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Applications of some strong set-theoretic axioms to
locally compact T5 and hereditarily scwH spaces

by

Peter J. Nyikos (Columbia, SC)

Abstract. Under some very strong set-theoretic hypotheses, hereditarily normal
spaces (also referred to as T5 spaces) that are locally compact and hereditarily collec-
tionwise Hausdorff can have a highly simplified structure. This paper gives a structure
theorem (Theorem 1) that applies to all such ω1-compact spaces and another (Theorem
4) to all such spaces of Lindelöf number ≤ ℵ1. It also introduces an axiom (Axiom F)
on crowding of functions, with consequences (Theorem 3) for the crowding of countably
compact subspaces in certain continuous preimages of ω1. It also exposes (Theorem 2)
the fine structure of perfect preimages of ω1 which are T5 and hereditarily collectionwise
Hausdorff. In these theorems, “T5 and hereditarily collectionwise Hausdorff” is weakened
to “hereditarily strongly collectionwise Hausdorff.” Corollaries include the consistency,
modulo large cardinals, of every hereditarily strongly collectionwise Hausdorff manifold of
dimension > 1 being metrizable. The concept of an alignment plays an important role in
formulating several of the structure theorems.

This is the second in a series of papers about some remarkably strong
implications some axioms of set theory have for the structure of hereditarily
normal (abbreviated T5) locally compact spaces. The first, [Ny2], showed
that under some strong axioms, all hereditarily collectionwise Hausdorff (ab-
breviated cwH) T5 manifolds of dimension greater than 1 are metrizable. In
this paper we will prove a structure theorem about locally compact spaces
(Theorem 4) which has this result as a corollary. In fact, “hereditarily cwH
and T5” can be weakened to “hereditarily strongly cwH” (Definition 1.1).
Future papers in this series will delve deeply into the theory of the locally
connected case and will also continue the analysis of the general case, making
liberal use of the theorems and lemmas of this paper.
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Some results en route to Theorem 4 are of independent interest. Section 1
shows how MA(ω1) implies that locally compact, hereditarily strongly cwH
spaces have a rather simple structure if they are either ω1-compact or of
Lindelöf degree ℵ1. Section 2 utilizes the Proper Forcing Axiom (PFA),
which is stronger than MA(ω1), showing that it implies that hereditarily
strongly cwH perfect preimages of ω1 fall apart into finitely many copies
of ω1 and a paracompact subspace. This is an important ingredient in the
proof of Theorem 4, and also in strengthening the main results of Section 1
under the PFA. Section 3 introduces a simple and natural sounding axiom
with considerable large cardinal strength, and Theorem 3 there dovetails
with a theorem in Section 4 to immediately give Theorem 4.

There is ongoing research into the possibility of dropping all mention
of the cwH property in many of the results of this paper. At the end of
Section 1 we give some specific ideas for substituting the T5 property for
the hereditarily scwH property in all results of that section.

I am indebted to the referee for calling my attention to the fact [H]
that (∗c) is a consequence of the PFA and thus reducing the set-theoretic
assumptions in several of the theorems of this paper.

Throughout this paper, “space” will mean “Hausdorff topological space.”

1. The global structure of locally compact, hereditarily scwH
spaces under MA(ω1). In this section we will see some striking conse-
quences of MA(ω1) for locally compact, hereditarily strongly collectionwise
Hausdorff spaces.

1.1. Definition. Given a subset D of a set X, an expansion of D is a
family {Ud : d ∈ D} of subsets of X such that Ud ∩ D = d for all d ∈ D.
A space X is [strongly ] collectionwise Hausdorff (abbreviated [s]cwH ) if
every closed discrete subspace has an expansion to a disjoint [resp. discrete]
collection of open sets.

A well known, almost trivial fact is that every normal, cwH space is
scwH: if D and {Ud : d ∈ D} are as in 1.1, let V be an open set containing D
whose closure is in

⋃{Ud : d ∈ D}; then {Ud ∩V : d ∈ D} is a discrete open
expansion of D. Hence the class of hereditarily scwH spaces is somewhat
broader than the class of T5 hereditarily cwH spaces, and the only results
which use even normality are Lemma 2.4 and Theorems 2.3 and 3; even
there, the hereditary scwH property gives the same topological conclusions.

We begin with a general lemma of independent interest. Recall that a
space is called ω1-compact if every closed discrete subspace is countable. This
class of spaces is a natural common generalization of countably compact
spaces and Lindelöf spaces—the latter because every uncountable closed
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discrete subspace naturally gives rise to an uncountable open cover with no
proper subcover.

1.2. Lemma. [MA(ω1)] In a locally compact , hereditarily scwH space,
every open Lindelöf [resp. ω1-compact ] subset has Lindelöf [resp. ω1-com-
pact ] closure and hereditarily Lindelöf , hereditarily separable boundary.

Proof. Let H be an open Lindelöf [resp. ω1-compact] subset of a space
X as described. It is enough to show that H has a boundary with count-
able spread, since MA(ω1) implies every locally compact space of countable
spread is hereditarily separable and hereditarily Lindelöf by Szentmiklóssy’s
Theorem (cf. [Ro]). Of course, any Lindelöf set with Lindelöf boundary has
Lindelöf closure, and the same applies if “ω1-compact” is substituted for
“Lindelöf” everywhere.

So let D be a discrete subspace of the boundary of H; since H is open,
its boundary is H \H. Let C = D \D. Then C is closed in X because D
is discrete, and C is disjoint from H because H \H is closed. Hence H is a
subset of W = H \C. Also, D is closed in the relative topology of W . Using
the fact that W is strongly cwH, let {Ud : d ∈ D} be a discrete-in-W open
expansion of D; then {Ud ∩H : d ∈ D} is a discrete-in-H collection of open
subsets of H, and is countable since H is ω1-compact. (In fact, if we pick a
point d′ ∈ Ud ∩H for each d ∈ D and let D′ be the resulting set, then D′ is
closed discrete in W .) Hence D is countable.

A similar but simpler argument shows that, under MA(ω1), every com-
pact hereditarily cwH space is sequentially compact: every countable subset
has hereditarily Lindelöf closure, and everyGδ in any locally compact (Haus-
dorff) space is a point of first countability. If we strengthen the set-theoretic
hypothesis to PFA, which implies that every countably compact (Hausdorff)
space of countable spread is hereditarily Lindelöf, we can weaken “compact”
to “countably compact.” Similarly, PFA implies that “locally compact” can
be weakened to “regular” in most (though perhaps not all) of Lemma 1.2:

1.3. Corollary. [PFA] In a regular hereditarily scwH space, every
open Lindelöf [resp. ω1-compact ] subset has Lindelöf [resp. ω1-compact ] clo-
sure and hereditarily Lindelöf boundary.

