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Typical multifractal box dimensions of measures

by

L. Olsen (St. Andrews)

Abstract. We study the typical behaviour (in the sense of Baire’s category) of the
multifractal box dimensions of measures on Rd. We prove that in many cases a typical
measure µ is as irregular as possible, i.e. the lower multifractal box dimensions of µ attain
the smallest possible value and the upper multifractal box dimensions of µ attain the
largest possible value.

1. Statement of results. In this paper we study the typical (in the
sense of Baire) multifractal box dimensions of measures. In Section 1.1 we
define multifractal box dimensions of sets and in Section 1.2 we define multi-
fractal box dimensions of measures. Finally, in Section 1.3 we state our main
results. Section 2 contains applications to typical multifractal box dimen-
sions of measures on self-similar sets, and the proofs of the main results are
given in Sections 3 and 4.

1.1. Multifractal box dimensions of sets. Fix a Borel probability
measure π on Rd with support K. For a bounded subset E of K, the mul-
tifractal box dimensions of E with respect to π are defined as follows. For
r > 0 and a real number q write

(1.1) M q
π(E; r) = inf

(B(xi, r))i is a cover of E
xi∈K

∑
i

π(B(xi, r))q.

The lower and upper covering multifractal box dimensions of E of order q
with respect to π are defined by

(1.2)
dimq

π,B(E) = lim inf
r↘0

logM q
π(E; r)

− log r
,

dimq
π,B(E) = lim sup

r↘0

logM q
π(E; r)

− log r
.
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The main significance of multifractal box dimensions is their relationship
with the so-called multifractal spectrum of π. During the 1990’s there has
been an enormous interest in computing multifractal box dimensions and
multifractal spectra of measures, and within the last 15 years the multifractal
box dimensions and the multifractal spectra of various classes of measures in
Rd exhibiting some degree of self-similarity have been computed rigorously
(cf. [Fa, Pe] and the references therein).

1.2. Multifractal box dimensions of measures. While multifractal
box dimensions of measures have played a central role in multifractal analysis
for the past 15 years, recently their importance in the study of fractal geom-
etry and dynamical systems has been recognized (see, for example, [Pe, Yo]).
The multifractal box dimensions of a Borel probability measure µ on Rd with
respect to π are defined as follows. For a real number q, we define the small
and big lower multifractal box dimensions of µ of order q with respect to the
measure π by

(1.3)
dimq

∗π,B(µ) = inf
µ(E)>0

dimq
π,B(E),

dim∗qπ,B(µ) = lim
ε↘0

inf
µ(E)>1−ε

dimq
π,B(E).

Similarly, the small and big upper multifractal box dimensions of µ of order
q with respect to π are

(1.4)
dimq

∗π,B(µ) = inf
µ(E)>0

dimq
π,B(E),

dim∗qπ,B(µ) = lim
ε↘0

inf
µ(E)>1−ε

dimq
π,B(E).

1.3. Typical multifractal box dimensions of measures. In this
paper we study the multifractal box dimensions of a typical measure in the
sense of Baire. For a compact subset K of Rd, we denote the family of Borel
probability measures on K by P(K) and we equip P(K) with the weak
topology. We will say that a typical probability measure on K has property
P if the set of probability measures that do not have property P is meagre
with respect to the weak topology on P(K). The typical behaviour of various
other quantities related to multifractal analysis has also been studied. In
particular, the local dimension of a typical measure has been studied by
Haase [Ha] and investigated further by Genyuk [Ge]. We also note that the
multifractal spectrum of a typical continuous function has been studied by
several authors (cf. [BuNa, Ja1, Ja2]).

To state the main results in the paper, we need a few definitions. Firstly,
the upper moment scaling function of π is defined by

(1.5) τπ(q) = dimq
π,B(K).
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We also define its local versions: first the local upper box dimension of K at
x is defined by

(1.6) dimq
π,B,loc(x;K) = lim

r↘0
dimq

π,B(B(x, r) ∩K);

then we define the local upper moment scaling functions of π by

(1.7)
τπ,loc(q) = inf

x∈K
dimq

π,B,loc(x;K),

T π,loc(q) = sup
x∈K

dimq
π,B,loc(x;K).

Finally, let

(1.8)
Dπ = lim inf

r↘0

log supx∈K π(B(x, r))
log r

,

Dπ = lim sup
r↘0

log infx∈K π(B(x, r))
log r

.

Proposition 1.1 below gives the relationships between the dimensions intro-
duced in (1.5)–(1.8).

Proposition 1.1. Let π be a Borel probability measure on Rd with com-
pact support K. We have

Dπ q ≤ τπ,loc(q) ≤ τπ(q) for all q ≤ 0,
∧ ∧

−Dπ q ≤ T π,loc(q) ≤ τπ(q) for all q ≤ 0,

and

−Dπ q ≤ τπ,loc(q) ≤ τπ(q) for all q ≥ 0,
∧ ∧

−Dπ q ≤ T π,loc(q) ≤ τπ(q) for all q ≥ 0.

Proof. This follows easily from the definitions and the proof is therefore
omitted.

A measure π on Rd is called a doubling measure if there is a constant c
such that

sup
x∈suppπ
r>0

π(B(x, 2r))
π(B(x, r))

≤ c.

We can now state the main results, Theorems 1.2 and 1.3, giving bounds
for the multifractal box dimensions of measures µ ∈ P(K). The first result,
which is easily proved and only included for completeness, provides bounds
that are valid for all measures, whereas the second result provides bounds
that are valid for typical measures.
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Theorem 1.2 (Results for all measures in P(K)). Let π be a Borel prob-
ability measure on Rd with compact support K.

(1) All measures µ ∈ P(K) satisfy

−Dπq ≤ dimq
∗π,B(µ) ≤ dim∗qπ,B(µ) for all q ≤ 0,

−Dπq ≤ dimq
∗π,B(µ) ≤ dim∗qπ,B(µ) for all q ≥ 0.

