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Automorphism groups of right-angled buildings:
simplicity and local splittings
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Pierre-Emmanuel Caprace (Louvain-la-Neuve)

Everywhere there was evidence of a collective obsession with
the comforting logic of right angles

(R. Larsen, The Selected Works of T. S. Spivet, 2009)

Abstract. We show that the group of type-preserving automorphisms of any irre-
ducible semiregular thick right-angled building is abstractly simple. When the building is
locally finite, this gives a large family of compactly generated abstractly simple locally
compact groups. Specialising to appropriate cases, we obtain examples of such simple
groups that are locally indecomposable, but have locally normal subgroups decomposing
non-trivially as direct products, all of whose factors are locally normal.

1. Introduction. Let (W, I) be a right-angled Coxeter system, i.e. a
Coxeter system such that mi,j = 2 or mi,j = ∞ for all i 6= j. We assume
that the generating set I is finite.

Haglund and Paulin have shown that for any tuple of (not necessar-
ily finite) cardinalities (qi)i∈I , there exists a right-angled building of type
(W, I) with prescribed thicknesses (qi)i∈I , in the sense that for each i ∈ I, all
i-panels have thickness of the same cardinality qi. We refer to [Dav98, Th. 5.1]
for a group-theoretic construction of that building. Moreover, such a building
is unique up to isomorphism (see Proposition 1.2 in [HP03]). A right-angled
building satisfying that condition on the panels is called semiregular (this
terminology is motivated by the case of trees). It is thick if qi > 2 for all
i ∈ I.

The following shows that the automorphism groups of these buildings
provide a large family of simple groups.
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Theorem 1.1. Let X be a thick semiregular building of right-angled
type (W, I). Assume that (W, I) is irreducible non-spherical. Then the group
Aut(X)+ of type-preserving automorphisms of X is abstractly simple, and
acts strongly transitively on X.

Recall that strong transitivity means transitivity on pairs (c, A) consisting
of a chamber c and an apartment A containing c (we implicitly refer to the
complete apartment system). Haglund and Paulin [HP03, Prop. 1.2] have
shown that Aut(X)+ is chamber-transitive; in fact, the main tools in the
proof of Theorem 1.1 rely on their work in an essential way.

Notice that a building whose type-preserving automorphism group is
chamber-transitive, is necessarily semiregular. The following is thus imme-
diate from Theorem 1.1.

Corollary 1.2. Let X be an irreducible thick right-angled building of
non-spherical type. If Aut(X)+ is chamber-transitive, then it is strongly
transitive and abstractly simple.

IfW is infinite dihedral, then a building X of type (W, I) with prescribed
thicknesses (qi)i∈I is nothing but a semiregular tree. In that case the sim-
plicity of the type-preserving automorphism group G = Aut(X)+ is due to
Tits [Tit70]. In fact, Tits’ simplicity results (loc. cit.) cover more generally
the case when W is a free Coxeter group, i.e. mi,j =∞ for all i 6= j ∈ I. In
order to see this, consider the graph T whose vertex set is the collection of
all spherical residues of X, and whose adjacency relation is defined by the
relation of inclusion of residues. IfW is a free Coxeter group, then T is a tree.
Moreover, the map associating a residue to its type defines a colouring of
the vertex set of T (with r + 1 colours, where r = |I|). The group Aut(X)+

can then be canonically identified with the group of all colour-preserving
automorphisms of T , and the simplicity of Aut(X)+ is ensured by the main
theorem from [Tit70].

If (W, I) is a right-angled Fuchsian group (i.e. if I = {1, . . . , r} andmi,j=2
if and only if |i − j| = 1 or r − 1), then a building X of type (W, I) is a
Bourdon building, and the simplicity statement is due to Haglund–Paulin
[HP98].

Another simplicity theorem related to Theorem 1.1 was obtained inde-
pendently by N. Lazarovich [Laz12]; it applies to a large family of groups
acting on locally finite, finite-dimensional CAT(0) cube complexes. It is likely
that the special case of Theorem 1.1 concerning locally finite right-angled
buildings could also be deduced from [Laz12], using the fact that right-angled
buildings can be cubulated.

After this work was completed, Katrin Tent informed me that she had
established Theorem 1.1 independently (unpublished). She also raised the
question whether the stronger property of bounded simplicity holds for the
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class of groups appearing inTheorem 1.1. A groupG is called boundedly simple
if there is a constant N such that, for every pair g, h ∈ G with g, h 6= 1, the
element g can be written as a product of at most N conjugates of h. In
other words G is N -boundedly generated by each of its non-trivial conju-
gacy classes. This notion is relevant to model theory as it is a first-order
property; in particular it is inherited by ultraproducts, while the usual no-
tion of simplicity is generally not. In the case of semiregular trees of arbitrary
thickness, bounded simplicity was proved by Jakub Gismatullin [Gis09, The-
orem 3.4] (with the constant N = 8). However, it turns out that the answer
to Katrin Tent’s question is negative: trees are the only right-angled build-
ings whose automorphism groups are boundedly simple. Indeed, Theorem 1.1
from [CF10] ensures that any group acting strongly transitively (or, more
generally, Weyl-transitively) on an irreducible non-spherical and non-affine
building has an infinite-dimensional space of non-trivial quasi-morphisms.
This implies that such a group has infinite commutator width: it is not
boundedly generated by the set of all commutators. In particular, it can-
not be boundedly simple. In the case of semiregular right-angled buildings,
the strong transitivity is guaranteed by Theorem 1.1. Hence, a combination
of [Gis09, Theorem 3.4], [CF10, Theorem 1.1] and Theorem 1.1 above yields
the following statement.

Corollary 1.3. Retain the notation of Theorem 1.1. The groupAut(X)+

is boundedly simple if and only if W is infinite dihedral.

In the special case when X is locally finite, i.e. when qi <∞ for all i ∈ I,
the group Aut(X) endowed with the compact-open topology is a second
countable totally disconnected locally compact group. It is compactly gener-
ated since it acts chamber-transitively on X. In particular Theorem 1.1 pro-
vides a large family of compactly generated simple locally compact groups.
Our next goal is to describe their rich local structure.

A general study of the local structure of compactly generated, topo-
logically simple, totally disconnected locally compact groups is initiated in
[CRW13b] (see also [CRW13a]). The main objects of consideration in that
study are the locally normal subgroups, namely the compact subgroups whose
normaliser is open. The trivial subgroup, as well as the compact open sub-
groups, are obviously locally normal, considered as trivial. It is important to
observe that a compactly generated, locally compact group can be topolog-
ically simple and nevertheless possess non-trivial locally normal subgroups.
Basic examples of such groups are provided by the type-preserving automor-
phism groups of semiregular locally finite trees. It turns out that the group
of type-preserving automorphisms of an arbitrary semiregular locally finite
right-angled building always admits non-trivial locally normal subgroups;
some of them even split non-trivially as direct products (see Lemma 9.1



20 P.-E. Caprace

below). The case of trees has however a special additional property: some
compact open subgroups split as a direct product of infinite closed subgroups;
the corresponding factors are a fortiori locally normal and non-trivial. It is
thus natural to ask for which right-angled buildings that situation occurs,
beyond the case of trees. The following provides a complete answer to this
question, implying in particular that open subgroups admit non-trivial prod-
uct decompositions only under very special circumstances.

Theorem 1.4. Let X be a building of right-angled type (W, I) and pre-
scribed thicknesses (qi)i∈I , with 2 < qi <∞ for all i ∈ I. Assume that (W, I)
is irreducible non-spherical. Then the following assertions are equivalent:

(i) All open subgroups of G = Aut(X)+ are indecomposable.
(ii) G is one-ended.
(iii) W is one-ended.

By indecomposable, we mean the non-existence of a non-trivial direct
product decomposition. The set of ends of a compactly generated locally
compact group is defined with respect to compact generating sets in the same
way as for discrete groups (see [Abe74]). Notice that Theorem 1.4 establishes
a relation between the local structure of G (because the existence of an open
subgroup splitting non-trivially as a product can be detected in arbitrarily
small identity neighbourhoods) and its asymptotic properties.

The condition that W is one-ended can easily be read on the Coxeter
diagram (see Theorem 9.2 for a precise formulation). H. Abels [Abe74] has
shown that a natural analogue of Stallings’ theorem holds for non-discrete
locally compact groups. This ensures that G = Aut(X)+ is one-ended if and
only if it does not split non-trivially as an amalgamated free product over a
compact open subgroup.

It follows from Theorem 1.4 that, if X is a Bourdon building, then com-
pact open subgroups of Aut(X)+ are indecomposable, but they have locally
normal subgroups that split non-trivially as products all of whose factors
are themselves locally normal. With Theorem 1.4 at hand, one can construct
buildings X of arbitrarily large dimension whose automorphism group has
that property.

2. Projections and parallel residues. Throughout the paper, we
mostly view a building X of type (W, I) as a W -metric space; we refer
to [AB08] for the basic concepts. Occasionally, geometric arguments will re-
quire to consider the Davis realisation of X, as defined in [Dav98] or [AB08,
Ch. 12]. This point of view will be implicit when discussing configuration of
walls in a given apartment. In order to avoid any confusion between these
two viewpoints, we will avoid identifying a residue R with the chambers
adjacent to it; instead the latter set of chambers is denoted by Ch(R).
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A fundamental feature of buildings is the existence of combinatorial pro-
jections between residues. We briefly recall their basic properties, which will
be frequently used in what follows. All the properties which we do not prove
in detail are established in [Tit74, §3.19].

Let X be a building of type (W, I). Given a chamber c ∈ Ch(X) and a
residue σ in X, the projection of c on σ is the unique chamber of Ch(σ) that
is closest to c. It is denoted by projσ(c). For any chamber d ∈ Ch(σ), there
is a minimal gallery from c to d passing through projσ(c), and such that the
subgallery from projσ(c) to d is contained in Ch(σ). A set of chambers C is
called combinatorially convex if, for every pair c, c′ ∈ C, every minimal gallery
from c to c′ is entirely contained in C. For example, the set of chambers
of any residue, or of any apartment, is combinatorially convex. In view of
the property of projections that has just been recalled, the combinatorial
convexity of a set C can be characterized by the following property: for
every c ∈ C and every residue σ with Ch(σ) ∩ C 6= ∅, we have projσ(c) ∈ C.
Notice that this notion is often simply called convexity in the literature on
buildings. We prefer to use the longer expression ‘combinatorial convexity’
in order to avoid any confusion with the convexity in the sense of CAT(0)
geometry.

An important property of proj is that it does not increase the numerical
distance between chambers: for all c, c′ ∈ Ch(X), the numerical distance
from projσ(c) to projσ(c

′) is bounded above by the numerical distance from
c to c′.

If σ and τ are two residues, then the set

{projσ(c) | c ∈ Ch(τ)}
is the chamber set of a residue contained in σ. That residue is denoted by
projσ(τ). The rank of projσ(τ) is bounded above by the ranks of both σ
and τ .

We shall often use the following crucial property of the projection map;
we outsource its statement for the ease of reference.

Lemma 2.1. Let R,S be two residues such that Ch(R) ⊆ Ch(S). Then
for any residue σ, we have projR(σ) = projR(projS(σ)).

Proof. See [Tit74, 3.19.5].

Two residues σ and τ are called parallel if projσ(τ) = σ and projτ (σ)
= τ . In that case, the chamber sets of σ and τ are in bijection under the
respective projection maps. Since the projection map between residues does
not increase the rank, it follows that two parallel residues have the same rank.
A basic example of parallel residues is provided by two opposite residues in
a spherical building. Another one is provided by the following.
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Lemma 2.2. Let J1, J2 ⊂ I be two disjoint subsets with [J1, J2] = 1. Let
c ∈ Ch(X). Then

Ch(ResJ1∪J2(c)) = Ch(ResJ1(c))× Ch(ResJ2(c)),

and for i ∈ {1, 2}, the canonical projection map Ch(ResJ1∪J2(c)) →
Ch(ResJi(c)) coincides with the restriction of projResJi (c)

to Ch(ResJ1∪J2(c)).
In particular, any two Ji-residues contained in ResJ1∪J2(c) are parallel.