Proof. The only place in the proof of Lemma 1.2 where local compactness
was used was to get from the boundary of H being of countable spread to its
being hereditarily Lindelöf; and the PFA is enough to do this for all regular
spaces.

Lemma 1.2 is already strong enough to have some powerful global con-
sequences, especially in conjunction with a general ZFC result which will be
stated after some definitions.
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1.4. Definitions. The Lindelöf degree or Lindelöf number of a space
X, denoted by L(X), is the least infinite cardinal number κ such that every
open cover of X has a subcover of cardinality ≤ κ. An alignment of a space
X is a family 〈Xα : α < θ〉 of open subspaces of X whose union is X, such
that Xα is a proper subset of Xβ whenever α < β. The ordinal θ is called
the length of the alignment, while the width at α of the alignment equals
the Lindelöf degree of Xα \

⋃
ξ<αXξ, and the width of the alignment is the

supremum of the widths at all ordinals < θ. An alignment is continuous if
Xα =

⋃
ξ<αXξ whenever α is a limit ordinal.

The following well known concept is quite weak, being implied by each
of the following: normality, the scwH property, countable paracompactness,
and even realcompactness:

1.5. Definition. A space X satisfies Property wD if every infinite closed
discrete subspace D has an infinite subspace D′ that expands to a discrete
collection of open sets.

Of course, it only takes countable D to verify Property wD.

1.6. Lemma. Let X be a locally compact space satisfying wD hereditar-
ily , and let 〈Xα : α < θ〉 be a continuous alignment of X. For each limit
ordinal γ of uncountable cofinality , the boundary of Xγ in X is a closed
discrete subspace.

Proof. Let p be a point on the boundary of Xγ , and let Np be a compact
neighborhood of p in X. Let κ be the cofinality of γ and inductively pick
xξ ∈ Np ∩Xγ in such a way that if βξ = sup{η : xξ /∈ Xη} then (1) βξ < βη
if ξ < η, (2) {βξ : ξ < κ} is cofinal in γ, and (3) βν = sup{βξ : ξ < ν} if ν is
a limit ordinal. Conditions (1) and (2) are routine while (3) can be arranged
using compactness of Np: the net 〈xξ : ξ < ν〉 has a convergent subnet, and
any limit point is in Np and also on the boundary of Xβν =

⋃
ξ<ν Xβξ . Thus

Np meets every Xβν \Xβν such that ν is a limit ordinal.
If p is not isolated on the boundary B of Xγ , let {pn : n ∈ ω} be an

infinite discrete subspace of B ∩ int(Np). It is possible to do this because
every infinite (Hausdorff) space contains an infinite discrete subspace. Let
S = Xγ ∪ {pn : n ∈ ω}. Then the pn form a closed discrete subspace of S.

Claim. If D′ = {pn : n ∈ Q} is an infinite subset of {pn : n ∈ ω} then
it is impossible to expand D′ to a discrete collection of open subsets of S.

This claim contradicts the hypothesis that X satisfies wD hereditarily,
and this gives the conclusion that p is relatively isolated in B.



Strong axioms applied to locally compact spaces 29

Proof of claim. Suppose {Un : n ∈ Q} is a disjoint open expansion of D′

and let Vn = Un ∩ int(Np). Let Lim denote the class of limit ordinals. Let

Cn = {ν ∈ κ ∩ Lim : V n ∩ (Xβν \Xβν ) 6= ∅}.
An argument like that for constructing the βξ shows Cn is a closed un-
bounded (“club”) subset of κ. Compactness of V n ∩Xα for all α makes it
easy to show it is closed, while unboundedness follows by a standard argu-
ment: let ν(i) be defined for i ∈ ω by induction so that ν(i) < ν(i+ 1) and
V n ∩ (Xβν(i+1) \Xβν(i)) 6= ∅, starting with any desired ν = ν(0) < κ; then
the supremum of the βν(i) is of the form βν , and compactness of V n ∩Xβν

ensures that V n ∩ (Xβν \Xβν ) is nonempty.
Now let C =

⋂
n∈QCn. If ν ∈ C then V n ∩ (Xβν \Xβν ) is a nonempty

closed subset of the compact set Np ∩ (Xβν \Xβν ), and if we take qn from
V n∩(Xβν \Xβν ) then {qn : n ∈ D′} is not a closed discrete subspace of S.

The following consequence of Lemmas 1.2 and 1.6 says that, informally
speaking, every ω1-compact, locally compact, hereditarily scwH space is
narrow, and can be arbitrarily long depending on what L(X) is.

Theorem 1. [MA(ω1)] Let X be a locally compact , hereditarily scwH ,
ω1-compact space. Then X has a continuous alignment {Xα : α < θ} of
countable width such that each Xα is ω1-compact and each Xα\Xα is hered-
itarily Lindelöf. Moreover , if η is a limit ordinal of uncountable cofinality ,
then

⋃{Xα : α < η} has (countable, closed) discrete boundary.

In a forthcoming paper, large cardinal axioms will be used to remove the
cofinality restriction on η. Whether this can be done without using large
cardinals is an open problem. It will also be shown in a future paper that
ω1-compactness cannot be dispensed with in Theorem 1.

Before proving Theorem 1, we prove a lemma which will be useful later
on as well.

1.7. Lemma. In a locally compact space, every point has an open Lin-
delöf neighborhood.

Proof. Let X be locally compact, let x ∈ X, and let N be a compact
nbhd of x. Since X is Tikhonov, there is a continuous function f : X → [0, 1]
sending x to 0 and N c to 1, and then f←[0, 1) is (open, and) Lindelöf, being
the union of the compact sets f←[0, 1− 1/n].

A corollary of Lemma 1.7 is that H need not be open in Lemma 1.2 for
its closure to be Lindelöf: any Lindelöf H can be covered by countably many
open Lindelöf subsets, and their union will be Lindelöf, and the closure of
the union contains that of H. On the other hand, openness of H still seems
necessary for the conclusion that the boundary is hereditarily Lindelöf.
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Proof of Theorem 1. The “moreover” part is immediate from Lemma 1.6,
and we do not need MA(ω1) to conclude the countability of the boundary
of Xη, but only the fact that the boundary is a closed discrete subspace of
an ω1-compact space.

