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Quasi-orbit spaces associated to T0-spaces
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Abstract. Let G ⊂ Homeo(E) be a group of homeomorphisms of a topological space
E. The class of an orbit O of G is the union of all orbits having the same closure as O. Let
E/ eG be the space of classes of orbits, called the quasi-orbit space. We show that every

second countable T0-space Y is a quasi-orbit space E/ eG, where E is a second countable
metric space.

The regular part X0 of a T0-space X is the union of open subsets homeomorphic to
R or to S1. We give a characterization of the spaces X with finite singular part X −X0

which are the quasi-orbit spaces of countable groups G ⊂ Homeo+(R).
Finally we show that every finite T0-space is the singular part of the quasi-leaf space

of a codimension one foliation on a closed three-manifold.

1. Introduction

1.1. T0-spaces and quasi-orbit spaces. In general, the orbit space of
a dynamical system is not a Hausdorff space, even for simple and regular sys-
tems: just consider the example of an irrational rotation on the circle. This
example shows that the orbit space does not even satisfy weaker separation
axioms, like the T0 separation axiom. However, if one considers a Hausdorff
quotient of the orbit space, one looses most of the dynamical information on
the initial system. For this reason, [HS] considers an intermediary quotient
called the quasi-orbit space which is a T0-space and keeps more information
on the initial dynamical system.

Let E be a Hausdorff topological space and Homeo(E) its group of hom-
eomorphisms. Consider a subgroup G ⊂ Homeo(E). The family of G orbits
G(x) = {g(x) : g ∈ G} determines an open equivalence relation on E. We
define the class of an orbit O to be the union of all orbits O′ having the same
closure as O. In other words, we define on E a new equivalence relation G̃
by

xG̃y if G(x) = G(y).
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Since the saturated sets, under G and under G̃, of an open set are equal, G̃
is an open equivalence relation.

We denote by Z = E/G the space of orbits, and by X = E/G̃ the space
of classes of orbits, called the quasi-orbit space. We denote by q : E → Z and
p : E → X the canonical projections. The map ϕ : Z → X which associates
to each orbit its class is an onto quasi-homeomorphism (1). According to
[HS], the quasi-orbit space X is a T0-space.

The goal of this paper is to give some conditions for which a T0-space
X is homeomorphic to a quasi-orbit space. One of the main results of this
paper is:

Theorem 1.1. Let X be a connected second countable T0-space.

(a) There exist a connected second countable metric space E and an
abelian subgroup G of Homeo(E) such that X is homeomorphic to
the quasi-orbit space E/G̃.

(b) Assume moreover that X is finite. Then there are an integer n and
a finitely generated abelian subgroup G ⊂ Diff∞(Tn), where Tn is the
n-torus, and an invariant set E ⊂ Tn such that X is the quasi-orbit
space of the action of G on E.

1.2. Countable groups of homeomorphisms of R. Our second main
result gives a characterization of the quasi-orbit spaces of countable sub-
groups of the group Homeo+(R) of increasing homeomorphisms of the line R.
More precisely, if X is a T0-space, we define the regular part X0 of X to be
the union of all open subsets of X homeomorphic to R or S1. The singular
part of X is the complement X − X0. Given a T0-space X whose singular
part is finite, Theorem 1.8 below gives a necessary and sufficient condition
for a T0-space to be the quasi-orbit space R/G̃ of a countable subgroup
G ⊂ Homeo+(R).

Before stating our condition, note that the regular part X0 of X has
a simple interpretation if X is the quasi-orbit space R/G̃ of a countable
subgroup G ⊂ Homeo+(R). An orbit G(x) is proper if it is locally closed; a
proper orbit is stable if the stabilizer Gx fixes every point in a neighborhood
]x− ε, x+ ε[, for some ε > 0. In this case the projection p(]x− ε, x+ ε[) is
contained in the regular part X0. According to [HS], p−1(X0) is the union
of all stable proper orbits.

Our description of the quasi-orbit spacesX of groups of homeomorphisms
of R consists in decomposing X into levels given by the notion of height of
an orbit (or more generally of height of a point in an ordered space). We

(1) A continuous map f : X → Y between two topological spaces is called a quasi-hom-
eomorphism if the map which assigns to each open set V ⊂ Y the open set f−1(V ) is a
bijective map.
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will show that, for every level k, the relative position of points of height > k
with respect to points of height k may be classified into five types. So, in
order to state our main result, we will first recall the notion of height; then
we will describe the five types. This will allow us to define the notion of ad-
missible space. Finally, Theorem 1.8 states that admissibility is equivalent
to realisability as a quasi-orbit space.

1.2.1. Notion of height. Let (Y,≤) be a partially ordered set. A chain
of (Y,≤) is a totally ordered subset of Y . Given an integer n ≥ 0, we say
that a point y ∈ Y has height ht(y) = n if n+ 1 is the upper bound of the
cardinality of the chains of (Y,≤) bounded by y. So a point y is minimal for
≤ if ht(y) = 0. We say that Y has finite height ht(Y ) ∈ N if ht(y) is defined
for every y ∈ Y and ht(Y ) = sup{ht(y) : y ∈ Y }.

Let X be a T0-space partially ordered by x ≤ y if {x} ⊂ {y}. The regular
part, X0, of X is the interior of the subset of maximal elements for this order.
Hence, if the singular part of X is finite, then the height of X is finite. For
0 ≤ k ≤ ht(X), we set

Xk = {x ∈ X : ht(x) ≤ k}.
By convention we denote X−1 = ∅. Notice that each Xk is a closed subset
of X.

