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Erratum to
“Locally unbounded topological fields with

topological nilpotents”

(Fund. Math. 173 (2002), 21–32)

by

J. E. Marcos (Valladolid)

The last part of the proof of Lemma 3.1 in [1] is not correct. The sentence
“the coefficient bn is a sum of less than n2 terms, . . .” is false. This has been
pointed out by N. Shell. We rewrite the erroneous part of the proof; we
assume that the characteristic of the field K is zero and N ⊂ K, otherwise
the proof is easier.

Let m ≥ 4 be an integer having the 2-adic representation m =
∑k

i=0 si2
i,

with si ∈ {0, 1} and sk = 1. Using properties (N1), (N2) and (N3) in Defi-
nition 2.1 of [1] we get

N(m) ≤
k∑

i=0

siN(2i) ≤ N(2)
(

1 +
k∑

i=1

sii
)
≤ N(2)

(
1 +

k(k + 1)
2

)

≤ N(2)(log2(m))2.

We replace the above-mentioned wrong sentence with the following: The
coefficient bn is a sum

bn =
∑

m(j1, . . . , jn)aj11 . . . ajnn ,(1)

where m(j1, . . . , jn) ∈ Z satisfies |m(j1, . . . , jn)| < 2n, and the product
aj11 . . . ajnn satisfies

1j1 + 2j2 + . . .+ njn = n.

The number of solutions of this equation is equal to p(n), the number of
partitions of the integer n [2, Lemma 6.12, p. 233], which is a bound for the
number of terms in (1). Consequently, we get the bound

N(bn) ≤ p(n) max(N(m(j1, . . . , jn)) +N(aj11 . . . ajnn ))(2)

≤ p(n)(N(2)n2 + nmax{N(ai) : i = 0, 1, . . . , n}).
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The following bound for partitions is well known [2, Theorem 6.10, p. 235]:

log p(n) < π
√

2/3
√
n.

Therefore lim log(N(bn))/n = 0. We have proven that α−1 ∈ A.

There is a completely analogous error at the end of the proof of Lemma
3.3 in [1]. The sentence “We choose k ≥ 2m such that 3 log(n)/n ≤ 1/(2m)
for all n ≥ k” should be replaced with the following: We choose k ≥ 2m+ 2
such that

log(p(n)) + log(N(2)) + 3 log(n)
n

≤ 1
2m

for all n ≥ k.
Using the same reasoning as in the (corrected) proof of Lemma 3.1, we get
the bound (2). Consequently,

log(N(bn))
n

≤ log(p(n)) + log(N(2)) + 3 log(n)
n

+
log(max{N(ai) : i = 0, 1, . . . , n})

n
≤ 1

2m
+

1
k
≤ 1
m
.

Moreover, to the properties (1)–(5) on page 22, we must add the following
one:

(5′) For all i, j ∈ I there exists k ∈ I such that Uk ⊆ Ui ∩ Uj .
In Definition 2.1, page 22, one should add the condition N(a) = N(−a) for
all a ∈ K.

Finally, a comment on Section 5: consider a series α =
∑∞

n=0 fnp
n ∈ Ap

which can be rewritten, after rearranging and adding some of its terms, as
α =

∑∞
n=m gn,mp

n for each m ∈ N. If α =
∑∞

n=m gn,mp
n ∈ Wm for each

m, we must understand that α = 0 in the topological rings (Ap, TW ) and
(Ep, TW ). We see that the representation of elements in Ap is far from being
unique.
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