If X is empty, let θ = 0. If X is nonempty and Lindelöf, let θ = 1 and let
X0 = X; it is easy to see that this works. If X is not Lindelöf, let X0 be any
nonempty Lindelöf open subset of X. If Xα has been defined and is unequal
to X for all α < γ and γ = ξ+1 for some ξ, then we use ω1-compactness and
Lemmas 1.2 and 1.7 to cover the boundary of Xξ with countably many open
Lindelöf subsets, at least one of which is not a subset of Xξ, let Uξ be their
union, and let Xγ = Xξ+1 = Xξ ∪ Uξ. Clearly Xγ is open and ω1-compact,
and so it has hereditarily Lindelöf boundary, by Lemma 1.2. Also, Xγ \Xξ

is Lindelöf, being relatively closed in the Lindelöf open set Uξ.
If γ is a limit ordinal, then we define Xγ =

⋃{Xα : α < γ}; then
Xγ is obviously open. If γ is of countable cofinality, then Xγ is the union
of countably many ω1-compact spaces, hence ω1-compact. If γ is a limit
ordinal of cofinality ω1, then we utilize local compactness of X to show ω1-
compactness of Xγ , as follows. Any uncountable relatively closed discrete
subspace D of Xγ meets each Xα (α < γ) in a countable set, but ω1-
compactness of X would then give D an accumulation point p outside Xγ .
However, if N is a compact neighborhood of p, then N ∩ Xα is compact
for each α < γ, and one of these sets must contain an infinite subset of D,
contradicting closed discreteness of D in Xγ . So now we can use Lemma 1.2
to conclude that the boundary of X is hereditarily Lindelöf.

Finally, if γ is a limit ordinal of cofinality > ω1, and D is an uncountable
discrete subspace of Xγ , then an elementary cofinality argument gives α < γ
such that D ∩ Xα is uncountable, and so D has an accumulation point in
Xα and thus cannot be closed in Xγ . Hence Xγ is ω1-compact, and we deal
with its boundary as before.

Another general class of locally compact, hereditarily scwH spaces for
which Lemma 1.2 has strong consequences is those of Lindelöf degree ℵ1:
they have continuous alignments of width ω and length ω1. Before showing
this, we recall a closely related concept which was introduced in [Ny1]:

1.8. Definition. A space X is a Type I space if it is the union of an
ω1-sequence 〈Xα : α < ω1〉 of open subspaces such that Xα ⊂ Xβ whenever
α < β and such that Xα is Lindelöf for all α. Such an ω1-sequence will be
called a canonical sequence for X if moreover Xγ =

⋃
β<γ Xβ for all limit γ.

Examples of Type I spaces include all spaces with alignments of length
ω1 and width ω. This is because, in any space X with an alignment of
countable width, each countable interval of the form Xα+ξ \ Xα (that is,
ξ < ω1) is Lindelöf, and each set of the form Xα \

⋃
ξ<αXξ is Lindelöf, so
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that the boundary of
⋃
ξ<αXξ is a closed, hence Lindelöf subset of Xα. If

α is countable one then uses this to establish by induction that the closure
of Xα is Lindelöf. For locally compact spaces, we also have:

1.9. Lemma. Let X be a nonempty locally compact space. The following
are equivalent :

(1) Every open Lindelöf subset of X has Lindelöf closure, and L(X)
≤ ℵ1.

(2) Every Lindelöf subset of X has Lindelöf closure, and L(X) ≤ ℵ1.
(3) X is of Type I.
(4) X has an alignment of width ω and length ≤ ω1.
(5) X has a continuous alignment of width ω and length ≤ ω1.

Proof. (1) and (2) are equivalent by the remark following Lemma 1.7.
The remark following 1.8 shows that (4) implies (3), while (5) obviously
implies (4).

(3)⇒(2): If X is of Type I, then every Lindelöf subset is contained in
some Xα (α < ω1) and hence has Lindelöf closure; and any space X which
is the union of ≤ ℵ1 Lindelöf subsets satisfies L(X) ≤ ℵ1.

(2)⇒(5): If X is Lindelöf, this is easy: see the beginning of the proof
of Theorem 1. If X is not Lindelöf, cover X with nonempty open Lindelöf
subsets {Gα : α < ω1}. Let X0 = G0. If Xξ 6= X is open and has Lindelöf
closure, and α = ξ + 1, cover the closure of Xξ ∪ Gξ with countably many
open Lindelöf sets Vn, at least one of which is not a subset of Xξ, and let
Xα be the union of the Vn. Then Xα is also Lindelöf, being the union of
countably many Lindelöf subsets, and Xα \Xξ is closed in Xα and so it is
also Lindelöf.

If α is a countable limit ordinal and Xξ has been defined for ξ < α, let
Xα be the union of the earlier Xξ. By the obvious induction hypothesis, Xα

is Lindelöf. Since the Gα (α < ω1) cover X, it is clear that 〈Xα : α < ω1〉 is
a continuous alignment of width ω and length ω1.

1.10. Corollary. [MA(ω1)] Let X be a locally compact , hereditarily
scwH space such that L(X) = ℵ1. Then X has a continuous alignment of
length ω1 and width ω such that each Xα \Xα is hereditarily Lindelöf.

Proof. Follow the construction of the Xα in the proof of Lemma 1.9.
Then each Xα is an open Lindelöf set, and so Lemma 1.2 applies.

In Section 4 we will strengthen Corollary 1.10 by showing that some
powerful axioms imply that every Type I locally compact, hereditarily scwH
space can be given a canonical sequence such that every Xα\Xα is countable.

We close this section by discussing possible alternatives to Lemma 1.2,
the only place where MA(ω1) was used directly. The other uses merely relied
on Lemma 1.2., and did not use hereditary separability of the boundaries.
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The two key ingredients in the proof of the rest of 1.2 were: 1) using the
hereditary strong cwH property and local compactness to show that every
open Lindelöf subset has a boundary of countable spread, and 2) using the
fact that MA(ω1) implies every locally compact space of countable spread is
hereditarily Lindelöf. Unfortunately, 1) does not go through if the hereditary
strong cwH property is replaced by hereditary normality: MA(ω1) implies
the existence of counterexamples. [On the other hand, if we add local con-
nectedness, we come upon some interesting open problems discussed at the
end of this paper.] So we need a different set-theoretic hypothesis, and the
following conjecture suggests itself:

Conjecture 1. 2ℵ0 < 2ℵ1 implies that every open Lindelöf subset of a
locally compact T5 space has a boundary of countable spread.

Then, if first countability can be eliminated from the following recent
result, we would be done:

Theorem A ([ENS]). 2ℵ0 < 2ℵ1 is compatible with the statement that
every first countable, locally compact space of countable spread is hereditarily
Lindelöf.

Conjecture 1 is especially attractive because a whole arsenal of tech-
niques from topology, set theory, and combinatorics can potentially be
brought to bear on it. For example, a negative solution to the following
problem, for which we do not seem to have any consistency results, would
establish Conjecture 1:

Problem 1. Can the product of more than c copies of [0, 1] contain a
dense subspace which is the union of countably many compact T5 subsets?