(2) All measures µ ∈ P(K) satisfy

dimq
∗π,B(µ) ≤ dim∗qπ,B(µ) ≤ τπ(q) for all q.

Proof. This follows easily from the definitions.

Theorem 1.3 (Results for typical measures in P(K)). Let π be a Borel
probability measure on Rd with compact support K.

(1) A typical measure µ ∈ P(K) satisfies

−Dπ q ≤ dimq
∗π,B(µ) ≤ dim∗qπ,B(µ) ≤ −Dπ q for all q ≤ 0,

−Dπ q ≤ dimq
∗π,B(µ) ≤ dim∗qπ,B(µ) ≤ −Dπ q for all q ≥ 0.

(2) If π is a doubling measure, then a typical measure µ ∈ P(K) satisfies

τπ,loc(q) ≤ dimq
∗π,B(µ) ≤ dim∗qπ,B(µ) ≤ τπ(q) for all q ≤ 0.

If π is a doubling measure and K does not contain isolated points,
then a typical measure µ ∈ P(K) satisfies

τπ,loc(q) ≤ dimq
∗π,B(µ) ≤ dim∗qπ,B(µ) ≤ τπ(q) for all q.

Part (1) of Theorem 1.3 is proved in Section 3, and part (2) in Section 4.
Comparing the statements in Theorems 1.2 and 1.3, we see that a typical
measure µ is very close to being as irregular as possible. Namely, for all q,
the lower multifractal box dimensions dimq

∗π,B(µ) and dim∗qπ,B(µ) are close
to the smallest possible value, and the upper multifractal box dimensions
dimq

∗π,B(µ) and dim∗qπ,B(µ) are close to the largest possible value. Figure 1
below illustrates Theorem 1.3.

For q = 0, Theorem 1.3 gives the following interesting result due to Myjak
& Rudnicki [MyRu]. To state it we need a few definitions. For a set E ⊆ Rd,
we let dimB(E) denote the upper box dimension. Also, for a probability
measure µ we define the small and big lower multifractal box dimensions of
µ by

(1.9)
dim∗B(µ) = inf

µ(E)>0
dimB(E),

dim∗B(µ) = lim
ε↘0

inf
µ(E)>1−ε

dimB(E).

Similarly, we define the small and big upper multifractal box dimensions of
µ by
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Fig. 1. This figure illustrates the statement in Theorem 1.3. (In the figure the graphs are
drawn such that −Dπ q ≤ τπ,loc(q) for all q ≤ 0 and −Dπ q ≤ τπ,loc(q) for all q ≥ 0; it
follows from Proposition 1.1 that if τπ,loc(q) = Tπ,loc(q), then this is the case. The condition
τπ,loc(q) = Tπ,loc(q) is, for example, satisfied if π is a self-similar measure satisfying the
Strong Separation Condition; see Section 2.) Theorem 1.3 shows that the lower q box
dimensions of a typical measure µ lie in the lightly shaded region bounded by the dashed
lines, and if the measure π is doubling, then the upper q box dimensions of a typical
measure µ lie in the darkly shaded region bounded by the solid curves.

(1.10)
dim∗B(µ) = inf

µ(E)>0
dimB(E),

dim∗B(µ) = lim
ε↘0

inf
µ(E)>1−ε

dimB(E).

Finally, we define the local upper box dimension of E at x by
(1.11) dimB,loc(x;E) = lim

r↘0
dimB(B(x, r) ∩ E).

It is clear that if we put q = 0 in (1.3), (1.4) and (1.6), then we obtain
(1.9), (1.10) and (1.11), respectively. The following result due to Myjak &
Rudnicki [MyRu] therefore follows from Theorem 1.3 by putting q = 0. This
result gives bounds for the box dimensions of typical measures.

Corollary 1.4 (Results for typical measures in P(K) [MyRu]). Let K
be a compact set in Rd. Write

sloc = inf
x∈K

dimB,loc(x;K), s = dimB(K).
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(1) A typical measure µ ∈ P(K) satisfies

dim∗B(µ) = dim∗B(µ) = 0.

(2) A typical measure µ ∈ P(K) satisfies

sloc ≤ dim∗B(µ) ≤ dim∗B(µ) ≤ s.

2. An application. Typical multifractal box dimensions of mea-
sures on self-similar sets. As an application of Theorem 1.3, we will now
compute the multifractal box dimensions of typical measures on self-similar
sets. Fix an integer N with N ≥ 2. Next, let Si : Rd → Rd for i = 1, . . . , N
be contracting similarities and let (p1, . . . , pN ) be a probability vector. For
each i, we denote the Lipschitz constant of Si by ri ∈ (0, 1). Let K and π
be the self-similar set and the self-similar measure associated with the list
(S1, . . . , SN , p1, . . . , pN ), i.e. K is the unique non-empty compact subset of
Rd such that

(2.1) K =
⋃
i

Si(K),

and π is the unique Borel probability measure on Rd such that

(2.2) π =
∑
i

piπ ◦ S−1
i

(cf. [Fa, Hu]). It is well-known that suppπ = K (cf. [Fa, Hu]). We say
that the list (S1, . . . , Sn) satisfies the Open Set Condition (OSC) if there
exists an open non-empty and bounded subset U of Rd with SiU ⊆ U for
all i and SiU ∩ SjU = ∅ for all i, j with i 6= j. Also, we say that the list
(S1, . . . , SN ) satisfies the Strong Separation Condition (SSC) if SiK ∩ SjK
= ∅ for all i, j with i 6= j. Define β : R→ R by

(2.3)
∑
i

pqi r
β(q)
i = 1.

The next result computes the multifractal box dimensions for typical mea-
sures µ ∈ P(K) supported on a self-similar set K satisfying the OSC.

