Erratum to
 "Locally unbounded topological fields with topological nilpotents"

(Fund. Math. 173 (2002), 21-32)
by
J. E. Marcos (Valladolid)

The last part of the proof of Lemma 3.1 in [1] is not correct. The sentence "the coefficient b_{n} is a sum of less than n^{2} terms, ..." is false. This has been pointed out by N. Shell. We rewrite the erroneous part of the proof; we assume that the characteristic of the field K is zero and $\mathbb{N} \subset K$, otherwise the proof is easier.

Let $m \geq 4$ be an integer having the 2 -adic representation $m=\sum_{i=0}^{k} s_{i} 2^{i}$, with $s_{i} \in\{0,1\}$ and $s_{k}=1$. Using properties (N1), (N2) and (N3) in Definition 2.1 of [1] we get

$$
\begin{aligned}
N(m) & \leq \sum_{i=0}^{k} s_{i} N\left(2^{i}\right) \leq N(2)\left(1+\sum_{i=1}^{k} s_{i} i\right) \leq N(2)\left(1+\frac{k(k+1)}{2}\right) \\
& \leq N(2)\left(\log _{2}(m)\right)^{2}
\end{aligned}
$$

We replace the above-mentioned wrong sentence with the following: The coefficient b_{n} is a sum

$$
\begin{equation*}
b_{n}=\sum m\left(j_{1}, \ldots, j_{n}\right) a_{1}^{j_{1}} \ldots a_{n}^{j_{n}} \tag{1}
\end{equation*}
$$

where $m\left(j_{1}, \ldots, j_{n}\right) \in \mathbb{Z}$ satisfies $\left|m\left(j_{1}, \ldots, j_{n}\right)\right|<2^{n}$, and the product $a_{1}^{j_{1}} \ldots a_{n}^{j_{n}}$ satisfies

$$
1 j_{1}+2 j_{2}+\ldots+n j_{n}=n
$$

The number of solutions of this equation is equal to $p(n)$, the number of partitions of the integer n [2, Lemma 6.12, p. 233], which is a bound for the number of terms in (1). Consequently, we get the bound

$$
\begin{align*}
N\left(b_{n}\right) & \leq p(n) \max \left(N\left(m\left(j_{1}, \ldots, j_{n}\right)\right)+N\left(a_{1}^{j_{1}} \ldots a_{n}^{j_{n}}\right)\right) \tag{2}\\
& \leq p(n)\left(N(2) n^{2}+n \max \left\{N\left(a_{i}\right): i=0,1, \ldots, n\right\}\right) .
\end{align*}
$$

The following bound for partitions is well known [2, Theorem 6.10, p. 235]:

$$
\log p(n)<\pi \sqrt{2 / 3} \sqrt{n}
$$

Therefore $\lim \log \left(N\left(b_{n}\right)\right) / n=0$. We have proven that $\alpha^{-1} \in A$.
There is a completely analogous error at the end of the proof of Lemma 3.3 in [1]. The sentence "We choose $k \geq 2 m$ such that $3 \log (n) / n \leq 1 /(2 m)$ for all $n \geq k$ " should be replaced with the following: We choose $k \geq 2 m+2$ such that

$$
\frac{\log (p(n))+\log (N(2))+3 \log (n)}{n} \leq \frac{1}{2 m} \quad \text { for all } n \geq k
$$

Using the same reasoning as in the (corrected) proof of Lemma 3.1, we get the bound (2). Consequently,

$$
\begin{aligned}
\frac{\log \left(N\left(b_{n}\right)\right)}{n} \leq & \frac{\log (p(n))+\log (N(2))+3 \log (n)}{n} \\
& +\frac{\log \left(\max \left\{N\left(a_{i}\right): i=0,1, \ldots, n\right\}\right)}{n} \leq \frac{1}{2 m}+\frac{1}{k} \leq \frac{1}{m}
\end{aligned}
$$

Moreover, to the properties (1)-(5) on page 22, we must add the following one:
(5') For all $i, j \in I$ there exists $k \in I$ such that $U_{k} \subseteq U_{i} \cap U_{j}$.
In Definition 2.1, page 22, one should add the condition $N(a)=N(-a)$ for all $a \in K$.

Finally, a comment on Section 5: consider a series $\alpha=\sum_{n=0}^{\infty} f_{n} p^{n} \in A_{p}$ which can be rewritten, after rearranging and adding some of its terms, as $\alpha=\sum_{n=m}^{\infty} g_{n, m} p^{n}$ for each $m \in \mathbb{N}$. If $\alpha=\sum_{n=m}^{\infty} g_{n, m} p^{n} \in W_{m}$ for each m, we must understand that $\alpha=0$ in the topological rings $\left(A_{p}, \mathcal{T}_{W}\right)$ and $\left(E_{p}, \mathcal{I}_{W}\right)$. We see that the representation of elements in A_{p} is far from being unique.

References

[1] J. E. Marcos, Locally unbounded topological fields with topological nilpotents, Fund. Math. 173 (2002), 21-32.
[2] W. Narkiewicz, Number Theory, World Sci., Singapore, 1983.
Departamento Algebra y Geometría
Facultad de Ciencias
47005 Valladolid, Spain
E-mail: marcosje@agt.uva.es