The connection is established like in the second paragraph in the proof
of Lemma 1.2, by taking a potential counterexample to Conjecture 1 and
producing a locally compact subspace W with a dense open Lindelöf (hence
σ-compact) subspace H whose complement is an uncountable closed discrete
subspace D of H. Let f be a continuous map of D onto a dense subspace
S of [0, 1]2

ℵ1 such that |S| = ℵ1, and use the normality of W and the Tie-
tze extension theorem to extend the composition of f with each projection
map to all of W . This induces a map of W onto a dense subspace of the
product. The image of H will be both dense in the product and σ-compact.
Now use the fact that the continuous image of a compact T5 space is like-
wise T5.

2. The fine structure of some perfect preimages of ω1 under
the PFA. In this section we will lay part of the foundation for the results
of Section 4 by proving a structure theorem (Theorem 2) of independent
interest about perfect preimages of ω1.
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2.1. Definition. A map f : X → Y is perfect if it is continuous and
closed, and each point of Y has a compact preimage. A subset of ω1 that
is closed and uncountable (“unbounded”) is called a club. Given a function
f : X → ω1, a subset of X will be said to be unbounded if its image in ω1

is unbounded. A pair of unbounded subsets of X is almost disjoint if the
image of their intersection is nonstationary.

2.2. Lemma. If X is a space and f : X → ω1 is continuous, and W is
an unbounded copy of ω1 in X, then W is closed in X.

Proof. The following simple fact is the key: W ∩f←[0, α] is countable for
each α < ω1. The conclusion then follows from the fact that every countable
subset of W has compact closure and every point of X has a neighborhood
of the form f←[0, α] with α < ω1.

The key fact follows thus: if f←[0, α] contains an uncountable subset of
W, it contains a closed uncountable subset. Now if U is an open subset of ω1

containing a club, then U is co-countable, so W \ f←[0, α+ 1) is countable,
hence is a subset of f←[0, γ] for some γ ≥ α, γ < ω1. But this contradicts
unboundedness of W .

Theorem 2. [PFA] Given a hereditarily scwH perfect preimage X of
ω1, there are finitely many disjoint unbounded copies W0, . . . ,Wn of ω1

such that the subspace X \ (W0 ∪ . . . ∪Wn) is paracompact.

Theorem 2 has the quick corollary that every unbounded copy of ω1 in
X must meet one of the Wk in a (closed) unbounded set. Indeed, if it met
every one of them in a countable set, then X \(W0∪ . . .∪Wn) would contain
an unbounded copy of ω1; but every paracompact, countably compact space
is compact, and Lemma 2.1 now gives a contradiction.

The proof of Theorem 2 will repeatedly utilize the fact that each perfect
preimage of ω1 is a Type I space (recall Definition 1.8), and one can let
Xα = π←[0, α). Another key fact is that if Y is a perfect preimage of ω1

with hereditarily Lindelöf fibers, and W is a perfect preimage of ω1 inside
Y , then Y \W is also of Type I. Indeed, if Yα and Wα are defined as the
preimages in Y and W of [0, α), then Yα is hereditarily Lindelöf and hence
so is the closure of Yβ \Wβ for all β < α. We will be applying the following
theorem of the late Zoltán Balogh to these preimages:

Theorem B. [PFA] Every first countable closed preimage of ω1 con-
tains an unbounded copy of ω1.

Balogh’s original proof of Theorem B has never been published, but a
similar proof of Theorem B appears in [D]. A completely different proof will
appear in [EN2].

Theorem B will be used along with another consequence of the PFA
(Theorem C, below) to help generate infinitely many copies of ω1 to which
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we can then apply the following ZFC theorem. Recall that a subset of ω1

which meets every club is called stationary. This concept carries over to
spaces homeomorphic to ω1 without change.

2.3. Theorem. Let X be a space which is either T5 or hereditarily
scwH , for which there are a continuous π : X → ω1 and a stationary subset
S of ω1 such that the fiber π←σ is countably compact for all σ ∈ S. Then
X cannot contain an infinite family of disjoint closed unbounded countably
compact subspaces.

This theorem is a corollary of:

2.4. Lemma. Let X be a space which is either hereditarily scwH or T5

and let π : X → ω1 be continuous. If W is a countable family of almost
disjoint closed countably compact unbounded subsets of X, then there exists
δ < ω1 such that {W \ π←[0, δ] : W ∈ W} is a discrete collection of closed
sets.

Proof. By making a preliminary choice of δ, we may assumeW is actually
disjoint. This is because the image of the intersection of any two members
of W has countable image under π: the intersection, being closed, is also
countably compact, and if it were unbounded its image would be a club.

Any finite collection of disjoint closed sets is discrete. So suppose {Wn :
n ∈ ω} is a one-to-one listing of W. First we show that there cannot be
more than countably many points of W0 in the closure of

⋃∞
n=1Wn; then

the same argument applies to the other Wn’s and we obtain τ < ω1 such that
{Wn \ π←[0, τ ] : n ∈ ω} is relatively discrete, meaning that no point of any
member of the collection is in the closure of the union of the other members.
A slight modification of the argument will then take us to a discrete family.

Suppose that the points of W0 in the closure of
⋃∞
n=1Wn have uncount-

able image under π. Let {xξ : ξ ∈ ω1} list uncountably many of these points,
chosen in such a way that π(xα) > sup{π(xξ) : ξ < α} for all α < ω1. Let C0

be the derived set of A = {π(xξ) : ξ ∈ ω1} in ω1; then C0(= A\A) is clearly
a club. Let Y = X \ (π←C0 ∩W0)). Then {xξ : ξ ∈ ω1} is a closed discrete
subset of Y . Let {Uξ : ξ ∈ ω1} be an expansion of {xξ : ξ ∈ ω1} to a family of
disjoint open sets, chosen using continuity of π so that Uβ ⊂ π←(γβ , π(xβ)]
for all β < ω1, where γβ = sup{π(xξ) : ξ < β}. For some n > 1, Wn meets
uncountably many Uβ . Since Wn is countably compact, continuity of π im-
plies

⋃
ξ∈ω1

Uξ ∩Wn has a limit point in π←{γα} for uncountably many α,
and none of these γα are in {π(xξ) : ξ ∈ ω1}, and none of the limit points are
in the union of the Uξ. But if X is either scwH or T5, then {Uξ : ξ < ω1} can
be chosen so that this does not happen! To show this in the latter case, use
the fact that {xξ : ξ ∈ ω1} and π←C0 ∩ Y are disjoint closed subsets of Y .
Hence there exists τ0 such that no point of W0 \ π←[0, α0] is in the closure
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of the union of the other Wn. Repeating this argument, obtain τn < ω1 for
all n and let τ = supn τn; then τ is as desired.

