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A classification of inverse limit spaces of tent maps with
periodic critical points
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Lois Kailhofer (Milwaukee, WI)

Abstract. We work within the one-parameter family of symmetric tent maps, where
the slope is the parameter. Given two such tent maps fa, fb with periodic critical points,
we show that the inverse limit spaces (Ia, fa) and (Ib, gb) are not homeomorphic when
a 6= b. To obtain our result, we define topological substructures of a composant, called
“wrapping points” and “gaps”, and identify properties of these substructures preserved
under a homeomorphism.

1. Introduction. Inverse limit spaces of one-dimensional maps com-
monly appear as attractors in dynamical systems [1, 2, 6, 9, 14, 21]. This
suggests the question: when are two inverse limit spaces of different one-
dimensional maps homeomorphic as topological spaces? One often studied
family of one-dimensional maps is the one-parameter family of symmetric
tent maps given by fa(x) = min{ax, a(1 − x)} for x ∈ [0, 1] and a ∈ [1, 2].
Since any unimodal map without wandering intervals, restrictive intervals,
or periodic attractors is conjugate to a tent map (see e.g. [16]), and as con-
jugate unimodal maps have homeomorphic inverse limit spaces, the family
of tent maps is more inclusive than it seems at first glance. Given param-
eters a 6= b it is unknown whether the corresponding inverse limit spaces
([0, 1], fa) and ([0, 1], fb) are homeomorphic as topological spaces, but par-
tial results exist. Barge and Diamond [4] proved that for transitive Markov
maps f and g of an interval I, if (I, f) is homeomorphic to (I, g) then the
algebraic extensions Q(α) = Q(β) are equal, where α and β are the spectral
radii of the transition matrices for f and g respectively. However, it can
be difficult to determine whether Q(α) = Q(β). Volkmer and Swanson [19]
show that in the case when the characteristic polynomials of the transition
matrices for f and g are irreducible, the discriminants of said characteristic
polynomials are identical and Z(α) = Z(β). Most recently, Bruin [11] proved
for fa and fb with finite critical orbits that if log(a) and log(b) are rationally
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independent, then the inverse limit spaces are not homeomorphic. There are
other related results [8, 12, 17, 20].

In this paper we work with tent maps for which a ∈ [
√

2, 2] and the
turning point is periodic, i.e. letting c denote the turning point, there is
some positive integer n such that fna (c) = c. We show that the inverse limit
spaces for any two such distinct maps are not homeomorphic. One can use
[5, Theorem 2] to obtain results for a ∈ [1,

√
2]. Note that for a ∈ [

√
2, 2], fa

is a transitive map [16]. One can construct non-transitive maps f, g with f
not topologically conjugate to g, but (I, f) homeomorphic to (I, g).

Given a parameter a ∈ [
√

2, 2] for which the turning point is periodic
with period n, the kneading sequence of fa is given by the finite string of
length n, K(fa) = b1, . . . , bn, where bi = R if f ia(c) > c, bi = L if f ia(c) < c,
and bn = C. Set Ia = [f2

a (c), fa(c)], the dynamical core of fa. Define the
inverse limit space (Ia, fa) = {x = (x0, x1, . . .) | x ∈

∏∞
i=0 I and for all

i > 0, fa(xi) = xi−1}. We now state our main result.

Main Theorem. Let fa, fb be tent maps with periodic turning points.
If K(fa) 6= K(fb) then (Ia, fa) and (Ib, fb) are not homeomorphic.

We obtain this result by building on the techniques and results in [15].
In Section 3, we give a brief outline of the definitions and results contained
in [15]. Section 4 contains the proof of the main theorem. What follows is a
brief synopsis of the proof of the main theorem.

Suppose (I, f) and (I′, g) are homeomorphic via h. We first show that
for sufficiently large r, there exists an s such that each r-gap in (I, f) (see
Definition 31) will map under h to exactly one s-gap in (I, g). Informally
said, gaps go to gaps. We then show that when gaps go to gaps the kneading
sequences of the bonding maps must be identical.

2. Preliminaries. In this section we make some general definitions and
state some known results. The first half of this section applies to inverse limit
spaces in general, and the second half is about inverse limit spaces of tent
maps with periodic critical points. The omitted proofs can be found in [15].

Let X be a topological space. If there exists a homeomorphism from X
onto [0, 1], then X is called an arc. If there exists a continuous bijection from
[0, 1) onto X, then X is called a ray. The components of X are the maximally
connected subspaces of X. We define N = {0, 1, . . .} and N+ = {1, 2, . . .}.

A continuum is a compact connected metric space. Let x ∈ X, a contin-
uum. The composant of x in X is the union of all the proper subcontinua of
X that contain x. A subcontinuum T of a space X is an end continuum in
X if whenever T ⊆ H, T ⊆ J for continua H,J ⊆ X, then either H ⊆ J or
J ⊆ H. The point x ∈ X is an end point of X if {x} is an end continuum
in X. For further discussion of continua, see [18].
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Lemma 1 [15, Lemma 1]. End points are topological invariants.

Suppose that {Xi, di}∞i=0 is a collection of compact metric spaces with
di bounded by 1, and that for each i, fi : Xi+1 → Xi is a continuous map.
The inverse limit space is given by

{Xi, fi}∞i=0 ≡
{
x = (x0, x1, . . .)

∣∣∣ x ∈
∞∏

i=0

Xi, fi(xi+1) = xi, i ∈ N
}

and has metric d given by

d(x, y) =
∞∑

i=0

di(xi, yi)/2
i.

For each i, πi denotes the usual projection map from
∏∞
i=0Xi into Xi. An

inverse limit space {Xi, fi}∞i=0 is a continuum if Xi is a continuum for every
i ∈ N [18, Theorem 2.4]. If Xi = X and fi = f for all i, the inverse limit
space is denoted by (X, f), and the map f : (X, f) → (X, f) defined by
f((x0, x1, . . .)) = (f(x0), x0, x1, . . .) is called the induced homeomorphism.

A continuous map f : [a, b] → [a, b] is called unimodal if there exists a
unique turning or critical point, c, such that f |[a, c] is increasing and f |[c, b] is
decreasing. For each x ∈ [a, b], the itinerary of x under the unimodal map f is
given by I(x) = b0b1b2 . . . , where bi = R if f i(x) > c, bi = L if f i(x) < c, and
bi = C if f i(x) = c, with the usual convention that the itinerary stops after
the first C. The kneading sequence of the unimodal map f , denoted K(f), is
defined to be the itinerary of f(c). The parity-lexicographical ordering is put
on the set of itineraries as follows. Set L < C < R. Let W = w0w1 . . . and
V = v0v1 . . . be two distinct itineraries and let k be the first index where the
itineraries differ. If k = 0, then W < V if and only if w0 < v0. If k ≥ 1 and
w0 . . . wk−1 = v0 . . . vk−1 has an even number of R’s, i.e., has even parity ,
then W < V if and only if wk < vk; if w0 . . . wk−1 has an odd number of
R’s, then W < V if and only if vk < wk. It is an elementary fact that the
map x 7→ I(x) is monotone, i.e., x < y implies that I(x) ≤ I(y) [13, Lemma
II.1.3]. Let K(f) = a0a1 . . . Define the modified forward itinerary of f(c),
denoted I ′(f(c)), as follows: if K(f) is infinite, let I ′(f(c)) = K(f); and if
K(f) has n0 terms, then I ′(f(c)) = (a0a1 . . . a

′
n0−1)∞ where a′n0−1 ∈ {R,L}

is chosen such that a0a1 . . . a
′
n0−1 < K(f).

Definition 2. Let f : I→ I be a unimodal map. The backward itinerary
of x ∈ (I, f), denoted B(x) = (b0, b1, b2, . . .), is a sequence of R’s and L’s
such that

(i) bi = R if xi ≥ c and bi = L if xi ≤ c,
(ii) if xi = c for some i>0, then (b0, b1, . . . , bi−1)=(ai−1, ai−2, . . . , a1, a0)

where I ′(f(c)) = a0a1 . . .
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Define

Bf = {B(x) | x ∈ (I, f)}.
Suppose that c is periodic with period n0, i.e. n0 is the smallest integer

such that fn0(c) = c. Let x ∈ (I, f), B(x) = (b0, b1, b2, . . .), and i < j ∈ N
be such that xi = c = xj . By the definition of backward itinerary, for every
k < i, bk = ai−k−1 and bk = aj−k−1. However, I ′(f(c)) is periodic with
period n0, and hence for every k < i, ai−k−1 = aj−k−1. Thus the notation
B(x) is well defined for every coordinate except max{k ∈ N | xk = c}
where this maximum exists. Therefore, if xi 6= c for all i ∈ N or if xi = c
for infinitely many i ∈ N then x has exactly one backward itinerary and if
xi = c for finitely many i ∈ N then x has exactly two backward itineraries
that differ in exactly one coordinate, max{i ∈ N | xi = c}. For further
discussion of itineraries see [9, 10].

The one-parameter family of tent maps is given by fa(x) ≡ min{ax,
a(1 − x)} for x ∈ [0, 1] and a ∈ [

√
2, 2]. Note that fa is unimodal for all

a ∈ [
√

2, 2]. Let Ia ≡ [f2
a (c), fa(c)]. Notice that the interval Ia is invariant

under fa and fa is locally eventually onto on Ia; a map g : I → I is locally
eventually onto (l.e.o.) if for every non-degenerate interval J ⊂ I there exists
an n > 0 such that gn(J) = I. The interval Ia is called the core of the map fa.
The inverse limit space ([0, 1], fa) is identical to (Ia, fa) except possibly for an
additional ray entwined with (Ia, fa). Clearly any subcontinuum of (Ia, fa)
is contained in ([0, 1], fa) since Ia ⊂ [0, 1]; the converse is not necessarily
true. For the rest of this paper, fa is assumed to be restricted to its core.

