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Covering Property Axiom CPAcube and its consequences

by

Krzysztof Ciesielski (Morgantown, WV) and
Janusz Pawlikowski (Wrocław)

Abstract. We formulate a Covering Property Axiom CPAcube, which holds in the
iterated perfect set model, and show that it implies easily the following facts.

(a) For every S ⊂ R of cardinality continuum there exists a uniformly continuous
function g: R→ R with g[S] = [0, 1].

(b) If S ⊂ R is either perfectly meager or universally null then S has cardinality less
than c.

(c) cof(N ) = ω1 < c, i.e., the cofinality of the measure ideal N is ω1.

(d) For every uniformly bounded sequence 〈fn ∈ RR〉n<ω of Borel functions there
are sequences: 〈Pξ ⊂ R: ξ < ω1〉 of compact sets and 〈Wξ ∈ [ω]ω: ξ < ω1〉 such that
R =

⋃
ξ<ω1

Pξ and for every ξ < ω1, 〈fn�Pξ〉n∈Wξ
is a monotone uniformly convergent

sequence of uniformly continuous functions.
(e) Total failure of Martin’s Axiom: c > ω1 and for every non-trivial ccc forcing P

there exist ω1 dense sets in P such that no filter intersects all of them.

1. Axiom CPAcube and other preliminaries. Our set-theoretic ter-
minology is standard and follows that of [4]. In particular, |X| stands for
the cardinality of a set X and c = |R|. The Cantor set 2ω will be denoted
by C. We use the term Polish space for a complete separable metric space
without isolated points.

For a Polish space X, the symbol Perf(X) will stand for the collection of
all subsets of X homeomorphic to C. We will consider Perf(X) to be ordered
by inclusion. A family E ⊂ Perf(X) is dense in Perf(X) provided for every
P ∈ Perf(X) there exists a Q ∈ E such that Q ⊂ P .
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Axiom CPAcube is of the form

c = ω2 and if E ⊂ Perf(X) is appropriately dense in Perf(X) then
|X \⋃ E0| < c for some E0 ∈ [E ]≤ω1.

If the word “appropriately” in the above is ignored, then it implies the
following statement.

Näıve-CPA: If E is dense in Perf(X) then |X \⋃ E| < c.

It is a very good candidate for our axiom in the sense that it implies all the
properties we are interested in. It has, however, one major flaw—it is false!
This is the case since S ⊂ X \⋃ E for some dense set E in Perf(X) provided

for each P ∈ Perf(X) there is a Q ∈ Perf(X) such that Q ⊂ P \S.

This means that the family G of all sets of the form X \ ⋃ E , where E is
dense in Perf(X), coincides with the σ-ideal s0 of Marczewski sets, since G
is clearly hereditary. Thus we have

s0 =
{
X \

⋃
E : E is dense in Perf(X)

}
.(1)

However, it is well known (see e.g. [17, Thm. 5.10]) that there are s0-sets
of cardinality c. Thus, our Näıve-CPA “axiom” cannot be consistent with
ZFC.

In order to formulate the real axiom CPAcube we need the following
terminology and notation. A subset C of a product Cη of the Cantor set is
said to be a perfect cube if C =

∏
n∈η Cn, where Cn ∈ Perf(C) for each n.

For a fixed Polish space X let Fcube stand for the family of all continuous
injections from a perfect cube C ⊂ Cω onto a set P from Perf(X). We
consider each function f ∈ Fcube from C onto P as a coordinate system
imposed on P . We say that P ∈ Perf(X) is a cube if it is determined by
an (implicitly given) witness function f ∈ Fcube onto P , and Q is a subcube
of a cube P ∈ Perf(X) provided Q = f [C], where f ∈ Fcube is a witness
function for P and C ⊂ dom(f) ⊂ Cω is a perfect cube. Here and in what
follows, dom(f) stands for the domain of f .