Theorem 2.1. Let K and π be as in (2.1) and (2.2), and assume that
the OSC is satisfied. Next, let

smin = min
i

log pi
log ri

and smax = max
i

log pi
log ri

.

(1) Results for all measures µ ∈ P(K).

• All measures µ ∈ P(K) satisfy

−smin q ≤ dimq
∗π,B(µ) ≤ dim∗qπ,B(µ) for all q ≤ 0,

−smax q ≤ dimq
∗π,B(µ) ≤ dim∗qπ,B(µ) for all q ≥ 0.
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• All measures µ ∈ P(K) satisfy

dimq
∗π,B(µ) ≤ dim∗qπ,B(µ) ≤ β(q) for all q.

(2) Results for typical measures µ ∈ P(K).

• A typical measure µ ∈ P(K) satisfies

−smin q ≤ dimq
∗π,B(µ) ≤ dim∗qπ,B(µ) ≤ −smax q for all q ≤ 0,

−smax q ≤ dimq
∗π,B(µ) ≤ dim∗qπ,B(µ) ≤ −smin q for all q ≥ 0.

• If π is a doubling measure (this is, for example, easily seen to be
the case if the SSC is satisfied; see [Yu] for a proof of this and for
other conditions guaranteeing that π is a doubling measure), then
a typical measure µ ∈ P(K) satisfies

dimq
∗π,B(µ) = dim∗qπ,B(µ) = β(q) for all q.

Before proving Theorem 2.1 we make various comments and list two
corollaries.

If we define emin, emax ≥ 0 by∑
i,

log pi
log ri

=smin

remin
i = 1,

∑
i,

log pi
log ri

=smax

remax
i = 1,

then it is well known (see, for example, [CaMa]) that

β(q)− (emin − sminq)↘ 0 as q →∞,
β(q)− (emax − smaxq)↘ 0 as q → −∞;

see Figure 2 below. In particular, together with Theorem 2.1 this shows that
if the OSC is satisfied and π is a doubling measure, then

dimq
∗π,B(µ)− dim∗qπ,B(µ) ≥ emax for all q ≤ 0,

dimq
∗π,B(µ)− dim∗qπ,B(µ) ≥ emin for all q ≥ 0,

for a typical measure µ ∈ P(K). The reader is referred to Figure 2 for an
illustration of this.

We now list two corollaries of Theorem 2.1.

Corollary 2.2. Let K be as in (2.1), and assume that the OSC is
satisfied. Next, let s ∈ R be defined by

∑
i r
s
i = 1, i.e. s = dimH(K) =

dimB(K), and let Hs denote the s-dimensional Hausdorff measure and write
Hs K for its restriction to K.

(1) Results for all measures µ ∈ P(K).

• All measures µ ∈ P(K) satisfy

−sq ≤ dimq
∗HsxxxK,B(µ) ≤ dim∗qHsxxxK,B(µ) for all q.



252 L. Olsen

Fig. 2. This figure illustrates the statement in Theorem 2.1. Theorem 2.1 shows that if
the OSC is satisfied, then the lower q box dimensions of a typical measure µ lie in the
shaded region bounded by the dashed lines, and if the OSC is satisfied and the measure
π is a doubling measure, then the upper q box dimensions of a typical measure µ equal
β(q).

• All measures µ ∈ P(K) satisfy

dimq
∗HsxxxK,B(µ) ≤ dim∗qHsxxxK,B(µ) ≤ s(1− q) for all q.

(2) Results for typical measures µ ∈ P(K).

• A typical measure µ ∈ P(K) satisfies

dimq
∗HsxxxK,B(µ) = dim∗qHsxxxK,B(µ) = −sq for all q.

• A typical measure µ ∈ P(K) satisfies

dimq
∗HsxxxK,B(µ) = dim∗qHsxxxK,B(µ) = s(1− q) for all q.

Proof. Define the probability vector (p1, . . . , pN ) by (p1, . . . , pN ) =
(rs1, . . . , r

s
N ), and let π be the self-similar measure satisfying (2.2). For this

particular choice of (p1, . . . , pN ) it follows from [Hu] that π = HsxxxK/Hs(K),
and it follows from [Yu, Corollary 1.2] that π is a doubling measure. Corol-
lary 2.2 therefore follows immediately from Theorem 2.1.

It follows from Corollary 2.2 that a typical measure µ on a self-similar set
satisfying the OSC is as irregular as possible. Namely, for all q, the lower mul-
tifractal box dimensions dimq

∗HsxxxK,B(µ) and dim∗qHsxxxK,B(µ) attain the small-
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est possible value, and the upper multifractal box dimensions dimq
∗HsxxxK,B(µ)

and dim∗qHsxxxK,B(µ) attain the largest possible value. Specializing even further
we obtain the following result about the multifractal box dimensions of mea-
sures on the unit cube in Rd.

Corollary 2.3. Let Id = [0, 1]d be the closed unit cube in Rd. Next,
let Ld denote the d-dimensional Lebesgue measure and write Ld Id for its
restriction to Id.

(1) A typical measure µ ∈ P(Id) satisfies

dimq
∗LdxxxId,B(µ) = dim∗qLdxxxId,B(µ) = −dq for all q.

(2) A typical measure µ ∈ P(Id) satisfies

dimq
∗LdxxxId,B(µ) = dim∗qLdxxxId,B(µ) = d(1− q) for all q.

Proof. This follows immediately from Corollary 2.2.

We now turn towards the proof of Theorem 2.1. We start by introducing
the following notation. If (S1, . . . , SN ) is a list of similarities and ri denotes
the Lipschitz constant of Si, then we will write Si = Si1 ◦ · · · ◦ Sin and
ri = ri1 · · · rin for all lists i = i1 . . . in with entries ik ∈ {1, . . . , N}. Also, if
i = i1 . . . in is a list with entries ik ∈ {1, . . . , N} we will write |i| = n for
the “length” of i. Finally, if (p1, . . . , pN ) is a probability vector, then we will
write pi = pi1 · · · pin for all lists i = i1 . . . in with entries ik ∈ {1, . . . , N}.