3. Previous results. In this section we give a brief synopsis of the def-
initions and results contained in [15]. No proofs are included in the interest
of brevity.

Fix a ∈ [
√

2, 2] such that c is periodic with period n0, i.e. n0 is the
smallest positive integer such that fn0

a (c) = c. For ease of notation, set
I ≡ Ia, f ≡ fa|I, ci ≡ f i(c), IR ≡ [c, c1], and IL ≡ [c2, c]. Except at its
end points, (I, f) is everywhere locally homeomorphic with the product of
a Cantor set and an arc [3]. The composant of x ∈ (I, f) is the set of
all points y ∈ (I, f) for which B(y) is eventually identical to B(x), i.e. if
B(x) = (b0, b1, . . .) and B(y) = (d1, d2, . . .) then y is in the composant of
x if and only if there exists an N ∈ N such that for all n ≥ N, bn = dn
[9, Corollary 2.10].

Definition 3. Let w = (w0, w1, . . .) ∈ Bf . Define

Aw = {x ∈ (I, f) | πi(x) ∈ Iwi for all i ∈ N},
and

Anw = f n(Aw) for all n ∈ N.
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Note that for all n ∈ N and w ∈ Bf , Anw =
⋃{Av | Av ⊂ Anw}. Each Aw

is a non-degenerate arc. If c were not periodic, then Aw could be degenerate.

Lemma 4 [15, Lemma 4, Corollary 5, and Lemma 6]. Let w ∈ Bf . For
each n ∈ N, πn|Anw is a homeomorphism, πn(Anw) = π0(Aw), and the interval
πn(Anw) is completely determined by the first n0 + 1 elements of w.

Lemma 4 allows us to easily graph the map πn(Anw) for any n ∈ N and
w ∈ Bf by looking at the graph of fn0.

Example 1.1. Let Υ be the tent map with kneading sequence RLRRC.
Consider Υ 5 (Figure 1). The bottom axis is partitioned by the interval
itineraries of length 6 allowed for Υ . Thus if w ∈ BΥ the first 6 elements of
w will match one of these itineraries, and πn(Anw) will then be the same as
Υ 5 applied to the interval that corresponds to that itinerary. For example,
if w = RLRLRR . . . then πn(Anw) = [c, c4].
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Fig. 1. The fifth iterate of Υ

Definition 5. Let

c = (c, cn0−1, cn0−2, . . . , c2, c1)∞

and

ci = f i(c) for all i ∈ N.

Lemma 6 [7]. The end points of (I, f) are c, c1, . . . , cn0−1.

As the number of end points in (I, f) is the period of the critical point of
f , to prove our main result, we need only consider tent maps whose critical
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points have the same period. Fix b 6= a ∈ [
√

2, 2] such that c has period
n0 under fb. Let I′ ≡ [f2

b (c), f1
b (c1)] and for ease of notation, set g ≡ fb|I′,

c′i ≡ gi(c)), I′L ≡ [c′2, c], and I′R ≡ [c, c′1]. In the interests of brevity, when we
define a structure in (I, f), we will assume that a similar definition has been
made for (I′, g). To help distinguish to which space the structure belongs, we
put a prime after the notation for the structures of (I′, g). Thus, for example,
as the core of f is denoted by I, the core of g is denoted by I′.

Definition 7. Let U = {ui}ni=1 be an open cover of a topological space
X. The set U is a chaining of X provided ui∩uj 6= ∅ if and only if |i−j| ≤ 1.
The ui’s are called the links of the chain.

Definition 8. Let U = {ui}ni=1 and V = {vi}mi=1 be chainings of a
topological space. The set V is said to refine U , V ≺ U , if for every 1 ≤ i ≤ m
there exists 1 ≤ j ≤ n such that vi ⊂ uj .

Assume that (I′, g) and (I, f) are homeomorphic and h : (I′, g) → (I, f)
is a homeomorphism. We know that end points are topologically invariant,
thus we define a family of chainings on (I′, g) and (I, f) to exploit this fact.
We first define a family of chainings on I.

Definition 9. Let {Lp,m | p,m ∈ N} be a set of chainings for I with the
following properties:

(i) Lp,m ≺ Li,j if p ≥ i and m ≥ j,
(ii) for all p,m ∈ N and 0 ≤ i < n0, ci is contained in exactly one link

of Lp,m,
(iii) for all p,m ∈ N, if ` ∈ Lp+1,m then there exists γ ∈ Lp,m such that

f(`) ⊂ γ,
(iv) if L is a chaining of I there exist r, s ∈ N such that Lr,s ≺ L.

Examples of such chainings are constructed in [15]. We then take the
inverse image of this chaining under the projection map to get our family
of chainings of (I, f).

Definition 10. For all p,m ∈ N, let Lp,m = π−1
p (Lp,m).

The subscript p refers to the coordinate of the projection map used and
the subscript m refers to the fineness of the mesh of the chaining on I. As
a direct result of its construction, this family of chainings has the following
properties.

Lemma 11 [15, Lemma 16]. Fix p,m, q, j ∈ N. The following hold :

(i) Lp,m ≺ Lq,j if p ≥ q and m ≥ j,
(ii) for every 0 ≤ i < n0, there exists a unique ` ∈ Lp,m such that ci ∈ `,

(iii) if L is a chaining of (I, f) there exist p,m ∈ N such that Lp,m ≺ L.
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Definition 12. Fix m, p ∈ N. For each 0 ≤ j < n0 define `
cj
p,m to be the

link of Lpn0,m that contains the end point cj .

Fix p,m ∈ N. There exist, by Lemma 11(iii), q, r ∈ N such that h(L′qn0,r)
≺ Lpn0,m and hence the homeomorphic image of the links of L′qn0,r that con-
tain end points is contained in the links of Lpn0,m that contain end points,

symbolically h(
⋃n0−1
i=0 `

c′i
q,r

′
) ⊂ ⋃n0−1

i=0 `cip,m. We now compare how the com-
posants of (I, f) pass through the links of Lpn0,m that contain end points
with how the composants of (I′, g) pass through the links of L′qn0,r that
contain end points. To simplify this comparison, we restrict our attention
to the composant of (I′, g) that contains c′ and its image under the hom-
eomorphism. We label this composant C ′. We know that h(c′) is one of the
end points of (I, f), but do not know which one. Choose i ∈ N such that
f i ◦ h(c′) = c, and set h ≡ f i ◦ h. Thus h(C ′)→ C.

Lemma 13 [15, Lemma 19]. The composant C is a ray with end point c.

Example 1.2. Let Υ be the tent map with kneading sequence RLRRC.
As the chaining Lp5,m was defined using π−1

p5 on a chaining of I, we can
see how C passes through the links of Lp5,m by examining the map πp5 :

C → I. Let c ∈ Ap5w . We know w = RRLRRR . . . , thus πp5(Ap5w ) = [c, c1]

(Lemma 4). Furthermore, as c has a period of 5 under f , c ∈ A(p+1)5
w

and π(p+1)5(A(p+1)5
w ) = [c, c1]. Thus πp5(A(p+1)5

w ) = f5 ◦ π(p+1)5(A(p+1)5
w ) =

f5([c, c1]). See Figures 2 and 1. As there was nothing special about our choice
of p, we know π(p+1)5(C) has the same basic “shape” as πp5(C). Thus we can

find the next “part” of πp5(C) by finding f5([c1, c3]). Again see Figures 2
and 1. By proceeding in this manner, we can graph πp5 : C → I.

π5p(C)

π5(p+1)(C)

c

c4

c1

c3

c2

c

c4

c3

c2

c1

�
�
�
�
�
��

b bp p p p
b
b
b
b
bb

b
"
"
"
"
""

b
Q
Q
Q
Q
Q
QQ

b
Q
Q
Q

b

�
�
�
��

r
E
E
EE

r
�
�
��r
E
E
E
E
E
E
EE

r
r
�
�
�
�
�
��

r
r
E
E
E
E
E
EE

r
r
�
�
�
�
�
�
��

r
r
E
E
E
E
E
E
EE

r
r
�
�
�
�
�
��

r
r
E
E
E
E
E
EE

r
r
�
�
�
�
�
�
��

r
r
E
E
EE

r
�
�
��r
E
E
E
E
E
E
EE

r
r
�
�
�
�
�
��

r
r
E
E
E
E
E
EE

r
r
�
�
�
�
�
�
��

r
r
E
E
E
E
E
E
EE

r
r
�
�
�
�
�
��

r
r
E
E
E
E
E
EE

r
r
�
�
�
�
�
�
��

r
r
E
E
EE

r
�
�
��r
E
E
E
EE

r
�
�
�
��

r
E
E
EE

r
�
�
��r
E
E
E
E
E
E
EE

r
r
�
�
�
�
�
�
��

r
r
rpppp

-
c

Fig. 2. The projections of the p-wrapping points (•) and the (p+ 1)-wrapping points (◦)
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Definition 14. Let γ : [0, 1)→ C be a continuous bijection. Define the
C-induced order on C, /, by x / y if and only if γ−1(x) < γ−1(y).