Proof. See [Ron89, Th. 3.10].

Parallelism of residues can be characterized in thin buildings, i.e. in Cox-
eter complexes, in the following way.

Lemma 2.3. Let X be the Coxeter complex of type (W, I). Then the fol-
lowing conditions are equivalent for any two residues σ and τ :

(i) σ and τ are parallel.
(ii) Every wall crossing Ch(σ) also crosses Ch(τ) and vice versa.
(iii) Every reflection stabilizing σ also stabilizes τ and vice versa.
(iv) σ and τ have the same stabilizer in W .

Proof. (i)⇒(ii). Assume that a wallM separates two chambers of Ch(σ).
If Ch(τ) lies entirely on one side ofM , then so do all the projections projσ(c)
with c ∈ Ch(τ), since the reflection throughM stabilizes Ch(σ). Thus σ and
τ are not parallel.

(ii)⇒(iii). Let r ∈W be a reflection through a wall M . Then r stabilizes
the residue σ if and only if the wallM crosses Ch(σ). The desired implication
follows.

(iii)⇒(iv). The stabilizers StabW (σ) and StabW (τ) are parabolic sub-
groups. In particular they are generated by the reflections that they contain,
and the desired implication follows.

(iv)⇒(i). The stabilizers StabW (σ) and StabW (τ) act transitively on
Ch(σ) and Ch(τ) respectively. If StabW (σ) = StabW (τ), we infer that
projσ(Ch(τ)) = Ch(σ) and projτ (Ch(σ)) = Ch(τ). Hence σ and τ are par-
allel.

Given a chamber c and a residue R in X, we set dist(c,R) =
dist(c,projR(c)). Given another residue R′, we set

dist(R,R′) = min
c∈Ch(R)

dist(c,R′) = min
c′∈Ch(R′)

dist(c′, R).

Lemma 2.4. Let σ and τ be parallel residues. For all x ∈ Ch(σ) and
y ∈ Ch(τ), we have dist(x, τ) = dist(y, σ) = dist(σ, τ).

Proof. Let Σ be an apartment containing x and y. By combinatorial
convexity, it also contains x′ = projτ (x) and y′ = projσ(y). Since σ and τ
are parallel, it follows from Lemma 2.3 that the respective stabilizers of σ∩Σ



Automorphisms of right-angled buildings 23

and τ ∩ Σ in the Weyl group W coincide. In particular the unique element
w ∈W mapping x to y′ preserves both σ and τ . Since σ and τ are parallel, we
have projτ (y

′) = y so that w maps x′ to y. Hence dist(x, τ) = dist(x, x′) =
dist(y′, y) = dist(σ, y). The result follows.

The relation of parallelism plays a special role among panels. The follow-
ing criterion will be used frequently.

Lemma 2.5. Let σ and σ′ be panels. If two chambers of σ′ have distinct
projections on σ, then σ and σ′ are parallel.

Proof. If two chambers of σ′ have distinct projections on σ, then projσ(σ
′)

is a panel, which is thus the whole of σ. Therefore, in an apartment intersect-
ing both σ and σ′, we see that those panels lie on a common wall. It follows
that projσ′(σ) cannot be reduced to a single chamber. Hence projσ′(σ) = σ′

and the result follows.

The following result shows that two residues are parallel if and only if they
share the same set of walls in every apartment intersecting them both. This
useful criterion allows one to detect parallelism of residues by just looking
at parallelism among panels.

Lemma 2.6. Let R and R′ be two residues. Then R and R′ are parallel
if and only if, for all panels σ of R and σ′ of R′, the projections projR′(σ)
and projR(σ

′) are both panels.

Proof. The ‘only if’ part is clear from the definition. Assume that R
and R′ are not parallel. Up to swapping the roles of R and R′, we may thus
assume that projR(R′) is a proper residue of R. Let then c and d be a pair
of adjacent chambers in R so that c is the projection of some chamber of R′
and d is not. Then c′ = projR′(c) is adjacent to d′ = projR′(d). If the latter
two chambers coincide, then the projection on R′ of the panel shared by c
and d is a chamber and not a panel, and the desired condition holds. Other-
wise the panel shared by c and d is parallel to the panel shared by c′ and d′ by
Lemma 2.5. This implies that c = projR(c

′) and d = projR(d
′), contradicting

the fact that d does not belong to the chamber set of projR(R′).

Another useful fact is the following.

Lemma 2.7. Let R and R′ be two residues.Then projR′(R) and projR(R
′)

are parallel.

Proof. Let σ be a panel contained in projR(R
′). Then there is a panel σ′

in R′ such that σ = projR(σ
′). It follows from Lemma 2.5 that σ and σ′ are

parallel. Therefore,

σ′ = projσ′(σ) = projσ′(projR′(σ)),
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where the second equality follows from Lemma 2.1. It follows that projR′(σ)
is a panel. Clearly, projR′(σ) = projprojR′ (R)(σ). This shows that the projec-
tion of σ to projR′(R) is a panel.

By symmetry, the projection of any panel of projR′(R) to projR(R
′) is

also a panel. By Lemma 2.6, we infer that projR′(R) and projR(R
′) are

parallel.

We shall see that parallelism of residues has a very special behaviour in
right-angled buildings. For instance, we have the following useful criterion.

Proposition 2.8. Let X be a right-angled building of type (W, I).

(i) Two parallel residues have the same type.
(ii) Given a residue R of type J , a residue R′ is parallel to R if and only

if R′ is of type J and R and R′ are both contained in a residue of
type J ∪ J⊥.

We recall that J⊥ is the subset of I defined by

J⊥ = {i ∈ I | i 6∈ J, ij = ji for all j ∈ J}.
In the special case where J is a singleton, say J = {j}, it is customary to
make a slight abuse of notation and write

j = J and j⊥ = J⊥

when referring to the type of a residue; this should not cause any confusion.

Proof of Proposition 2.8. (i) In a right-angled building, any two panels
lying on a common wall in some apartment have the same type. That two
parallel residues have the same type is thus a consequence of Lemma 2.6.

(ii) Any two residues of type J in a building of type J ∪ J⊥ are parallel
by Lemma 2.2. This implies that the ‘if’ part holds.

Assume now thatR andR′ are parallel. Let c ∈ Ch(R) and c′ = projR′(c).
We show by induction on dist(c, c′) that the type of every panel crossed by a
minimal gallery from c to c′ belongs to J⊥. Let c = d0, d1, . . . , dn = c′ be such
a minimal gallery. Let also i be the type of the panel shared by c = d0 and d1,
and let σi denote that i-panel. For any j ∈ J , let also σj be the j-panel of c.
By Lemma 2.6, the projection σ′j = projR′(σj) is a panel. The panels σj
and σ′j lie therefore on a common wall in any apartment containing them
both. If i and j did not commute, then the wall Wi containing the panel σi
in such an apartment would be disjoint from the wallWj containing σj . This
implies c′ is separated from Wj by the wall Wi, which prevents the panel σ′j
from lying on Wj . Therefore ij = ji. In other words, we have i ∈ J⊥.

Next let R1 be the J-residue containing d1, and let S be the (J ∪ {i})-
residue containing c. Thus R and R1 are both contained in S.

We claim that R1 is parallel to R′. In order to establish the claim, we
first notice that projR′(S) = R′, since R ⊂ S. By Lemma 2.7, the residue



Automorphisms of right-angled buildings 25

R′ = projR′(S) is parallel to projS(R
′). In particular projS(R′) is of type J

by part (i). Since i ∈ J⊥, all J-residues in S contain exactly one chamber
of σi. Thus σi is not contained in projS(R

′), and it follows that all chambers
of R′ have the same projection on σi; that projection is the unique chamber
of Ch(σi)∩Ch(projS(R′)). By construction, projσi(c

′) = d1; we deduce that
d1 belongs to Ch(projS(R

′)). This proves that projS(R
′) is the J-residue

of d1; it coincides therefore with R1.
Thus we have shown that R′ = projR′(S) and that R1 = projS(R

′), and
those residues are parallel by Lemma 2.7. The claim stands proven.

The claim implies by induction on n that R1 and R′ are contained in a
common residue of type J ∪ J⊥. That residue must also contain R, since R
and R1 are contained in a common residue of type J ∪ {i} ⊆ J ∪ J⊥.

Corollary 2.9. Let X be a right-angled building. Then parallelism of
residues is an equivalence relation.

Proof. This follows from Proposition 2.8(ii).

We emphasize that parallelism of panels is not an equivalence relation
in general. In fact, we have the following characterization of right-angled
buildings.

Proposition 2.10. Let X be a thick building.Then parallelism of residues
is an equivalence relation if and only if X is right-angled.

Proof. By Corollary 2.9, it suffices to show that if X is not right-angled,
then parallelism of panels is not an equivalence relation. If X is not right-
angled, then it contains a residue R which is an irreducible generalized poly-
gon. Let σ and σ′ be two distinct panels of the same type in R, at minimal
distance from one another. It follows that σ and σ′ are not opposite in R,
and thus not parallel since they do not lie on a common wall in apartments
containing σ and σ′. By [Tit74, 3.30], there is a panel τ in R which is oppo-
site both σ and σ′. Thus σ is parallel to τ and τ is parallel to σ′. Parallelism
is thus not a transitive relation.

3. Wall-residues and wings. Let X be a right-angled building of type
(W, I).

Since parallelism of residues is an equivalence relation by Corollary 2.9,
it is natural to ask what the equivalence classes are. The answer is in fact
already provided by Proposition 2.8: the classes of parallel J-residues are the
sets of J-residues contained in a common residue of type J ∪ J⊥.

Given a residue R of type J , we will denote by R the unique residue of
type J ∪ J⊥ containing R. The special case of panels is the most important
one. A residue of the form σ, with σ a panel, will be called a wall-residue.
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In the case when (W, I) is a right-angled Fuchsian Coxeter group, wall-
residues are what Marc Bourdon calls wall-trees (see [Bou97]). The termi-
nology is motivated by the following observation: if the intersection of a
wall-residue with an apartment is non-empty, then it is a wall in that apart-
ment.

Our next step is to show how residues determine a partition of the cham-
ber set of the ambient building into combinatorially convex pieces. To this
end, we need some additional terminology and notation.

To any c ∈ Ch(X) and J ⊆ I, we associate the set

XJ(c) = {x ∈ Ch(X) | projσ(x) = c},

where σ = ResJ(c) is the J-residue of the chamber c. We call XJ(c) the
J-wing containing c. If J = {i} is a singleton, we write Xi(c) and call it the
i-wing of c. A wing is a J-wing for some J ⊆ I. The following results record
some basic properties of wings.

Lemma 3.1. Let X be a right-angled building of type (W, I), let J ⊆ I
and c ∈ Ch(X). Then:

(i) XJ(c) =
⋂
i∈J Xi(c).

(ii) XJ(c) = XJ(c
′) for all c′ ∈ XJ(c) ∩ ResJ∪J⊥(c).

(iii) ResJ⊥(c) = XJ(c) ∩ ResJ∪J⊥(c) = ResJ⊥(c′) for all c′ ∈ XJ(c) ∩
ResJ∪J⊥(c).

Proof. (i) The inclusion ⊆ is clear. To check the reverse inclusion, let x be
a chamber whose projection onto R = ResJ(c) is different from c. Then there
is a minimal gallery from x to c via x′ = projR(x). Let i be the type of the
last panel crossed by that gallery, and let σ be that panel. By construction,
projσ(x) 6= c. Moreover, since x′ 6= c, we have i ∈ J . This implies that
x 6∈ Xi(c), thereby proving (i).

(ii) Let x ∈ Ch(X) and set y = projRes
J∪J⊥ (c)(x). Let also R = ResJ(c)

and R′ = ResJ(c
′). By Lemma 2.1, we have projR(x) = projR(y) and

projR′(x) = projR′(y). Moreover, since projR(c′) = c by hypothesis, we infer
from Lemma 2.2 that projR(y) = c if and only if projR′(y) = c′. This proves
XJ(c) = XJ(c

′).
(iii) Lemma 2.2 also implies that ResJ⊥(c) = XJ(c) ∩ ResJ∪J⊥(c). The

desired equality thus follows from part (ii).