We say that a family E ⊂ Perf(X) is cube dense in Perf(X) provided
every cube P ∈ Perf(X) contains a subcube Q ∈ E . More formally, E ⊂
Perf(X) is cube dense provided

∀f ∈ Fcube ∃g ∈ Fcube (g ⊂ f & range(g) ∈ E).(2)

It is easy to see that the notion of cube density is a generalization of the
notion of density as defined in the first paragraph of this section:

if E is cube dense in Perf(X) then E is dense in Perf(X).(3)

On the other hand, the converse implication is not true, as shown by the
following simple example.
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Example 1.1. Let X = C×C and let E be the family of all P ∈ Perf(X)
such that either

• all vertical sections Px = {y ∈ C: 〈x, y〉 ∈ P} of P are countable, or
• all horizontal sections P y = {x ∈ C: 〈x, y〉 ∈ P} of P are countable.

Then E is dense in Perf(X), but it is not cube dense in Perf(X).

Proof. To see that E is dense in Perf(X) letR ∈ Perf(X). We need to find
a P ⊂ R with P ∈ E . Clearly at least one of the projections π0(R) or π1(R)
is uncountable. Assume that π0(R) is uncountable and let p: π0(R)→ C be
a Borel function. (For example, if p is defined by p(x) = minRx then p ⊂ R
is Baire class 1.) So, there is a Q ∈ Perf(C) such that p�Q is continuous. In
particular, p�Q (identified with its graph) is a closed subset of X = C × C.
So P = p�Q ∈ E is a subset of R.

To see that E is not Fcube-dense in Perf(X) it is enough to notice that
P = X = C × C considered as a cube, where the second coordinate is
identified with Cω\{0}, has no subcube in E . More formally, let h be a hom-
eomorphism from C onto Cω\{0}, let g: C×C→ Cω = C×Cω\{0} be given by
g(x, y) = 〈x, h(y)〉, and let f = g−1: Cω → C× C be the coordinate function
making C×C = range(f) a cube. Then range(f) does not contain a subcube
from E .

With these notions in hand we are ready to formulate our axiom CPAcube.

CPAcube: c = ω2 and for every Polish space X and every cube dense family
E ⊂ Perf(X) there is an E0 ⊂ E such that |E0| ≤ ω1 and |X \⋃ E0| ≤ ω1.

The proof that CPAcube holds in the iterated perfect set model can be
found in [6] and [7].

It is also worth noticing that in order to check that E is cube dense it is
enough to consider in condition (2) only functions f defined on the entire
space Cω, that is:

Fact 1.2. E ⊂ Perf(X) is cube dense if and only if

∀f ∈ Fcube, dom(f) = Cω, ∃g ∈ Fcube (g ⊂ f & range(g) ∈ E).(4)

Proof. To see this, let Φ be the family of all bijections h = 〈hn〉n<ω
between perfect subcubes

∏
n∈ωDn and

∏
n∈ω Cn of Cω such that each hn

is a homeomorphism between Dn and Cn. Then

(5) f ◦ h ∈ Fcube

for every f ∈ Fcube and h ∈ Φ with range(h) ⊂ dom(f).

Now take an arbitrary f : C → X from Fcube and choose an h ∈ Φ mapping
Cω onto C. Then f̂ = f ◦ h ∈ Fcube maps Cω into X and, using (4), we can
find ĝ ∈ Fcube such that ĝ ⊂ f̂ and range(ĝ) ∈ E . Then g = f�h[dom(ĝ)]
satisfies condition (2).
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Next, let us consider

scube
0 =

{
X \

⋃
E : E is cube dense in Perf(X)

}
(6)

= {S ⊂ X: ∀ cube P ∈ Perf(X) ∃ subcube Q ⊂ P \ S}.
Notice that

Fact 1.3. [X]<c ⊂ scube
0 ⊂ s0 for every Polish space X.

An easy proof of this fact can be found in [7]. It can also be shown in
ZFC that scube

0 forms a σ-ideal. However, neither of these facts will be used
in what follows. On the other hand we will be interested in the following
proposition.

Proposition 1.4. If CPAcube holds then scube
0 = [X]≤ω1.

Proof. It is obvious that CPAcube implies scube
0 ⊂ [X]<c. We will not

be interested in the other inclusion, though it follows immediately from
Fact 1.3.