Now suppose that Z =
⋃{Wn \ π←[0, τ ] : n ∈ ω} is not closed, and

moreover, that for each α < ω1 there exists x in Z \ Z such that π(x) > α.
Relative discreteness of the sets Wn \ π←[0, τ ] implies that Z \ Z is closed
in X. So we can define {xξ : ξ ∈ ω1} and C0 as above, but with Z \ Z in
place of W0, this time letting Y be X \ (π←C0 ∩ Z \ Z). The rest of the
argument is as before, yielding β < ω1 such that no point of X \ π←[0, β] is
in Z \ Z. Now δ = max{τ, β} is as desired.

Proof of Theorem 2.3. If there were such a family {Wn : n ∈ ω}, then
there would be one that is discrete, by 2.4. The image of each Wn is a club,
hence so is C =

⋂∞
n=0 π

→Wn. But {Wn ∩ π←{σ} : n ∈ ω} is not a discrete
collection if σ ∈ C ∩ S, a contradiction.

The example of ω1 × [0, 1] and the projection to the first coordinate
show how important the topological restrictions in 2.3 are: the projection
map to the first coordinate has compact fibers, and the domain is normal
and hereditarily collectionwise Hausdorff, yet contains a family of c disjoint
unbounded copies of ω1.

To produce the needed copies of ω1 for proving Theorem 2, we will
utilize the following concepts and results. The concepts, including the CCij
axioms we give below, are discussed in [EN1] along with a number of related
axioms, and many topological applications of the various axioms are given.
Two of the related axioms were introduced earlier in [AT] and [T], where
several applications to combinatorial set theory were shown along with the
compatibility of the respective axioms with CH.

2.5. Definition. An ideal J of subsets of a set S is countable-covering
if for each countable subset Q of S, the ideal J �Q is countably generated.

In other words, for each Q ∈ [S]ω there is a countable subcollection
{JQn : n ∈ ω} of J such that every member J of J that is a subset of Q
satisfies J ⊂ JQn for some n.

A dual concept is that of a P-ideal on S. This is an ideal I of countable
subsets of S such that for each countable subcollection {In : n ∈ ω} of I,
there exists I ∈ I such that I \ In is finite for all n.

The following axiom is a consequence of the PFA (see [H]):

(∗c) Let I be a P-ideal on a cardinal κ of uncountable cofinality. Then
either

(i) there is a closed uncountable subset A of κ with [A]ω ⊂ I, or
(ii) there is a stationary subset B of κ such that B ∩ I is finite for

all I ∈ I.



36 P. J. Nyikos

The following axioms, the second of which was originally derived from
the stronger axiom PFA+ (see [Ny2]), are easy consequences of (∗c):

2.6. Definition. Axiom CC21 [resp. Axiom CC22] [resp. Axiom CC23]
is the axiom that for each countable-covering ideal J on a stationary subset
S of ω1, either

(i) there is a stationary B ⊂ S such that [B]ω ⊂ J , or
(ii) there is an uncountable [resp. stationary] [resp. closed uncountable]

A ⊂ S such that A ∩ J is finite for all J ∈ J .

Substituting the weaker “uncountable” for “stationary” in (i) gives the
axioms CC1j , j = 1, 2, 3.

2.7. Theorem. The PFA implies (∗c) which implies CCij for i = 1, 2
and j = 1, 2, 3.

Outline of proof. The first implication is shown in [H]. For the second,
it is clearly enough to show that (∗c) implies CC23.

Let J ′ be the ideal of countable subsets of ω1 which meet S in a subset
of J , let

I = {I ∈ [ω1]≤ω : I ∩ J ′ is finite for all J ′ ∈ J ′}
and use the easy fact [EN1] that I is a P-ideal whenever J ′ is countable-
covering.

Axiom CC12 is also an easy corollary of Axiom 0∗ of [NyP] which in turn
is a consequence of TOP + MA(ω1), both of which follow from the PFA.

The proof of Theorem 2 makes use of the following result from [EN1].

Theorem C. Assume CC12 and let X be a locally compact , cwH , Type I
space. If X is either scwH or locally ccc, then either :

(1) X is paracompact , or
(2) X contains a perfect preimage of ω1 that is closed in X.

Of course, every perfect preimage of ω1 is countably compact, and now
we obtain:

2.8. Corollary. [PFA] If X is a locally compact hereditarily scwH
Type I space, then X is either paracompact or contains a copy of ω1.

Proof. Let 〈Xα : α < ω1〉 be a canonical sequence for X. Then for each
limit ordinal γ, the subspace Xγ \Xγ is locally compact, and is hereditarily
Lindelöf by Lemma 1.2. These properties easily carry over to sets of the
form Y ∩Xα (α < ω1), where

Y =
⋃
{Xγ \Xγ : γ is a limit ordinal}.

Note that Y is closed in X and of Type I, itself. As is well known, every
hereditarily Lindelöf, locally compact space is first countable. (Indeed, if one
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covers the complement of {y} ⊂ Y with an ascending sequence of open sets,
with the closure of each being a subset of the next open set in the sequence,
then the complements of the closures form a local base at y.) By Theorems
B and C, either Y contains a copy of ω1, or else it is Lindelöf. In the latter
case, Xγ \Xγ is empty for all but countably many γ, and so (2) of Theorem
C fails.

If Fleissner’s Axiom R is added to the set-theoretic hypotheses in Corol-
lary 2.8, then one can eliminate “Type I” altogether and even weaken
“scwH” to “ω1-scwH.” This is shown, in effect, in a posthumous paper
by Balogh [B]. Balogh’s actual theorem weakens “PFA” to “MA(ω1)” and
weakens the conclusion to “X is either paracompact or contains a perfect
preimage of ω1,” but a combination of his argument and the proof of Corol-
lary 2.8 readily gives the stronger conclusion under PFA. Both PFA+ and
Martin’s Maximum are known to imply the combination of PFA + Axiom R.

Proof of Theorem 2. If X admits a perfect map π : X → ω1 then each
set of the form Uα = π←[0, α] is compact since [0, α] is compact. Hence
X is locally compact. For each limit ordinal γ, the set Vγ = π←[0, γ) is
open and Lindelöf, and so by Lemma 1.2, Vγ has a hereditarily separable,
hereditarily Lindelöf boundary, V γ \ Vγ ⊂ π←{γ}. Let Y =

⋃{V γ \ Vγ :
γ is a limit ordinal}. Then Y is a perfect preimage of ω1 since it is clearly
closed in X and has the set Λ of limit ordinals of ω1 as its image. Moreover,
X\Y falls apart into the relatively clopen setsDξ∪Aξ whereDξ = π←(λξ+1,
λξ + ω) and Aξ = π←{λξ} \ Y , and where λξ is the ξth member of Λ ∪ {0}.
Since both Dξ and Aξ are Lindelöf, it follows that X \ Y is an open para-
compact subspace of X. We will now work on Y , breaking it apart into
a finite union of copies of ω1 and a subspace whose union with X \ Y is
paracompact.