Proposition 3.2. In a right-angled building, wings are combinatorially
convex.

Proof. Let X be a right-angled building of type (W, I). Fix c ∈ Ch(X)
and J ⊆ I. By Lemma 3.1(i) it suffices to prove that a wing of the form
Xi(c) with i ∈ I is combinatorially convex. Let σ be the i-panel of c. Let
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also d, d′ ∈ Xi(c) and let d = d0, d1, . . . , dn = d′ be a minimal gallery joining
them.

Assume that the gallery is not entirely contained in Xi(c). Let j be the
minimal index such that dj+1 6∈ Xi(c), and let j′ be the maximal index such
that dj′−1 6∈ Xi(c). Thus j′ > j.

By Lemma 2.5, the panel σj shared by dj and dj+1 is parallel to σ.
Similarly, so is the panel σj′ shared by dj′ and dj′−1. Therefore, by Proposi-
tion 2.8, the set Ch(σ) ∪ Ch(σj) ∪ Ch(σj′) is contained in Ch(σ) (where as
above σ denotes the (i ∪ i⊥)-residue containing σ).

For each k between j and j′, we now set d′k = projRes
i⊥ (c)(dk). Notice

that by Lemma 3.1(iii), we have Resi⊥(c) = Resi⊥(dj) = Resi⊥(dj′). We
infer that d′j+1 = d′j and d

′
j′−1 = d′j′ . Therefore the sequence

dj = d′j = d′j+1, d
′
j+2, . . . , d

′
j′−2, d

′
j′−1 = d′j′ = dj′

is a gallery strictly shorter than the given minimal gallery dj , dj+1, . . . , dj′ .
This is absurd.

By definition of the projection, the set Ch(X) is the disjoint union of the
wings XJ(d) over all d ∈ Ch(ResJ(c)). It thus follows from Proposition 3.2
that any residue whose chamber set has cardinality q yields a partition of
the building into q combinatorially convex subsets.

For the sake of future references, we record the following fact.

Lemma 3.3. Let i ∈ I, let c ∈ Ch(X) and let σ = Resi(c). For any
x ∈ Xi(c) and x′ 6∈ Xi(c), the gallery from x to x′ obtained by concatenating
a minimal gallery from x to projσ(x), a minimal gallery from projσ(x) to
projσ(x

′), and a minimal gallery from projσ(x
′) to x′, is minimal.

Proof. A gallery is minimal if and only if its length equals the numerical
distance between its extremities. Therefore, it suffices to show that there is
some minimal gallery from x to x′ passing through projσ(x) and projσ(x

′).
Let γ = (x = x0, x1, . . . , xn = x′) be a minimal gallery from x to x′.

Since x′ 6∈ Xi(c), the gallery γ must cross some panel which is parallel to σ.
By Proposition 2.8, this implies that the gallery γ meets the residue σ.

Let j (resp. j′) be the minimal (resp. maximal) index k such that the
chamber xk of γ belongs to Ch(σ). Then there is a minimal gallery γj from
x to xj (resp. γj′ from xj′ to x′) passing through projσ(x) (resp. projσ(x′)).
By concatenating γj and γj′ with the gallery xj , xj+1, . . . , xj′ , we obtain a
gallery γ̃, of the same length as γ, joining x to x′. Thus γ̃ is minimal. By
construction, it passes through projσ(x) and projσ(x

′).

Notice that if Σ is an apartment of X containing a chamber c, then
the intersection Xi(c) ∩ Σ is a half-apartment. The set of half-apartments
is partially ordered by inclusion; the following result shows that this order
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relation is reflected by the ordering of the wings in the ambient building.
This will play a crucial role in the subsequent discussions.

Lemma 3.4. Let i, i′ ∈ I and c, c′ ∈ Ch(X). Suppose that at least one of
the following conditions holds:

(a) c ∈ Xi′(c
′) and c′ 6∈ Xi(c); moreover i = i′ or mi,i′ =∞.

(b) Xi(c) ∩Σ ⊆ Xi′(c
′) ∩Σ for some apartment Σ containing c and c′.

Then Xi(c) ⊆ Xi′(c
′).

Proof. Assume first that (a) holds and let Σ be an apartment containing
c and c′. LetW (resp.W ′) be the wall of Σ which bounds the half-apartment
Xi(c)∩Σ (resp. Xi′(c

′)∩Σ). The fact that i = i′ or mi,i′ =∞ ensures that
the walls W and W ′ have trivial intersection (the case W =W ′ is excluded
in view of Lemma 3.1(ii)). Therefore the wall W is contained in the half-
apartment Xi′(c

′)∩Σ because c ∈ Xi′(c
′)∩Σ. It follows that either Xi(c)∩Σ

or the complementary half-apartment is contained in Xi′(c
′)∩Σ. The latter

case is excluded, since it would imply that c′ ∈ Xi(c) ∩Σ. This proves that
(b) holds. Hence it suffices to prove the lemma under the hypothesis (b).

We may assume that c′ 6∈ Xi(c), since otherwise Xi(c)∩Σ = Xi′(c
′)∩Σ,

and hence Xi(c) = Xi′(c
′) by Lemma 3.1(ii).

Let σ (resp. σ′) be the i-panel (resp. i′-panel) of c (resp. c′). Let d ∈
Ch(X) be such that projσ(d) = c. We need to show that projσ′(d) = c′.
Equivalently, for each chamber c′′ ∈ Ch(σ′) different from c′, we need to show
that dist(d, c′′) = dist(d, c′) + 1. Let σ = Resi∪i⊥(c). Let x = projσ(c

′) and
y = projσ(d). By hypothesis (b), and since apartments are combinatorially
convex, both chambers belonging to Σ ∩ Ch(σ′) have the same projection
on σ, namely x. Therefore projσ(σ

′) = x and, in particular, projσ(c′′) = x
and hence projσ(c

′′) = projσ(c
′) by Lemma 2.1.

By assumption, d ∈ Xi(c) and c′ 6∈ Xi(c). Therefore, Lemma 3.3 implies

dist(d, c′) = dist(d, y) + dist(y, x) + dist(x, c′).

Moreover, since projσ(c
′′) = projσ(c

′) we have c′′ 6∈ Xi(c), hence Lemma 3.3
also implies that

dist(d, c′′) = dist(d, y) + dist(y, x) + dist(x, c′′).

So it suffices to show that dist(x, c′′) = dist(x, c′)+1. But Lemma 3.3 applied
to c and c′′ also implies that

dist(c, x)+dist(x, c′′) = dist(c, c′′) = dist(c, c′)+1 = dist(c, x)+dist(x, c′)+1,

whence dist(x, c′′) = dist(x, c′) + 1, as desired.

We also need to analyse when a ball or a residue is contained in a given
wing. This is the purpose of the next result, whose statement requires the
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following notation. We denote by B(R,n) the ball of radius n around Ch(R),
i.e. the collection of all chambers c such that dist(c,R) ≤ n.

Lemma 3.5. Let R be a residue, let i ∈ I and let σ be a residue of type
i ∪ i⊥. Let R′ = projσ(R), let c ∈ Ch(R′) and n = dist(c,R). Assume that
Ch(R′) ⊆ Xi(c). Then:

(i) B(R,n) ⊆ Xi(c).
(ii) B(R,n+ 1) ⊆ Xi(c) ∪

⋃
z∈Ch(R′)Ch(Resi(z)).

Proof. We first claim that Ch(R) ⊆ Xi(c). Notice that Ch(R) contains
at least one chamber in Xi(c), namely a chamber x ∈ Ch(R) such that
projσ(x) = c. Therefore, if Ch(R) 6⊆ Xi(c), then R would contain a panel τ
parallel to the i-panel of c by Lemma 2.5. Therefore R′ = projσ(R) would
contain projσ(τ), which is also parallel to the i-panel of c by Lemma 2.1.
Notice that projσ(τ) is an i-panel by Proposition 2.8(i). Therefore Ch(R′) is
not contained in Resi⊥(c). By Lemma 3.1(iii), this implies Ch(R′) 6⊆ Xi(c),
contradicting the hypothesis. The claim stands proven.

Choose a chamber y ∈ B(R,n+1)−Xi(c). Let x = projR(y) and let x =
x0, x1, . . . , xm = y be a minimal gallery. Hencem = dist(x, y) = dist(R, y) ≤
n+ 1. By the claim above, we have x ∈ Xi(c). On the other hand y 6∈ Xi(c)
by assumption, so that it makes sense to define k0 = min{` | x` 6∈ Xi(c)}.
Thus k0 > 0 and xs ∈ Xi(c) for all s ∈ {0, . . . , k0 − 1}.

We next observe that the panel σ′ shared by xk0−1 and xk0 is parallel
to σ = Resi(c) by Lemma 2.5, and is thus of type i by Proposition 2.8(i).
Moreover xk0−1 and xk0 both belong to Ch(σ) by Proposition 2.8(ii). In
particular we have

n ≥ m− 1 ≥ k0 − 1 = dist(x, xk0−1) ≥ dist(x,projσ(x)).

There is a minimal gallery from x to projσ(x) passing through x′ =
projR(projσ(x)). The residues projR(σ) and R′ are parallel by Lemma 2.7.
Therefore, we deduce from Lemma 2.4 that

dist(x′, projσ(x)) = dist(x′,projσ(x
′)) = dist(projR(σ), R

′) = dist(R, c) = n.

This implies that dist(x,projσ(x)) ≥ n. From the sequence of inequalities
above, we deduce that m = k0 = n+ 1. Part (i) follows.

Moreover, since n= dist(x, xk0−1)≥ dist(x, projσ(x))≥ n, we have xk0−1
= projσ(x) and hence xk0−1 ∈R′. Thus y ∈Ch(σ′)⊆

⋃
z∈Ch(R′)Ch(Resi(z)).

This proves (ii).

Corollary 3.6. Let i ∈ I, let c, x ∈ Ch(X) and n = dist(c, x). Let
also σ = Resi(c) and σ = Resi∪i⊥(c). If projσ(x) = c, then B(x, n + 1) ⊆
Xi(c) ∪ Ch(σ).

Proof. Let R = {x}. Then projσ(R) = {c} ⊆ Xi(c). Thus the desired
inclusion follows from Lemma 3.5.



30 P.-E. Caprace

Corollary 3.7. Let J ⊆ I and i ∈ I − J . Given a J-residue R and a
chamber c ∈ Ch(R), we have Ch(R) ⊆ Xi(c).

Proof. Let σ = Resi∪i⊥(c) and R′ = projσ(R). Since c ∈ Ch(R)∩Ch(σ),
we have R′ = R ∩ σ. Recall from Lemma 3.1(iii) that Xi(c) ∩ Ch(σ) =
Resi⊥(c). Therefore, if Ch(R′) were not contained in Xi(c), it would contain
an i-panel. However the type of R′ is a subset of J , and therefore does
not contain i by hypothesis. This shows that Ch(R′) ⊆ Xi(c). Applying
Lemma 3.5(i) with n = 0, we obtain Ch(R) ⊆ Xi(c), as required.

4. Extending local automorphisms. The following important result
was shown by Haglund and Paulin.

Proposition 4.1 (Haglund–Paulin). Let X be a semiregular right-angled
building. For any residue R of X and any α ∈ Aut(R)+, there is α̃ ∈
Aut(X)+ stabilizing R and such that α̃|Ch(R) = α.

Proof. See Proposition 5.1 in [HP03].

In other words, this means that the canonical homomorphism
StabAut(X)+(R)→ Aut(R)+ is surjective.

It will be important for our purposes to ensure that the extension con-
structed in Proposition 4.1 can be chosen to satisfy some additional con-
straints. In particular, we record the following.

Proposition 4.2. Let X be a semiregular right-angled building of
type (W, I). Let i ∈ I and σ be an i-panel. Given any permutation α ∈
Sym(Ch(σ)), there is α̃ ∈ Aut(X)+ stabilizing σ and satisfying the following
two conditions:

(i) α̃|Ch(σ) = α.
(ii) α̃ fixes all chambers of X whose projection to σ is fixed by α.