In order to prove Theorem 2.1 we need the following result.

Proposition 2.4. Let π and K be as in (2.1) and (2.2), and assume
that the OSC is satisfied. Then the following hold.

(1) The set K does not have isolated points.
(2) Dπ = mini log pi

log ri
and Dπ = maxi log pi

log ri
.

(3) τπ,loc(q) = τπ(q) = β(q) for all q ∈ R.

Proof. (1) This is well-known: see, for example, [Fa].
(2) This is well-known: see, for example, [Pat].
(3) It is clear that τπ,loc(q) ≤ τπ(q). Hence, it suffices to show that

β(q) ≤ τπ,loc(q) and τπ(q) ≤ β(q). The latter follows immediately from the
fact that

(2.4) lim
r↘0

logM q
π(K; r)

− log r
= β(q)

for all q ∈ R (see [Pat]).
Next, we prove that β(q) ≤ τπ,loc(q). Therefore fix x ∈ K and r > 0. We

may clearly choose a list i = i1 . . . in with entries ik ∈ {1, . . . , N} such that
Si(K) ⊆ B(x, r) ∩K. Hence,

(2.5) dimq
π,B(Si(K)) ≤ dimq

π,B(B(x, r) ∩K).
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Next, we show that

(2.6) dimq
π,B(K) = dimq

π,B(Si(K)).

Indeed, since Si(K) ⊆ K, we conclude that dimq
π,B(Si(K)) ≤ dimq

π,B(K). We
will now show that dimq

π,B(K) ≤ dimq
π,B(Si(K)). We first note that it follows

from [MoRe, Theorem 2.1] (see also [Pat]) that π(Si(K)) ∩ Sj(K)) = 0 for
all j with i 6= j and |i| = |j|. This implies that if x ∈ K and r > 0, then

π(SiB(x, r)) =
∑
|j|=|i|

pjπ(S−1
j SiB(x, r)) = piπ(S−1

i SiB(x, r))(2.7)

= piπ(B(x, r)).

Next, fix ρ > 0 and let (B(xi, ρ))i be a centred cover of Si(K). Then
(S−1

i B(xi, ρ))i is a cover of K. Also, for each i, we can thus choose yi ∈ K
such that xi = Siyi, whence S−1

i B(xi, ρ) = S−1
i B(Siyi, ρ) = B(yi, r−1

i ρ).
Therefore (B(yi, r−1

i ρ))i is a cover of K, and so (using (2.7)) we obtain

M q
π(K; r−1

i ρ) ≤
∑
i

π(B(yi, r−1
i ρ))q =

∑
i

p−qi π(SiB(yi, r−1
i ρ))q

= p−qi

∑
i

π(B(Siyi, ρ))q = p−qi

∑
i

π(B(xi, ρ))q.

Taking infimum over all centred covers (B(xi, ρ))i of Si(K) now gives

M q
π(K; r−1

i ρ) ≤ p−qi M q
π(Si(K); ρ)

for all ρ > 0. This clearly implies that dimq
π,B(K) ≤ dimq

π,B(Si(K)), and
completes the proof of (2.6).

Combining (2.4)–(2.6) now shows that

β(q) = dimq
π,B(K) = dimq

π,B(Si(K)) ≤ dimq
π,B(B(x, r) ∩K).

Finally, taking infimum over all x ∈ K and all r > 0 gives the desired
result.

We can now prove Theorem 2.1.

Proof of Theorem 2.1. Theorem 2.1 follows immediately from Theorem
1.2, Theorem 1.3 and Proposition 2.4.

3. Proof of part (1) in Theorem 1.3. The purpose of this section is
to prove

Theorem 1.3(1). Let π be a Borel probability measure on Rd with com-
pact support K. A typical measure µ ∈ P(K) satisfies

−Dπq ≤ dimq
∗π,B(µ) ≤ dim∗qπ,B(µ) ≤ −Dπq for all q ≤ 0,

−Dπq ≤ dimq
∗π,B(µ) ≤ dim∗qπ,B(µ) ≤ −Dπq for all q ≥ 0.
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It is well-known (cf., for example, [Ed, pp. 105–107] or [Par, p. 51, The-
orem 6.8]) that the weak topology on P(K) is induced by the metric L on
P(K) defined as follows. Let Lip(K) denote the family of Lipschitz functions
f : K → R with |f | ≤ 1 and Lip(f) ≤ 1 where Lip(f) denotes the Lipschitz
constant of f . The metric L is now defined by

L(µ, ν) = sup
f∈Lip(K)

∣∣∣ � f dµ− �
f dν

∣∣∣
for µ, ν ∈ P(K). We will always equip P(K) with the metric L and all balls
in P(K) will be with respect to the metric L, i.e. if µ ∈ P(K) and r > 0,
we will write B(µ, r) = {ν ∈ P(K) |L(µ, ν) < r} for the ball with centre at
µ and radius r.

We now turn to the proof of part (1) of Theorem 1.3. Let

Γ = {µ ∈ P(K) | −Dπq ≤ dimq
∗π,B(µ) ≤ dim∗qπ,B(µ) ≤ −Dπq for all q ≤ 0,

−Dπq ≤ dimq
∗π,B(µ) ≤ dim∗qπ,B(µ) ≤ −Dπq for all q ≥ 0}

= {µ ∈ P(K) | dim∗qπ,B(µ) ≤ −Dπq for all q ≤ 0,

dim∗qπ,B(µ) ≤ −Dπq for all q ≥ 0}

We must now prove that Γ is a co-meagre subset of P(K). It clearly
suffices to construct a set M ⊆ P(K) satisfying the following conditions:

(1) M ⊆ Γ ;
(2) M is dense in P(K);
(3) M is Gδ in P(K).