We now define a set of p-special points that indicate when C passes
through a link of Lpn0,m that contains an end point. These p-special points
have a natural one-to-one correspondence with the components of C inter-
sected with the links of Lpn0,m that contain an end point (Proposition 16).
When ordered, the p-special points identify how C passes through the links
of Lpn0,m. We can then compare the special points of C to the special points
of C′.

Definition 15. Fix p, j ∈ N, 0 ≤ j < n0. Let

Φ̃p,j = {x ∈ C | πpn0(x) = cj}, Φ̃p =

n0−1⋃

i=0

Φ̃p,i.

If x ∈ Φ̃p it is called a p-special point. Define Φp,j to be the sequence of

the elements of Φ̃p,j in C-induced order and Φp to be the sequence of the

elements of Φ̃p in C-induced order.

Note that if u < p ∈ N, then Φ̃u ⊃ Φ̃p.
Example 1.3. Let Υ be the tent map with kneading sequence RLRRC.

Figure 3 shows the p-special points of C. As stated in Definition 15, p-special
points are the points of C which the projection πp5 takes to ci for some
0 ≤ i < 5.
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Fig. 3. The projections of the p-special points of C
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Proposition 16 [15, Proposition 25]. Fix p,m, k ∈ N, 0 ≤ k < n0. Let
D be a component of C ∩ `ckp,m. The closure of D is an arc, and D contains

exactly one element of Φ̃p,k.

We cannot guarantee that the homeomorphism h takes special points to
special points. We therefore define a “fudged” map hq,p such that hq,p(Φ̃

′
q)

⊂ Φ̃p.
Definition 17. Fix m, p, q, r ∈ N such that h(L′q,r) ≺ Lp,m. Define

hq,p : Φ̃′q → Φ̃p as follows. If w′ ∈ Φ̃′q,j and h(c′j) = ci, then hq,p(w
′) is the

element of Φ̃p,i that lies on the same component of `cip,m as h(w′).

The map hq,p is one-to-one, but not necessarily onto. Hence, let i0, i1,
i2, . . . be such that

hq,p(Φ
′
q) = {hq,p(w′0), hq,p(w

′
1), . . .} = {wi0 , wi1 , wi2 , . . .} ⊂ Φp,0.

The sequence i0, i1, i2, . . . is predictable, it has a pattern. Unfortunately, this
pattern is too complicated to predict without a better understanding of the
behavior of C. Hence, for each p ∈ N, we identify the set of points, p-wrapping
points, at which the projection πpn0 of C turns or wraps (Definition 18). For
technical reasons, we include those points of C that map to c under πpn0 in
the set of p-wrapping points. The set of p-wrapping points is a proper subset
of the set of p-special points and the p-special points are a proper subset of
the (p− 1)-wrapping points.

Definition 18. For each p ∈ N, define

W̃p = {x ∈ C | x ∈ Apn0
v ∩ Apn0

w , v 6= w ∈ Bf} ∪ {c}.
If x ∈ W̃p then x is called a p-wrapping point. Define Wp to be the sequence
of all p-wrapping points in C-induced order.

Example 1.4. Let Υ be the tent map with kneading sequence RLRRC.
Figure 2 shows the p-wrapping points and the (p+ 1)-wrapping points of C.
Note that W̃p+1 ⊂ W̃p.

Definition 19. Let x ∈ W̃p\{c}, and let v 6= w ∈ Bf be such that
x ∈ Apn0

v ∩ Apn0
w . By Definition 2, v and w differ in exactly one coordinate,

say k. Define the p-level of x and c by Lp(x) = k and Lp(c) =∞.

Suppose x ∈ W̃p, x 6= c. The point x has exactly 2 backward itineraries.
These itineraries differ in only one coordinate, the highest coordinate of x
that is c, say j. The p-level of x is then j−pn0 as the backward itineraries v
and w used in Definition 19 start being compared to x in the pn0 coordinate
of x. Figure 4 shows the p-wrapping points with their p-levels. The set
{Lp(w) | w ∈ W̃p \ {c}} is unbounded.
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Fig. 4. The map π5p : C → I, the p-wrapping points with their p-levels, and an example
of w and H that satisfy the hypotheses of Proposition 23

Definition 20. Fix p ∈ N. LetH⊂C be an arc, H̊∩ Wp = {h1, . . . , hn−1}
and ∂H = {h0, hn}. The arc H is p-symmetric if πpn0(h0) = πpn0(hn) and
for each 0 < i < n, Lp(hi) = Lp(hn−i). The arc H is p-pseudosymmetric
if for each 0 ≤ i ≤ n, πpn0(hi) = πpn0(hn−i). If H is p-symmetric or p-
pseudosymmetric, n must be even; thus the center of H, denoted κH , is the
point hn/2.

Let y, x ∈ W̃p. By the definition of p-level, we know that if Lp(y) = Lp(x),
then πpn0(y) = πpn0(x). Thus all p-symmetric arcs are also p-pseudosym-
metric. However, as Lp(y) mod n0 = Lp(x) mod n0 implies that πpn0(y) =
πpn0(x), not all p-pseudosymmetric arcs are p-symmetric.

Definition 21. Let p ∈ N. Let H,G ⊂ C be arcs. Set

G̊ ∩ Wp = {g1, . . . , gn−1}, ∂G = {g0, gn}, H̊ ∩ Wq = {h1, . . . , hm−1}
and ∂H = {h0, hm}. The arcs G and H are said to have the same p-shape if
n = m and πpn0(gi) = πpn0(hi) for every 0 ≤ i ≤ n. The arcs G and H are
said to have mirrored p-shape if n = m and πpn0(gi) = πpn0(hn−i) for every
0 ≤ i ≤ n.

Example 1.5. In Figure 4, the arc H is p-symmetric. The arc between
u and w has the same mirrored p-shape as the arc between w and v.

Definition 22. Let w, v, u ∈ C. Choose k ∈ N and v ∈ Bf such that
w, v, u ∈ Akv . The point w is said to be closer than u to v if |πk(w)−πk(v)| <
|πk(u)− πk(v)|.
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As the backward itineraries of w, v, and u are eventually identical, k and
v must exist. As f |IR and f |IL are linear, Definition 22 is independent of k.

Using this terminology, we can make some observation about how C
passes through the links of Lpn0,m. Let w be a p-wrapping point with Lp(w)
> 0 and H the largest p-symmetry that has w for a center. Exactly one
end point of H is a p-wrapping point of higher p-level than w, all other
p-wrapping points contained in H have a p-level less than w (Proposition
23). The other end point of H, say u, is a (p − 1)-wrapping point and the
difference of the (p− 1)-level of w and the (p− 1)-level of u is less than n0

(Proposition 24). Note that u may also be a p-wrapping point as W̃p ⊂ W̃p−1.

Proposition 23 [15, Proposition 34]. Let p ∈ N and w ∈ W̃p\{c} be such
that Lp(w) 6= 0. Let H be the union of all p-symmetries with center w. There
exists v such that v is the closest element of W̃p to w with Lp(v) > Lp(w).
Furthermore, v is an end point of H.

Proposition 24 [15, Proposition 36]. Let p ∈ N, w ∈ W̃p\{c} and H
the union of all p-symmetries with w as the center. Let v be the end point of
H with Lp(v) > Lp(w), u the other end point of H, and ci = πpn0(v) where
0 ≤ i < n0. If Lp(w) > i, then u ∈ W̃p and 0 < Lp(w)− Lp(u) < n0.

Example 1.6. Let Υ be the tent map with kneading sequence RLRRC.
Figure 4 shows the p-wrapping points and the p-levels of the p-wrapping
points and an example of w, H, and v from Proposition 23. Also included
is u from Proposition 24.

Theorem 25 [15, Theorems 54 and 55]. Let p ≤ r ∈ N. Let w ∈ W̃r∩ Φ̃r,i
where 0 ≤ i < n0 is such that w is not the first element in Wr ∩ Φ̃r,i. Let u

be the closest r-wrapping point to w such that u ∈ Φ̃r,i and u / w, and v the

closest r-wrapping point to w such that v ∈ Φ̃r,i and w / v. Let G be the arc
that lies between v and w, and H the arc that lies between w and u. Then:

(i) The arcs G and H are r-symmetric.
(ii) If G and H have the same p-shape, then w ∈ W̃r+1.

(iii) If w ∈ W̃r+1, then G ∪H is an r-symmetry.

Example 1.7. Consider Figure 5. The points a, b, e, and d are elements
of Wp ∩ Φ̃p5,1. First let b be the w in Theorem 25. Then a = u and e = v.
The arc between a and b and the arc between b and e are p-symmetric.
However, as the arc between a and b does not have the same p-shape as the
arc between b and e, i.e., the arc between a and e is not p-symmetric, it
follows that b 6∈ W̃p+1.

Now let e be the w from Theorem 25. Then b = u and d = v. The arc
between b and e and the arc between e and d are p-symmetric. As the arc
between b and e has the same p-shape as the arc between e and d, we have
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Fig. 5. πp5 : C → I and selected p-wrapping points from Examples 1.7 and 1.8

e ∈ W̃p+1, and hence the arc between b and d is p-symmetric. In Definition 26,
we define the arc between b and d as the (p+ 1)-forced symmetry of e.

Definition 26. Let r ∈ N, w ∈ W̃r+1\{c} and πrn0(w) = ci for some

0 ≤ i < n0. Let u be the closest r-wrapping point to w such that u ∈ Φ̃r,i
and u / w, and v the closest r-wrapping point to w such that v ∈ Φ̃r,i
and w / v. Let H be the arc that lies between u and v. The arc H is the
(r + 1)-forced symmetry of w.