For every A ⊂ X0 we denote XA = {x ∈ X −X0 : {x} ∩X0 = A}. By
definition the sets XA are pairwise disjoint, so that the family of nonempty
XA induces a partition of X −X0.

Notice that every subset of X is equipped with the induced order. In
particular, two elements in the regular part are incomparable.

1.2.2. Five types of position of X −X0 with respect to X0.

• We say that X is of type T0 if X = X0 and is the line R.
• We say that X is of type T1 if X = X0 and is the circle S1.
• We say that X is of type T2 if X0 is a single point.

We say that X is of type T3 if X0 −X0 is a finite set which is cyclically
ordered, each point being connected to the next one either by an interval in
X0 or by a connected component of X −X0. A cyclic order on a set of two
points has no real meaning, so we need to distinguish the case card(X−X0)
= 2. For this reason we say that X is of type T3 if it is of type T3′ or T3′′
defined as follows:

Definition 1.2. We say that X is of type T3′ if card(X0−X0) = k ≥ 3
and there is a cyclic indexation X0 −X0 = {a0, . . . , ai, . . . , ak−1}, i ∈ Z/kZ
such that, for every i, either

• X{ai,ai+1} 6= ∅ and X{ai,ai+1} is a connected component of X −X0, in
which case we denote Ii,i+1 = ∅; or
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• X{ai,ai+1} = ∅ and there is an interval Ii,i+1 ⊂ X0 ∩X0 whose closure
Ii,i+1 is a segment with extremities ai and ai+1.

Furthermore,

X −X0 =
⋃

i∈Z/kZ

X{ai,ai+1} and X0 ∩X0 =
⋃

i∈Z/kZ

Ii,i+1.

Definition 1.3. We say that X is of type T3′′ if X0 − X0 is a pair
{a0, a1} and either

• X{a0,a1} consists of two different connected components of X −X0, in
which case we denote I = ∅; or
• X{a0,a1} is a connected component of X −X0 and there is an interval
I ⊂ X0 ∩X0 whose closure is a segment with extremities a0 and a1.

Moreover, X −X0 = X{a0,a1} and X0 ∩X0 = I.

We say that X is of type T4 if X0 −X0 is a finite ordered set such that
each point is connected to the next one by either an interval in X0 or by
a connected component of X −X0. Moreover, there is either an interval in
X0 or a connected component of X −X0 which is attached to the first and
to the last point. We have to distinguish the case where X0−X0 is a single
point, because the first and the last point are the same. For this reason we
divide the type T4 into two subtypes T4′ and T4′′ :

Definition 1.4. We say that X is of type T4′ if card(X0−X0) = k ≥ 2
and there is an indexation X0 − X0 = {a1, . . . , ai, . . . , ak}, i ∈ {1, . . . , k}
such that:

• for every i ∈ {1, . . . , k − 1}, either

– X{ai,ai+1} 6= ∅ and X{ai,ai+1} is a connected component of X −X0,
in which case we denote Ii,i+1 = ∅; or

– X{ai,ai+1} = ∅ and there is an interval Ii,i+1 ⊂ X0∩X0 whose closure
Ii,i+1 is a segment with extremities ai and ai+1.

• for every j ∈ {1, k}, either

– X{aj} 6= ∅ and is a connected component of X −X0, in which case
we denote Ij = ∅; or

– X{aj} = ∅ and there is an interval Ij ⊂ X0 ∩ X0 whose closure Ij
(in X) is a semi-open interval (homeomorphic to [0, 1[) whose ex-
tremity is aj .

Furthermore,

X −X0 = X{a1} ∪X{ak} ∪
k−1⋃
i=1

X{ai,ai+1}, X0 ∩X0 = I1 ∪ Ik ∪
k−1⋃
i=1

Ii,i+1.
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Definition 1.5. We say that X is of type T4′′ if X0 −X0 is a singleton
{a}, X{a} consists of connected components of X − X0, and there is an
interval I ⊂ X0 ∩ X0 whose closure I in X is a semi-open interval whose
extremity is a.

Moreover, X −X0 = X{a}, and X0 ∩X0 = I.

Remark 1.6. If X{ai,ai+1} = ∅ and X{ai−1,ai} = ∅, then ai ∈ X0. If
X{a1} = ∅ and X{a1,a2} = ∅, then a1 ∈ X0. If X{ak} = ∅ and X{ak−1,ak} = ∅,
then ak ∈ X0. These three implications contradict the definitions of the
points ai, a1 and ak. So

X{ai,ai+1} = ∅ ⇒ X{ai−1,ai} 6= ∅,
X{a1} = ∅ ⇒ X{a1,a2} 6= ∅,
X{ak} = ∅ ⇒ X{ak−1,ak} 6= ∅.

1.2.3. Admissible T0-spaces and quasi-orbit spaces

Definition 1.7. We say that a T0-space X is admissible if:

• X is connected and second countable;
• the singular part X −X0 is finite; in particular X has finite height;
• every connected component Y of X −Xk, for −1 ≤ k ≤ ht(X), is of

type T0, T1, T2, T3, or T4;
• whenever a connected component Y of X −Xk, for 0 ≤ k ≤ ht(X), is

of type T0 or T4, and Z denotes the connected component of X−Xk−1

containing Y , then Z is of type T2.

We can now state precisely our main result.