Proof. Let c0 ∈ Ch(σ) and σ⊥ = Resi⊥(c0). Then we have Ch(σ) =
Ch(σ)× Ch(σ⊥) by Lemma 2.2. We define β ∈ Aut(σ)+ as β = α × Id. By
Proposition 4.1, the automorphism β of σ extends to some (type-preserving)
automorphism β̃ of X.

We now define a map α̃ : Ch(X) → Ch(X) as follows: for each c in
Ch(X), we set

α̃(c) =

{
c if α(projσ(c)) = projσ(c),

β̃(c) otherwise.

Clearly α̃ satisfies the desired condition (ii). Moreover, we have α̃|Ch(σ) = β,
from which it follows that condition (i) holds as well.

It remains to check that α̃ is an automorphism. To this end, let x and y
be any two chambers and denote by x′ and y′ their projections on σ.
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If x′= y′, then either (α̃(x), α̃(y)) = (x, y), or (α̃(x), α̃(y)) = (β̃(x), β̃(y)).
In both cases, α̃ preserves the Weyl distance from x to y.

Assume now that x′ 6= y′. Let then x′′ and y′′ denote the projections of
x and y on σ. By Lemma 3.3, it suffices to show that α̃ preserves the Weyl
distance from x to x′′, the Weyl distance from x′′ to y′′ and the Weyl distance
from y′′ to y. Since wings are combinatorially convex by Proposition 3.2, and
since the restriction of α̃ to each wing of σ preserves the Weyl distance, it
follows that α̃ preserves the Weyl distance from x to x′′ and from y′′ to y.
That the Weyl distance from x′′ to y′′ is preserved is clear since the restriction
of α̃ to Ch(σ) is the automorphism β.

This proves that α̃ preserves the Weyl distance from x to y. Thus α̃ is a
type-preserving automorphism.

5. Fixators of wings. As before, let X be a right-angled building of
type (W, I).

The subsets Xi(c) are analogues of half-trees in the case W is infinite di-
hedral. In view of this analogy, we shall consider the subgroups of Aut(X)+,
denoted by Vi(c) and Ui(c), consisting respectively of automorphisms sup-
ported on Xi(c) and on its complement. In symbols,

Ui(c) = {g ∈ Aut(X)+ | g(x) = x for all x ∈ Xi(c)},
Vi(c) = {g ∈ Aut(X)+ | g(x) = x for all x 6∈ Xi(c)}.

Clearly Ui(c) and Vi(c) both fix c and stabilize the i-panel of c. Moreover
they commute and have trivial intersection, since their supports are disjoint.
The following implies that they are both non-trivial.

Lemma 5.1. Assume that X is thick and semiregular. Let i ∈ I be such
that i ∪ i⊥ 6= I. Then for all c ∈ Ch(X), the groups Ui(c) and Vi(c) are
non-abelian.

Proof. By hypothesis, there exists j ∈ I not contained in i ∪ i⊥. Let
x 6= c be a chamber j-adjacent to c. Then Xj(x) ⊂ Xi(c) by Lemma 3.4.
This implies that Ui(c) fixes pointwise Xj(x) for all chambers x 6= c that
are j-adjacent to c. In particular Ui(c) is contained in Vj(c). Likewise, since
i 6∈ j ∪ j⊥, we have Uj(c) ≤ Vi(c). In view of the symmetry between i and j,
it only remains to show that Ui(c) is not abelian.

Proposition 4.2 implies that Uj(c) is non-trivial; so is thus Vi(x) for all
x ∈ Ch(X) in view of what we have just observed.

For each c′ 6= c that is i-adjacent to c, the group Vi(c
′) is contained in

Ui(c). Moreover, if c′, c′′ are two distinct such chambers, the groups Vi(c′)
and Vi(c′′) are different since they are non-trivial and have disjoint supports.
By Proposition 4.2, there is u ∈ Ui(c) mapping c′ to c′′. Then uVi(c′)u−1 =
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Vi(c
′′) 6= Vi(c

′). In particular u does not commute with Vi(c′), which proves
that Ui(c) is not abelian.

Given G ≤ Aut(X), the pointwise stabilizer of the chamber set Ch(R) of
a residue R is denoted by FixG(R). We shall next describe how the groups
Ui(c) and Vi(c) provide convenient generating sets for the pointwise stabi-
lizers of residues in X. We start with wall-residues; the case of spherical
residues is postponed to Proposition 8.1 below.

Proposition 5.2. Let X be a right-angled building of type (W, I). Let
c ∈ Ch(X) and i ∈ I, and let R = Resi∪i⊥(c) be the residue of type i ∪ i⊥
of c. Then

FixAut(X)+(R) =
∏
d∼ic

Vi(d).

We will use the following subsidiary fact.

Lemma 5.3. Let n > 0 be an integer, let C,W be sets and let δ : Cn →W
be a map. Let G denote the group of all permutations g ∈ Sym(C) such that
δ(g(x1), . . . , g(xn)) = δ(x1, . . . , xn) for all (x1, . . . , xn) ∈ Cn. Let moreover
(Vi)i∈I be a collection of groups indexed by a set I, and for all i ∈ I, let
ϕi : Vi → G be an injective homomorphism such that for all i 6= j, the
subgroups ϕi(Vi) and ϕj(Vj) have disjoint supports. Then there is a unique
injective homomorphism

ϕ :
∏
j∈I

Vj → G

such that ϕ ◦ ιi = ϕi for all i ∈ I, where ιi : Vi →
∏
j∈I Vj is the canonical

inclusion.

The only relevant case for this paper is when C is the chamber set of a
building X and δ : C×C →W is the Weyl distance. In that case, the group
G from Lemma 5.3 coincides with the group Aut(X)+ of type-preserving
automorphisms of X.

Proof of Lemma 5.3. The uniqueness of ϕ is clear; we focus on the exis-
tence proof. Set V =

∏
j∈I Vj and let g = (gj)j∈I ∈ V . Given x ∈ C, there is

at most one index j ∈ I such that ϕj(Vj) does not fix x, since the subgroups
ϕi(Vi) have disjoint supports. We set ϕ(g)(x) = ϕj(gj)(x) if there exists
such a j ∈ I, and ϕ(g)(x) = x otherwise. This defines a homomorphism
ϕ :

∏
i∈I Vi → Sym(C) such that ϕ◦ ιi = ϕi for all i ∈ I. It is injective, since

ϕ(g) = 1 implies that ϕi(gi) = 1 for all i, and hence gi = 1 for all i since all
ϕi are injective by hypothesis.

It remains to prove that ϕ(g) ∈ G. Given (x1, . . . , xn) ∈ Cn, let J ⊆ I be
the (possibly empty) subset consisting of all the indices j ∈ I such that ϕj(gj)
does not fix all elements of {x1, . . . , xn}. Thus J is finite of cardinality ≤ n.
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Let gJ denote the product of the elements ϕj(gj) ∈ G over all j ∈ J , in an
arbitrary order; if J = ∅, we set gJ = 1. Since two distinct subgroups ϕi(Vi)
and ϕj(Vj) have disjoint supports, they commute, and it follows that the
product gJ is independent of the chosen order. Moreover, ϕ(g)(xi) = gJ(xi)
for all i ∈ {1, . . . , n}. Since gJ ∈ G, we infer that δ(ϕ(g)(x1), . . . , ϕ(g)(xn)) =
δ(gJ(x1), . . . , gJ(xn)) = δ(x1, . . . , xn), as desired.

Proof of Proposition 5.2. Let d ∼i c. Given any x ∈ Ch(R), we deduce
from Lemma 2.2 that Vi(d) fixes all chambers of the i-panel of x different
from the projection of c. Hence Vi(d) fixes all chambers of that panel. This
proves that Vi(d) is contained in FixAut(X)+(R).

Notice that for two different chambers d, d′ that are i-adjacent to c, the
groups Vi(d) and Vi(d

′) have disjoint supports. From Lemma 5.3, we de-
duce that the (possibly infinite) direct product

∏
d∼ic

Vi(d) is contained in
FixAut(X)+(R).

It remains to show that every g ∈ FixAut(X)+(R) belongs to
∏
d∼ic

Vi(d).
To see this, fix g ∈ FixAut(X)+(R) and d ∼i c, and consider the permutation
gd of Ch(X) defined by

gd : Ch(X)→ Ch(X) : x 7→

{
g(x) if x ∈ Xi(d),

x otherwise.

We claim that gd ∈ Vi(d). To see this, let x, y ∈ Ch(X) and let δ : Ch(X)×
Ch(X)→W denote the Weyl distance. We need to show that δ(gd(x), gd(y))
= δ(x, y). By the definition of gd, it suffices to consider the case when x ∈
Xi(d) and y 6∈ Xi(d) (or vice versa). Notice that R = Resi∪i⊥(d). Therefore,
setting x′ = projR(x) and y′ = projR(y), we deduce from Lemma 3.3 that

δ(x, y) = δ(x, x′)δ(x′, y′)δ(y′, y).

Moreover, the element g ∈ FixAut(X)+(R) fixes x′ and y′ and preservesXi(d).
Thus we have projR(gd(x)) = projR(g(x)) = x′ and, invoking Lemma 3.3
once more, we deduce

δ(gd(x), gd(y)) = δ(g(x), y) = δ(g(x), x′)δ(x′, y′)δ(y′, y)

= δ(x, x′)δ(x′, y′)δ(y′, y) = δ(x, y)

as desired. Thus gd is a type-preserving automorphism ofX. By construction,
we have gd ∈ Vi(d). Moreover the tuple (gd)d∼ic, which is an element of the
direct product

∏
d∼ic

Vi(d), coincides with g. Therefore g ∈
∏
d∼ic

Vi(d).

6. Strong transitivity

Proposition 6.1. Let X be a semiregular right-angled building. Then
the group Aut(X)+ is strongly transitive on X.

We need the following consequence of Proposition 4.2.
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Lemma 6.2. Let X be a semiregular right-angled building of type (W, I).
Let R be a residue and let n, t be non-negative integers. For all s ∈ {1, . . . , t},
let also:

• is ∈ I,
• σs be a residue of type is ∪ i⊥s such that dist(R, σs) = n,
• cs ∈ Ch(R′s), where R′s = projσs(R),
• πs be a permutation of Ch(σs) fixing cs, where σs = Resis(cs).

Assume that the pairs (σ1, i1), . . . , (σt, it) are pairwise distinct, and that
Ch(R′s) ⊆ Xis(cs) for all s ∈ {1, . . . , t}. Then there is g ∈ 〈Uis(cs) | s =
1, . . . , t〉 such that g|Ch(σs) = πs for all s. Moreover g fixes pointwise the set
B(R,n+ 1)−

⋃t
s=1

⋃
z∈Ch(R′

s)
Ch(Resis(z)).

Proof. Let s ∈ {1, . . . , t}. By Proposition 4.2, there exists gs ∈ Uis(cs)
with gs|Ch(σs) = πs. By Lemma 3.5, every element of Uis(cs) fixes pointwise
the set B(R,n+ 1)−

⋃
z∈Ch(R′

s)
Ch(Resis(z)).

Let now s′ 6= s. If σs′ were parallel to σs, we would have is = is′ and σs =
σs′ by Proposition 2.8, contradicting our hypotheses. Therefore projσs(σs′)
is a single chamber (see Lemma 2.5). Moreover, cs′ ∈ Ch(σs′) ∩ B(R,n),
and B(R,n) ⊆ Xis(cs) by Lemma 3.5. We infer that projσs(σs′) = cs or,
equivalently, that Ch(σs′) ⊆ Xis(cs). Therefore Ch(σs′) is pointwise fixed
by gs. It follows that g = g1 . . . gt enjoys the desired properties.

In order to facilitate future references, we state the following special case
separately.

Lemma 6.3. Let X be a semiregular right-angled building of type (W, I).
Let x ∈ Ch(X) and let n, t be non-negative integers. For all s ∈ {1, . . . , t},
let also:

• cs ∈ Ch(X) be such that dist(x, cs) = n,
• is ∈ I be such that projσs(x) = cs, where σs = Resis∪i⊥s (cs),
• πs be a permutation of Ch(σs) fixing cs, where σs = Resis(cs).