For a positive integer n, write

Gn =
⋃

µ∈P(K)
|suppµ|<∞

B

(
µ,

1
3|suppµ|+n

)
,

and define
M =

⋂
n

Gn.

Below we show that the setM has the above three properties (1)–(3) (Propo-
sitions 3.1–3.3).

Proposition 3.1. M ⊆ Γ .
Proof. Let µ ∈ M =

⋂
nGn. To prove that µ ∈ Γ , we first make a few

observations. Since µ ∈
⋂
nGn, for each positive integer n we can find a

measure µn ∈ P(K) with |suppµn| <∞ such that

L(µ, µn) ≤
1

3|suppµn|+n
.
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Now put

En =
⋃

x∈suppµn

(
B

(
x,

1
2|suppµn|+n

)
∩K

)
, Fm =

⋂
n≥m

En.

Next, we prove the following two claims.

Claim 1. We have µ(En) ≥ 1− (2/3)n.

Proof of Claim 1. Define fn : K → R by

fn(x) = max
(

1
2|suppµn|+n

− dist(x, suppµn), 0
)
.

It is clear that fn ∈ Lip(K), and we therefore conclude that

L(µ, µn) ≥
�
fn dµn −

�
fn dµ ≥

�

suppµn

1
2|suppµn|+n

dµn −
�

En

1
2|suppµn|+n

dµ

=
1

2|suppµn|+n
− 1

2|suppµn|+n
µ(En),

and so

µ(En) ≥ 1− 2|suppµn|+nL(µ, µn)

> 1− 2|suppµn|+n 1
3|suppµn|+n

= 1−
(

2
3

)n
.

Claim 2. We have µ(Fm)→ 1.

Proof of Claim 2. This follows from Claim 1: indeed, µ(K \ Fm) =
µ(
⋃
n≥m(K \ En)) ≤

∑
n≥m µ(K \ En) ≤

∑
n≥m

(
2
3

)n → 0.

We can now prove that µ ∈ Γ , i.e. we must show that

lim
ε↘0

inf
µ(E)>1−ε

dimq
π,B(E) = dim∗qπ,B(µ) ≤

{
−Dπq for q ≤ 0,
−Dπq for q ≥ 0.

We therefore fix ε > 0. We must show that there is a subset E ⊆ K with

(3.1) µ(E) > 1− ε

and

dimq
π,B(E) ≤

{
−Dπ q for q ≤ 0,
−Dπ q for q ≥ 0.

It follows from Claim 2 that we can choose a positive integer m0 such
that µ(Fm0) > 1− ε. Now put E = Fm0 , so E satisfies (3.1). To show that it
also satisfies (3.2), fix n ≥ m0 and write rn = 1/2|suppµn|+n. It is clear that
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Fm0 ⊆ En =
⋃
x∈suppµn

(B(x, rn) ∩K). This implies that

M q
π(Fm; rn) ≤

∑
x∈suppµn

π(B(x, rn))q

≤

 |suppµn|
(

inf
x∈K

π(B(x, rn))
)q for q ≤ 0,

|suppµn|
(
sup
x∈K

π(B(x, rn))
)q for q ≥ 0,

and so

dimq
π,B(E) = lim inf

r↘0

logM q
π(Fm0 ; r)
− log r

≤ lim inf
n

logM q
π(Fm0 ; rn)
− log rn

≤


lim inf

n

log
(
|suppµn|(infx∈K π(B(x, rn)))q

)
− log rn

for q ≤ 0,

lim inf
n

log
(
|suppµn|(supx∈K π(B(x, rn)))q

)
− log rn

for q ≥ 0,

=


lim inf

n

(
log |suppµn|

(|suppµn|+ n) log 2
+ q

log infx∈K π(B(x, rn))
− log rn

)
for q ≤ 0,

lim inf
n

(
log |suppµn|

(|suppµn|+ n) log 2
+ q

log supx∈K π(B(x, rn))
− log rn

)
for q ≥ 0,

≤
{
−Dπq for q ≤ 0,
−Dπq for q ≥ 0.

This completes the proof of Proposition 3.1.

Proposition 3.2. M is dense in P(K).

Proof. Since P(K) is a complete metric space and M =
⋂
nGn where

each Gn is open, it suffices to show that Gn is dense for all n. We therefore
fix a positive integer n. Next, let µ ∈ P(K) and r > 0. We must now find a
measure λ ∈ Gn such that L(µ, λ) < r. Indeed, it is clear that we can find
λ ∈ P(K) such that |suppλ| <∞ and L(µ, λ) < r. Also, since |suppλ| <∞,
we conclude that λ ∈ B(λ, 1/3|suppλ|+n) ⊆ Gn.

Proposition 3.3. M is Gδ in P(K).

Proof. This is clear.

4. Proof of part (2) of Theorem 1.3. The purpose of this section is
to prove

Theorem 1.3(2). Let π be a Borel probability measure on Rd with com-
pact support K. If π is doubling, then a typical measure µ ∈ P(K) satisfies

τπ,loc(q) ≤ dimq
∗π,B(µ) ≤ dim∗qπ,B(µ) ≤ τπ(q) for all q ≤ 0.
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If π is doubling and K does not contain isolated points, then a typical measure
µ ∈ P(K) satisfies

τπ,loc(q) ≤ dimq
∗π,B(µ) ≤ dim∗qπ,B(µ) ≤ τπ(q) for all q.