Theorem 27 [15, Theorems 58 and 59]. Let p ≤ r ∈ N, w ∈ Φ̃r+1,i∩W̃r+1

for some 0 ≤ i < n0, w 6= c, and H the (r + 1)-forced symmetry of w. Let
J ⊂ C be an arc such that H and J have the same p-shape. Then κJ ∈ W̃r+1.

Example 1.8. Consider Figure 5. The point e ∈ Wp+1 and the arc that
lies between b and d is the (p + 1)-forced symmetry of e. The arc that lies
between x and z has the same p-shape as the arc between b and d, hence
y ∈ W̃p+1.

Using Theorems 25 and 27, we can determine the p-level of a p-wrapping
point by looking at the p-pseudosymmetries which have the desired p-wrap-
ping point as the center. Hence we are interested in what properties the im-
ages of these forced symmetries have under h. Thus we extend our “fudged”
map, hq,p : (Φ̃q)

′ → Φ̃p, to the map h̃q,p which takes arcs of C ′ whose end
points are q-special points to arcs of C whose end points are p-special points.

Definition 28. Fix m, p, q, r ∈ N such that h(L′q,r) ≺ Lp,m. Define

• Λp ≡ {D ⊂ C | D is an arc and ∂D ⊂ Φ̃p},
• Λ′q ≡ {D′ ⊂ C′ | D′ is an arc and ∂D′ ⊂ Φ̃′q},
• h̃q,p : Λ′q → Λp to be the function that takes D′ ∈ Λ′q with end points

x′ and y′ to the arc of C that lies between hq,p(x
′) and hq,p(y

′).

Proposition 29 [15, Proposition 65]. Fix m, p, q, r∈N such that h(L′q,r)
≺ Lp,m. Let G′,H ′ ∈ Λ′q be such that G′ and H ′ have the same q-shape (resp.
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mirrored q-shape). Then h̃q,p(G
′) and h̃q,p(H

′) have the same p-shape (resp.
mirrored p-shape).

Proposition 29 tells us that if x′, v′ ∈ Φ̃′r,i where r ≥ q + 1 and 0 ≤
i < n0, the r-forced symmetries of v and x will map under h̃q,p to p-
pseudosymmetries of the same p-shape. These p-pseudosymmetries force a
certain p-level on their centers, hq,p(v) and hq,p(x) (Theorem 27). If we
choose p,m, u, v ∈ N such that Lpn0,m ≺ h(L′un0,v) (possible by Lemma
11(iii)), the u-level of the images of s-special points, where s ≥ p + 1,
are similarly forced. Using these results together, given any r ≥ q + 1
and 0 ≤ i, j < n0 such that h(c′i) = cj , we can find t ∈ N such that

Φ̃t+1,j ⊂ hq,p(Φ̃r,i) ⊂ Φ̃t,j . Unfortunately, we cannot guarantee that the
same t will work for all i, thus we restrict our attention to i = 0, i.e. those
special points that project to c.

Theorem 30 [15, Theorem 70]. Fix p,m, q, r, u, v∈N such that h(L′qn0,r)

≺ Lpn0,m ≺ h(L′un0,v). There exists t such that

Φ̃t,0 ⊃ hq,p(Φ̃′q+1,0) ) Φ̃t+1,0 ⊃ hq,p(Φ̃′q+2,0) ) Φ̃t+2,0 ⊃ . . .
As Theorem 30 applies only to those special points that project to c, we

pay special attention to the arcs that lie between these special points.

Definition 31. Fix p ∈ N. As Φ̃p,0 ⊂ W̃p and W̃p is countable, Φ̃p,0 is

countable. Thus Φ̃p,0 partitions C into countably many arcs. Denote this
partition by Pp. We call H ⊂ C a p-gap of C provided H ∈ Pp. Observe that

for each p-gap, H, c /∈ πpn0(H̊), and πpn0(∂H) = {c}.
Example 1.9. Let Υ be the tent map with kneading sequence RLRRC.

Figure 6 shows the p-gaps of C. Although the p-gaps of C are subsets of C,
it is often helpful to think of p-gaps in terms of the graph of the map πpn0 .
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Fig. 6. The p-gaps of C and the set πpn0(Φ̃p,0) (•)
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Note that the intersection of two distinct p-gaps is either a p-special
point or the empty set. We can now restate Theorem 30 using gaps.

Theorem 32 (Theorem 30 restated). Fix p,m, q, r, u, v ∈ N such that
h(L′qn0,r) ≺ Lpn0,m ≺ h(L′un0,v). There exists t such that for any k ∈ N+, if

G′ is a (q + k)-gap of C ′, then h̃q,p(G
′) is a group of (t + k − 1)-gaps of C

and is contained in one (t+ k)-gap of C.

Proposition 33 [15, Proposition 35]. Fix p ∈ N. If G is a p-gap of C,
then G is p-symmetric.

Definition 34. Fix p ∈ N. Let G and H be distinct p-gaps of C. Define
G to be less than H in the C-induced order, denoted G / H, if for every
x ∈ G and every y ∈ H, either x / y or x = y.

Definition 35. Fix p, q ∈ N. Let G be a p-gap of C with G ∩ Wp =
{g0, g1, . . . , gn}, and H a q-gap of C with H ∩ Wq = {h0, h1, . . . , hm}. The
gaps, G and H, are said to be the same type if n = m and πpn0(gi) = πqn0(hi)
for all 0 ≤ i ≤ n.

Example 1.10. Let Υ be the tent map with kneading sequenceRLRRC.
The first and ninth p-gaps of C are the same type. See Figure 6. The second
and fourth p-gaps are also the same type, but are a different type than the
first p-gap.

Definition 36. Fix p ∈ N. Let G be a p-gap of C. Define

T (G) = min{Lq(κH) | q ∈ N and H is a q-gap of the same type as G}.
Example 1.11. Let Υ be the tent map with kneading sequenceRLRRC.

By looking at Figure 4, we can see that the level of the first p-gap of C is 3.
The level of the second p-gap is 2. The level of the ninth p-gap is 3, because
the ninth p-gap is the same type as the first p-gap.

Proposition 37 [15, Corollary 42]. Fix p, q ∈ N. Let G be a p-gap of
C and H a q-gap of C. The gaps G and H are the same type if and only if
T (G) = T (H).

Definition 38. Fix p ∈ N. Define Fp to be the first p-gap of C in C-
induced order, and ϕ = T (Fp).

Note that ϕ does not depend on p, and ϕ < n0. Throughout the rest of
this paper ϕ denotes this fixed constant.

Corollary 39 (of Theorem 30). Fix p,m, q, r, u, v ∈ N with h(L′qn0,r)

≺ Lpn0,m ≺ h(L′un0,v). If h̃q,p(F
′
q+1) = Ft for some t ∈ N, then for every

k ∈ N+, hq,p(Φ̃
′
q+k,0) = Φ̃t+k−1,0. Alternatively stated , if h̃q,p(F

′
q+1) = Ft for

some t ∈ N, then for every k ∈ N+, any (q + k)-gap of C ′ will map under

h̃q,p to exactly one (t+ k − 1)-gap of C.
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Remark. Informally, Corollary 39 says that if the first gap of C ′ maps
onto the first gap of C, then gaps go to gaps.

Definition 40. Fix p,m, q, r, u, v ∈ N such that h(L′qn0,r) ≺ Lpn0,m ≺
h(L′un0,v). Let t be the integer from Theorem 30 and k ∈ N+. Let H ′ be a
(q + k)-gap of C ′. The (q + k)-structure of H ′ is the set

~Sq+k(H ′) ≡ {G ⊂ C | G is a (t+ k − 1)-gap and G ⊂ h̃q,p(H ′)}
in C-induced order.

Let H be a (t+ k)-gap of C. The (t+ k)′-structure of H is the set

~S ′t+k(H) ≡ {G′ ⊂ C′ | G′ is a (q + k)-gap and G′ ⊂ h̃′p,u(H)}
in C′-induced order.

Definition 41. Fix q, p ∈ N. Let H = {H0,H1, . . . ,Hn} be an ordered
set of q-gaps and G = {G0, G1, . . . , Gm} an ordered set of p-gaps. The set
H is defined to be similar to the set G, denoted H ∼ G, if n = m and
T (Hi) = T (Gi) for all 0 ≤ i ≤ n.

Proposition 42 [15, Corollary 71]. Fix p,m, q, r, u, v ∈ N such that
h(L′qn0,r) ≺ Lpn0,m ≺ h(L′un0,v). Let s, b > q ∈ N, G′ an s-gap and H ′ a

b-gap such that T (G′) = T (H ′). Then ~Sb(H ′) ∼ ~Ss(G′).

Proposition 43 [15, Proposition 74]. Fix p,m, q, r, u, v ∈ N such that
h(L′qn0,r) ≺ Lpn0,m ≺ h(L′un0,v). Let t be the integer from Theorem 30. Let
s, b > t ∈ N, G an s-gap and H a b-gap such that T (G) = T (H). Then
~S ′b(H) ∼ ~S ′s(G).

Definition 44. Fix p ∈ N and let G be a p-gap. Define the orientation
of G as follows: G is an up gap if πpn0(G) ⊂ IR, and G is a down gap if
πpn0(G) ⊂ IL. Additionally, G is an even gap if it has the same orientation
as Fp, and G is an odd gap if it has the opposite orientation of Fp.