Theorem 1.8. A T0-space X is homeomorphic to the quasi-orbit space
R/G̃ of a finitely generated subgroup G of Homeo+(R) if and only if X is
admissible. Moreover, if X is admissible, then one can choose the group G
to be abelian.

If G is a group of diffeomorphisms of R, then we obtain the following
results:

Theorem 1.9. If X is the quasi-orbit space of an abelian subgroup G ⊂
Diff2

+(R), then ht(X) ≤ 2. Moreover, if ht(X) = 2, then G is not finitely
generated and it has an exceptional minimal set.

Theorem 1.10. If X is the quasi-orbit space of a subgroup G ⊂ Diffω+(R),
then ht(X) ≤ 2.

1.3. Codimension one foliations. The study of codimension one
transversally oriented foliations is closely related to the study of countable
subgroups of Homeo+(R).
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If F is a transversally oriented codimension one foliation on a closed
manifold M , then we define, in the same manner as for groups of hom-
eomorphisms, the space Z = M/F of leaves and the space X = M/F̃ of
quasi-leaves. As in the case of subgroups of Homeo+(R), we define the regular
part X0 of X to be the union of all open subsets of X homeomorphic to R
or to S1. According to [BES], p−1(X0) is the union of stable proper leaves.
Without any condition on the space Y , we obtain the following result:

Theorem 1.11. Every connected finite T0-space Y is homeomorphic to
the singular part X−X0 of the quasi-leaf space X of a transversally oriented
codimension one C1-foliation F on a closed three-manifold M .

We will prove a stronger statement, by induction on the height ht(Y ):

Theorem 1.12. Every connected finite T0-space Y is homeomorphic to
the singular part X−X0 of the quasi-leaf space X of a transversally oriented
codimension one C1-foliation F on a connected closed three-manifold M ,
satisfying the following condition: for each x ∈ Y , there is a closed transver-
sal γx of F such that the class y ∈ Y of a leaf intersects γx if and only if
x ⊂ y. Furthermore, any component c of X0 is a circle which corresponds to
stable proper leaves and there is a closed transversal γc of F which intersects
every leaf of c in exactly one point.

2. Preliminaries. We recall some general notions which we will use in
the rest of this paper.

Let R be an equivalence relation on a topological space E. Throughout
this paper we write R(x) for the equivalence class of x and we call it the
trajectory of x.

(1) If A ⊂ E, the saturation SatR(A) of A is the union of all trajectories
meeting A. The subset A is called saturated (or invariant) if we have
A = SatR(A).

(2) The relation R is called open if the saturation SatR(O) of every open
subset O is open. Equivalently, the natural (continuous) projection
p : E → E/R is open.

(3) The class Cl(T ) of a trajectory T is the union of all trajectories
T ′ having the same closure as T . We denote by R̃ the equivalence
relation on E defined by the classes of the trajectories of R: xR̃y if
R(x) = R(y).

Notice that the saturations of any open set under R and R̃ are
equal, so that R̃ is open⇔ R is open.

(4) A minimal set is a minimal element of the family of nonempty satu-
rated closed subsets (ordered by inclusion). Equivalently, a minimal
set is a nonempty saturated subset S ⊂ E such that the closure of
every trajectory T ⊂ S is equal to S.
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(5) A trajectory T is called proper if it is locally closed with int(T ) = ∅.
(6) A trajectory T is called a maximal (resp. minimal) trajectory if every

trajectory T ′ such that T ⊂ T ′ (resp. T ′ ⊂ T ) has the same closure
as T : T = T ′.

A trajectory T is a minimal trajectory if and only if it is contained
in a minimal set.

(7) LetR be the identity relation on a topological space E. We say that a
point x has a property P if the trajectoryR(x) has this property. For
example the class of a point x is the subset Cl(x) = {y : {y} = {x}}.

Let X be a topological space. Recall that a closed subset C of X is
irreducible if it is not the union of two proper closed subsets (or equivalently
if the intersection of two nonempty open subsets is nonempty). An element
x of C is called a generic point if {x} = C. The space X is said to be
quasi-compact if it has the property of Borel–Lebesgue (every open cover
admits a finite subcover) but it is not necessarily a Hausdorff space.

If E is a locally compact second countable topological space, then the
quasi-orbit space X = E/G̃ has the following properties [HS]:

(a) Every irreducible closed subset of X has a generic point.
(b) Every totally ordered family {ai : i ∈ I} of X has a supremum a

such that {a} = {ai : i ∈ I}.
(c) Every orbit of G is contained in the closure of a maximal orbit.

3. Quasi-orbit spaces associated to some T0-spaces. The goal of
this section is to show that every second countable T0-space X is homeo-
morphic to a quasi-orbit space E/G̃ (where E is a second countable metric
space) and to give some particular properties of the space E and of the
group G under some additional hypotheses on X.

3.1. Product of Sierpiński spaces. The two-point set S = {0, 1}
equipped with the topology {∅, S, {1}} is called the Sierpiński space; it is
a connected T0-space but it is not a T1-space. The order associated to this
topology satisfies 0 ≤ 1; indeed, we have {0} = {0} and {1} = S.

Remark 3.1.

• For each integer n ∈ N, we consider the set Γn = {0, 1}n. We define
an order on Γn by:

(ε1, . . . , εn) ≤ (ε′1, . . . , ε
′
n) if εi ≤ ε′i for 1 ≤ i ≤ n.