Remark 1.5. scube
0 6= [X]≤ω1 in a model obtained by adding Sacks num-

bers side-by-side. In particular CPAcube is false in this model.

Proof. This follows from the fact that scube
0 = [X]≤ω1 implies property

(a) (see Corollary 2.2) while it is false in the model mentioned above, as
noticed by Miller in [16, p. 581]. (In this model the set X of all Sacks
generic numbers cannot be mapped continuously onto [0, 1].)

2. Continuous images of sets of cardinality c. An important quality
of the ideal scube

0 , and so the power of the assumption scube
0 = [X]<c, is well

depicted by the following fact.

Proposition 2.1. If X is a Polish space and S ⊂ X does not belong
to scube

0 then there exist a T ∈ [S]c and a uniformly continuous function h
from T onto C.

Proof. Take an S as above and let f : Cω → X be a continuous injection
such that f [C]∩S 6= ∅ for every perfect cube C. Let g: C→ C be a continuous
function such that g−1(y) is perfect for every y ∈ C. Then h0 = g ◦ π0 ◦
f−1: f [Cω] → C is uniformly continuous. Moreover, if T = S ∩ f [Cω] then
h0[T ] = C since

T ∩ h−1
0 (y) = T ∩ f [π−1

0 (g−1(y))] = S ∩ f [g−1(y)× C× C× . . .] 6= ∅
for every y ∈ C.

Corollary 2.2. Assume scube
0 = [X]<c for a Polish space X. If S ⊂ X

has cardinality c then there exists a uniformly continuous function f : X →
[0, 1] such that f [S] = [0, 1]. In particular, CPAcube implies property (a).
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Proof. If S is as above then, by CPAcube, S 6∈ scube
0 . Thus, by Proposi-

tion 2.1 there exists a uniformly continuous function h from a subset of S
onto C. Consider C as a subset of [0, 1] and let ĥ: X → [0, 1] be a uniformly
continuous extension of h. If g: [0, 1] → [0, 1] is continuous and such that
g[C] = [0, 1] then f = g ◦ ĥ is as desired.

The fact that (a) holds in the iterated perfect set model was first proved
by A. Miller in [16].

It is worth noting here that the function f in Corollary 2.2 cannot be
required to be either monotone or in the class “D1” of all functions having
finite or infinite derivative at every point. This follows immediately from the
following proposition, since each function which is either monotone or “D1”
belongs to the Banach class

(T2) = {f ∈ C(R): {y ∈ R: |f−1(y)| > ω} ∈ N}.
(See [10] or [19, p. 278].)

Proposition 2.3. There exists, in ZFC, an S ∈ [R]c such that [0, 1] 6⊂
f [S] for every f ∈ (T2).

Proof. Let {fξ: ξ < c} be an enumeration of all functions from (T2)
whose range contains [0, 1]. Construct by induction a sequence 〈〈sξ, yξ〉: ξ<c〉
such that for every ξ < c,

(i) yξ ∈ [0, 1] \ fξ[{sζ : ζ < ξ}] and |f−1
ξ (yξ)| ≤ ω.

(ii) sξ ∈ R \ ({sζ : ζ < ξ} ∪⋃ζ≤ξ f
−1
ζ (yζ)).

Then the set S = {sξ: ξ < c} is as required since yξ ∈ [0, 1] \ fξ[S] for every
ξ < c.

3. Perfectly meager and universally null sets. The fact that (b)
holds in the iterated perfect set model was first proved by A. Miller in [16].

Theorem 3.1. If S ⊂ R is either perfectly meager or universally null
then S ∈ scube

0 . In particular, CPAcube implies property (b).

Proof. Take an S ⊂ R which is either perfectly meager or universally
null and let f : Cω → R be a continuous injection. Then S ∩ f [Cω] is either
meager or null in f [Cω]. Thus G = Cω \ f−1(S) is either comeager or of full
measure in Cω. Hence the theorem follows immediately from the following
claim.

Claim 3.2. Consider Cω with standard topology and standard product
measure. If G is a Borel subset of Cω which is either of second category or
of positive measure then G contains a perfect cube

∏
i<ω Pi.