Similarly, if w ∈ W̃p ∪ {cj | 0 < j < n0} and πpn0(w) 6= c, then w is an up
point if πpn0(w) ∈ IR, a down point if πpn0(w) ∈ IL, an even point if κFp has
the same orientation, and an odd point if κFp has the opposite orientation.

Note that two adjacent p-gaps of C have opposite orientation unless their
point of intersection is a (p+ 1)-wrapping point, in which case both p-gaps
are even and type ϕ.

Lemma 45 [15, Lemmas 81 and 82]. Fix p,m, q, r, u, v ∈ N such that
h(L′qn0,r) ≺ Lpn0,m ≺ h(L′un0,v). Let t be the integer from Theorem 58. Let

k ∈ N+ and G′ a (q + k)-gap of C ′. Then h̃q,p(κG′) is an odd (t + k − 1)-
wrapping point if and only if κG′ is an odd (q + k)-wrapping point.
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4. Main result. In this section we prove our main result. We begin
by showing that for appropriate choice of t (depending on p and q) and

any k ∈ N+, the image of any (q + k)-gap of C ′ under h̃q,p is exactly one
(t + k − 1)-gap of C (Theorem 58). Informally, gaps go to gaps. We then
prove our main result (Theorem 63) by showing that when gaps go to gaps,
the kneading sequences of the bonding maps must be identical. The lemmas
of this section are technical results needed to prove the two main theorems.

Lemma 46 establishes the existence and non-existence of types of p-gaps
of C based on the kneading sequence of f .

Lemma 46. Fix p, n ∈ N, n mod n0 6= 0, and let k be the smallest odd
integer such that fk(c) ∈ IL. Note that k ≤ n0.

(i) There exists a p-gap of C whose center has a p-level of n if and only
if c ∈ fn(IL).

(ii) If n is even, then there exists a p-gap of C whose center has a p-level
of n.

(iii) If n is odd , then there exists a p-gap of C whose center has a p-level
of n if and only if n ≥ k − 2.

Proof. (i) ⇒ Suppose that H is a p-gap of C with Lp(κH) = n. As
πpn0+n|H is a homeomorphism (Proposition 33), and πpn0+n(κH) = c, we
have πpn0+n(∂H) ∩ IL 6= ∅. Therefore, c ∈ fn(IL).
⇐ Suppose c ∈ fn(IL). Let x = max{y ∈ IL | fn(y) = c}, and note

that x 6= c as n mod n0 6= 0. Let J be an arc of C such that πpn0+n|J is a
homeomorphism and πpn0+n(J) = I. Then π−1

pn0+n([x, 1− x]) ∩ J is a p-gap
of C such that the p-level of its center is n.

(ii) If c3 ∈ IL, then c ∈ f(IL) = [c3, c1]. Hence I ⊂ f2(IL), and therefore
I ⊂ f i(IL) for all i ≥ 2. The result follows from (i).

Assume that c3 ∈ IR. From kneading theory, c4 ∈ IR, and hence IL ⊂
f2(IL) = [c2, c4]. Thus IL ⊂ fn−2(IL) ⊂ fn(IL) for all even n ∈ N+. The
result follows from (i).

(iii) For all odd i, c1 ∈ f i(IL) as c ∈ f i−1(IL) ((ii) and (i)). Thus for all
odd i ≤ k, f i(IL) = [c2+i, c1]. Hence c /∈ f i(IL) for all odd i < k − 2, and
c ∈ f i(IL) for all odd i ≥ k − 2. The result follows by (i).

Definition 47. Fix p ∈ N. Let G be a p-gap of C and G ∩ Wp =
{g0, g1, . . . , gn}. For each 0 ≤ i < n, let Li be the arc that lies between
gi and gi+1. Each Li is a leg of G, and L0 is the first leg of G.

Lemma 48 [15, Lemma 44]. Fix p ∈ N. Let G be a p-gap of C with first
leg L. Then πpn0(G) = πpn0(L).

Lemma 49 predicts the (q + k)-structure of (q + k)-gaps based on the
(q + k)-structure of “shorter” (q + k)-gaps. Lemma 50 does the same thing
for the (t+ k)′-structure of (t+ k)-gaps.
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Lemma 49. Fix p,m, q, r, u, v ∈ N with h(L′qn0,r) ≺ Lpn0,m ≺ h(L′un0,v).
Let t be the integer from Theorem 30. Let k ∈ N+ and G′ be a (q+k)-gap of C ′
such that ~Sq+k(G′) is more than one (t+k−1)-gap of C. Set π(q+k)n0

(G′) =
[c′, x′]. Let H ′ be a (q + k)-gap of C ′. If π(q+k)n0

(H ′) 6⊂ (1 − x′, x′) then
~Sq+k(H ′) is more than one (t+ k − 1)-gap.

Proof. Let L′ be the first leg of G′ and K ′ the first leg of H ′. By Lemma
48, π(q+k)n0

(L′) = π(q+k)n0
(G′) = [c′, x′] and π(q+k)n0

(K ′) = π(q+k)n0
(H ′).

By [15, proof of Proposition 79], h̃q,p(L
′) contains the first (t+k− 1)-gap of

~Sq+k(G′) and the (t+k−1)-forced symmetry of the last end point of the first

gap of ~Sq+k(G′). Suppose π(q+k)n0
(H ′) 6⊂ (1 − x′, x′). Then π(q+k)n0

(K ′) 6⊂
(1 − x′, x′) (Lemma 48). Hence, by the symmetry of g, there is an arc, say
M ′, such that M ′ ⊂ K ′ and M ′ and L′ have the same q-shape. Therefore,
h̃q,p(M

′) and h̃q,p(L
′) have the same p-shape (Proposition 29). Thus h̃q,p(M

′)
contains an arc with the same p-shape as the (t+k−1)-forced symmetry of

the last end point of the first (t+k−1)-gap of ~Sq+k(G′). Hence, by Theorem

27, h̃q,p(M
′) contains a (t+ k− 1)-wrapping point which projects to c in its

interior. Thus h̃q,p(M
′) contains a (t + k − 1)-gap, and therefore ~Sq+k(H ′)

is more than one (t+ k − 1)-gap.

Lemma 50. Fix p,m, q, r, u, v ∈ N with h(L′qn0,r) ≺ Lpn0,m ≺ h(L′un0,v).
Let t be the integer from Theorem 30. Let k ∈ N+ and G be a (t+k)-gap of C
such that ~S ′t+k(G) is more than one (q+k)-gap of C ′. Set π(t+k)n0

(G) = [c, x].

Let H be a (t + k)-gap of C. If π(t+k)n0
(H) 6⊂ (1 − x, x) then ~S ′t+k(H) is

more than one (q + k)-gap.

Proof. Similar to the proof of Lemma 49.

Definition 51. Let [c, cj] = π0(F0) and [c′, c′i] = π0(F ′0). Define I =
[1− cj, cj ] and I ′ = [1− c′i, c′i].

Lemmas 52 and 53 identify properties of the image of the first gap of C ′
under h̃q,p and the image of the first gap of C under h̃′p,u respectively.

Lemma 52. Fix p,m, q, r, u, v ∈ N with h(L′qn0,r) ≺ Lpn0,m ≺ h(L′un0,v).

Let t be the integer from Theorem 30. If k ∈ N+, then π(t+k−1)n0
(h̃q,p(F

′
q+k))

( I and π(t+k−1)n0
(h̃q,p(F

′
q+k)) ( I.

Proof. If h̃q,p(F
′
q+1) = Ft, the result follows. Assume h̃q,p(F

′
q+1) 6= Ft. As

~Sq+k(Fq+k) ∼ ~Sq+2(Fq+2) for all k ≥ 1 (Proposition 42), we need only prove

the result for k = 2. Let G be the first (t + 1)-gap of C not in ~Sq+2(F ′q+2).

As the image of an odd (q + 2)-gap under h̃q,p is either a (t + 1)-gap or a
(t+2)-gap [15, Lemma 81], the second (q+2)-gap of C ′ must map to G, and
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hence h̃′p,u(G) is an odd (q+ 2)-gap. Thus ~S ′t+1(G) is more than one (q+ 1)-

gap. Furthermore, as the image of an odd (t+ 1)-gap under h̃′p,u is either a

(q + 1)-gap or a (q + 2)-gap [15, Lemma 82], the image under h̃′p,u of any

odd (t+ 1)-gap of ~Sq+2(Fq+2) is one odd (q+ 1)-gap. Therefore, by Lemma

50, if H ∈ ~Sq+2(Fq+2) is an odd gap, then π(t+1)n0
(H) ( π(t+1)n0

(G) and

π(t+1)n0
(H) ( I. Hence π(t+1)n0

(h̃q,p(F
′
q+2)) ( I and if π(t+1)n0

(Fq+2) ⊂ I
then π(t+1)n0

(Fq+2) ( I.

Suppose that π(t+1)n0
(h̃q,p(F

′
q+2)) 6⊂ I. Let L be the first leg of G and

{w0, w1, . . . , wd} = Wt+1 ∩ {L ∪ h̃q,p(F ′q+2)}. Let i = sup{k | k < d and
π(t+1)n0

(wk) /∈ I}. Note that wi is an even (t + 1)-wrapping point and wi

is not in the last (t + 1)-gap of ~Sq+2(Fq+2) as that (t + 1)-gap is type ϕ.
Let we be the (t + 1)-wrapping point such that Lt+1(we) ≥ Lt+1(wk) for
all i < k < d. Then Lt+1(we) ≥ ϕ. By Proposition 23, either wi or wd is
contained in a (t+1)-symmetry about we. However, by the choice of wi and
wd neither can be in a (t + 1)-symmetry about we, a contradiction. Hence

π(t+1)n0
(h̃q,p(F

′
q+2)) ( I.

