opr,p(a) > 8. Then oy, p(a) = a; for some i < m.
So oppr(a) = a. Hence onrx(a) = opp(onmp(a)) = a; € y. Now assume
that oarp(a) < B*. Then opp(om,p(a)) = on,p(a) since oppr[f* is the
identity. So oa i (a) = oppr(om,p(a)) = o, p(a), which is in y.

Now suppose that M = L’ for some L € AT. Then M € A,. So a is
in (zq N Sk(B)) U {ag,...,a,,} = z,. If K € Ay, then we are done since
w is a condition. Otherwise K € C'\ Sk(8). Then K’ € A, so o k' (a)
€ Ty If O’M7K/(CL) < 3%, then O'K/’K(O'MJ(/(U,)) = UMJ(/(CL) since O'K/7Kf,8*
is the identity. Hence oak(a) = ok k(om ki(a)) = om k' (a), which is
in y. Otherwise o) k/(a) is equal to af for some i = 0,...,m. Thus
a; € Sk(K'), which implies that a; € Sk(K) and ok g/(a;) = a}. Hence
omk(a) = ok k(oam K (a)) = ok k(a;) = a;, which is in y. =

This completes the proof that P preserves cardinals.

Recall that for each a € A, é, is a P-name such that P forces

ca={y:3Ip € G 38 (a,7,B) € xp}.
We will show that P forces that ¢, is a cofinal subset of a. Property (3)
in the definition of P will imply that ¢, is forced to have order type wy.
Property (4) will imply that P forces that whenever £ is a common limit
point of ¢, and ¢,/, then ¢, NE = ¢y NE.

LEMMA 4.5. For each o € A, P forces that ¢, is a cofinal subset of o
with order type wy.

Proof. First we show that ¢, is forced to be a cofinal subset of a.. Let p
be a condition and § < . Choose an ordinal v with § < v < « such that for
all M € Ay, sup(M Na) < v, and for all triples in x,, of the form (a, T, §),
7 and [ are less than v. Define ¢ = (z, U {{a,7,7 + 1)}, 4p). It is easy to
check that ¢ is a condition, and clearly ¢ < p. Also, ¢ forces that ¢, \ 0 is
nonempty. Thus P forces that ¢, is a cofinal subset of a.

Suppose for a contradiction that a condition p forces that ¢, has order
type greater than wi. Extending p if necessary, assume that for some § < «,
p forces that ¢, N d has size wy. Fix M in X such that p, a, and ¢ are
in Sk(M). Then easily ¢ = (xp, A, U{M}) is a condition. Since g forces that
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¢aMN0 is uncountable, we can extend ¢ to r such that for some triple («, v, 5)
in x,, yis § \ M. Since M € A, and o € M, we have sup(M N«) < -, which
contradicts § € M. =

Now we prove that the sequence of ¢,’s is coherent. Namely, we will show
that P forces that whenever £ is a common limit point of ¢, and ¢/, then
CaNE = ¢y NE.

LEMMA 4.6. Let a be in A, £ < «, and suppose that p is a condition
which forces that & is a limit point of ¢o. Then there is M € A, such that
a €M andsup(M Na) =¢.

Proof. Note that for all ¢ < p, since q forces that £ is a limit point of ¢,,
if (a,7, ) € x4 and v < £, then 8 < £. Suppose for a contradiction that for
all M € A, if o € M then sup(M Na) #&.

We claim that if M € A,, o € M, and sup(M N¢§) < &, then sup(M Na)
< &. Otherwise fix a counterexample M. Then o € M, sup(M N¢) < &, and
sup(M Na) > &. Since ¢ is forced to be a limit point of ¢4, we can find ¢ < p
and v, 5 < £ such that (o, 7,8) € x4 and sup(M NE) < . Then v and 3
are not in M, but sup(M Na) > & > ~, which contradicts the fact that ¢ is
a condition.

It follows from the claim that A is the union of the sets Ag, A1, and Ao
defined by

AoZ{MEAp:a¢M},
Ay ={M e A,:ae M, sup(MNa) <},
Ay={M e Ay,:ae M,sup(MNE) =¢}

Since we are assuming that there is no M in A, with o € M and sup(M Na)
= &, every set in Ay meets the interval [, a). Observe that if N € A; and
M € A, then since &« € M N N, we have Sy n > «; hence sup(N N ) <
¢ < sup(M N «) implies that N N By n € Sk(M).