Assume that the pairs (c1, i1), . . . , (ct, it) are pairwise distinct. Then there
is g ∈ 〈Uis(cs) | s = 1, . . . , t〉 whose restriction to Ch(σs) is πs for all s.
Moreover g fixes pointwise the set B(x, n+ 1)−

⋃t
s=1Ch(σs).

Proof. Since projσs(x) = cs, we have dist(x, σs) = dist(x, cs) = n.
Clearly cs ∈ Xis(cs). Moreover, if (σs, is) = (σs′ , is′), then (cs, is) = (cs′ , is′)
and hence s = s′ by hypothesis. Thus the desired conclusion follows from
Lemma 6.2.

Proof of Proposition 6.1. As observed by Haglund and Paulin [HP03],
Proposition 4.1 readily implies that Aut(X)+ is chamber-transitive. We need
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to show that given a chamber c ∈ Ch(X) and two apartments A,A′ contain-
ing c, there is an element g ∈ Aut(X)+ fixing c and mapping A to A′.

Set g0 = Id and let n > 0. We shall construct by induction on n an
element gn ∈ Aut(X)+ with the following properties:

• gn fixes pointwise the ball of radius n− 1 around c;
• gngn−1 . . . g0(A)∩A′ ⊇ B(c, n)∩A′, where B(c, n) is the ball of radius
n around c.

The first property ensures that the sequence (gngn−1 . . . g0)n≥0 pointwise
converges to a well-defined automorphism g∞ ∈ Aut(X)+. The second prop-
erty yields g∞(A) = A′, as desired.

Let n ≥ 0, and suppose that g0, g1, . . . , gn have already been constructed.
Set An = gngn−1 . . . g0(A). Thus An ∩A′ contains B(c, n) ∩A.

We need to construct an automorphism gn+1 ∈ Aut(X)+ fixing B(c, n)
pointwise and such that gn+1(An) ∩A′ contains B(c, n+ 1) ∩A′.

Let E be the set of those chambers in B(c, n + 1) ∩ A′ that are not
contained in An. Notice that E is finite (since B(c, n + 1) ∩ A′ is so) and
that every chamber in E is at distance n+ 1 from c.

If E is empty, then we set gn+1 = Id and we are done. Otherwise we
enumerate E = {x′1, . . . , x′t} and consider s ∈ {1, . . . , t}. Let ys be the
first chamber different from x′s on a minimal gallery from x′s to c. Thus
dist(c, ys) = n and ys ∈ B(c, n) ∩ A′, hence ys ∈ An. Let σs be the panel
shared by x′s and ys and let is ∈ I be its type. The pairs (ys, is) are pairwise
distinct since (ys1 , is1) = (ys2 , is2) in the apartment A′ implies that x′s1 = x′s2
and s1 = s2. Finally, let xs ∈ An be the unique chamber which is is-adjacent
to but different from ys.

We claim that projσs(c) = ys. In order to establish this, consider zs =
projσs(c). If zs 6= ys, then dist(c, zs) < dist(c, ys) = n. Therefore the unique
chamber z′s ∈ A′ which is-adjacent to but different from zs also belongs
to An because B(c, n) ∩ A′ ⊆ An. Since apartments are combinatorially
convex and since Ch(σs) contains a chamber of An (namely ys), we infer
that projσs(z

′
s) ∈ An. On the other hand projσs(z

′
s) = x′s by Lemma 2.2.

This contradicts the fact that x′s 6∈ An, and the claim is proven.
We are thus in a position to invoke Lemma 6.3. This yields an element

gn+1 ∈ 〈Uis(ys) | s = 1, . . . , t〉 which maps xs to x′s for all s, and fixes
B(c, n) pointwise. It follows that gn+1 has the required properties, and we
are done.

We are thus in a position to invoke Tits’ transitivity lemma:

Corollary 6.4. Let X be a thick semiregular right-angled building of
irreducible type. Then every non-trivial normal subgroup of Aut(X)+ is tran-
sitive on Ch(X).
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Proof. Since Aut(X)+ is strongly transitive by Proposition 6.1, this fol-
lows from Proposition 2.5 in [Tit64].

In the case when X is locally finite, the strong transitivity guaranteed
by Proposition 6.1 is already enough to ensure that the intersection of all
non-trivial closed normal subgroups of Aut(X)+ is non-trivial, topologically
simple and cocompact; see [CM11, Corollary 3.1]. This is of course a much
weaker conclusion than Theorem 1.1.

7. Simplicity of the automorphism group. The following result
is established by a similar argument to that for Tits’ commutator lemma
(Lemma 4.3 in [Tit70] or Lemma 6.2 in [HP98]).

Lemma 7.1. Let X be a right-angled building of type (W, I). Let σ be
a panel of type i ∈ I, let c, c′ ∈ Ch(σ) be two distinct chambers, and let
g ∈ Aut(X)+ be such that g(c) 6= c′ is j-adjacent to c′ for some j ∈ I
with mi,j = ∞. Then, for each h ∈

∏
d∈Ch(σ)\{c,c′} Vi(d), there exists x ∈

Aut(X)+ such that h = [x, g] = xgx−1g−1.

Proof. Let V0 =
∏
d∈Ch(σ)\{c,c′} Vi(d), and observe that V0 is a subgroup

of G = Aut(X)+ by Proposition 5.2. For each n ≥ 0, we also set σn = gn(σ),
cn = gn(c), c′n = gn(c′) and Vn = gnV0g

−n.
For each n ≥ 0, the support of Vn is contained in

⋃
d∈Ch(σn)\{cn,c′n}Xi(d).

Given d ∈ Ch(σn) \ {cn, c′n} and m > n, we have d ∈ Xi(cm) and cm 6∈
Xi(d). Therefore Xi(d) ⊂ Xi(cm) by Lemma 3.4. This implies that the sets⋃
d∈Ch(σn)\{cn,c′n}Xi(d) and

⋃
d∈Ch(σm)\{cm,c′m}Xi(d) are disjoint. In other

words, we have shown that for m > n ≥ 0, the subgroups Vm and Vn have
disjoint support. By Lemma 5.3, the product V =

∏
n≥0 Vn is a subgroup

of G. Moreover, gVng−1 = Vn+1 for all n ≥ 0.
Given any h ∈ V0, we set xn = gnhg−n for all n ≥ 0. Then the tuple

x = (xn)n≥0 is an element of V ≤ G. So is thus the commutator [x, g].
Moreover, denoting by yn the nth component of an element y ∈ V according
to the decomposition V =

∏
n≥0 Vn, we have [x, g]n = xn(gx

−1g−1)n for all
n ≥ 0. Hence [x, g]0 = h and [x, g]n = xngx

−1
n−1g

−1 = xnx
−1
n = 1 for all

n > 0. Thus [x, g] = h, as required.

We record the following consequence of Lemma 7.1, which is a crucial
ingredient for the proof of Theorem 1.1.

Lemma 7.2. Let X be a right-angled building of type (W, I). Assume
that the Coxeter system (W, I) is irreducible and that X is thick. Then for
any wall-residue R, every non-trivial normal subgroup of Aut(X)+ contains
FixAut(X)+(R).
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Proof. We may assume that (W, I) is non-spherical, since otherwise the
pointwise fixator FixAut(X)+(R) is trivial and there is nothing to prove.

Let N < Aut(X)+ be a non-trivial normal subgroup.
Let σ be a panel of type i ∈ I and R = σ be the corresponding wall-

residue. Choose two distinct chambers c, c′ ∈ Ch(σ). Since (W, I) is irre-
ducible and non-spherical, there exists j ∈ I such that mi,j =∞. By Corol-
lary 6.4, there is g ∈ N such that g(c) is j-adjacent to but different from c′.
In view of Lemma 7.1, we deduce that

∏
d∈Ch(σ)\{c,c′} Vi(d) is contained in N .

Since the latter holds for all pairs {c, c′} ⊂ Ch(σ) and since X is thick,
we deduce that Vi(c) and Vi(c

′) are also contained in N . Therefore, so is
FixAut(X)+(R) by Proposition 5.2.

We are now ready to complete the proof of simplicity.

Proof of Theorem 1.1. Let G = Aut(X)+. We have already established
in Proposition 6.1 that the G-action on X is strongly transitive.

Let N 6= 1 be a non-trivial normal subgroup of G. By Corollary 6.4, the
group N is transitive on Ch(X). Since G is strongly transitive on X, it is
naturally endowed with a BN -pair. Therefore, if we show that N contains
the full stabilizer StabG(R) of some residue R, then it will follow from [Tit64,
Proposition 2.2] that N itself is the stabilizer of some residue. The transitiv-
ity of N on Ch(X) forces that residue to be the whole building X, whence
N = G as required. Therefore, the desired conclusion will follow provided
we show that N contains StabG(R) of some residue R. This is the final of
the following series of claims.

Claim 1. For any proper residue R of irreducible type, the stabilizer
StabN (R) maps onto Aut(R)+.

In order to prove the claim, we first observe that given two chambers
c, c′ ∈ Ch(R), any element of G mapping c to c′ must stabilize R. Since N is
chamber-transitive, it follows that for any residue R different from a single
chamber, the image of N ∩ StabG(R) in Aut(R)+ is non-trivial.

In case R is a proper residue of irreducible non-spherical type, we infer
by induction on the rank that Aut(R)+ is simple; notice that the base of
the induction is provided by [Tit70], which covers semiregular trees. Since
moreover the homomorphism of StabG(R) in Aut(R)+ is surjective by Propo-
sition 4.1, it follows that it remains surjective in restriction to N ∩StabG(R).
In other words, we have shown that StabN (R) maps surjectively to Aut(R)+

for any proper irreducible non-spherical residue.
Assume now that R is spherical. Thus R is of rank one. Since (W, I)

is irreducible, it follows that R is incident with a non-spherical residue R′
of rank two. From the part of the claim which has already been proven,
we deduce that StabN (R

′) maps surjectively to Aut(R′)+. Notice that R′,
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viewed as a building in its own right, is a semiregular tree, in which the
residue R corresponds to the set of edges emanating from a fixed vertex. It
follows that the canonical map StabAut(R′)+(R) → Aut(R) = Aut(R)+ is
surjective. Therefore, so is the map StabN (R) → Aut(R) = Aut(R)+. The
claim stands proven.

Claim 2. For any i ∈ I and any residue R of type i ∪ i⊥, the group
FixG(R) is contained in N .

This was established in Lemma 7.2.

Claim 3. Let J = J0 ∪J1 ∪ · · · ∪Js ( I be the disjoint union of pairwise
commuting subsets such that (WJi ,Ji) is irreducible non-spherical for all i>0
and (WJ0 , J0) is spherical (and possibly reducible or trivial). Let c ∈ Ch(X)
and R = ResJ(c) be its J-residue. If FixG(R) is contained in N , then so is
FixG(ResJ0(c)).

Set P = StabG(R) and U = FixG(R). By Proposition 4.1, the quotient
P/U is isomorphic to Aut(R)+.

For each i = 0, . . . , s, set Ri = ResJi(c). By Lemma 2.2, we have a
canonical decomposition Ch(R) ∼= Ch(R0) × · · · × Ch(Rs), which induces a
corresponding product decomposition Aut(R)+ ∼= L0× · · ·×Ls, where Li =
Aut(Ri)

+. Let N ′ denote the image of N in Aut(R)+ ∼= L = L0 × · · · × Ls
under the quotient map P → P/U . Let also L̃j denote the image of Lj under
the canonical embedding Lj → L.

Let j>0. SinceN ′ and L̃j are both normal in L, we have [N ′, L̃j ]≤N ′∩ L̃j .
On the other hand, by Claim 1, the group StabN (Rj)maps surjectively to Lj .
It follows that the projection πj : L→ Lj remains surjective when restricted
to N ′. Therefore, we have

[Lj , Lj ] = [πj(N
′), πj(L̃j)] = πj([N

′, L̃j ]) ≤ πj(N ′ ∩ L̃j) ≤ πj(L̃j) = Lj .