Since Y is a perfect preimage of ω1, it is Type I and is not paracom-
pact, so Corollary 2.8 gives a copy W0 of ω1 in Y . The discussion preceding
Theorem B shows that Y \ W0 is of Type I. Hence it is either paracom-
pact or itself contains a copy W1 of ω1. Proceeding in this way, we obtain
a sequence of disjoint copies Wi of ω1, which must terminate after finitely
many steps because of Theorem 2.3, with Y playing the role of X. Thus
Z = Y \ (W0 ∪ . . .∪Wn) is paracompact for some n. A standard fact about
locally compact paracompact spaces is that they are topological direct sums
of Lindelöf subspaces [E, 5.1.27]. Using this, let {Uψ : ψ ∈ Ψ} be a parti-
tion of Z into clopen Lindelöf subspaces. Then each Uψ is a subset of some
π←[0, α] and there can be only countably many Uψ contained in any of these
subspaces. By a standard argument [see the proof that Cn is a club in 1.6],
one easily shows that the following subset C of ω1 is closed unbounded:

C = {γ ∈ Λ : ∀β < γ, if Uψ meets π←[0, β] then Uψ ⊂ f←[0, γ)}.
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This enables us to partition all of X \ (W0 ∪ . . . ∪Wn) into clopen Lindelöf
subsets, as follows. For each γ ∈ C ∪ {0}, let γ∗ be the immediate successor
of γ in C and let

Uγ = {Uψ : Uψ ∩ π←[γ, γ∗) 6= ∅}, Vγ = {Dξ ∪ Aξ : λξ ≤ γ ≤ γ∗}.
Then if Hγ = (

⋃Uγ) ∪ (
⋃Vγ) for all γ ∈ C ∪ {0}, it is easy to see that the

set of all these Hγ is as desired. Of course, any space that can be partitioned
into clopen Lindelöf subsets is paracompact.

3. An axiom on crowding of functions, and a topological appli-
cation. Our applications of the PFA have thus far not required any large
cardinal axioms. In this section, however, we introduce an axiom whose con-
sistency implies that of measurable cardinals. It will be used along with the
PFA in Section 4 to do for spaces of Lindelöf degree ℵ1 something similar
to what Theorem 1 did for ω1-compact spaces at ordinals of uncountable
cofinality.

Axiom F. Any family of ℵ2 functions from ω1 to ω has an infinite
subfamily that is bounded on a stationary set.

Axiom F is an easy consequence of the axiom designated SSA in [Ny2].
The combination SSA + PFA is consistent if it is consistent that there is a
cardinal κ with a stationary set of supercompact cardinals below it [S, p.
660]. Axiom SSA states that there is a stationary subset S of ω1 such that
the ideal of nonstationary subsets of S is (ω2, ω2, ω)-saturated. This means
that for each collection of ω2 stationary subsets of S, there is a subcollection
E of cardinality ω2 such that every countable subfamily of E has stationary
intersection. To see that SSA implies Axiom F, let {fα : α < ω2} be a family
of functions from ω1 to ω, and, for each α, let nα be such that f←α {nα}∩S is
stationary. Let n satisfy n = nα for ω2-many α. By SSA there is an infinite
A ⊂ ω2 and a stationary E ⊂ S such that fα(ξ) = n for all α ∈ A and all
ξ ∈ E.

Further information on Axiom F will be provided in a forthcoming paper
[Ny3]. The following application of Axiom F will be combined in Section 4
with a lemma that uses the PFA, to produce the main result of this paper
(Theorem 4).

Theorem 3. [Axiom F] Let X be a space which is either T5 or hered-
itarily scwH , for which there is a continuous π : X → ω1 with locally com-
pact σ-compact fibers. Then X cannot contain an almost disjoint family of
ℵ2 closed unbounded countably compact subsets.

Proof. Suppose W = {Wν : ν < ω2} is an almost disjoint family of ℵ2

closed unbounded countably compact subsets. By Theorem 2.3, it suffices
to show that X has a subspace Y such that Y ∩ π←{σ} is compact for all σ
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in some stationary subset S of ω1, and to find an infinite subfamily W0 of
W such that W ⊂ Y for all W ∈ W0.

Let π←{α} be the ascending union of compact sets Kn
α (n ∈ ω) for each

α ∈ ω1, with each Kn
α in the interior of Kn+1

α ; if π←{α} is compact, let it
equal Kn

α for all n. Let Cν = π→Wν for all ν < ω2.
Let fν : ω1 → ω be defined by letting fν(ξ) be the least n such that

π←{ξ} ∩Wν ⊂ Kn
ξ whenever ξ ∈ Cν . Such an n exists since {ξ} ∩Wν is

countably compact and so any countable open cover has a finite subcover.
If ξ /∈ Cν let fν(ξ) = 0. Axiom F now gives a stationary subset S of ω1

and an infinite subset Z of ω2 and n ∈ ω such that fν(ξ) < n for all ν ∈ Z
and all ξ ∈ S. Let C =

⋂{Cν : ν ∈ Z}. Then C is a club subset of ω1 and
π←{ξ} ∩Wν ⊂ Kn

ξ for all ξ ∈ S ∩ C and all ν ∈ Z. Let Xα = π←[0, α) for
all α and let

Y =
⋃
{Kn

ξ : ξ ∈ S ∩ C} ∪
⋃
{Xα \Xα : α /∈ S ∩ C}.

Then Y is as claimed above, and we can let W0 = {Wν : ν ∈ Z}.

4. The structure theorem for the Lindelöf degree ℵ1 case. In
this section, we combine Theorem 3 with another theorem (4.4 below) to
arrive at:

Theorem 4. [PFA + Axiom F] Every locally compact , hereditarily
scwH space X satisfying L(X) = ℵ1 is a Type I space for which there is
a canonical sequence 〈Xα : α < ω1〉 such that the boundary of each Xα is
countable.

To appreciate the power of Theorem 4, we now show how to get from it
to the main theorem of [Ny2] (Corollary A below), via:

4.1. Corollary. [PFA + Axiom F] Every hereditarily scwH manifold
of dimension greater than 1 is metrizable.

Proof. The statement uses the definition of a manifold which states that
it is a connected Hausdorff space in which every point has a neighborhood
homeomorphic to Rn for some (unique) n. We will use the same axioms as for
Theorem 4. In particular, since we are assuming MA(ω1), any hereditarily
scwH manifold X has the property that every open Lindelöf subset has
Lindelöf closure.

Claim. X is of Type I.