Fix M in A such that M Nw is minimal. Let 7 = min(M \ ). Then
¢ <7 < a. Since sup(M N &) = &, we can fix v < £ in M such that for all
N € Ay, sup(N Na) <7, and for all (o, (, B) € xp, if ( < then (,5 <.

Let y be the set of triples of the form oy n/((c, 7, 7)), where N and N’
are isomorphic sets in A, and (a,v,7) € Sk(N). Let ¢ = (2, Uy, Ap). We
claim that ¢ is a condition. Then clearly ¢ < p and ¢ forces that £ is not a
limit point of ¢,, which is a contradiction.

Let us note that («,~,7) is nonoverlapping with every triple in z,. Let
(a,v', ") be in z,. If ' < &, then +' and ' are below 7, so we are done.
Suppose that 7/ > £. Since M € A,, either 4" and ' are in M or sup(M Na)
< 7. In the former case, 7 = min(M \ ) < 4. In the latter case, 7 <
sup(MNa) < +/. In either case, 7 < 7/, which implies that [y, 7)N[y, 8') = 0.
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Next we claim that if K’ € A, then K and (7, 7) are nonoverlapping. If
«is not in K then we are done, so assume that a € K. Then either K € Ay or
K € As. If K € Aq, then sup(K Na) < v by the choice of v. If K € As, then
since M Nwy < K Nwy, either Mﬂﬁ]gM S Sk(K) or Mﬂﬁ[gM = Kﬂﬁ[QM.
In either case, M N Bx am € K. But since o € K N M, we have Sx v > o.
So v and 7 are in K.

Now we prove that ¢ is a condition.

(1) Consider a triple (/,~/, 8’) in z, and a triple oy n7({c, 7, 7)), where
N and N’ are isomorphic in A, and (a,~,7) € Sk(N). If &/ # oy n/()
then we are done, so assume that o/ = oy n/(a). If 4/ and 3’ are not
in Sk(N’), then sup(N'Na’) < v/, so clearly the triples are nonoverlapping.
Otherwise 7/ and 3’ are both in Sk(N'). Then (¢/, ', 5’) € z, N Sk(N'), so
on'.n({e/,4, ) is in . By the comments above, oy n({c/,~/, 5')) and
(a,y,7) are nonoverlapping. Hence the images of these triples under oy n/
are nonoverlapping and we are done.

Now consider oy, n/({e,7,7)) and oy, n+({a,7, 7)), where Ny and N’
are isomorphic in A4, and (o, 7, 7) € Sk(Ny), and Ny and N* are isomorphic
in A, and (o,7v,7) € Sk(N1). If on, N (@) # on, n+(a) then the triples
are nonoverlapping, so assume that a* := oy, n/(a) = on,,n+(c). Then
ﬁ]\fo’]\]1 > « and /BN’,N* > ar.

We will show that on, nv({,7, 7)) = on, N+ ({7, 7)). By symmetry it
suffices to consider the cases when No N By, N, € Sk(N1) and NoN B, N, =
N1 N Bny,N, - Suppose the former case. Then also N’ N By y+ € Sk(N*).
Fix Ng in Sk(N1) N A, which is isomorphic to Ny such that Ny N By, N, =
N§ N Bng,N, - Then (a,v,7) € Sk(Ng). Also fix P € Sk(N*) N A, which is
isomorphic to N such that N’ N Sns n+ = P N Byr n=. Since Sy n» > a,
we have a* € P.

Since oy, N+ (o) =0, we have a* € PNoy, n+(Ng). As P and on, n+(N{)
are isomorphic and are in the adequate set A,, it follows that P N o* =
on, N+=(NG) Na*. Now o, n[or is the unique order preserving map from
NoNna = NjNaonto N'Na* = PNa* = on, n+(NJ) Na*. But also
on,, N+ [(NGNe) is an order preserving map from NjNa onto o, n+ (NG )Nar*.
It follows that on, n[a = on, N+ [ (NG Na). In particular, oy, N7 ({0, 7, 7)) =
ONy,N* (<Oé, 7 7—>)

Now suppose that No N Bn,,n, = N1 0 B, n,- Then also N’ N By v+ =
N*N Bnr n+. In particular, NoNa = Ny Na and N'Na* = N*Na*. But
o N, N [ e is the unique order preserving map from Ny N o onto N’ Na*, and
on, N+ | o is the unique order preserving map from Ny Na onto N*Na. Hence
O Ny,N’ [Oz = ONy,N* [a. So UNO’N/(<C¥,"}/, T>) = 0N1,N*(<a7 Y, T>)

(2) is immediate.
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(3) Let K be in A, and consider (a*,v*,7*) := oy n/({®,7, 7)), where
N and N’ are isomorphic sets in A, and («,~, ) is in Sk(N). We will prove
that K and (o*,~v*,7*) are nonoverlapping. If o* is not in K, then we are
done, so assume that o* € K. Then Bx n» > ™.