We endow Γn with the order-topology generated by the family {[γ,↗[ :
γ ∈ Γn} where [γ,↗[ = {γ′ ∈ Γn : γ ≤ γ′}. The space Γn equipped
with this order-topology is homeomorphic to the product of n copies
of the Sierpiński space.
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• For each I ⊂ {1, . . . , n}, let γI = (ε1, . . . , εn) ∈ Γn, where εi = 1 if
i ∈ I and εi = 0 otherwise. So if I and J are two subsets of {1, . . . , n},
then γI ≤ γJ whenever I ⊂ J .

This shows that Γn is homeomorphic to the set of subsets of
{1, . . . , n} for the topology associated to the inclusion order.

We denote by Diffr+(M) the group of orientation-preserving Cr-diffeomor-
phisms of an oriented manifold M (r ≥ 0). A C0-diffeomorphism is a hom-
eomorphism. In general, we take M to be the unit circle S1, the n-torus Tn
or the n-Euclidean space Rn.

Lemma 3.2. For each positive integer n, there exists a finitely generated
abelian subgroup Gn of Diff∞+ (Tn) such that its quasi-orbit space Tn/G̃n is
homeomorphic to the product S × · · · ×S of n copies of the Sierpiński space
S (that is, to Γn).

Proof. Let G1 be a finitely generated abelian subgroup of Diff∞+ (S1) of
finite rank k ≥ 2 having only one fixed point e ∈ S1. Then all other orbits
are everywhere dense (N. Kopell [Kop], G. Reeb [Reb]). Thus the quasi-orbit
space S1/G̃1 is homeomorphic to the Sierpiński space S.

The product group Gn of n copies of G1 is a finitely generated abelian
subgroup of Diff∞+ (Tn) of finite rank.

Since each G̃i (1 ≤ i ≤ n) is an open equivalence relation, by applying
[Bou, Chapitre I, p. 34, Corollaire], the quasi-orbit space Tn/G̃n of Gn is
homeomorphic to the product

∏n
i=1 S1/G̃1, and hence to S × · · · × S.

3.2. Proof of Theorem 1.1. (a) Since X is a T0-space, applying
[Eng, Theorem 2.3.26, p. 84], there exists an embedding ψ : X →

∏
i∈I Si

(where Si is the Sierpiński space {0, 1}). We can suppose that I ⊂ N, as
X is second countable. We know that for each i ∈ I there is a homeo-
morphism fi : Si → S1

i /G̃i, where S1
i is the unit circle S1 and Gi is the

group G1 defined in the proof of Lemma 3.2. The product map
∏
i∈I fi :∏

i∈I Si →
∏
i∈I S1

i /G̃i is also a homeomorphism. Moreover,
∏
i∈I S1

i /G̃i is
homeomorphic to

∏
i∈I S1

i /
∏
i∈I G̃i. The space TI =

∏
i∈I S1

i is a compact
second countable metric space. We put GI =

∏
i∈I Gi. The group GI is

abelian. Thus we conclude that there exists an embedding ϕ : X → TI/G̃I .
Let p : TI → TI/G̃I be the canonical projection. We set E = p−1(ϕ(X))
and denote by G = GI/E the subgroup induced by GI on E. Since E is a
saturated subset of TI , we have G(x) = GI(x) for each x ∈ E.

We will show that E/G̃ is homeomorphic to ϕ(X) and so to X. Let
f : E/G̃→ ϕ(X) ⊂ TI/G̃I map the class of an orbit G(x) to the class of the
orbit GI(x). We prove now that this bijective map f is a homeomorphism.
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Let V be an open subset of ϕ(X), that is, V = U ∩ ϕ(X) where U is an
open subset of TI/G̃I . Then p−1(V ) = p−1(U) ∩ p−1(ϕ(X)) = p−1(U) ∩ E.

Since p−1(U) is an open subset of TI , p−1(V ) is open in E. Thus V is
open in E/G̃ and so f is a continuous map.

Let p1 : E → E/G̃ be the canonical projection and let V be an open
subset of E/G̃, that is, p−1

1 (V ) is open in E and so there exists an open subset
U of TI such that p−1

1 (V ) = U ∩ E. We have V = p(p−1
1 (V )) = p(U ∩ E).

Since E is saturated, we deduce that V = p(U) ∩ p(E) = p(U) ∩ ϕ(X).
The fact that p is an open map implies that V is an open subset of ϕ(X).
Therefore f is an open map. We conclude that f is a homeomorphism.

It remains to show that E is connected. Let x = (xi, i ∈ I) be an element
of E ⊂ TI . Then Cl(G(x)) =

∏
i∈I Cl(Gi(xi)), where

Cl(Gi(xi)) = Cl(G1(xi)) =
{ {e} if xi = e,

S1 − {e} if xi ∈ S1 − {e}.
Thus each Cl(G1(xi)) is connected, and so Cl(G(x)) is connected. On the
other hand, E/G̃ is homeomorphic to X and so it is connected, which implies
that E is connected.

(b) Since X is finite, it can be embedded into a finite product of n copies
of the Sierpiński space; see [Eng, Theorem 2.3.26, p. 84]. Hence by Lemma
3.2 there is an embedding ϕ : X → Tn/G̃n, where Gn is a finitely generated
abelian subgroup of finite rank. We set E = p−1(ϕ(X)) (p : Tn → Tn/G̃n
is the canonical projection) and denote by G the subgroup induced by Gn
on E. In this case E is a connected second countable metric subspace of Tn
and G is a finitely generated abelian subgroup of finite rank.