Before proving this result we state and prove a few auxiliary results.
We begin with a definition. Let X be a metric space and let π be a Borel
probability measure on X. For a bounded subset E of X, r > 0 and a real
number q write

N q
π(E; r) = sup

(B(xi, r))i is a centred packing of E

∑
i

π(B(xi, r))q;

recall that a family of balls (B(xi, r))i is called a centred packing of E if
xi ∈ E for all i and |xi − xj | > 2r for all i 6= j. We now have the following
alternative expressions for dimq

π,B(E) and dimq
π,B(E).

Lemma 4.1. Let π be a Borel probability measure on Rd with compact
support K. If π is doubling, then

dimq
π,B(E) = lim inf

r↘0

logN q
π(E; r)

− log r
,

dimq
π,B(E) = lim sup

r↘0

logN q
π(E; r)

− log r
,

for all E ⊆ K and all q ∈ R.

Proof. The proof uses standard arguments and is therefore omitted.

Next, we list a few more auxiliary results.

Lemma 4.2. Let π be a Borel probability measure on Rd with compact
support K, and let E ⊆ K.

(1) If π is doubling, then the map q 7→ dimq
π,B(E) is convex, and therefore

in particular continuous.
(2) The map q 7→ τπ,loc(q) is decreasing.

Proof. (1) Let q1, q2 ∈ R and t1, t2 ≥ 0 with t1 + t2 = 1. Fix r > 0.
For each centred packing (B(xi, r))i of E, it follows from Hölder’s inequality
that∑

i

π(B(xi, r))t1q1+t2q2 ≤
(∑

i

π(B(xi, r))q1
)t1(∑

i

π(B(xi, r))q2
)t2

≤ N q1
π (E; r)t1N q2

π (E; r)t2 .

Taking supremum over all centred packings (B(xi, r))i of E now gives

N t1q1+t2q2
π (E; r) ≤ N q1

π (E; r)t1 N q2
π (E; r)t2 .
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Using this inequality and Lemma 4.1, we conclude that

dimt1q1+t2q2
π,B (E) = lim sup

r↘0

logN t1q1+t2q2
π (E; r)
− log r

≤ lim sup
r↘0

log(N q1
π (E; r)t1N q2

π (E; r)t2)
− log r

= lim sup
r↘0

(
t1

logN q1
π (E; r)
− log r

+ t2
logN q2

π (E; r)
− log r

)
≤ t1 lim sup

r↘0

logN q1
π (E; r)
− log r

+ t2 lim sup
r↘0

logN q2
π (E; r)
− log r

= t1dimq1
π,B(E) + t2dimq2

π,B(E).

(2) This follows immediately from the definitions.

Proposition 4.3. Let π be a Borel probability measure on Rd with com-
pact support K. If π is doubling, then

{µ ∈ P(K) | τπ,loc(q) ≤ dimq
∗π,B(µ) for all q}

=
⋂
q∈Q
{µ ∈ P(K) | τπ,loc(q) ≤ dimq

∗π,B(µ)}.

Proof. It is clear that the left-hand side is contained in the right-hand
side, so it suffices to prove the other inclusion. We therefore fix µ ∈ P(K)
such that

(4.1) τπ,loc(q) ≤ dimq
∗π,B(µ)

for all q ∈ Q. We must now prove (4.1) holds for all q ∈ R. Fix q ∈ R and
a set E ⊆ K with µ(E) > 0. Next, choose a sequence (qn)n ⊆ Q such that
qn ↘ q. Since qn ≥ q for all n and the function p 7→ τπ,loc(p) is decreasing
(by Lemma 4.2), we conclude that

(4.2) τπ,loc(q) ≤ lim inf
n

τπ,loc(qn).

Next, since qn ∈ Q, it follows from (4.1) that

(4.3) τπ,loc(qn) ≤ dimqn
∗π,B(µ) = inf

µ(F )>0
dimqn

π,B(F ) ≤ dimqn
π,B(E).

Finally, since qn → q and the function p 7→ dimp
π,B(E) is continuous (by

Lemma 4.2), we conclude that

(4.4) lim inf
n

dimqn
π,B(E) = dimq

π,B(E).

Combining (4.2)–(4.4) gives

τπ,loc(q) ≤ lim inf
n

τπ,loc(qn) ≤ lim inf
n

dimqn
π,B(E) = dimq

π,B(E).
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Taking infimum over all E ⊆ K with µ(E) > 0 yields

τπ,loc(q) ≤ inf
µ(E)>0

dimq
π,B(E) = dimq

∗π,B(µ).

We can now prove part (2) in Theorem 1.3. Let

Γ = {µ ∈ P(K) | τπ,loc(q) ≤ dimq
∗π,B(µ) ≤ dim∗qπ,B(µ) ≤ τπ(q) for all q}.

To prove that Γ is co-meagre in P(K), for q, t, u ∈ R write

Γ qt,u = {µ ∈ P(K) | t ≤ inf
µ(E)>u

dimq
π,B(E)},

and observe that it follows from Theorem 1.2 and Proposition 4.3 that

Γ = {µ ∈ P(K) | τπ,loc(q) ≤ dimq
∗π,B(µ) for all q}

=
⋂
q∈Q
{µ ∈ P(K) | τπ,loc(q) ≤ inf

µ(E)>0
dimq

π,B(E)}

=
⋂
q∈Q

⋂
t,u∈Q

t<τπ,loc(q)
u>0

{µ ∈ P(K) | t ≤ inf
µ(E)>u

dimq
π,B(E)} =

⋂
q∈Q

⋂
t,u∈Q

t<τπ,loc(q)
u>0

Γ qt,u.

Hence it suffices to prove that Γ qt,u is co-meagre in P(K) for all q, t, u ∈ Q
with t < τπ,loc(q) and u > 0. We fix such q, t, u and divide the proof into
two cases.

Case 1: τπ,loc(q)= infE dimq
π,B(E). Since t<τπ,loc(q)= infE dimq

π,B(E),
we conclude that

Γ qt,u =
{
µ ∈ P(K) | t ≤ inf

µ(E)>u
dimq

π,B(E)
}

= P(K),

and the set Γ qt,u is therefore (trivially) co-meagre in P(K).