Assuming this claim for the moment, we see that the Lindelöf degree of
X is either ℵ0 or ℵ1, and if it is ℵ0 then X has a countable open cover by
copies of Rn and so it is second countable, hence metrizable. If it is ℵ1 then
we use Theorem 4 to conclude that X has a canonical sequence in which
every Xα \ Xα is countable. But if dim(X) > 1 this means Xα \ Xα is
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actually empty, because it disconnects X and hence it also disconnects any
nbhd of any point of Xα \Xα; but no countable set disconnects Rn if n > 0.
So Xα = Xα for all α, and any nonempty set of this form is all of X because
X is connected. So X is Lindelöf after all.

Proof of claim. Let X0 be any open subset of X that is homeomorphic
to Rn. Suppose Xα has been defined for all α < β to be open with Lindelöf
closure, and that Xξ ⊂ Xα whenever ξ < α. Let Yβ =

⋃{Xα : α < β}; if β
is a limit ordinal then Yβ is Lindelöf, while if β is not a limit ordinal then
either β = 0 or β = α + 1 for some α, and in each case, Yβ has Lindelöf
closure. Cover the closure of Yβ with countably many open copies of the
second countable space Rn, each of which has compact closure, and let Xβ

be the union of this cover. Then Xβ is second countable and open, and its
closure is thus Lindelöf. By first countability of X,

⋃{Xα : α < ω1} is closed
in X and it is clearly open, so it is all of X because X is connected.

Since every T5 hereditarily cwH space is hereditarily scwH, we get the
main theorem of [Ny2]:

Corollary A. It is consistent , modulo large cardinals, that every T5

hereditarily cwH manifold of dimension greater than 1 is metrizable.

In a forthcoming paper, Theorem 4 will be applied to arbitrary locally
compact, locally connected, hereditarily strongly cwH spaces, to show a
wealth of strong properties for them, one of which is that each component
is ω1-compact—and then Theorem 1 already says a lot about such spaces.
The following folklore lemma is the first step in the proof of Theorem 4.

4.2. Lemma. Let π : X → ω1 be continuous and let W be an unbounded
copy of ω1 in X. There is a club subset C of ω1 and a club subset Ω of W
such that the restriction of π to Ω is a bijection of Ω to C.

Proof. Let f : ω1 → X be an embedding with range W , and let Ω be
the image of f restricted to

C = {α : π(f(ξ)) < α for all ξ < α and π(f(α)) = α}.
Clearly, the restriction of π to Ω is a bijection. It is easy to see that C is
closed: if αi ↗ α and αi ∈ C for all i ∈ ω, and ξ < α, then ξ < αi for some
i and so π(f(ξ)) < αi < α; and since 〈f(αi) : n ∈ ω〉 converges to f(α),
it follows from the continuity of π that 〈π(f(αi)) : i ∈ ω〉 = 〈αi : i ∈ ω〉
converges to π(f(α)) = α. The proof that C is unbounded is done by a
standard argument using unboundedness of W . To wit: given α ∈ ω1, let
α0 = α; then, with αi defined, let βi = sup{π(f(ξ)) : ξ < αi} and let αi+1

be a countable ordinal γ such that both π(f(γ)) and γ are greater than both
αi and βi. Such a γ exists since W meets each set of the form π←[0, η] in a
countable set: W ∩π←[0, η] is relatively clopen in W and so it must be either
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countable or co-countable in W . Let δ = sup{αi : i ∈ ω}. Then π(f(αi))
converges to π(f(δ)) and its terms are sandwiched in between the αi, so it
converges to δ; and the other criterion for δ being in C is trivially satisfied.

The following lemma features progressively stronger hypotheses (see 2.7),
the one for part (a) being simply ZFC.

4.3. Lemma. Let 〈Xα : α < ω1〉 be a canonical sequence for a Type I
space X. If X is locally compact and hereditarily strongly cwH , and E is a
stationary subset of ω1, and xα ∈ Xα \Xα for all α ∈ E, then:

(a) N = {α ∈ E : xα /∈ cl{xβ : β < α} is nonstationary.
(b) If CC22 holds, then there is a stationary S ⊂ E and a perfect preim-

age Z of ω1 such that {xα : α ∈ S} ⊂ Z.
(c) If PFA holds, then there is a stationary S ⊂ E, a club C ⊂ ω1, and

an embedding g : C → X such that g(α) ∈ Xα \ Xα for all α ∈ C and
g(α) = xα for all α in S.

Proof of (a). Suppose N is stationary. Each xη has a nbhd that meets
{xα : α ∈ S} in {xα : α ≤ η, α ∈ S}, and so {xη : η ∈ N} is a discrete
subspace ofX. Arguing as in the proof of Lemma 1.2, and using the Pressing-
Down Lemma (PDL), we get a contradiction to “hereditarily strongly cwH,”
as follows. Let D = {xη : η ∈ N}; then D is closed discrete in the relative
topology of the open subspace V = X \ (D \ D). Let {Uη : η ∈ N} be a
discrete-in-V open expansion of {xη : η ∈ N}. Since each xα is in the closure
of Xα, it follows that Uα meets Xα; and, since the sequence is canonical,
Uα actually meets Xβ for some β < α if α is a limit ordinal. Since the set
of limit points of N in N is itself stationary, we can use the PDL to obtain
η < ω1 such that uncountably many Uα meet Xη; but this violates the claim
that the Uα’s are a discrete collection, since Xα is Lindelöf. [Compare the
proof of Lemma 1.6.]

Proof of (b). Let J be the ideal of all countable J ⊂ E such that
{xη : η ∈ J} has compact closure.

Claim 1. J is countable-covering.

Once Claim 1 is proved, apply CC22 to J . The second alternative in
the statement of CC22 is impossible since it would give an uncountable
D = {xη : η ∈ B} such that B is stationary, and such that no infinite subset
of D has compact closure; but in a locally compact space like X, this would
mean D is closed discrete, and we obtain a contradiction like in the proof
of (a). Thus there is a stationary S ⊂W such that [S]ω ⊂ J . Let Z be the
closure of {xη : η ∈ S}. Let g : Z → ω1 be defined by taking each point of
Z ∩Xα \Xα to α.
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Claim 2. This defines g on all of Z, and g is a perfect map onto its
range.

Once this claim is proved, part (b) follows from the well known fact
that ω1 is homeomorphic to each of its club subsets and from the fact that
the range of g is closed in ω1. This latter fact follows from the fact that if
g(zn)↗ γ, then any accumulation point of {zn : n ∈ ω} [a set with compact
closure] is in Xγ \Xγ .