Remark 3.3. We have

(∗) E =
r⋃
i=1

p−1({ϕ(xi)}) =
r⋃
i=1

Cl(G(ai))

where ai = (a1
i , . . . , a

n
i ) ∈ Tn with p(ai) = ϕ(xi).

For each 1 ≤ i ≤ r and 1 ≤ j ≤ n, by the proof of (a) we have

Cl(G1(aji )) =

{
{e} if aji = e,
S1 − {e} if aji 6= e.

Then

Cl(G(ai)) =
n∏
j=1

Cl(G1(aji )).

This implies that Cl(G(ai)) is homeomorphic to some Rpi where 0 ≤ pi ≤ n.
So by (∗), E is a union of some Euclidean spaces.
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4. Countable subgroups of Homeo+(R) and finite T0-spaces. The
goal of this section is to prove Theorems 1.8–1.10.

4.1. Elementary intervals, minimal sets. Let G be a countable sub-
group of Homeo+(R).

For every g ∈ G we denote by Fix(g) the set of fixed points of g and
by GFix the subset {g ∈ G : Fix(g) 6= ∅}. If A is a subset of G, we denote
by FixA the subset {x ∈ R : g(x) = x, ∀g ∈ A}. Notice that FixA =⋂
f∈A Fix(f), hence it is a closed subset of R. Notice that FixGFix is a

G-invariant closed subset.
As G is countable, every orbit O is a discrete subset of R. The limit

set of an orbit O is lim(O) = O −O; thus lim(O) = O − O if O is proper
and lim(O) = O if it is not proper. An orbit O is called exceptional if it is
nowhere dense and is not proper.

An interval ]a, b[ is called an elementary interval of G if G(a) ∩ ]a, b[ =
G(b) ∩ ]a, b[ = ∅.

Remark 4.1. An interval is elementary if and only if it is a bounded
connected component of the complement of an invariant closed set.

Notice that if ]a, b[ is an elementary interval, then g(]a, b[)∩ ]a, b[ 6= ∅ ⇒
g(]a, b[) = ]a, b[. One deduces immediately that every elementary interval
]a, b[ has the following obvious properties:

Lemma 4.2.

(1) The points a and b have the same stabilizer: Ga = Gb; we will call it
the stabilizer of the interval and denote it by G]a,b[.

(2) The orbits G(a) and G(b) have the same limit set: lim(G(a)) =
lim(G(b)).

(3) For all x ∈ ]a, b[ we have:

(i) Gx ⊂ Ga and lim(G(a)) ⊂ lim(G(x)).
(ii) Ga(x) = G(x) ∩ ]a, b[.

We say that two elementary intervals J and K are equivalent if Sat(J) =
Sat(K). Notice that J and K are equivalent if and only if there is g ∈ G
such that g(J) = K.

We say that an elementary interval ]a, b[ is wandering if each orbit of G
meets it in at most one point, equivalently Ga(x) = {x} for all x ∈ ]a, b[.

The importance of elementary intervals for our study is shown by the
following straightforward lemma:

Lemma 4.3. Let I be an elementary interval of a countable subgroup G ⊂
Homeo+(R), and GI be its stabilizer. Then p(I) ⊂ R/G̃ is an open subset
homeomorphic to I/G̃I via the canonical projection: to the class Cl(G(x))
we associate the class Cl(GI(x)).
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Proof. Let x, y ∈ I. By Lemma 4.2 we have GI(x) = G(x) ∩ I and
GI(y) = G(y)∩I. The canonical projection is well defined: if G(x) and G(y)
have the same closure then GI(x) and GI(y) have the same closure. This
map is clearly surjective, let us show that it is injective: if GI(x) and GI(y)
have the same closure in I then y ∈ GI(x) ⊂ G(x) and x ∈ GI(y) ⊂ G(y)
so that G(x) and G(y) have the same closure.

To prove that this identification induces a homeomorphism, it is enough
to see that the open subsets of p(I) correspond to the G-saturated open
subsets of SatG(I), which are in bijection, via intersection with I, to the
GI -saturated open subsets of I.

Lemma 4.4 ([Sal2]).

(1) If G has an exceptional minimal set m, then m ⊂ G(x) for all x ∈
R−m. So m is the only minimal set of G.

(2) If G has an infinite closed orbit, then the closure of each orbit con-
tains a closed orbit and the group G contains an element g0 without
fixed point.

(3) If G has two distinct minimal sets which are not fixed points, then
the closure of each nonclosed orbit contains exactly two closed orbits.

4.2. Description of the quasi-orbit space when the singular part
is finite. Let X = R/G̃ be the quasi-orbit space of a countable group
G ⊂ Homeo+(R) and let p : R→ X be the canonical projection.

In the following we will describe X when the irregular part X − X0 is
finite.

4.2.1. Suppose ht(G) = 0. This means that every orbit belongs to a
minimal set. According to Lemma 4.4, this minimal set cannot be excep-
tional. So either every orbit is closed, or every orbit is everywhere dense.
Thus, X reduces to a singleton or is homeomorphic to R (if G = {id}) or to
the circle S1. In particular, if G = {id} then X is of type T0, and if G 6= {id}
then X = X0 is of type T1 or T2, so it is always admissible.

We assume now that ht(G) ≥ 1.