The measure version of the claim is a variant the following theorem:
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(m) for every full measure subset H of [0, 1]× [0, 1] there are a perfect set
P ⊂ [0, 1] and a positive inner measure subset Ĥ of [0, 1] such that
P × Ĥ ⊂ H,

which was proved by Eggleston [9] and, independently, by Brodskĭı [3]. The
category version of the claim is a consequence of the category version of (m):

(c) for every Polish space X and every comeager subset G of X×X there
are a perfect set P ⊂ X and a comeager subset Ĝ of X such that
P × Ĝ ⊂ G.

This well known result can be found in [12, Exercise 19.3]. (Its version for R2

is also proved, for example, in [8, condition (?), p. 416].) For completeness,
we will show here in detail how to deduce the claim from (m) and (c).

We will start the argument with a simple fact, in which we will use the
following notations. If X is a Polish space endowed with a Borel measure
then ψ0(X) will stand for the sentence

ψ0(X): For every full measure subset H of X × X there are a perfect set
P ⊂ X and a positive inner measure subset Ĥ of X such that P×Ĥ ⊂ H.

Thus ψ0([0, 1]) is a restatement of (m). We will also use the following seem-
ingly stronger variants of ψ0(X).

ψ1(X): For every full measure subset H of X × X there are a perfect set
P ⊂ X and a subset Ĥ of X of full measure such that P × Ĥ ⊂ H.

ψ2(X): For a subset H of X × X of positive inner measure there are a
perfect set P ⊂ X and a positive inner measure subset Ĥ of X such that
P × Ĥ ⊂ H.

Fact 3.3. Let n = 1, 2, 3, . . .

(i) If E ⊂ Rn has a positive Lebesgue measure then the set Qn + E =⋃
q∈Qn(q + E) has a full measure.

(ii) ψk(X) holds for all k < 3 and X ∈ {[0, 1], (0, 1),R,C}.
Proof. (i) Let λ be the Lebesgue measure on Rn and for ε > 0 and

x ∈ Rn let B(x, ε) be the open ball in Rn of radius ε centered at x. By way of
contradiction assume that there exists a positive measure set A ⊂ Rn disjoint
from Qn +E. Let a ∈ A and x ∈ E be Lebesgue density points of A and X,
respectively. Take an ε > 0 such that λ(A ∩ B(a, ε)) > (1− 4−n)λ(B(a, ε))
and λ(E ∩ B(x, ε)) > (1 − 4−n)λ(B(x, ε)). Now, if q ∈ Qn is such that
q + x ∈ B(a, ε/2) then A ∩ (q + E) ∩ B(a, ε/2) 6= ∅ since B(a, ε/2) ⊂
B(a, ε) ∩B(q + x, ε) and thus

λ(A ∩ (q + E) ∩B(a, ε/2)) > λ(B(a, ε/2))− 2 · 4−nλ(B(a, ε)) ≥ 0.

Hence A ∩ (Qn + E) 6= ∅, contradicting the choice of A.



Covering Property Axiom 69

(ii) First note that ψk(R) ⇔ ψk((0, 1)) ⇔ ψk([0, 1]) ⇔ ψk(C) for every
k < 3. This is justified by the fact that for the mappings f : (0, 1)→ R given
by f(x) = cot(xπ), the identity mapping id: (0, 1)→ [0, 1], and d: C→ [0, 1]
given by d(x) =

∑
i<ω x(i)/2i+1, the image and the preimage of any measure

zero set (resp. full measure set) is of measure zero (resp. full measure).
Since, by (m), ψ0([0, 1]) is true, we deduce that ψ0(X) also holds for

X ∈ {(0, 1),R,C}. To finish the proof it is enough to show that ψ0(R)
implies ψ1(R) and ψ2(R).