Proof of Claim 2. Let Y =
⋃{Xα \Xα : α ∈ ω1}. Clearly, Y is closed

in X and Z is a closed subset of Y . Let h : Y → ω1 extend g to Y in the
obvious way. By the nature of a canonical sequence, the preimage h←(β, α]
is open in Y for each basic open set (β, α] = [β + 1, α] and this is also
true of h←[0, α]. So h and g are continuous. To show g is perfect, we use
the well known fact that if B is a locally compact space (more generally, a
k-space), then a continuous function f : A→ B is perfect if, and only if, the
preimage of every compact subset of B is compact [E, 3.7.18]. Now, every
compact subset of ω1 is countable and is a subset of some [0, α]. And every
closed subspace of Z ∩ f←[0, α] is compact, being in the compact closure of
{xη : η ≤ α, η ∈ S}.

Proof of Claim 1. Let Q ⊂ [E]ω and let {Vn : n ∈ ω} be an ascending
cover of the Lindelöf closure of {xη : η ∈ Q} by open subsets of X, each Vn
having compact closure. Let Jn = {ξ ∈ Q : xξ ∈ Vn}. Then Jn ∈ J for all n.
Now suppose that J ∈ J and J ⊂ Q. Since the closure of {xη : η ∈ J} is a
subset of the closure of {xη : η ∈ Q}, it is is covered by {Vn : n ∈ ω}. Let
{Vn : n ∈ F} be a finite subcover. Then J ⊂ ⋃{Jn : n ∈ F}.

Proof of (c). We apply Theorem 1 to the space

X0 = Z ∩ g←(ran(g) ∩ Λ)

where Z is obtained as in (b) above. By Lemma 1.2, each g←{α} ∩ X0 is
hereditarily Lindelöf, hence sequentially compact. Theorem 2 gives copies
W0, . . . ,Wn of ω1 in X0 such that X0 \ (W0 ∪ . . . ∪Wn) is paracompact.
By part (a), {xα : α ∈ E} is not paracompact and neither is any sub-
space indexed by a stationary set; in fact, a use of the PDL as in the proof
of (a) shows that no open cover by countable sets can have even a point-
countable open refinement. Hence S0 = {α : xα ∈ Wk} must be stationary
for some k. Let f : ω1 → X0 be an embedding with range Wk. By cut-
ting down Wk as in Lemma 4.2 if necessary, we obtain a club subset C0 of
E ∩ Λ such that the restriction of g ◦ f to C0 is the identity on C0. Let
C1 be the set of all limit points of S0 ∩ C0 in C0. Apply part (a) again to
show that the set of all α in S0 ∩ C1 such that f(α) 6= xα is nonstation-
ary. Let C be a club subset of C1 missing this nonstationary set and let
S = S0 ∩ C.
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Theorem 4 is now an immediate corollary of Theorem 3 and:

4.4. Lemma. [PFA] If X is a locally compact , hereditarily scwH Type I
space with a canonical sequence 〈Xα : α < ω1〉 such that Xα \ Xα is un-
countable for a stationary collection of α’s, then there is a subspace Y of X
and a continuous π : Y → ω1 for which there is an almost disjoint collection
of ℵ2 unbounded copies of ω1 in Y , such that π←{ξ} is locally compact and
σ-compact for each ξ ∈ ω1.

Proof. Let E be the stationary set described. If α ∈ E then Xα \Xα is
of cardinality ≥ c ≥ ℵ2. [Actually, equality holds in both places, the latter
because we are assuming PFA, but we will not be needing this.] This is
because Xα \Xα is the countable union of compact sets; because every un-
countable, hereditarily Lindelöf space has a closed dense-in-itself subspace;
and because every compact Hausdorff dense-in-itself space has at least c
points.

Define a family {hν : ν < ω2} of embeddings of club subsets Cν of ω1

using Lemma 4.3(c) as follows. Let xα ∈ Xα \Xα for all α ∈ E, let g and
C be defined exactly as in 4.3(c), and let h0 = g, C0 = C. If ν < ω2, and
hµ has been defined for all µ < ν, let xνα be taken from the part of Xα \Xα

(where α ∈ E) that is outside the union of the ranges of the earlier hµ. Let
hν be again like g in 4.3(c) and let Cν be the domain of hν . Then h→ν Cν
meets each earlier h→µ Cµ in at most a countable set. This is where CC22 (as
opposed to just CC12) comes in: unless two copies of ω1 agree on a club,
their intersection is only countable; and CC22 is being used to ensure that
h→ν Cν and h→µ Cµ do not agree on a club. On the other hand, two copies of
ω1 could agree on a club and yet have uncountable symmetric difference;
and CC12 alone could conceivably be giving us ℵ2 copies of ω1 where any
two agree on a club subset of each but also fail to share uncountable subsets
of each.

Finally, let Y =
⋃{Xξ \Xξ : ξ ∈ C} and let π be the composition of the

obvious projection to C with the unique order-preserving function from C
to ω1. The sets h→ν (Cν ∩ C) (ν < ω2) are the desired family.

Since the T5 property is enough in Theorem 3, it would be most inter-
esting to know the answer to:

Problem 2. Is there a model of set theory in which Axiom F holds
along with the statement that every T5 manifold of dimension > 1 is either
metrizable or contains a family of ℵ2 almost disjoint copies of ω1?

In such a model, the argument for Corollary 4.1 would tell us that every
T5 manifold of dimension > 1 is metrizable. The model for Theorem 4 has
not been ruled out; in fact, the following problem is still unsolved:

Problem 3. Is every T5 manifold collectionwise Hausdorff?
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If “normal” is substituted for T5 we have a favorite problem of Mary
Ellen Rudin, which is also unsolved, even if “locally compact, locally con-
nected space” is substituted for “manifold”. We know that V = L implies
the answer to all of these questions is Yes, because V = L implies that
every locally compact normal space is collectionwise Hausdorf; but it is not
known whether a Yes answer to any of these questions is compatible with
MA(ω1). Since every open subset of a manifold is a topological direct sum
of manifolds of the same dimension, and since a space is T5 iff every open
subset is T5, the statement that every T5 manifold is cwH has the corollary
that every T5 manifold is hereditarily cwH, hence hereditarily scwH. So an
affirmative answer to Problem 3 also gives one to Problem 2.

Finally, one might even ask whether “hereditarily strongly cwH” is a
genuine weakening of “T5 + hereditarily cwH” in the presence of local com-
pactness:

Problem 4. Is every locally compact, hereditarily scwH space (heredi-
tarily) normal?

The point of the parenthetical “hereditarily” is that a space is heredi-
tarily normal (i.e., T5) iff every open subspace is normal, while every open
subspace of a locally compact space is locally compact. Remarkably enough,
we do not even seem to have any consistent answers to Problem 4, not even
if “locally compact” is weakened to “regular”.

Added in proof (January 2003). The author has found an example, using the ax-
iom ♦, of a locally compact hereditarily scwH non-normal space. However, Problem 4 and
its generalization to regular spaces remain open under the set-theoretic assumptions used
in this article.
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