Since Rj is of non-spherical type, we know that Lj is simple by induction on
the rank, whence Lj = [Lj , Lj ] and N ′ ∩ L̃j = L̃j . In other words, L̃j ≤ N ′.
This holds for all j>0; therefore {1}×L1× · · ·×Ls is also contained in N ′.

Recalling that P fits in the short exact sequence

1→ U → P → L0 × · · · × Ls → 1

and that N contains U by hypothesis, we deduce that N contains the preim-
age of {1} × L1 × · · · × Ls in P . This implies the claim, since the group

FixG(R0) = Ker(StabG(R0)→ Aut(R0)
+) ≤ P

coincides with the preimage in P of {1} × StabL1(c)× · · · × StabLs(c).

Claim 4. The subgroup N contains the full stabilizer StabG(R) of some
proper residue R.
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Since (W, I) is irreducible non-spherical, we have i∪ i⊥ ( I for all i ∈ I.
From Claims 2 and 3, we deduce that there exist spherical residues R0 such
that FixG(R0) is contained in N . Amongst all such residues, we pick one,
say R, whose type J ⊆ I is of minimal possible cardinality.

If J = ∅, then R is a single chamber. Thus StabG(R) = FixG(R) is
contained in N and we are done.

Assume next that J is not empty and let j ∈ J . Since (W, I) is irreducible,
there exists i ∈ I − J such that mi,j =∞. Now we distinguish two cases.

Assume first that J ∪{i} is properly contained in I. Let Ri be the unique
residue of type J ∪{i} incident with R. Then N ≥ FixG(R) ≥ FixG(Ri). Let
Ri = R0×Q1×· · ·×Qs be the decomposition of Ri into a maximal spherical
factor R0 and a number of irreducible non-spherical factors. By Claim 3, we
have FixG(R0) ≤ N . By construction Ri is not spherical and is incident
to R. Therefore the type of R0 is a proper subset of J . This contradicts the
minimality property of R, hence the present case does not occur.

Hence we have I = J ∪{i}. Since J is spherical and (W, I) is irreducible,
it follows that mi,j′ = ∞ for all j′ ∈ J . In other words, i⊥ = ∅. Therefore,
by Claim 2 we have FixG(σ) ≤ N for any i-residue σ. It follows from the
minimality assumption on R that J has cardinality 1 as well. Thus I = {i, j}
and X is a tree, in which case the claim follows from the simplicity theorem
in [Tit70].

8. Fixators of spherical residues. We now turn to fixators of spherical
residues, i.e. residues whose type J ⊆ I generates a finite subgroup of W .
We restrict ourselves to the case where the ambient building X is locally
finite. We endow the group Aut(X) with the compact open topology; the
latter coincides with the topology of pointwise convergence on the discrete
set Ch(X). The group Aut(X) is locally compact and totally disconnected.

Proposition 8.1. Let X be a semiregular, locally finite, right-angled
building of type (W, I). Let R be a residue of spherical type J ⊆ I. Then

FixAut(X)+(R) = 〈Ui(c) | c ∈ Ch(R), i ∈ I − J〉.
Specializing to the case J = ∅, we obtain

StabAut(X)+(c) = 〈Ui(c) | i ∈ I〉
for any chamber c ∈ Ch(X).

Proof of Proposition 8.1. Let G = Aut(X)+. For each n ≥ 0, we set
G(n) = FixG(B(R,n)).

Let c ∈ Ch(X) and i ∈ I. Set σ = Resi∪i⊥(c) and R′ = projσ(R). We say
that the pair (c, i) is admissible if c ∈ Ch(R′) and Ch(R′) ⊆ Xi(c). Now we
set

U(n) = 〈Ui(c) | (c, i) is admissible and dist(c,R) = n〉.
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Notice that if c ∈ Ch(R), then (c, i) is admissible if and only if i 6∈ J . Indeed,
since c ∈ Ch(R), we have Ch(R′) = Ch(R)∩Ch(σ); in particular c ∈ Ch(R′).
Now, if i ∈ J , then J ⊂ i∪ i⊥. Therefore Ch(Resi(c)) ⊆ Ch(R) ⊆ Ch(σ) and
R = R′; in particular Ch(R′) 6⊆ Xi(c). Conversely, if i 6∈ J , then Ch(R′) ⊆
Ch(R) ⊆ Xi(c) by Corollary 3.7, so that (c, i) is indeed admissible.

This shows that U(0) = 〈Ui(c) | c ∈ Ch(R), i ∈ I −J〉. We need to show
that G(0) = U(0). This is the last of the following series of claims.

Claim 1. For all n ≥ 0, we have U(n) ≤ G(n).
Indeed, let (c, i) be an admissible pair with dist(c,R) = n. Then B(R,n)

⊆ Xi(c) by Lemma 3.5(i). Thus Ui(c) fixes B(R,n) pointwise, and hence
U(n) ≤ G(n). The claim follows since G(n) is closed.

Claim 2. For all n ≥ 0, we have U(n) ≤ U(0).

Let (c, i) be an admissible pair with dist(c,R) = n. We prove by induction
on n that Ui(c) ≤ U(0). The base case n = 0 is clear; we assume henceforth
that n > 0. Let x = projR(c). Let c′ be the first chamber on a minimal
gallery from c to x, and let j ∈ I be the type of the panel σ′ shared by c
and c′.

Notice that projR(c) = projR(c
′) = x. Therefore projR(σ

′) = x and
it follows from Lemma 2.1 that no panel of R is parallel to σ′. Setting
R′′ = projσ′(R), we deduce from Lemma 2.7 and Corollary 2.9 that no
panel of R′′ is parallel to σ′. Therefore, for any c′′ ∈ Ch(R′′), we have
Ch(R′′) ⊆ Xj(c

′′). It follows that the pair (c′′, j) is admissible. Moreover,
dist(c′′, R) = dist(σ′, R) ≤ dist(c′, R) = n− 1. By induction, Uj(c′′) ≤ U(0).

If mi,j = 2, then j ∈ i⊥ and, by the definition of j, we have c′ ∈
Resi∪i⊥(c). But c′ is closer to x than c. Therefore

n > dist(R,Resi∪i⊥(c)) = dist(R,projRes
i∪i⊥ (c)(R)) = dist(R, z)

for all z ∈ Ch(projRes
i∪i⊥ (c)(R)) by Lemmas 2.7 and 2.4. Therefore c 6∈

Ch(projRes
i∪i⊥ (c)(R)), in contradiction with the admissibility of (c, i). Thus

mi,j =∞, and hence we have Xj(c
′) ⊂ Xi(c) by Lemma 3.4. Since Xj(c

′) =
Xj(c

′′) by Lemma 3.1(ii), we conclude that Ui(c) ≤ Uj(c′′) ≤ U(0).

Claim 3. For all n ≥ 0, we have G(n) ≤ U(n)G(n+ 1).

Let h ∈ G(n). By the local finiteness of X, there are only finitely many
panels σ1, . . . , σr with Ch(σs) ⊆ B(R,n+1) and that are not pointwise fixed
by h. The set of panels σ1, . . . , σr is partitioned according to the relation of
parallelism. Upon reordering, we may assume {σ1, . . . , σt} is a set of repre-
sentatives of those classes such that for all s < s′ ≤ t, the panels σs and σs′
are not parallel.

Let is ∈ I be the type of σs. It follows from Proposition 2.8 that the
pairs (σ1, i1), . . . , (σt, it) are pairwise distinct.
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The projection projσs(R) must be a single chamber, say cs, since h fixes
Ch(R)pointwise but acts non-trivially onCh(σs). In particulardist(cs, R)=n.

Let now R′s = projσs(R) and pick z ∈ Ch(R′s). Since h fixes B(R,n)
pointwise, it must also fix R′s pointwise. Since Resis(z) is parallel to σs by
Proposition 2.8(ii), it follows that h does not act trivially on Ch(Resis(z)).
Therefore

dist(σs, R) = dist(R′s, R) = dist(z,R) ≥ n = dist(cs, R) ≥ dist(σs, R).

This implies that cs ∈ Ch(R′s). Moreover

projσs(R
′
s) = projσs(projσs(R)) = projσs(R) = {cs}

by Lemma 2.1, so that Ch(R′s) ⊆ Xis(cs). Thus the pair (cs, is) is admissible.
Now it follows from Lemma 6.2 that there is g ∈ U(n) such that gh fixes

σs pointwise for all s = 1, . . . , t. In particular gh fixes σs pointwise for all
s = 1, . . . , r.

By definition, h fixes all chambers of B(x, n + 1) −
⋃r
s=1Ch(σs). More-

over g fixes all chambers of B(x, n + 1) −
⋃t
s=1

⋃
z∈Ch(R′

s)
Ch(Resis(z)) by

Lemma 6.3. Let s ∈ {1, . . . , t} and z ∈ Ch(R′s). By Lemmas 2.7 and 2.4, we
have dist(z,R) = dist(R′s, R) = dist(cs, R) = n. The panels σs and Resis(z)
are parallel by Proposition 2.8(ii). Thus h does not act trivially on Resis(z)
and so Resis(z) ∈ {σ1, . . . , σr}. This implies that g fixes all chambers of
B(x, n + 1) −

⋃r
s=1Ch(σs). Hence so does gh, therefore gh ∈ G(n + 1) in

view of the preceding paragraph. This proves the claim.

Claim 4. G(0) = U(0).

Let g ∈ G(0). Invoking Claim 3, by induction on n ≥ 0, we find un ∈ U(n)
and gn ∈ G(n+1) such that g = u0u1 . . . ungn for all n. By Claim 2 we have
un ∈ U(0) for all n. Since limn→∞ gn = 1, we obtain g ∈ U(0). This proves
that G(0) ≤ U(0). The reverse inclusion is provided by Claim 1.

9. Ends and local splittings. A locally normal subgroup of a locally
compact group is a compact subgroup whose normaliser is open. We first
record that the automorphism groups of right-angled buildings always admit
many locally normal subgroups.

Lemma 9.1. Let X be a thick, semiregular, locally finite, right-angled
building of type (W, I). Assume that (W, I) is irreducible non-spherical. Then
Aut(X)+ admits locally normal subgroups which decompose non-trivially as
direct products, all of whose factors are themselves locally normal.

Proof. Given c ∈ Ch(C) and i ∈ I, the group Vi(c) is closed by defini-
tion, compact because it fixes c, and non-trivial by Lemma 5.1. Let U =
FixG(Resi(c)). Since X is locally finite, the group U is a finite intersection
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of chamber stabilizers, and is thus open in G. Moreover, it normalizes Vi(c),
which proves that Vi(c) is a locally normal subgroup. The desired conclusion
is thus provided by Proposition 5.2.

The following result is an extended version of Theorem 1.4 from the
introduction.

Theorem 9.2. Let X be a thick, semiregular, locally finite, right-angled
building of type (W, I). Assume that (W, I) is irreducible non-spherical. Then
the following are equivalent:

(i) W is one-ended.
(ii) W does not split as a free amalgamated product over a finite sub-

group.
(iii) There is no partition I = I0∪I1∪I2 with I1, I2 non-empty, mi,j = 2

for all i, j ∈ I0 and mi,j =∞ for all i ∈ I1 and j ∈ I2.
(iv) X is one-ended.
(v) G is one-ended.
(vi) All compact open subgroups of G = Aut(X)+ are indecomposable.

We shall need the following basic fact on right-angled Coxeter groups.

Lemma 9.3. Let (W, I) be an irreducible non-spherical right-angled Cox-
eter system. For any two half-spaces H,H ′ whose boundary walls cross in the
Davis complex of W , there is a half-space H ′′ properly contained in H ∩H ′.

Proof. The Davis complex of a right-angled Coxeter group (W, I) is a
CAT(0) cube complex. We call it Σ.