To prove ψ1(R) let H be a full measure subset of R × R and define
H0 =

⋂
q∈Q(〈0, q〉+H). Then H0 is still of full measure so, by ψ0(R), there

are a perfect set P ⊂ R and a positive inner measure subset Ĥ0 of R such
that P × Ĥ0 ⊂ H0. Thus, for every q ∈ Q we also have P × (q + Ĥ0) ⊂
〈0, q〉+ H0 = H0. Let Ĥ =

⋃
q∈Q(q + Ĥ0). Then P × Ĥ ⊂ H0 ⊂ H and, by

(i), Ĥ has full measure. So, ψ1(R) is proved.
To prove ψ2(R) let H ⊂ R×R be of positive inner measure. Decreasing

H if necessary, we can assume that H is compact. Let H0 = Q2 +H. Then,
by (i), H0 is of full measure so, by ψ0(R), there are a perfect set P0 ⊂ R
and a positive inner measure subset Ĥ0 of R such that P0 × Ĥ0 ⊂ H0.
Once again, decreasing P0 and Ĥ0 if necessary, we can assume that they are
homeomorphic to C and that no relatively open subset of Ĥ0 has measure
zero. Since P0 × Ĥ0 ⊂

⋃
q∈Q2(q + H) is covered by countably many com-

pact sets (P0 × Ĥ0) ∩ (q + H) with q ∈ Q2, there is a q = 〈q0, q1〉 ∈ Q2

such that (P0 × Ĥ0) ∩ (q +H) has a non-empty interior in P0 × Ĥ0. Let U
and V be non-empty clopen subsets of P0 and Ĥ0, respectively, such that
U × V ⊂ (P0 × Ĥ0) ∩ (q + H) ⊂ 〈q0, q1〉 + H. Then U and V are perfect
and V has positive measure. Let P = −q0 + U and Ĥ = −q1 + V . Then
P×Ĥ = (−q0 +U)×(−q1 +V ) = −〈q0, q1〉+(U×V ) ⊂ H, so ψ2(R) holds.

Proof of Claim 3.2. Since the natural homeomorphism between C and
Cω\{0} preserves product measure, we can identify Cω = C×Cω\{0} with C×C
considered with its usual topology and its usual product measure. With this
identification the result follows easily, by induction on coordinates, from the
following fact.

(•) For every Borel subset H of C×C which is of second category (resp. of
positive measure) there are a perfect set P ⊂ C and a second category
(resp. positive measure) subset Ĥ of C such that P × Ĥ ⊂ H.

The measure version of (•) is a restatement of ψ2(C), which was proved
in Fact 3.3(ii). To see the category version of (•) let H be a Borel subset
of C × C of second category. Then there are clopen subsets U and V of C

such that H0 = H ∩ (U × V ) is comeager in U × V . Since U and V are



70 K. Ciesielski and J. Pawlikowski

homeomorphic to C, we can apply (c) to H0 and U × V to find a perfect set
P ⊂ U and a comeager Borel subset Ĥ of V such that P × Ĥ ⊂ H0 ⊂ H,
finishing the proof.

4. cof(N ) = ω1 < c. Next we show that CPAcube implies that cof(N ) =
ω1. So, under CPAcube, all cardinals from Cichoń’s diagram (see e.g. [1]) are
equal to ω1. The fact that this holds in the iterated perfect set model has
been well known.

Let CH be the family of all subsets
∏
n<ω Tn of ωω such that Tn ∈ [ω]≤n+1

for all n < ω. We will use the following characterization.

Proposition 4.1 (Bartoszyński [1, Thm. 2.3.9]).

cof(N ) = min
{
|F|: F ⊂ CH &

⋃
F = ωω

}
.

Lemma 4.2. The family C∗H = {X ⊂ ωω: X ⊂ T for some T ∈ CH} is
Fcube-dense in Perf(ωω).

Proof. Let f : Cω → ωω be a continuous function. By (4) it is enough to
find a perfect cube C in Cω such that f [C] ∈ C∗H .

Construct, by induction on n < ω, the families {Ei
s: s ∈ 2n & i < ω} of

non-empty clopen subsets of C such that for every n < ω and s, t ∈ 2n:

(i) Eis = Eit for every n ≤ i < ω;
(ii) Eisˆ0 and Eisˆ1 are disjoint subsets of Ei

s for every i < n+ 1;
(iii) for every 〈si ∈ 2n: i < ω〉,

f(x0)�2(n+1)2
= f(x1)�2(n+1)2

for every x0, x1 ∈
∏

i<ω

Esi .