Case 2: τπ,loc(q) > infE dimq
π,B(E). In order to show that Γ qt,u is co-

meagre in P(K), it clearly suffices to construct a setM q
t,u ⊆ P(K) satisfying

the following conditions:

(1) M q
t,u ⊆ Γ

q
t,u;

(2) M q
t,u is dense in P(K);

(3) M q
t,u is Gδ in P(K).

For all x ∈ K and all s > 0, it follows from Lemma 4.1 that

t < τπ,loc(q) ≤ dimq
π,B,loc(x;K) ≤ dimq

π,B(B(x, s) ∩K)

= lim sup
r↘0

logN q
π(B(x, s) ∩K; r)
− log r

,

and we can therefore choose rx,s < s such that

t <
logN q

π(B(x, s) ∩K; rx,s)
− log rx,s

.
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This implies that

(4.5) N q
π(B(x, s) ∩K; rx,s) ≥ r−tx,s.

We may also choose a centred packing (B(y, rx,s))y∈Λx,s of B(x, s)∩K such
that

(4.6)
∑
y∈Λx,s

π(B(y, rx,s))q ≥
1
2
N q
π(B(x, s) ∩K; rx,s).

Now define the measure µx,s ∈ P(K) by

µx,s =
1∑

y∈Λx,s π(B(y, rx,s))q
∑
y∈Λx,s

π(B(y, rx,s))qδy.

Next, for each F ⊆ K with |F | <∞, we define µF,s ∈ P(K) and rF,s > 0 by

µF,s =
1
|F |

∑
x∈F

µx,s, rF,s = min
x∈F

rx,s.

Let (sn)n be a sequence of real numbers with sn > 0 for all n and sn → 0.
Finally, for a positive integer n, we put

Gn =
⋃
m≥n
F⊆K
|F |<∞

B(µF,sm , (u/6)rF,sm),

and define the set M q
t,u ⊆ P(K) by

M q
t,u =

⋂
n

Gn.

Below we show thatM q
t,u has the above three properties (1)–(3) (Propositions

4.4–4.7).

Proposition 4.4. M q
t,u ⊆ Γ

q
t,u.

Proof. Let µ ∈M q
t,u. To show that µ ∈ Γ qt,u, i.e. we must show that

t ≤ inf
µ(E)>u

dimπ,B(E).

We therefore fix E ⊆ K with µ(E) > u. We must prove that

t ≤ dimπ,B(E).

Since µ ∈
⋂
nGn, for each positive integer n there is a positive integer mn

and a set Fn ⊆ K with |Fn| <∞ such that

L(µ, µFn,smn ) ≤ u

6
rFn,smn .

Write ρn = 1
3rFn,smn and let En denote the ρn-neighbourhood of E, i.e.

En = {y ∈ K | dist(x,E) < ρn}.
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Claim 1. We have∑
y∈Λxn,smn∩En

π(B(y, rxn,smn ))q ≥ u

4
r−txn,smn .

Proof of Claim 1. Define fn : K → R by

fn(y) = max(ρn − dist(y,En), 0).

It is clear that fn ∈ Lip(K), and we therefore conclude that

L(µ, µFn,smn ) ≥
�
fn dµ−

�
fn dµFn,smn ≥

�

E

ρn dµ−
�

En

ρn dµFn,smn

= ρnµ(E)− ρnµFn,smn (En),

and so

µFn,smn (En) ≥ µ(E)− 1
ρn
L(µ, µFn,smn ) > u− 1

ρn

u

6
rFn,smn =

u

2
.

By the definition of µFn,smn , this implies that
1
|Fn|

∑
y∈Fn

µy,smn (En) = µFn,smn (En) >
u

2
,

and so there is an element xn ∈ Fn such that

µxn,smn (En) >
u

2
.

By the definition of µxn,smn , this implies that

1∑
y∈Λxn,smn

π(B(y, rxn,smn ))q
∑

y∈Λxn,smn∩En

π(B(y, rxn,smn ))q

= µxn,smn (En) >
u

2
.

We see from this inequality and (4.5) and (4.6) that∑
y∈Λxn,smn∩En

π(B(y, rxn,smn ))q ≥ u

2

∑
y∈Λxn,smn

π(B(y, rxn,smn ))q

≥ u

2
1
2
N q
π(B(xn, smn) ∩K; rxn,smn )

≥ u

4
r−txn,smn .

This completes the proof of Claim 1.

Next, for each y ∈ En, we may choose xy ∈ E such that

|y − xy| < ρn =
1
3
rFn,smn ≤

1
3
rxn,smn .

Claim 2. The family (B(xy, 1
3rxn,smn ))y∈Λxn,smn∩En is a centred packing

of E.
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Proof of Claim 2. It is clear that yx ∈ E for all y ∈ Λxn,smn ∩ En.
Next, we show that |xy1 − xy2 | > 2

3rxn,smn for all y1, y2 ∈ Λxn,smn ∩En with
y1 6= y2. Indeed, if there are y1, y2 ∈ Λxn,smn ∩ En with y1 6= y2 such that
|xy1 − xy2 | ≤ 2

3rxn,smn then

|y1 − y2| ≤ |y1 − xy1 |+ |xy1 − xy2 |+ |xy2 − y2|
≤ 1

3rxn,smn + 2
3rxn,smn + 1

3rxn,smn = 4
3rxn,smn ≤ 2rxn,smn ,

contradicting the fact that (B(y, rxn,smn ))y∈Λxn,smn is a packing. This com-
pletes the proof of Claim 2.