We claim that Σ is irreducible as a CAT(0) cube complex. Indeed, sup-
pose the contrary. Then by [CS11, Lem. 2.5], the collection of all hyperplanes
of Σ can be partitioned into two non-empty subsets, say H1,H2, such that
every hyperplane in H1 crosses every hyperplane in H2. Denote by Wi the
subgroup of W generated by the reflections through the hyperplanes in Hi;
then the intersection W1 ∩W2 is contained the centre of W , and is therefore
trivial (that the centre of an irreducible non-spherical Coxeter group is trivial
is well-known and follows e.g. from [Kra09, Corollary 6.3.10]). Hence we ob-
tain a non-trivial direct product decompositionW ∼=W1×W2, contradicting
the irreducibility of (W, I) by [Par07]. The claim stands proven.

Since (W, I) is irreducible and non-spherical, for every wall W we may
find a wall W ′ disjoint from W (see [Hée93, Prop. 8.1, p. 309]). Transform-
ing W under the dihedral group generated by the reflections through W
and W ′, we find walls arbitrarily far from W in both of the half-spaces
that it determines. This proves that W acts essentially on Σ in the sense
of [CS11]. Moreover, since Σ is irreducible, it follows from [CS11, Th. 4.7]
that W does not fix any point at infinity of Σ. The hypotheses of [CS11,
Lem. 5.2] are thus fulfilled. The latter result ensures that at least one of the



Automorphisms of right-angled buildings 43

four sectors determined by the boundary walls of H and H ′ properly con-
tains a half-space. Transforming that half-space by an appropriate element
from the group generated by the reflections fixing the boundary walls of H
and H ′, we find a half-space properly contained in H ∩H ′, as desired.

We also record an abstract group-theoretic fact, where [g, V ] denotes the
set of commutators {[g, v] | v ∈ V }.

Lemma 9.4. Let C be a set and G ≤ Sym(C) be a group of permutations
of C. Let V ≤ G be a subgroup fixing all elements of C outside of a subset
Y ⊆ C. Let a, b ∈ G be such that Y ∩ a(Y ) = ∅ = Y ∩ b(Y ). If each element
of [a, V ] commutes with each element of [b, V ], then V is abelian.

Proof. Given g ∈ StabG(Y ), we define ϕ(g) ∈ Sym(C) by

ϕ(g) : x 7→

{
g(x) if x ∈ Y,
x otherwise.

Then ϕ : StabG(Y ) → Sym(C) is a homomorphism. Since V and aV a−1

have disjoint supports, they are both contained in StabG(Y ). Moreover, given
v ∈ V , we have

ϕ([a, v]) = ϕ(ava−1v−1) = ϕ(ava−1)ϕ(v−1) = ϕ(v−1) = v−1.

Similarly ϕ([b, w]) = w−1 for all w ∈ V . Since [a, v] and [b, w] commute by
hypothesis, so do their images under ϕ. Thus V is abelian, as claimed.

Proof of Theorem 9.2. The equivalences (i)⇔(ii)⇔(iii) are well-known
(see [MT09]). The equivalence (iv)⇔(v) is clear since G acts properly and
cocompactly on X, so that G and X are quasi-isometric.

(i)⇒(iv). By assumption all apartments are one-ended. Given x∈Ch(X),
we need to prove that for all n ≥ 0, any two chambers c′, c′′ at distance > n
away from x can be connected by a gallery avoiding the ball B(x, n). We
proceed by induction on n.

In the base case n = 0, either a minimal gallery from c′ to c′′ does not
pass through x, and we are done, or every apartment containing c′ and c′′
also contains x, in which case we can find a gallery from c′ to c′′ avoiding x
inside one of these apartments, since these are one-ended by hypothesis.

Let now n > 0 and assume that Ch(X)−B(x, n−1) is gallery-connected.
Let c′ = c0, c1, . . . , ct = c′′ be a non-stammering gallery from c′ to c′′ which
does not meet B(x, n− 1). Then for all i, if ci ∈ B(x, n) then dist(ci−1, x) =
dist(ci+1, x) = n + 1 because the gallery is non-stammering. Therefore, it
suffices to prove that if dist(c′, x) = dist(c′′, x) = n + 1 and c′, c′′ are both
adjacent to a common chamber d ∈ B(x, n), then there is a gallery from c′

to c′′ avoiding B(x, n). Let Σ be an apartment containing x and d. Let d′
and d′′ be the two chambers of Σ different from d and respectively sharing
with d the common panel of d and c′, and of d and c′′. Let i′ (resp. i′′)
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be the type of the panel σ′ (resp. σ′′) shared by d, d′ and c′ (resp. d, d′′
and c′′). Clearly projσ′(d) = d and projσ′′(d) = d. Therefore, by Lemma 6.3,
there is an element g ∈ G fixing Xi′(d) ∩ Xi′′(d) pointwise and such that
g(d′) = c′ and g(d′′) = c′′. Since x ∈ Xi′(d) ∩Xi′′(d), it follows that g(Σ) is
an apartment containing x, d, c′ and c′′. Since apartments are one-ended, a
gallery joining c′ to c′′ and avoiding B(x, n) can be found in the apartment
g(Σ), and we are done.

(v)⇒(iii). Assume that (iii) fails and let I = I0 ∪ I1 ∪ I2 be a partition
with I1, I2 non-empty, mi,j = 2 for all i, j ∈ I0 and mi,j = ∞ for all i ∈ I1
and j ∈ I2. Let T be the graph whose vertex set is the collection of residues
of type I0 ∪ I1 and I0 ∪ I2, and declare that two residues are adjacent if
they contain a common residue of type I0. By Lemma 4.3 from [HP03] the
graph T is a tree. Since 〈I0〉 is finite and since X is locally finite, the set
of chambers of any I0-residue is finite and, hence, the stabilizer of any I0-
residue is a compact open subgroup. In other words the edge stabilizers of
the tree T are compact open subgroups. Since G is chamber-transitive, it acts
edge-transitively on T . This yields a non-trivial decomposition of G as an
amalgamated free product over a compact open subgroup. Hence G cannot
be one-ended by [Abe74].

(vi)⇒(iii). Assume that (iii) fails and let I = I0 ∪ I1 ∪ I2 be a partition
with I1, I2 non-empty,mi,j = 2 for all i, j ∈ I0 andmi,j =∞ for all i ∈ I1 and
j ∈ I2. Let R be a residue of type I0 in X. Since 〈I0〉 is finite, the set Ch(R)
is finite and hence StabG(R) and FixG(R) are both compact open subgroups
of G. We shall prove that FixG(R) splits non-trivially as a direct product.

For k = 1, 2, let Uk = 〈Ui(c) | c ∈ Ch(R), i ∈ Ik〉. Notice that U1 and U2

are both non-trivial by Lemma 5.1 since I1 and I2 are assumed non-empty.
We claim that U1 and U2 commute. Indeed, let c1, c2 ∈ Ch(R), let i1 ∈ I1,

i2 ∈ I2. It suffices to prove that Ui1(c1) and Ui2(c2) commute. This in turn
will follow if one shows that they have disjoint supports.

By definition the support of Ui1(c1) is the union of the sets Xi1(d) over
all chambers d that are i1-adjacent to but different from c1. Let d be such a
chamber. We claim that Xi1(d) ⊂ Xi2(c2).

By Corollary 3.7, we have c2 ∈ Xi1(c1) so that c2 6∈ Xi1(d). Similarly,
Corollary 3.7 implies that c1 ∈ Xi2(c2), which yields d ∈ Xi2(c2), since
otherwise a panel of type i1 would be parallel to a panel of type i2 by
Lemma 2.5, which is impossible by Proposition 2.8(i). This proves that d ∈
Xi2(c2) and c2 6∈ Xi1(d). The claim then follows from Lemma 3.4.

The claim implies that the support of Ui1(c1) is pointwise fixed by Ui2(c2).
By symmetry, the support of Ui2(c2) is pointwise fixed by Ui1(c1), so that
Ui1(c1) and Ui2(c2) commute, as desired. This confirms that U1 and U2 com-
mute.
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By Proposition 8.1, we have FixG(R) = 〈U1 ∪ U2〉. Since U1 and U2

commute, we see that 〈U1 ∪ U2〉 = U1U2. Moreover U1 and U2 are com-
pact, since they are both closed subgroups of the compact group StabG(R).
Thus the product U1U2 is closed, so that FixG(R) = U1U2. In particular
U1 ∩ U2 ≤ Z (FixG(R)). Hence U1 ∩ U2 is contained in the quasi-centre
of G, i.e. the collection of elements commuting with an open subgroup. By
[BEW11, Theorem 4.8] the group G has trivial quasi-centre since G is com-
pactly generated and simple. Thus FixG(R) ∼= U1 × U2 as desired.

(iv)⇒(vi). Assume finally that (iv) holds and let U ≤ G be a compact
open subgroup with two commuting subgroups A,B such that U = AB. We
shall prove that A or B is open. Since the closures A and B commute, we
then infer that B or A is in the quasi-centre of G, which is trivial by [BEW11,
Theorem 4.8] since G is compactly generated and simple. Thus U = A or
U = B and (vi) holds.

Therefore, all we need to show is that if a compact open subgroup U =
AB is the commuting product of two closed subgroups A and B, then A or
B is open. To this end, it suffices to show that A or B is finite. This follows
from the last of a series of claims which we shall now prove successively.

Let x ∈ Ch(X). Upon replacing A and B by their respective inter-
sections with the compact open subgroup StabG(x) and then redefining
U accordingly, we may assume that U fixes x. For all m ≥ 0, we set
G(m) = FixG(B(x,m)). Since U is open it contains G(n0) for some n0 ≥ 0.
Without loss of generality, we may assume that n0 > 1. We define

Π = {σ panel of X | StabG(n0)(σ) 6≤ FixG(σ)}.

In particular, if σ ∈ Π then dist(σ, x) ≥ n0.
Moreover, to each chamber c ∈ Ch(X), we associate two subsets of I

defined as follows:

I0(c) = {i ∈ I | projResi(c)(x) 6= c} and IΠ(c) = {i ∈ I | Resi(c) ∈ Π}.

Recall that a subset J ⊆ I is called spherical if it generates a finite subgroup
of W . It is a classical fact that I0(c) is a spherical subset of I.

Claim 1. Let c ∈ Ch(X) be such that dist(c, x) > n0 and let i ∈ I. Then
i ∈ IΠ(c) if and only if dist(x,Resi∪i⊥(c)) ≥ n0.

Let σ be the i-panel of c, let σ be the (i ∪ i⊥)-residue of c and c′ =
projσ(x).

If dist(x, σ) = dist(x, c′) ≥ n0, then Ui(c
′) fixes B(x, n0) pointwise by

Corollary 3.6. Thus Ui(c′) ≤ G(n0) ≤ U . Since σ is parallel to the i-panel
of c′ by Proposition 2.8(ii), we infer that Ui(c′) fixes projσ(x) and per-
mutes arbitrarily all the other chambers of σ by Proposition 4.2. Therefore
StabG(n0)(σ) 6≤ FixG(σ). Thus σ ∈ Π and i ∈ IΠ(c).
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Assume conversely that dist(x, σ) < n0. Then the i-panel of c′ lies entirely
in B(x, n0) and is thus pointwise fixed by G(n0). That panel being parallel
to σ, it follows that StabG(n0)(σ) acts trivially on σ, and hence σ 6∈ Π and
i 6∈ IΠ(c).

Claim 2. There exists n1 > n0 such that for all c ∈ Ch(X) with dist(c, x)
> n1, we have I0(c) ∩ IΠ(c) 6= ∅.

Since (W, I) is right-angled, any collection of pairwise intersecting walls
in an apartment is contained in the set of walls of a spherical residue. The
cardinality of such a collection is bounded above by the largest cardinality of
a spherical subset of I. In particular it is finite. In view of Ramsey’s theorem,
we infer that there is some n1 > n0 such that any set of more than n1 walls
contains a subset of more than n0 + 1 pairwise non-intersecting walls.

Let now c ∈ Ch(X) be such that dist(c, x) > n1 and Σ be an apartment
containing c and x. By construction there is a set of more than n0+1 pairwise
non-intersecting walls in Σ that are crossed by any minimal gallery from c
to x. In particular, at least one of these walls, say W, separates c from the
ball B(x, n0 + 1).