For each i < ω the fusion of {Ei
s: s ∈ 2<ω} will give us the ith coordinate

set of the desired perfect cube C.
Condition (iii) can be ensured by uniform continuity of f . Indeed, let

δ > 0 be such that f(x0)�2(n+1)2
= f(x1)�2(n+1)2

for every x0, x1 ∈ Cω at
distance less than δ. Then it is enough to choose {Ei

s: s ∈ 2n & i < ω} such
that (i) and (ii) are satisfied and every set

∏
i<ω Esi from (iii) has diameter

less than δ. This finishes the construction.
Next for every i, n < ω let Ei

n =
⋃{Eis: s ∈ 2n} and En =

∏
i<ω E

i
n.

Then C =
⋂
n<ω En =

∏
i<ω

(⋂
n<ω E

i
n

)
is a perfect cube, since

⋂
n<ω E

i
n ∈

Perf(C) for every i < ω. Thus, to finish the proof it is enough to show that
f [C] ∈ C∗H .

So, for every k < ω let n < ω be such that 2n
2 ≤ k + 1 < 2(n+1)2

, put

Tk = {f(x)(k): x ∈ En}
=
{
f(x)(k): x ∈

∏

i<ω

Esi for some 〈si ∈ 2n: i < ω〉
}
,
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and notice that Tk has at most 2n
2 ≤ k+1 elements. Indeed, by (iii), the set

{f(x)(k): x ∈∏i<ω Esi} has precisely one element for every 〈si ∈ 2n: i < ω〉
while (i) implies that {∏i<ω Esi : 〈si ∈ 2n: i < ω〉} has 2n

2
elements. There-

fore
∏
k<ω Tk ∈ CH .

To finish the proof it is enough to notice that f [C] ⊂ ∏k<ω Tk.

Corollary 4.3. If CPAcube holds then cof(N ) = ω1.

Proof. By CPAcube and Lemma 4.2 there exists an F ∈ [CH ]≤ω1 such
that |ωω \⋃F| ≤ ω1. This and Proposition 4.1 imply cof(N ) = ω1.

5. Pointwise convergence of subsequences of real-valued func-
tions. A sequence 〈fn〉n<ω of real-valued functions is uniformly bounded
provided there exists an r ∈ R such that range(fn) ⊂ [−r, r] for every n. In
1932 Mazurkiewicz [15] proved the following variant of Egorov’s theorem.

For every uniformly bounded sequence 〈fn〉n<ω of real-valued con-
tinuous functions defined on a Polish space X there exists a sub-
sequence which is uniformly convergent on some perfect set P .

The main result of this section is the following theorem.

Theorem 5.1. If CPAcube holds then

(∗) for every Polish space X and every uniformly bounded sequence
〈fn: X → R〉n<ω of Borel measurable functions there are sequences:
〈Pξ: ξ < ω1〉 of compact subsets of X and 〈Wξ ∈ [ω]ω: ξ < ω1〉 such
that X =

⋃
ξ<ω1

Pξ and for every ξ < ω1, 〈fn�Pξ〉n∈Wξ
is a monotone

uniformly convergent sequence of uniformly continuous functions.

Theorem 5.1 is a variant of [5, Thm. 2] and its corollary, according to
which condition (∗) for continuous functions fn can be deduced from the
assumptions that cof(N ) = ω1 and there exists a selective ω1-generated
ultrafilter on ω.

Proof of Theorem 5.1. We first note that the family E of all P ∈ Perf(X)
for which there exists a W ∈ [ω]ω such that

the sequence 〈fn�P 〉n∈W is monotone and uniformly convergent

is Fcube-dense in Perf(X).
Indeed, let g ∈ Fcube, g: Cω → X, and consider the functions hn = fn◦g.