Since π is doubling it is easily seen that there is a constant c0 > 0 such
that

(4.7)
π(B(y, 4r))
π(B(y, r))

≤ c0

for all y ∈ suppπ = K and all r > 0. We now deduce from Claim 2 and (4.7)
that

(4.8) N q
π,B(E; 1

3rxn,smn )

≥
∑

y∈Λxn,smn∩En

π(B(xy, 1
3rxn,smn ))q

=



∑
y∈Λxn,smn∩En

π(B(xy, 1
3rxn,smn ))q for q ≤ 0,

∑
y∈Λxn,smn∩En

(
π(B(xy, 1

3rxn,smn ))
π(B(xy, 4

3rxn,smn ))

)q
π(B(xy, 4

3rxn,smn ))q for q > 0;

≥


∑

y∈Λxn,smn∩En

π(B(xy, 1
3rxn,smn ))q for q ≤ 0,

1
cq0

∑
y∈Λxn,smn∩En

π(B(xy, 4
3rxn,smn ))q for q > 0.

However, if y ∈ Λxn,smn ∩En, then |y−xy| <
1
3rxn,smn , whence B(y, rxn,smn )

⊆ B(xy, 4
3rxn,smn ) and B(xy, 1

3rxn,smn ) ⊆ B(y, rxn,smn ). It follows from this
and (4.8) and Claim 1 that

N q
π,B(E; 1

3rxn,smn ) ≥


∑

y∈Λxn,smn∩En

π(B(y, rxn,smn ))q for q ≤ 0,

1
cq0

∑
y∈Λxn,smn∩En

π(B(y, rxn,smn ))q for q > 0;
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≥ c1
∑

y∈Λxn,smn∩En

π(B(y, rxn,smn ))q

≥ c1
u

4
r−txn,smn = c2(1

3rxn,smn )−t,

where c1 = min(1, 1/cq0) and c2 = c1u3−t/4. We immediately conclude from
this and Lemma 4.1 that

dimπ,B(E) = lim sup
r↘0

logN q
π(E; r)

− log r

≥ lim sup
n

logN q
π,B(E; 1

3rxn,smn )

− log 1
3rxn,smn

≥ lim sup
n

log c2(1
3rxn,smn )−t

− log 1
3rxn,smn

= t.

This completes the proof of Proposition 4.4.

Proposition 4.5. If K does not have any isolated points and q ∈ R,
then M q

t,u is dense in P(K).

Proof. For F ⊆ K with |F | <∞ write

µF =
1
|F |

∑
x∈F

δx.

We first prove that if s > 0, then

(4.9) L(µF , µF,s) ≤ s.

Indeed, writing wx,y = π(B(y, rx,s))q for x ∈ F and y ∈ Λx,s, we have

(4.10) L(µF , µF,s) = sup
f∈Lip(K)

∣∣∣∣ � fdµF − �
fdµF,s

∣∣∣∣
= sup

f∈Lip(K)

∣∣∣∣ 1
|F |

∑
x∈F

f(x)− 1
|F |

∑
x∈F

1∑
y∈Λx,s

wx,y

∑
y∈Λx,s

wx,yf(y)
∣∣∣∣

≤ sup
f∈Lip(K)

1
|F |

∑
x∈F

∣∣∣∣f(x)− 1∑
y∈Λx,s

wx,y

∑
y∈Λx,s

wx,yf(y)
∣∣∣∣

= sup
f∈Lip(K)

1
|F |

∑
x∈F

∣∣∣∣ 1∑
y∈Λx,s

wx,y

∑
y∈Λx,s

wx,yf(x)− 1∑
y∈Λx,s

wx,y

∑
y∈Λx,s

wx,yf(y)
∣∣∣∣

≤ sup
f∈Lip(K)

1
|F |

∑
x∈F

1∑
y∈Λx,s

wx,y

∑
y∈Λx,s

wx,y|f(x)− f(y)|.
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However, if f ∈ Lip(K) and x ∈ F and y ∈ Λx,s, then |f(x) − f(y)| ≤
|x− y| ≤ s. It follows from this and (4.10) that

L(µF , µF,s) ≤ sup
f∈Lip(K)

1
|F |

∑
x∈F

1∑
y∈Λx,s wx,y

∑
y∈Λx,s

wx,ys = s.

This completes the proof of (4.9).
We now turn to the proof of Proposition 4.5. Since P(K) is a complete

metric space and M q
t,u =

⋂
nGn where each Gn is open, it suffices to show

that Gn is dense for all n. We therefore fix a positive integer n. Next, let
µ ∈ P(K) and r > 0. We must find a measure λ ∈ Gn such that L(µ, λ) < r.
Since K does not contain isolated points we may choose a set F ⊆ K with
|F | < ∞ such that L(µ, µF ) < r/2. Next, since sm → 0, we may choose a
positive integer m0 with m0 ≥ n such that sm0 < r/2. Now put λ = µF,sm0

.
Then clearly, by (4.9),

L(µ, λ) ≤ L(µ, µF ) + L(µF , µF,sm0
) <

1
2

+ sm0 ≤
r

2
+
r

2
= r

and λ = µF,sm0
∈ B(µF,sm0

, (u/6)rF,sm0
) ⊆ Gn.

Proposition 4.6. If q ≤ 0, then M q
t,u is dense in P(K).

Proof. By Proposition 4.5, it suffices to prove that K does not have
isolated points. Indeed, if x0 is an isolated point of K, it is not difficult to
see that dimq

π,B,loc(x0;K) = 0, and so

(4.11) τπ,loc(q) ≤ 0.

Furthermore, since q ≤ 0, it is also not difficult to see that dimq
π,B(E) ≥ 0

for all E ⊆ K, whence

(4.12) 0 ≤ inf
E

dimq
π,B(E).

Combining (4.11) and (4.12) shows that

(4.13) τπ,loc(q) ≤ inf
E

dimq
π,B(E),

contrary to the assumption of Case 2.

Proposition 4.7. M q
t,u is Gδ in P(K).

Proof. This is clear.
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