Among all chambers of Σ adjacent to the wall W, pick one which is at
minimal distance from c, say d. Since (W, I) is right-angled, no wall separat-
ing c from d crossesW. LetW ′ be the first wall crossed by a minimal gallery
from c to d. Thus W ′ is adjacent to c, and every chamber adjacent to W ′ is
at distance > n0 from x.

Let now k ∈ I be the type of the panel of c which belongs toW ′. SinceW ′
separates c from x, we have k ∈ I0(c). Notice that projRes

k∪k⊥ (c)(x) belongs
to Σ. Thus projRes

k∪k⊥ (c)(x) is a chamber of Σ which is adjacent to the
wall W ′. This implies that dist(x,Resk∪k⊥(c)) > n0. Therefore k ∈ IΠ(c) by
Claim 1. Thus the sets I0(c) and IΠ(c) have a non-empty intersection, as
desired.

Claim 3. Let c ∈ Ch(X) and σ be a panel of c. If a(c) 6= c for some
a ∈ StabA(σ), then b(c) = c for all b ∈ StabB(σ), and similarly with A and
B interchanged.

Let i ∈ I be the type of σ. Notice that c0 = projσ(x) 6= c since a fixes x
and stabilizes σ. Let Σ be an apartment containing c and x. It also contains
c0 by combinatorial convexity.

Since (W, I) is irreducible and non-spherical, there is j ∈ I such that
mi,j = ∞. Let R = Res{i,j}(c). Let r be the reflection of Σ swapping c
and c0 and r′ be the reflection of Σ through the j-panel of c. We set c′ =
(r′r)n0(c) and c′0 = (r′r)n0(c0). Thus c and c′ are separated by 2n0 walls of
the residue R in Σ, and x lies on the same side as c of all those walls. Set y =
projRes

i∪i⊥ (c′)(x). Then y belongs to Σ since apartments are combinatorially
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convex. The chambers c′, c′0 and y are all adjacent to the wall W = Σ ∩
Resi∪i⊥(c

′). Moreover the chambers x, y and c′0 lie on the same side of W
while c′ lies on the opposite side. Thus Xi(c

′) and Xi(c
′
0) are disjoint, and

Xi(c
′
0) = Xi(y) ⊇ B(x, n0) by Lemma 3.1(ii) and Corollary 3.6. In particular

Xi(c
′) ∩ B(x, n0) = ∅ so that Vi(c′) fixes B(x, n0) pointwise, and is thus

contained in U .
By construction, we have Xi(c

′) ∩ Σ ⊆ Xi(c) ∩ Σ. Lemma 3.4 therefore
ensures that Xi(c

′) ⊂ Xi(c), whence Vi(c′) ≤ Vi(c). In particular the support
of Vi(c′) and its image under a are disjoint.

Similarly, if b ∈ StabB(σ) and b(c) 6= c, then the support of Vi(c′) and its
image under b are disjoint. Since [a, Vi(c′)] ≤ A and [b, Vi(c

′)] ≤ B, we deduce
from Lemma 9.4 that Vi(c′) is abelian, in contradiction with Lemma 5.1.
Therefore b(c) = c for all b ∈ StabB(σ).

Claim 4. For each panel σ, we have StabU (σ) = StabA(σ) StabB(σ).

Consider an element u ∈ StabU (σ). We may write u = ab with a ∈ A
and b ∈ B. We shall prove that a and b both stabilize σ.

Let x= x0, x1, . . . , xk =projσ(x) be a minimal gallery from x to projσ(x).
Since U fixes x, it follows that u fixes xk, so that u fixes xi for all i.

Since U fixes x = x0, so do A and B. Suppose now that there is some
i > 0 such that a(xi) 6= xi, and assume that i is the smallest such index. Since
u(xi) = xi and u = ab, we must have b(xi) 6= xi. Thus a and b also fix xi−1
and thus both stabilize the panel shared by xi−1 and xi. This contradicts
Claim 3. Hence a and b both fix xi for all i. In particular they stabilize σ,
as desired.

Claim 5. For each panel σ ∈ Π, there is a unique F ∈ {A,B} with
StabF (σ) 6≤ FixG(σ). We denote the corresponding function by

f : Π → {A,B} : σ 7→ F.

Moreover, the group StabF (σ) permutes arbitrarily the elements of Ch(σ)
different from projσ(x) (i.e. it induces the full symmetric group on Ch(σ)−
{projσ(x)}).

Let σ ∈ Π. By definition, StabG(n0)(σ) 6≤ FixG(σ). Since G(n0) ≤ U ,
we infer that StabU (σ) 6≤ FixG(σ). It follows from Claim 4 that StabA(σ) 6≤
FixG(σ) or StabB(σ) 6≤ FixG(σ). We need to show that these two possibilities
are mutually exclusive. Let ChA and ChB be the subsets of Ch(σ) that are
not fixed by StabA(σ) and StabB(σ) respectively. Claim 3 guarantees that
ChA and ChB are disjoint. Since A and B commute, it follows that ChA
and ChB are both invariant under StabA(σ) and StabB(σ), hence also under
StabU (σ) by Claim 4.

Let i ∈ I be the type of σ and c′ = projσ(x). Since σ ∈ Π, we have i ∈ IΠ
and Ui(c

′) ≤ G(n0) ≤ U by Claim 1 and Corollary 3.6. Consequently, the
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group StabU (σ) permutes arbitrarily the set Ch(σ)−{c′} by Proposition 4.2.
Since ChA and ChB are disjoint and StabU (σ)-invariant, it follows that either
ChA or ChB coincides with the whole of Ch(σ)− {c′}.

Claim 6. Let c ∈ Ch(X) and i, j ∈ I with mi,j = 2. Let σi and σj be the
i- and j-panels of c respectively. If σi and σj belong to Π, then f(σi) = f(σj).

Suppose for a contradiction that f(σi) = A and f(σj) = B. Then there
exist a ∈ A, b ∈ B stabilizing respectively σi and σj , and such that a(ci) 6= ci
and b(cj) 6= cj for some ci ∈ Ch(σi) and cj ∈ Ch(σj).

Let R be the {i, j}-residue of c and set c′ = projR(x). Let also σ′i and σ
′
j

be the i- and j-panels of c′. Then a and b both fix c′ and stabilize σ′i and σ
′
j .

Moreover σ′i and σ′j are respectively parallel to σi and σj by Lemma 2.2.
Notice that σ′i, σ

′
j ∈ Π, since an element of G(n0) stabilizing σi (resp. σj)

and acting non-trivially on it will act similarly on σ′i (resp. σ
′
j).

Set c′i = projσ′
i
(ci) and c′j = projσ′

j
(cj). We have a(c′i) 6= c′i and b(c

′
j) 6= c′j .

Therefore f(σi) = f(σ′i) and f(σj) = f(σ′j).
Let Σ be an apartment containing x and c′. By Claim 1 and Corollary 3.6,

the ball B(x, n0) is contained in Xi(c
′)∩Xj(c

′). From Lemma 6.3, we deduce
that there is some g ∈ G(n0) ≤ U mapping Σ to an apartment containing
c′i and c′j . Upon replacing Σ by g(Σ), we can thus assume that Σ is an
apartment containing the chambers x, c′, c′i and c

′
j .

Let H (resp. H ′) be the half-apartment of Σ containing c′i (resp. c
′
j) but

not c′. Since (W, I) is irreducible and non-spherical, there is a half-apartment
H ′′ which is entirely contained in H∩H ′ by Lemma 9.3. Let c′′ be a chamber
of H ′′ having a panel in the wall determined by H ′′, and let k ∈ I be the type
of that panel. Since H ′′ ⊂ H∩H ′, we deduce from Lemma 3.4 that Xk(c

′′) ⊆
Xi(c

′
i) ∩ Xj(c

′
j). In particular Vk(c′′) ≤ Vi(c′i) ∩ Vj(c′j) ≤ G(n0)≤U (where

the inclusion Vi(c′i)∩Vj(c′j) ≤ G(n0) follows from Claim 1 and Corollary 3.6).
We see that the support of Vk(c′′) and its image under a are disjoint.

Similarly, the support of Vk(c′′) and its image under b are disjoint. Since
[a, Vk(c

′′)] ≤ A and [b, Vk(c
′′)] ≤ B, we deduce from Lemma 9.4 that Vk(c′′)

is abelian, in contradiction with Lemma 5.1. The claim stands proven.

Claim 7. Let c ∈ Ch(X) and i, j ∈ I with mi,j = ∞. Let σi and σj
be the i- and j-panels of c respectively. If σi and σj belong to Π, and if
projσi(x) 6= c, then f(σi) = f(σj).

Suppose for a contradiction that f(σi) = A and f(σj) = B (the case
f(σj) = A and f(σi) = B is treated similarly). In view of Claim 5 and the
fact that c′ = projσi(x) 6= c, we can find a ∈ A, b ∈ B and cj ∈ Ch(σj) such
that a(c) 6= c and b(cj) 6= cj .

By Claim 1 and Corollary 3.6, the ball B(x, n0) is contained in Xi(c
′).

By Lemma 3.4 we have Xi(c) ⊃ Xj(cj). In particular Xj(cj) is disjoint
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from B(x, n0), hence Vj(cj) is contained in U . Therefore [a, Vj(cj)] ⊆ A and
[b, Vj(cj)] ⊆ B. Since moreover a (resp. b) maps the support of Vj(cj) to a
disjoint subset, as before, Lemma 9.4 then implies that Vj(cj) is abelian, in
contradiction with Lemma 5.1.

Claim 8. Let c ∈ Ch(X), let i, j ∈ I and let σi and σj be the i- and
j-panels of c respectively. If σi and σj belong to Π, and if dist(c, x) > n1,
then f(σi) = f(σj).

It suffices to deal with the case when projσi(x) = projσj (x) = c, since
the other cases are dealt with by Claims 6 and 7.

Since dist(c, x) > n1, there is some k ∈ I0(c) ∩ IΠ(c) by Claim 2. Let
σk be the k-panel of c. Invoking Claim 6 or Claim 7 according as mi,k = 2
or mi,k = ∞, we infer that f(σi) = f(σk). Similarly f(σj) = f(σk), so that
f(σi) = f(σj) and we are done.

Notice that by Claim 2, every chamber c at distance > n1 from x has a
panel belonging to Π. Moreover the map f takes the same value on all these
panels by Claim 8. We shall denote this common value by f(c).

Claim 9. Let c, c′ ∈ Ch(X) be two adjacent chambers both at distance >
n1 from x. Then f(c) = f(c′).

Let σ be the panel shared by c and c′. If σ ∈ Π then we are done by
the previous claim. We assume henceforth that σ 6∈ Π and denote by j its
type. By Claim 2 there is some i ∈ I0(c) ∩ IΠ(c). Let σi be the i-panel of c.
Then d = projσi(x) is different from c and moreover σi ∈ Π. By Claim 1
and Corollary 3.6, this implies that B(x, n0) is entirely contained in Xi(d).
It follows that mi,j = 2, since otherwise we would have Xi(d) ⊂ Xj(c)
by Lemma 3.4 and hence dist(x,Resj∪j⊥(c)) ≥ n0. This would contradict
Claim 1 since σ 6∈ Π.

Since mi,j = 2, it follows that the i-panel of c′, say σ′i, is parallel to σi
by Lemma 2.2. Therefore, any element of G(n0) ≤ U stabilizes σi and acts
non-trivially on it if and only if it stabilizes σ′i and acts non-trivially on it.
Hence σ′i ∈ Π and f(σi) = f(σ′i). Therefore f(c) = f(c′).

Claim 10. We have A ∩G(n1 + 1) = 1 or B ∩G(n1 + 1) = 1.

By (iv) any two chambers at distance > n1 from x can be joined by a
gallery which does not meet the ball B(x, n1). By the preceding claim, this
implies that the map f is constant on Ch(X)− B(x, n1). Upon exchanging
A and B we may assume that this constant value is A. It follows that for
all panels σ ∈ Π at distance > n1 from x, we have StabB(σ) ≤ FixB(σ). An
immediate induction now shows that for all m > n1, we have B ∩ G(m) ≤
G(m+ 1). Therefore B ∩G(n1 + 1) is trivial.
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