Since h = 〈hn: n < ω〉: Cω → Rω is Borel measurable, there is a dense Gδ

subset G of Cω such that h�G is continuous. So, we can find a perfect cube
C ⊂ G ⊂ Cω, and for this C the function h�C is continuous. Thus, identifying
the coordinate spaces of C with C, without loss of generality we can assume
that C = Cω, that is, each function hn: Cω → R is continuous. Now, by [21,
Thm. 6.9], there is a perfect cube C in Cω and a W ∈ [ω]ω such that the
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sequence 〈hn�C〉n∈W is monotone and uniformly convergent (1). So P = g[C]
is in E .

Now, by CPAcube, there exists an E0 ∈ [E ]≤ω1 such that |X \⋃ E0| ≤ ω1.
Then {Pξ: ξ < ω1} = E0 ∪ {{x}: x ∈ X \ ⋃ E0} is as desired: if Pξ ∈ E0
then the existence of an appropriate Wξ follows from the definition of E . If
Pξ is a singleton, then the existence of Wξ follows from the fact that every
sequence of reals has a monotone subsequence.

6. Total failure of Martin’s Axiom. In this section we prove that
CPAcube implies the total failure of Martin’s Axiom, that is, the property
that

for every non-trivial ccc forcing P there exist ω1 dense sets in P
such that no filter intersects all of them.

The consistency of this fact with c > ω1 was first proved by Baumgartner [2]
in a model obtained by adding Sacks reals side-by-side. The topological and
boolean-algebraic formulations of the theorem follow immediately from the
following proposition.

Proposition 6.1. The following conditions are equivalent.

(a) For every non-trivial ccc forcing P there exist ω1 dense sets in P such
that no filter intersects all of them.

(b) Every compact ccc topological space without isolated points is a union
of ω1 nowhere dense sets.

(c) For every atomless ccc complete Boolean algebra B there exist ω1
dense sets in B such that no filter intersects all of them.

(d) For every atomless ccc complete Boolean algebra B there exist ω1
maximal antichains in B such that no filter intersects all of them.

(e) For every countably generated atomless ccc complete Boolean algebra
B there exist ω1 maximal antichains in B such that no filter intersects all
of them.

Proof. The equivalence of the conditions (a), (b), (c), and (d) is well
known. In particular, the equivalence of (a)–(c) is explicitly given in [2,
Thm. 0.1]. Clearly (d) implies (e). The remaining implication, (e)⇒(d), is a
version of the theorem from [14, p. 158]. However, it is expressed there in a
bit different language, so we include here its proof.

So, let 〈B,∨,∧,0,1〉 be an atomless ccc complete Boolean algebra. For
every σ ∈ 2<ω1 define, by induction on the length dom(σ) of the sequence
σ, a bσ ∈ B such that:

(1) Actually [21, Thm. 6.9] is stated for functions defined on [0, 1]ω. However, the
proof presented there works also for functions defined on Cω.
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• b∅ = 1.
• bσ is a disjoint union of bσˆ0 and bσˆ1.
• If bσ > 0 then bσˆ0 > 0 and bσˆ1 > 0.
• If λ = dom(σ) is a limit ordinal then bσ =

∧
ξ<λ bσ�ξ.

Let T = {s ∈ 2<ω1 : bs > 0}. Then T is a subtree of 2<ω1 ; its levels
determine antichains in B, so they are countable.

First assume that T has a countable height. Then T itself is countable.
Let B0 be the smallest complete subalgebra of B containing {bσ: σ ∈ T}
and notice that B0 is atomless. Indeed, if there were an atom a in B0 then
S = {σ ∈ T : a ≤ bσ} would be a branch in T so that δ =

⋃
S would

belong to 2<ω1 . Since bδ ≥ a > 0, we would also have δ ∈ T . But then
a ≤ bδ = bδˆ0∨bδˆ1 so that either δ 0̂ or δ 1̂ belongs to S, which is impossible.

Thus, B0 is a complete, countably generated, atomless subalgebra of B.
So, by (e), there exists a family A of ω1 maximal antichains in B0 with no
filter in B0 intersecting all of them. But then each A ∈ A is also a maximal
antichain in B and no filter in B would intersect all of them. So, we have (d).