4.2.2. Suppose G has a fixed point G(x0) = {x0} and ht(G) ≥ 1. De-
note A = Fix(G). Notice that every point in the boundary A − Å of A
corresponds (bijectively) to a point in X0 −X0. As we assume X −X0 to
be finite, the set A− Å is finite. Let a1 < · · · < ak be the points in A− Å.
Let J0 = ]−∞, a1[, . . . , Ji = ]ai, ai+1[, . . . , Jk = ]ak,+∞[ be the connected
components of R − (A − Å). Notice that each Ji is an elementary interval.
We denote by Hi the group of homeomorphisms of Ji obtained by restriction
of the elements of G; in particular Hi = Gai/Ji.

Notice that:
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• if Ji ⊂ Å, then p(Ji) is an interval contained in X0, and its points are
maximal and minimal in X;
• if Ji 6⊂ Å, then Hi has no fixed point. Furthermore, the closure of
x ∈ p(Ji) contains x and the projections of the extremities of Ji.
So p(Ji) ⊂ X − X0. Moreover p(Ji) is open (as Ji is open and the
projection p is open) and connected. So p(Ji) is a connected component
of X −X0.

The properties above show that:

(1) if G has a unique fixed point, then X is of type T2;
(2) if Fix(G) is an interval ]−∞, a] or [a,∞[, then X is of type T4′′ ;
(3) if the boundary of Fix(G) contains at least two points, then X is of

type T4′ .
Finally, notice that every connected component of X − X0 is one of

the p(Ji), where Hi has no fixed point. According to Lemma 4.3, p(Ji) is
homeomorphic to Ji/H̃i.

4.2.3. Suppose G has no fixed point but has a closed orbit O0 = G(x0)
and ht(G) ≥ 1. From Lemma 4.4, there exists g0 ∈ G without fixed point
such that ]x0, g0(x0)[ ∩ O0 = ∅ and R = Sat([x0, g0(x0)[). So every closed
orbit meets the interval [x0, g0(x0)[ in one point.

We set A = [x0, g0(x0)] ∩m0, where m0 is the union of all closed orbits.
Since X −X0 is finite, so is A− Å. We write A− Å = {xi : 0 ≤ i ≤ n} with

x0 < x1 < · · · < xn = g0(x0).
Notice that every point in m0 is fixed by every g ∈ GFix; in particu-

lar GFix = Gxi . We denote by Hi = GFix/]xi, xi+1[ the group of homeo-
morphisms induced by GFix on ]xi, xi+1[ for 0 ≤ i ≤ n− 1.

The subset Zi=p(]xi, xi+1[) of X is the quasi-orbit space of the group Hi.
By Lemma 4.3, Zi is homeomorphic to ]xi, xi+1[/H̃i. We have

X −X0 = {p(x0), . . . , p(xn−1)} ∪
n⋃
i=0

(Zi −X0).

Fig. 1

For 0 ≤ i ≤ n− 1, either
• Hi = {Id]xi,xi+1[}, that is, ]xi, xi+1[ ⊂ Å and Zi is homeomorphic to

an open interval in X0 ∩X0 with extremities p(xi) and p(xi+1); or
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• Hi is a group without fixed point in ]xi, xi+1[ and for every y ∈
]xi, xi+1[ one has {xi, xi+1} ⊂ G(y). More precisely, {p(y)} ∩ X0 =
{p(xi), p(xi+1)}. Finally, Zi is a connected component of X −X0.

The properties above show that:

• if G has a unique closed orbit, then X is of type T2;
• if A− Å is a pair {x0, x1} (which means that X0−X0 is a pair), then
X is of type T3′′ ;
• if card(X0 −X0) ≥ 3, then X is of type T3′ .
Furthermore, every connected component of X − X0 is one of the

p(]xi, xi+1[), which is homeomorphic to ]xi, xi+1[/H̃i, where Hi has no fixed
point.

4.2.4. Suppose G has an exceptional minimal set m. Every orbit O =
G(x) ⊂ R − m satisfies m ⊂ O and m 6= O. Let ]a, b[ be the connected
component of R−m containing x. It is an elementary interval. Consider the
group H = Ga/]a, b[. It is a countable subgroup of Homeo+(]a, b[). From
Lemma 4.3 we know that p(]a, b[) is homeomorphic to ]a, b[/H̃.

It is easy to see that R − m is a union of countably many elementary
intervals ]an, bn[, n ∈ N. Thus, X = {p(m)} ∪

⋃
n∈N p(]an, bn[). Two cases

are possible:

• Hn = Gan/]an, bn[ = {Id]an,bn[} and p : ]an, bn[→ p(]an, bn[) ⊂ X0 is a
homeomorphism, in which case p(]an, bn[) is a connected component
of X −X0 contained in X1 ∩X0;
• Hn = Gan/]an, bn[ is a group in ]an, bn[ and p(]an, bn[) is a connected

component of X −X0.

Since X −X0 is finite, there are only finitely many orbits of elementary
intervals Ii = ]ai, bi[ such that p(Ii) is not contained in X0.

Notice that in this case, X0 = {p(m)} so that X is of type T2.

Fig. 2

4.3. Proof of Theorem 1.8. Let G ⊂ Homeo+(R) be a countable
subgroup, and X its quasi-orbit space. We assume that X − X0 is finite.
Then X is a connected second countable T0-space. Let us show that X is
admissible.



280 C. Bonatti et al.

We have seen that X has finite height. So G has at least one minimal
set. Then Section 4.2 shows that X is of type Ti, i ∈ {0, 1, 2, 3, 4}, according
to what are the minimal sets (fixed points, the line R, proper obits or an
exceptional minimal set).