Lemma 53. Fix p,m, q, r, u, v ∈ N with h(L′qn0,r) ≺ Lpn0,m ≺ h(L′un0,v).

Let t be the integer from Theorem 30 and k ∈ N+. If h̃q,p(F
′
q+1) 6= Ft, then

π(q+k)n0
(h̃′p,u(Ft+k)) ( I ′ and π(q+k)n0

(h̃′p,u(Ft+k)) ( I′.

Proof. Similar to the proof of Lemma 52.

In Lemma 54, we look at those (q+k)-gaps of C ′ that map to exactly one
(t+k− 1)-gap of C and examine the properties that this kind of (q+k)-gap

has when h̃q,p(F
′
q+1) 6= Ft. In particular, we show that the (q + k − 1)n0

projection of this kind of (q + k)-gap is not I′ and that the center of the
(q + k)-gap “turns” at an end point that the image of the first (t+ k − 1)-

gap of C under h̃′p,u “turns” at (see Example 1.12). Lemma 55 is similar to
Lemma 54 but looks at gaps of C instead of gaps of C ′.

Example 1.12. Let Υ be the tent map with kneading sequenceRLRRC.
Figure 7 shows gaps F ′q+k and G′. The gap F ′q+k turns at c′1 and c′3. The

gap G′ only turns at c′1. Note that in Lemma 54 we are not concerned with

where F ′q+k turns, but rather where h̃′p,u(Ft+k−1) turns.

Lemma 54. Fix p,m, q, r, u, v ∈ N with h(L′qn0,r) ≺ Lpn0,m ≺ h(L′un0,v).
Let t be the integer from Theorem 30. Let k ∈ N+ and G′ be a (q + k)-gap

of C′ such that h̃q,p(G
′) is one (t + k − 1)-gap. If h̃q,p(F

′
q+1) 6= Ft, then

π(q+k−1)n0
(G′) ( I′ and π(q+k)n0

(κG′) ∈ π(q+k−1)n0
(W̃′q+k−1 ∩ h̃′p,u(Ft+k−1)).
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Fig. 7. The (q + k)-gaps F ′q+k and G′ for the tent map with kneading sequence RLRRC

Proof. By Proposition 42 we may assume that k = 3. Suppose h̃q,p(F
′
q+1)

6= Ft. Let D′ be the first (q + 2)-gap not contained in h̃′p,u(Ft+2), and L′

the first leg of D′. By [15, proof of Proposition 79], h̃′p,u(Ft+2) ∪ L′ is a

subset of the first leg of F ′q+3. Let [c, x] = π(q+3)n0
(h̃′p,u(Ft+2) ∪ L′). Let

E′ be the first leg of G′. As π(q+3)n0
(G′) = π(q+3)n0

(E′) (Lemma 48), by
Propositions 29 and 27, and the symmetry of the map gn0 , if π(q+3)n0

(G′) 6⊂
(1 − x, x) then h̃q,p(G

′) contains more than one (t+ 2)-gap (see proof of
Lemma 49). Hence π(q+3)n0

(G′) ⊂ (1 − x, x). Therefore, π(q+2)n0
(G′) ⊂

π(q+2)n0
(h̃′p,u(Ft+2)), and hence π(q+2)n0

(G′) ( I′ by Lemma 53, and finally

π(q+3)n0
(κG′) ⊂ π(q+2)n0

(W̃′q+2 ∩ h̃′p,u(Ft+2)).

Lemma 55. Fix p,m, q, r, u, v ∈ N with h(L′qn0,r) ≺ Lpn0,m ≺ h(L′un0,v).
Let t be the integer from Theorem 30. Let k ∈ N+ and G a (t+ k)-gap of C.

If h̃′p,u(G) is one (q + k)-gap then π(t+k−1)n0
(G) ( I and π(t+k)n0

(κG) ∈
π(t+k−1)n0

(W̃t+k−1 ∩ h̃q,p(F ′q+k)).

Proof. Note that if h̃q,p(F
′
q+1) = Ft, then by Corollary 39, h̃p,u(G) is a

(q+k+1)-gap, and therefore the result is vacuously true. If h̃q,p(F
′
q+1) 6= Ft,

the proof is similar to that of Lemma 54.

Lemma 56 puts a limit on the “size” of the first gap when gaps do not
go to gaps.
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Lemma 56. Fix p,m, q, r, u, v ∈ N with h(L′qn0,r) ≺ Lpn0,m ≺ h(L′un0,v).

Let t be the integer from Theorem 30. If h̃q,p(F
′
q+1) 6= Ft, then I ⊂

(1− cn0−1, cn0−1) and I ′ ⊂ (1− c′n0−1, c
′
n0−1).

Proof. Suppose h̃q,p(F
′
q+1) 6= Ft. Let G′ be the first odd (q + 2)-gap

of C′. As h̃q,p(F
′
q+1) 6= Ft, h̃q,p(G

′) is one (t + 1)-gap [15, Lemma 81],
and hence π(q+1)n0

(G′) ( I′ by Lemma 54. Note π(q+2)n0
(G′) 6= [c′, c′1] as

gn0([c′, c′1]) = I′. Let L′ be the first leg of G′ and [c′, c′j] = π(q+2)n0
(L′). Let

H ′ be an arc of C ′ such that π(q+2)n0
(H ′) = π(q+2)n0+j(L

′) and π(q+2)n0
|H ′

is a homeomorphism. Set {x′, y′} = ∂H ′ with π(q+2)n0
(x′) = c′. Then

x′, y′ ∈ W̃′q+1 and Lq+1(x′) ≥ n0, and hence π(q+1)n0
(H ′) must contain

the (q + 1)n0 projection of the first leg of Fq+1. Thus π(q+1)n0
(F ′q+1) ⊂

π(q+1)n0
(H ′) (Lemma 48). Therefore, π(q+1)n0

(F ′(q+1)n0
) ⊂ π(q+1)n0+j(G

′).
If π(q+1)n0

(F ′(q+1)n0
) 6⊂ (1 − c′n0−1, c

′
n0−1), then [c′, c′1] ⊂ π(q+1)n0+j−1(G′),

and hence I′ = π(q+1)n0+j−2(G′), a contradiction as j ≥ 2. Thus I ′ ⊂
(1− c′n0−1, c

′
n0−1). The proof for I ⊂ (1− cn0−1, cn0−1) is similar.

Lemma 57 forces the “size” of certain gaps.

Lemma 57. Fix p ∈ N. Let H be a p-gap of C and G a p-gap of C whose
center has p-level n0 + 1. If πpn0(κH) ∈ πpn0(G∩ W̃p), then πpn0(H) = [c, c1].

Proof. Suppose πpn0(κH) ∈ πpn0(G ∩ W̃p). Let cj = πpn0(κH). Let w be
the first p-wrapping point of G such that πpn0(w) = cj and J the arc that
lies between the first p-wrapping point of G and w. Note that J contains the
first leg of G, and hence πpn0(J) = [c, c1] (Lemma 48). As πpn0+j(w) = c, we
have πpn0+j(J) = [c, x], where x and 1− x are the numbers closest to c for
which f j(x) = c. As πpn0+j(κH) = c, either [c, x] or [c, 1− x] is contained in
πpn0+j(H). Thus, as f j is symmetric about c, πpn0(H) = f j(πpn0+j(H)) ⊃
f j(πpn0+j(J)) = πpn0(J) = [c, c1]. Hence πpn0(H) = [c, c1].

As outlined earlier, we now show gaps go to gaps.

Theorem 58. Fix p,m, q, r, u, v ∈ N such that h(L′qn0,r) ≺ Lpn0,m ≺
h(L′un0,v). Then there exists t ∈ N such that for every k ∈ N+, hq,p(Φ̃

′
q+k,0)

= Φ̃t+k−1,0. Alternatively stated , there exists t ∈ N such that for every k ∈ N,

any (q + k)-gap of C ′ maps under h̃q,p to exactly one (t+ k − 1)-gap of C.

Proof. If h̃q,p(F
′
q+1) = Ft, then Corollary 39 gives us hq,p(Φ̃

′
q+k,0) =

Φ̃t+k−1,0 for all k ∈ N+. We prove h̃q,p(F
′
q+1) = Ft by contradiction.

Let t be the integer from Theorem 30 and assume h̃q,p(F
′
q+1) 6= Ft. Let

G′ be a (q + 2)-gap of C ′ with Lq+2(κG′) = n0 + 1. We begin by showing
that

|π(q+2)n0
(h̃′p,u(Ft+2) ∩ W̃′q+2)| < |π(q+2)n0

(G′ ∩ W̃′q+2)|,



Inverse limit spaces of tent maps 115

or in other words, h̃′p,u(Ft+2) turns at fewer end points than G′ (see Ex-

ample 1.12). By Lemma 53, π(q+2)n0
(h̃′p,u(Ft+2)) ⊂ I ′, and by Lemma 56,

I ′ ⊂ (1 − c′n0−1, c
′
n0−1). Hence π(q+2)n0

(h̃′p,u(Ft+2)) ⊂ (1 − c′n0−1, c
′
n0−1).

