Erratum to "Locally unbounded topological fields with topological nilpotents"

(Fund. Math. 173 (2002), 21-32)

by

J. E. Marcos (Valladolid)

The last part of the proof of Lemma 3.1 in [1] is not correct. The sentence "the coefficient b_n is a sum of less than n^2 terms,..." is false. This has been pointed out by N. Shell. We rewrite the erroneous part of the proof; we assume that the characteristic of the field K is zero and $\mathbb{N} \subset K$, otherwise the proof is easier.

Let $m \ge 4$ be an integer having the 2-adic representation $m = \sum_{i=0}^{k} s_i 2^i$, with $s_i \in \{0, 1\}$ and $s_k = 1$. Using properties (N1), (N2) and (N3) in Definition 2.1 of [1] we get

$$N(m) \le \sum_{i=0}^{k} s_i N(2^i) \le N(2) \left(1 + \sum_{i=1}^{k} s_i i \right) \le N(2) \left(1 + \frac{k(k+1)}{2} \right) \le N(2) (\log_2(m))^2.$$

We replace the above-mentioned wrong sentence with the following: The coefficient b_n is a sum

(1)
$$b_n = \sum m(j_1, \dots, j_n) a_1^{j_1} \dots a_n^{j_n},$$

where $m(j_1, \ldots, j_n) \in \mathbb{Z}$ satisfies $|m(j_1, \ldots, j_n)| < 2^n$, and the product $a_1^{j_1} \ldots a_n^{j_n}$ satisfies

$$1j_1+2j_2+\ldots+nj_n=n.$$

The number of solutions of this equation is equal to p(n), the number of partitions of the integer n [2, Lemma 6.12, p. 233], which is a bound for the number of terms in (1). Consequently, we get the bound

(2)
$$N(b_n) \le p(n) \max(N(m(j_1, \dots, j_n)) + N(a_1^{j_1} \dots a_n^{j_n})) \le p(n)(N(2)n^2 + n \max\{N(a_i) : i = 0, 1, \dots, n\}).$$

²⁰⁰⁰ Mathematics Subject Classification: Primary 12J99.

The following bound for partitions is well known [2, Theorem 6.10, p. 235]:

$$\log p(n) < \pi \sqrt{2/3} \sqrt{n}$$

Therefore $\lim \log(N(b_n))/n = 0$. We have proven that $\alpha^{-1} \in A$.

There is a completely analogous error at the end of the proof of Lemma 3.3 in [1]. The sentence "We choose $k \ge 2m$ such that $3\log(n)/n \le 1/(2m)$ for all $n \ge k$ " should be replaced with the following: We choose $k \ge 2m + 2$ such that

$$\frac{\log(p(n)) + \log(N(2)) + 3\log(n)}{n} \le \frac{1}{2m} \quad \text{for all } n \ge k.$$

Using the same reasoning as in the (corrected) proof of Lemma 3.1, we get the bound (2). Consequently,

$$\frac{\log(N(b_n))}{n} \le \frac{\log(p(n)) + \log(N(2)) + 3\log(n)}{n} + \frac{\log(\max\{N(a_i) : i = 0, 1, \dots, n\})}{n} \le \frac{1}{2m} + \frac{1}{k} \le \frac{1}{m}.$$

Moreover, to the properties (1)–(5) on page 22, we must add the following one:

(5') For all $i, j \in I$ there exists $k \in I$ such that $U_k \subseteq U_i \cap U_j$.

In Definition 2.1, page 22, one should add the condition N(a) = N(-a) for all $a \in K$.

Finally, a comment on Section 5: consider a series $\alpha = \sum_{n=0}^{\infty} f_n p^n \in A_p$ which can be rewritten, after rearranging and adding some of its terms, as $\alpha = \sum_{n=m}^{\infty} g_{n,m} p^n$ for each $m \in \mathbb{N}$. If $\alpha = \sum_{n=m}^{\infty} g_{n,m} p^n \in W_m$ for each m, we must understand that $\alpha = 0$ in the topological rings (A_p, \mathcal{T}_W) and (E_p, \mathcal{T}_W) . We see that the representation of elements in A_p is far from being unique.

References

- J. E. Marcos, Locally unbounded topological fields with topological nilpotents, Fund. Math. 173 (2002), 21–32.
- [2] W. Narkiewicz, Number Theory, World Sci., Singapore, 1983.

Departamento Algebra y Geometría Facultad de Ciencias 47005 Valladolid, Spain E-mail: marcosje@agt.uva.es

> Received 14 August 2002; in revised form 28 November 2002