Furthermore, Section 4.2 shows that each connected component of the
set X −X0 is homeomorphic to I/G̃I where I is an elementary interval and
GI its stabilizer. Finally, the unique case allowing GI to have a fixed point
is G has an exceptional minimal set which implies that X is of type T2.

So a straightforward induction leads to the following statement:

Let Y be a connected component of X−Xk, k ≥ 0, and Z be the connected
component of X −Xk−1 containing Y . Then:

• there is an elementary interval J such that Z is the quasi-orbit space
J/G̃J ;
• there is an elementary interval I ⊂ J such that Y is the quasi-orbit

space I/(̃GJ)I where (GJ)I is the stabilizer of I for the group GJ ;
• Y is a connected component of Z − Z0.

As a consequence, Y is of type Ti for some i ∈ {0, . . . , 4}. Furthermore,
i ∈ {0, 4} if and only if (GJ)I has a fixed point in I, and this implies that
GJ has an exceptional minimal set in J , so that Z is of type T2.

This proves that X is admissible.
Conversely, assume that X is a connected second countable T0-space

whose singular part X − X0 is finite. Assume furthermore that X is ad-
missible. The aim of this section is to build a finitely generated abelian
subgroup G ⊂ Homeo+(R) such that X is homeomorphic to the quasi-orbit
space of G.

We proceed inductively on ht(X).
First, notice that the admissible spaces X of height 0 are of type Ti,

i ∈ {0, 1, 2}, that is, either

• X = R corresponding to G = {id}; or
• X = S1 corresponding to the cyclic group generated by a translation
x 7→ x+ 1; or
• X is a single point corresponding to G generated by two translations
x 7→ x+ 1 and x 7→ x+ α with α /∈ Q.

All of them are quasi-orbit spaces.
We assume now, as our induction hypothesis, that every admissible space

Y with ht(Y ) ≤ k is the quasi-orbit space of a finitely generated abelian
group 〈Y 〉. So Theorem 1.8 is a consequence of the following statement:
Every admissible space X with ht(X) = k + 1 is the quasi-orbit space of a
finitely generated abelian group G.
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The proof of this statement is the aim of the rest of this section. Each
connected component Y of X −X0 is an admissible space with ht(Y ) ≤ k
so it is the quasi-orbit space of a finitely generated group 〈Y 〉. Moreover, X
is admissible. Our construction will depend on the type of X.

The types T0 and T1 correspond to spaces of height 0, so do not corre-
spond to X.

Case 1: X is of type T2. Notice that this type is the unique which allows
X − X0 to have infinitely (but countably) many connected components.
However, only finitely many of these components may contain points of the
singular part X − X0. So all but finitely many components are of type T0
or T1. Let α ∈ N∪{∞} be the number of connected components of X−X0;
as ht(X) ≥ 1 by hypothesis, one gets α ≥ 1. We choose an indexation,
Y1, . . . , Yi, . . . , of these components.

Recall that there are homeomorphisms of the circle having an arbitrary
number α ≥ 1 (finite or infinite) of wandering intervals. Hence there is an
abelian group Gα generated by f : x 7→ x+ 1 and g commuting with f , such
that Gα has an exceptional minimal set m and R−m is the disjoint union
of the orbits of α wandering intervals I1, . . . , Ii, . . . .

Consider T1 = {i ∈ {1, . . . , α} : Yi is of type T1}. We choose a homeo-
morphism gT1 : R→ R with the following properties:

• gT1(x) = x if x /∈ SatGα(
⋃
i∈T1

Ii);
• the restriction of gT1 to Ii is a homeomorphism gT1,i : Ii → Ii such that
gT1,i(x) > x;
• any component of SatGα(Ii) is the image h(Ii) for a unique h ∈ Gα

(because Ii is wandering, gT1 coincides with h ◦ gT1,i ◦ h−1 on h(Ii)).

Notice that, by construction, gT1 commutes with f and g.
Consider now the set T≥2 ={i∈{1, . . . , α} : Yi is of type Ti, for i ≥ 2}. For

every i ∈ T≥2 we consider the corresponding group Hi = 〈Yi〉 ⊂ Homeo+(R).
We fix a homeomorphism ϕi : Ii → R. For every g ∈ Homeo+(R) we

denote by gϕi the homeomorphism defined as follows:

• gϕi(x) = x if x /∈ SatGα(Ii);
• any component of SatGα(Ii) is the image h(Ii) for a unique h ∈ Gα.

Then gϕi coincides with h ◦ ϕ−1
i ◦ g ◦ ϕi ◦ h−1 on h(Ii).

We define Gi = {gϕi : g ∈ Hi} ⊂ Homeo+(R). It is a finitely generated
abelian subgroup. By construction, its elements commute with f and g.
Furthermore, they are the identity map on SatGα(Ij) for j 6= i, so they
commute with the elements of Gj for j ∈ T≥2, j 6= i and commute with gT1 .

So Gα∪
⋃
i∈T≥2

Gi∪{gT1} generates a finitely generated abelian subgroup
G of Homeo+(R).
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We end this case by showing that X is homeomorphic to the quasi-orbit
space of G.