Next, assume that T has height ω1 and for every α < ω1 let

Tα = {σ ∈ T : dom(σ) = α}
be the αth level of T . Also let bα =

∨
σ∈Tα bσ. Notice that bα = bα+1 for

every α < ω1. On the other hand, it may happen that bλ >
∧
α<λ bα for some

limit λ < ω1; however, this may happen only countably many times, since
B is ccc. Thus, there is an α < ω1 such that bβ = bα for every α < β < ω1.

Now, let B0 be the smallest complete subalgebra of B below 1 \ bα
containing {bσ \ bα: σ ∈ T}. Then B0 is countably generated and, as before,
it can be shown that B0 is atomless. Thus, there exists a family A0 of ω1
maximal antichains in B0 with no filter in B0 intersecting all of them. Then
no filter in B containing 1 \ bα intersects every A ∈ A0. But for every
α < β < ω1 the set Aβ = {bσ: σ ∈ Tβ} is a maximal antichain in B below bα.
Therefore, A1 = {Aβ: α < β < ω1} is an uncountable family of maximal
antichains in B below bα with no filter in B containing bα intersecting every
A ∈ A1. Then it is easy to see that A = {A0 ∪A1: a0 ∈ A0 & A1 ∈ A1} is a
family of ω1 maximal antichains in B with no filter in B intersecting all of
them. This proves (d).

Theorem 6.2. CPAcube implies the total failure of Martin’s Axiom.

Proof. Let A be a countably generated atomless ccc complete Boolean
algebra and let {An: n < ω} generate A. By Proposition 6.1 it is enough
to show that A contains ω1 maximal antichains such that no filter in A
intersects all of them.

Next let B be the σ-algebra of Borel subsets of C = 2ω. Recall that it
is a free countably generated σ-algebra, with free generators Bi = {s ∈ C:
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s(i) = 0}. Define h0: {Bn: n < ω} → {An: n < ω} by h0(Bn) = An for all
n < ω. Then h0 can be uniquely extended to a σ-homomorphism h: B → A
between σ-algebras B and A. (See e.g. [20, 34.1, p. 117].) Let I = {B ∈ B:
h[B] = 0}. Then I is a σ-ideal in B and the quotient algebra B/I is iso-
morphic to A. (Compare also the Loomis–Sikorski theorem in [20, p. 117] or
[13].) In particular, I contains all singletons and is ccc, since A is atomless
and ccc.

It follows that we only need to consider complete Boolean algebras of the
form B/I, where I is some ccc σ-ideal of Borel sets containing all singletons.
To prove that such an algebra has ω1 maximal antichains as desired, it is
enough to prove that

(∗) C is a union of ω1 perfect sets {Nξ: ξ < ω1} which belong to I.

Indeed, assume that (∗) holds and for every ξ < ω1 let D∗ξ be a family of all
B ∈ B \ I with closures cl(B) disjoint from Nξ. Then Dξ = {B/I: B ∈ D∗ξ}
is dense in B/I, since C \ Nξ is σ-compact and B/I is a σ-algebra. Let
A∗ξ ⊂ D∗ξ be such that Aξ = {B/I: B ∈ A∗ξ} is a maximal antichain in
B/I. It is enough to show that no filter intersects all Aξ’s. But if there were
a filter F in B/I intersecting all Aξ’s then for every ξ < ω1 there would
exist a Bξ ∈ A∗ξ with Bξ/I ∈ F ∩ Aξ. Thus, the set

⋂
ξ<ω1

cl(Bξ) would be
non-empty, despite the fact that it is disjoint from

⋃
ξ<ω1

Nξ = C.
To finish the proof it is enough to show that (∗) follows from CPAcube.

But this follows immediately from the fact that any cube P in C contains
a subcube Q ∈ I as any cube P can be partitioned into c disjoint sub-
cubes and, by the ccc property of I, only countably many of them can be
outside I.

The authors like to thank Professor Anastasis Kamburelis for many help-
ful comments concerning the results presented here. We are especially grate-
ful to him for pointing out a gap in an earlier version of the proof of Theo-
rem 6.2.

Other consequences of CPAcube can be found in [6], [11], [18], and in the
monograph in preparation [7].
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