Thus g(π(q+2)n0
(h̃′p,u(Ft+2))) ⊂ (c′, c′1]. By the choice of G′, π(q+2)n0

(G′) =
[c′, c′1], π(q+3)n0+1(κ′G) = c′, and π(q+3)n0+1|G′ is a homeomorphism. Thus,

as g(π(q+2)n0
(h̃′p,u(Ft+2))) ⊂ (c′, c′1] ( [c′, c′1] = π(q+2)n0

(G′) and c′ is in both

π(q+3)n0
(h̃′p,u(Ft+2)) and π(q+3)n0+1(G′), it follows that π(q+3)n0

(h̃′p,u(Ft+2))
( π(q+3)n0+1(G′). Hence

g(π(q+2)n0
(h̃′p,u(Ft+2) ∩ W̃′q+2)) ( π(q+2)n0

(G′ ∩ W̃′q+2).

Therefore, |π(q+2)n0
(h̃′p,u(Ft+2) ∩ W̃′q+2)| < |π(q+2)n0

(G′ ∩ W̃′q+2)|.
We next show that

|π(q+2)n0
(G′ ∩ W̃′q+2)| ≤ |π(t+1)n0

(h̃q,p(F
′
q+2) ∩ W̃t+1)|,

or in other words, G′ turns at fewer end points than h̃q,p(F
′
q+2). Let c′j ∈

π(q+2)n0
(G′ ∩ W̃′q+2), 0 < j < n0. By Lemma 46, there exists a (q + 3)-gap,

say H ′, for which π(q+3)n0
(κH′) = cj . By Lemma 57, π(q+3)n0

(H ′) = [c, c1],

and hence π(q+3)n0
(H ′) 6⊂ I ′ by Lemma 56. Thus ~Sq+3(H ′) is more than one

(t+ 2)-gap by Lemma 49. Let K be the (t+ 2)-gap such that hq,p(κH′) ∈ K
and J the first (t+ 2)-gap such that K / J . Note that K,J ∈ ~Sq+3(H ′). Let

Y ′ be the (q + 2)-gap such that κH′ ∈ Y ′. Thus Y ′ ⊂ h̃′p,u(K) and h′p,u(κK)

= κY ′ . Additionally, as π(q+2)n0
(Y ′) = [c, c′1] (Lemma 57), ~Sq+2(Y ′) contains

more than one (t+ 1)-gap (Lemmas 56 and 49). Suppose Y ′ 6= h̃′p,u(K). By

[15, Lemma 81], each odd (q + 2)-gap of ~S ′t+2(K) maps to one (t + 1)-gap

under h̃q,p. Hence Y ′ is even, and therefore K is even by Lemma 45. It

follows that J is odd and h̃′p,u(J) is one (q + 2)-gap [15, Lemma 81]. Thus
~Sq+2(h̃′p,u(J)) is more than one (t + 1)-gap. Therefore, by Lemma 49, if

M ′ ∈ ~S ′t+2(K) is an odd gap, then π(q+2)n0
(M ′) ( π(q+2)n0

(h̃′p,u(J)) and

π(q+2)n0
(M ′) ( I ′. Let L′ be the first leg of h̃′p,u(J) and {w′0, w′1, . . . , w′d} =

W′q+2 ∩ {L′ ∪ h̃′p,u(K)}. Let i = sup{k | k < d and π(q+2)n0
(w′k) /∈ I ′}. As

π(q+2)n0
(Y ′) = [c, c′1], i exists. Furthermore, w′i is an even (q + 2)-wrapping

point and w′i is not in the last (q + 2)-gap of ~St+2(K) as that gap is type
ϕ′ [15, Proposition 80]. Let w′e be the (q + 2)-wrapping point such that
Lq+2(w′e) ≥ Lq+2(w′k) for all i < k < d. Note that Lq+2(we) ≥ ϕ′. By
Proposition 23, either w′i or w′d is contained in a (q + 2)-symmetry about
w′e. However, by the choice of w′i and w′d neither can be in a (q + 2)-

symmetry about w′e, a contradiction. Thus Y ′ = h̃′p,u(K). Therefore, by

Lemma 55, π(t+2)n0
(κK) ∈ π(t+1)n0

(h̃q,p(F
′
q+2)∩ W̃t+1). Hence, for every c′j ∈
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π(q+2)n0
(G′ ∩ W̃′q+2), we have π(t+1)n0

(h(c′j)) ∈ π(t+1)n0
(h̃q,p(F

′
q+2 ∩ W̃t+1)).

Thus |π(q+2)n0
(G′ ∩ W̃′q+2)| ≤ |π(t+1)n0

(h̃q,p(F
′
q+2) ∩ W̃t+1)|.

Let G be a (t + 1)-gap of C with a center of (t+ 1)-level n0 + 1. By an
argument similar to the one in the second paragraph of this proof,

|π(t+1)n0
(h̃q,p(F

′
q+2) ∩ W̃t+1)| < |π(t+1)n0

(G ∩ W̃t+1)|.
In other words, h̃q,p(F

′
q+2) turns at fewer end points than G. By an argument

similar to the third paragraph of this proof,

|π(t+1)n0
(G ∩ W̃t+1)| ≤ |π(q+1)n0

(h̃′p,u(Ft+1) ∩ W̃′q+1)|.
In other words,G turns at fewer end points than h̃′p,u(Ft+1). Hence h̃′p,u(Ft+2)
turns at fewer end points than G′ which turns at fewer end points than
h̃q,p(F

′
q+2) which turns at fewer end points than G which turns at fewer

end points than h̃′p,u(Ft+1). Thus h̃′p,u(Ft+2) turns at fewer end points than

h̃′p,u(Ft+1), or

|π(q+2)n0
(h̃′p,u(Ft+2) ∩ W̃′q+2)| < |π(q+1)n0

(h̃′p,u(Ft+1) ∩ W̃′q+1)|.
However, by Proposition 42, ~St+2(Ft+2) ∼ ~St+1(Ft+1), and hence h̃q,p(F

′
q+2)

and h̃′p,u(Ft+1) turn at the same number of end points, or

|π(q+2)n0
(h̃′p,u(Ft+2) ∩ W̃′q+2)| = |π(q+1)n0

(h̃′p,u(Ft+1) ∩ W̃′q+1)|,
a contradiction.

In Lemma 59 we show that the image of a type 2 (q+k)-gap of C ′ under

h̃q,p will have only 2 legs. Similarly, in Lemma 60 we show that the image

of a type 2 (t+ k)-gap of C under h̃′p,u has only 2 legs.

Lemma 59. Fix p,m, q, r, u, v ∈ N with h(L′qn0,r) ≺ Lpn0,m ≺ h(L′un0,v).
Let t be the integer from Theorem 58. Let k ∈ N+ and G′ a (q+k)-gap of C ′
such that T (G′) = 2. Then ∂(h̃q,p(G

′)) and κ
h̃q,p(G′) are the only (t+k− 1)-

wrapping points contained in h̃q,p(G
′).

Proof. DefineH = h̃q,p(G
′) and let L′ be the first leg ofG′. As T (G′) = 2,

∂G′ and κG′ are the only (q + k)-wrapping points in G′. Hence L′ is the
arc that lies between the first (q + k)-wrapping point of G′ and κG′ , and

π(q+k)n0
(L′) = [c′2, c

′]. Furthermore, h̃q,p(L
′) is the arc that lies between

the first (t + k − 1)-wrapping point of H and κH . Thus h̃q,p(L
′) contains

all p-forced symmetries for any p-wrapping point contained in the interior

of h̃q,p(L
′).

Let J ′ be a (q+k)-gap of C ′ such that T (J ′) = n0+1 and letK ′ be the first
leg of J ′. Note that π(q+k)n0

(K ′) = [c′, c′1] by Lemma 48. By Proposition 29,

the symmetry of the map g, and Theorem 27, if w ∈ h̃q,p(L̊′) ∩ W̃t+k−1 then
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there exists v ∈ h̃q,p(K
′) ∩ W̃t+k−1 such that πt+k−1(w) = πt+k−1(v). Fur-

thermore, as G′ and J ′ have opposite orientations, h̃q,p(G
′) and h̃q,p(J

′) will
also have opposite orientations (Lemma 45). Thus any (t+ k− 1)-wrapping

point contained in the interior of h̃q,p(G
′) would have opposite orientation

to any (t+k−1)-wrapping point contained in the interior of h̃q,p(J
′). Hence

the interior of h̃q,p(L
′) contains no (t+ k − 1)-wrapping points.

Lemma 60. Fix p,m, q, r, u, v ∈ N with h(L′qn0,r) ≺ Lpn0,m ≺ h(L′un0,v).
Let t be the integer from Theorem 58. Let k ∈ N and G a (t+ k)-gap of C
such that T (G) = 2. Then ∂(h̃′p,u(G)) and κ

h̃′p,u(G)
are the only (q + k + 1)-

wrapping points contained in h̃′p,u(G).

Proof. Similar to that of Lemma 59.

In Lemma 61 we show that if f and g have different kneading sequences,
then the number of (q+1)-gaps in a type 2 (q+2)-gap of C ′ is different than
the number of t-gaps in a type 2 (t+ 1)-gap of C.

Lemma 61. Let q, t ∈ N+. Let G′ be a (q + 2)-gap of C ′ such that T (G′)
= 2, and H a (t+ 1)-gap of C such that T (H) = 2. If K(f) < K(g) in the
parity-lexicographical ordering , then the number of t-gaps in H is less than
the number of (q + 1)-gaps in G′.