If N'N Bk n is either in Sk(K) or equal to K N B v, then o and 7/
are in K and we are done. So assume that K N Bx n € Sk(N’). Then there
is K* in Sk(N’) N A, which is isomorphic to K such that K* N fx n =
K N Bg . Since o* < Bk nv, it suffices to show that K* and (o, v*, 7) are
nonoverlapping. But L := ons n(K*) is in A,, and we showed above that
L is nonoverlapping with («,~y, 7). Therefore the images of L and («,~,7)
under oy nv, namely K* and (a*,v*,7*), are nonoverlapping.

(4) By Lemma 4.2 it suffices to show that x, Uy is equal to

zyU{onnr(a): NN € Ay, NNwy = N' Nwy, a €z NSk(N)},

*

where xj, = x, U {{a,7,7)}. Clearly x, Uy is included in the second set by
definition, and z;, C x, Uy. Consider a € x, U {(a,7,7)} and isomorphic
N and N’ in A, with a € Sk(N). If a € x) then oy y/(a) € x, since p is a
condition. Otherwise a = (o, 7, ), and oy n/(a) € y by the definition of y. =

PROPOSITION 4.7. Let a and o' be distinct ordinals in A. Then P forces
that whenever £ is a common limit point of ¢, and ¢y, ¢o NE = ¢or NE.

Proof. Let p be a condition which forces that £ is a common limit point
of ¢, and ¢,/. Then by the previous lemma, there are M and M’ in A, such
that & € M and sup(M Na) =&, and o € M’ and sup(M' Na’) = €. Since
¢ is a common limit point of M and M’, it follows that £ < B ar. It is
not possible that M N By ar € Sk(M'), since in that case &, which is a limit
point of M N Bas,ar, would be in M’. Similarly, M’ N Bas ar is not in Sk(M).
So M OB, = M'0 Bar - It follows that M and M’ are isomorphic. Also
O M, M’ M N BM,M’ is the identity and O'M7M/<a> =dao.

Suppose that ¢ < p and ¢ forces that v is in ¢, N €. Extending ¢ if
necessary, assume that (o, v, ) € x4 for some S. Since v < { = sup(M Na),
we see that v and f are in M. So oy 0 ({7, 8)) = (&', 7, B) is in x4. Hence
q forces that v is in ¢,s. This proves that p forces that ¢, N & C éu. The
other inclusion is proved using a symmetric argument. =

Let us show that [J,,, holds in any generic extension by P. This follows
from well-known arguments which we review for completeness. First note
that it suffices to find a sequence (d, : a € waNcof(wy)) such that each d,, is
a club subset of o with order type wy, and for any a < o and £ a common
limit point of d, and d,/, do N & = dy N &. For then we can extend this
sequence to a square sequence by defining d., for v € wa N cof(w) by letting
dy = do N7y for some (any) a in woNcof (w1 ) such that « is a limit point of dq,
and if no such « exist, letting d, be a cofinal subset of v of order type w.
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Recall that each o in A is in C* Ncof(w) and is a limit point of C*. For
each a € A let dy = lim(cy) N C* N . Then by Lemma 4.5 and Proposi-
tion 4.7, the sequence (d, : o € A) is such that each d, is a club subset of
«a with order type wq, and for all £ in do, Ndy, do NE =dy NE.

One can easily prove by induction that for any £ < ws, there exists a
sequence (eg : € {Ncof(wy)) such that each eg is a club subset of 5 of order
type w1 and any eg and eg share no common limit points. Consider 3y < 1
which are consecutive elements of C* U {0}. Using the fact just mentioned,
we can transfer a sequence of clubs defined on ot(8; \ By) N cof(wy) to a
sequence (d, : a € (Bo, B1) N cof(wy)) so that each dy is a club subset of «
with minimum element greater than Sy and order type wj, such that any
dy and d, share no common limit points. But any ordinal in wy N cof(wy)
which is not in C* belongs to such an interval. So we have defined d,, for all
a € we Ncof(wy). It is straightforward to check that the extended sequence
is as required.
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