Proof. The intuition behind this proof is that the lap number increases
as the kneading sequence increases. Let P = {x ∈ (c2, c) | fn0(x) = c}. As
H is a type 2 gap, it has exactly 2 legs and the pn0th projection of each leg
is [c2, c]. Hence, the number of t-gaps in H is exactly 2|P |+1. Let x ∈ (c2, c).
Then x ∈ P if and only if the following conditions hold:

(i) If (x) = Lb1 . . . bn0−1C where bi ∈ {L,R} for all 0 < i < n0,
(ii) If (x) > If (c2) in the parity-lexicographical ordering, and

(iii) bibi+1 . . . bn0−1C < K(f) in this ordering for all 0 < i < n0.

Furthermore, if J is a sequence of R’s, L’s and C’s that satisfy these
conditions, then there exists x ∈ P such that If (x) = J . Similar statements
can be made about the (q + 2)-gap G′ and the set Q = {x ∈ (c′2, c

′) |
gn0(x) = c′}.

Suppose K(f)<K(g) in the parity-lexicographical ordering. Then If (c1)
< Ig(c

′
1) and If (c2) > Ig(c

′
2) in this ordering. Hence for each x ∈ P there

exists z ∈ Q such that Ig(z) = If (x). Thus |P | ≤ |Q|. Consider the sequence
LK(f). As K(f) 6< K(f), there does not exist an x ∈ P such that If (x) =
LK(f). However, there does exist x ∈ Q such that Ig(x) = LK(f), thus
|P | < |Q|.

In Lemma 62 we show the existence of specific types of gaps in certain
kinds of arcs.
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Lemma 62. Fix p ∈ N. Let x, y ∈ W̃p be such that Lp(x) = kn0 + j
and Lp(y) = in0 + j + 1 where k, i ∈ N and 0 ≤ j < n0. Then for every
n < min{k, i}n0 +j there exists z ∈ W̃p between x and y such that Lp(z) = n.
Furthermore, either there exists a p-gap G that lies between x and y such
that Lp(κGn) = n or there is no p-gap whose center has p-level n.

Proof. It is sufficient to show the conclusion for n = min{k, i}n0 + j−1.
Let m = min{k, i}. Without loss of generality assume x / y. Let x′ be
the closest p-wrapping point to y such that x′ / y, Lp(x

′) ≥ mn0 + j, and
Lp(x

′) mod n0 = j. Let y′ be the closest p-wrapping point to x′ such that
x′ / y′, Lp(y′) ≥ mn0 + j + 1, and Lp(y

′) mod n0 = j + 1. Let H be the arc
that lies between x′ and y′. By Propositions 23 and 24, if z is a p-wrapping
point in the interior of H, then Lp(z) < mn0 + j. Thus πmn0+j−1|H is a
homeomorphism and πmn0+j−1(H) = I. Hence there exists z ∈ H such that
πmn0+j−1(z) = c, and therefore Lp(z) = mn0 + j − 1. The last statement
follows from Lemma 46.

We can now prove our main result.

Theorem 63. Let f, g be tent maps with periodic critical points. If K(f)
6= K(g), then (I, f) and (I′, g) are not homeomorphic.

Proof. Let K(f) 6= K(g) and n0 be the period of the critical point for
both f and g. (Note that if the period of the critical points is different for
the two maps, then (I, f) and (I′, g) will have a different number of end
points.) Assume (I, f) and (I′, g) are homeomorphic and h : (I′, g) → (I, f)
is a homeomorphism. We can find p,m, q, r, u, v ∈ N such that h(L′qn0,r) ≺
Lpn0,m ≺ h(L′un0,v) (Lemma 11(ii)). Let t be the integer from Theorem 58.
If H is a (t+ k + 1)-gap of C, let

η(H) = {ci | ∃J ∈ H such that J is a (t+ k)-gap and π(t+k)n0
(κJ) = ci}.

We now consider the three possible cases.

Case 1: K(f) = RLL . . . C and K(g) = RLL . . . C. By Lemma 46, for
every i ∈ N such that i mod n0 6= 0 there exists a (q+ 2)-gap G′ of C′ and a
(t+1)-gap H of C such that Lq+2(κG′) = i = Lp+1(κH). Let G′ be a (q+2)-
gap of C′ such that T (G′) = 1, and compare the (q + 1)-gaps contained in

G′ and the t-gaps contained in h̃q,p(G
′). By Lemma 62, η′(G′) = {c′i | 0 <

i < n0}. Thus by Theorem 58, η(h̃q,p(G
′)) = {ci | 0 < i < n0}. Let J ′ be

the first (q + 1)-gap in G′ such that π(q+1)n0
(κJ ′) = c′n0−1. By Lemma 62,

for all 0 < i < n0 − 1 there exists a (q + 1)-gap K ′ ⊂ G′ such that K ′ / J ′

and π(q+1)n0
(κK′) = c′i. Similarly, if H is the first t-gap of h̃q,p(G

′) such that

πtn0(H) = cn0−1, then for all 0 < i < n0−1 there exists a t-gap K ⊂ h̃q,p(G′)
such that K /H and πtn0(H) = ci. Hence h(c′n0−1) = cn0−1.



Inverse limit spaces of tent maps 119

Let M ′ be the last (q+1)-gap such that M ′/J ′ and π(q+1)n0
(M ′) = c′n0−2.

By Lemma 62, for all 0 < i < n0− 2 there exists a (q+ 1)-gap K ′ ⊂ G′ such
that M ′ / K ′ / J ′ and π(q+1)n0

(κK′) = c′i. Similarly, if H is the last t-gap

such that H /h̃q,p(J
′) and πtn0(H) = cn0−2, then for all 0 < i < n0−2 there

exists a t-gap K ⊂ h̃q,p(G
′) such that H / K / h̃q,p(J

′) and πtn0(H) = ci.
Hence h(c′n0−2) = cn0−2. Continuing in this manner, we have h(c′i) = ci for
all 0 ≤ i < n0. Hence, by Lemma 45, K(f) = K(g), a contradiction. Thus
(I, f) and (I′, g) are not homeomorphic.

Case 2:K(f) = RLRR . . . C andK(g) = RLL . . . C. LetG′ be a (q+2)-
gap of C′ such that T (G′) = 2. Suppose there exists a (q + 1)-gap J ′ ⊂ G′

such that π(q+1)n0
(κJ ′) = c′n0−1. By Lemma 62, η′(G′) = {c′i | 0 < i < n0}.

Thus η(h̃q,p(G
′)) = {ci | 0 < i < n0}. However, by Lemma 46, there is

no t-gap of C whose center has a t-level of 1. Thus, the center of a t-gap

J ⊂ h̃q,p(G
′) such that πtn0(κJ) = c1 must have a t-level greater than or

equal to n0 + 1. Thus κJ ∈ W̃t+1, a contradiction to Lemma 59. Hence there
does not exist a (q + 1)-gap J ′ ⊂ G′ such that π(q+1)n0

(κJ ′) = c′n0−1.
As T (G′) = 2, π(q+2)n0

(G′) = [c′2, c
′]. Hence π(q+2)n0−1(G′) = [c′3, c

′
1]. As

c′3 ∈ IL, there exists y′ ∈ G′ such that π(q+2)n0−1(y′) = c′, and therefore

y′ ∈ W̃q+1 and Lq+1(y′) = n0 − 1. Note that as (q + 1)-gaps are (q + 1)-
symmetric, y is in the same (q + 1)-gap as κG′ , and hence c′n0

and c′2 have
the same orientation. By Lemma 62, η′(G′) = {c′i | 0 < i < n0 − 1}.
By Lemmas 59 and 46, c1 /∈ {ci | ∃J ⊂ h̃q,p(G

′) such that J is a t-gap

and πtn0(κJ) = ci}. Therefore η(h̃q,p(G
′)) = {ci | 1 < i < n0}. Hence

h(c′n0−1) = c1, and therefore, by Corollary 45, h(c′2) and c1 have the same
orientation.

Let J ′ be a (q + 2)-gap of C ′ such that T (J ′) = 1. By Lemma 62, there
exists a (q+ 1)-gap K ′ ⊂ J ′ such that Lq+1(κK′) = n0−1. As h(c′n0−1) = c1

and there is not a type 1 gap of C, Lt(hq,p(κK′)) = 1+kn0 for some k ∈ N+.
This implies c1 and h(c′1) have the same orientation. Hence c1 has the same
orientation as both h(c′2) and h(c′1), which have opposite orientations, a
contradiction. Thus (I, f) and (I′, g) are not homeomorphic.

Case 3: K(f) = RLRR . . . C and K(g) = RLRR . . . C. Assume with-
out loss of generality that K(f) < K(g) in the parity-lexicographical or-
dering. As kneading sequences are shift maximal, there are more R’s than
L’s in both K(f) and K(g). Thus, by Corollary 45, up end points map
only to up end points. In particular, πtn0(h(c′2)) < c. Hence, by Lemmas
59 and 60, h(c′2) = c2. Let G′ be a (q + 2)-gap of C ′ with T (G′) = 2. Then

T (h̃q,p(G
′)) = 2. However, the number of t-gaps in h̃q,p(G

′) is less than the
number of (q + 1)-gaps in G′ (Lemma 61), a contradiction to Theorem 58.
Thus (I, f) and (I′, g) are not homeomorphic.
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