Let XG be the quasi-orbit space of G. Notice that the minimal set m
of Gα is invariant under G, hence it is an exceptional minimal set. So XG

is of type T2, that is, (XG)0 = p(m). Furthermore, for every orbit of an
elementary interval Ii, the stabilizer of Ii is conjugate to the group 〈Yi〉. So
each connected component of XG − (XG)0 = XG − p(m), corresponding to
an elementary interval Ii, is homeomorphic to Yi (a connected component of
X−X0). As X0 is a point, we get a natural bijection from XG to X. To prove
that this bijection is a homeomorphism it is enough to see that the unique
open set containing the point (XG)0 (resp.X0) is the whole setXG (resp.X).

Case 2: X is of type T3. The construction is completely analogous to
the case of type T2 but simpler. So let us explain it more briefly.

Let f be the translation x 7→ x + 1. As X is of type T3, X0 − X0 is
a finite set cyclically ordered x0, . . . , xi, . . . , xn−1, i ∈ Z/nZ, each point
xi being connected to the next either by a segment Ii ⊂ X0 ∩ X0 or by a
connected component X{xi,xi+1} of X−X0. Notice that each space X{xi,xi+1}
is admissible and of height less than k so that it is the quasi-orbit space of a
finitely generated abelian group Hi. For simplicity, let Hi = {id} if xi, xi+1

are the extremities of a segment Ii.
Choose a0 ∈ R and a sequence a0 < a1 < · · · < an−1 < an = f(a0). The

intervals Ii = ]ai, ai+1[, i ∈ {0, . . . , n − 1}, are elementary intervals whose
saturations are pairwise disjoint. We fix a homeomorphism ϕi : Ii → R. For
every g ∈ Homeo+(R) we denote by gϕi the homeomorphism commuting
with f , equal to the identity off Satf (Ii) and coinciding with ϕ−1

i ◦ g ◦ ϕi
on Ii. We set Gi = {gϕi : g ∈ Hi} ⊂ Homeo+(R). It is a finitely generated
abelian group of homeomorphisms commuting with f and with the homeo-
morphisms of the other Gj . Let G be the finitely generated abelian group
generated by the union {f} ∪

⋃
Gi.

To prove that the quasi-orbit space of G is homeomorphic to X, the point
is to see that for Gi 6= {id} every point x ∈ Ii satisfies {x}∩X0 = {ai, ai+1}.
Let us prove this claim. As X is admissible of type T3, every connected
component X{xi,xi+1} of X − X0 is of type T1 or T2. This implies that Gi
has no fixed point, hence Hi has no fixed point in Ii. As a consequence, the
closure of every orbit of x ∈ Ii contains {ai, ai+1}. The orbit of x is contained
in the f -orbit of Ii whose closure is disjoint from aj , for j /∈ {i, i + 1}; so
the claim is proved.

Case 3: X is of type T4. The construction is completely analogous to
the previous case, and even simpler. As X is of type T4, X0 − X0 is an
ordered finite set {x1, . . . , xi, . . . , xn}. Each point xi is connected to the
next either by a segment Ii,i+1 ⊂ X0 ∩ X0 or by a connected component
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X{xi,xi+1} of X − X0. Furthermore, to x1 (resp. xn) is associated either a
segment I1 ⊂ X0 ∩ X0 or a connected component X{xi} of X − X0. The
spaces X{xi,xi+1}, X{x1} and X{xn} are all admissible and of height less than
k so that they are quasi-orbit spaces of finitely generated abelian groups
Hi,i+1, H1 and Hn respectively.

We choose n points a1 < · · · < an, and for every i we realize Hi,i+1

as a group of homeomorphisms of R which is the identity off ]ai, ai+1[ and
whose restriction to ]ai, ai+1[ is obtained by conjugacy by a homeomorphism
ϕi : ]ai, ai+1[ → R. In the same way we realize H1 on ]−∞, a1[ and Hn on
]an,∞[. All the groups Gi obtained are finitely generated abelian and are
pairwise commuting. All these groups together generate a finitely generated
abelian group whose quasi-orbit space is X.

4.4. Proofs of Theorems 1.9 and 1.10; Examples. Let G⊂Diff2
+(R)

be an abelian subgroup and X be its quasi-orbit space.
The basic tools for studying the orbits of G are Denjoy’s theory [Den]

and Kopell’s lemma [Kop]. Let us recall some basic properties that we will
use here:

(P1) every abelian subgroup G ⊂ Diff2
+(R) admits a minimal set (see

[Sal1] and [God, Exercise 4.12]);
(P2) for every abelian subgroup G ⊂ Diff2

+([0, 1[) (see [Kop]), either
– G has a fixed point in ]0, 1[; or
– G is a cyclic group; or
– every orbit of ]0, 1[ is dense in ]0, 1[;

(P3) if G ⊂ Diff2
+(R) is finitely generated then G has no exceptional

minimal set;
(P4) in [Ima], Imanishi exhibits countable abelian subgroups G ⊂

Diff2
+(R) having an exceptional minimal set.

Proof of Theorem 1.9. Since G is abelian, according to (P1), it has a
minimal set. So it suffices to sketch a proof which consists in considering all
the possible minimal sets.

Case 1: The interior of a minimal set m is nonempty. In that case
m = R and X is a single point.

Case 2: Fix(G) 6= ∅. Let I be a connected component of R−Fix(G). Let
GI be the group of diffeomorphisms of I induced by restricting the elements
of G to I. Notice that G has no fixed point in I. Then, according to (P2),
either

• GI is a cyclic group, and then all orbits of I are stable proper and p(I)
is a circle in X1 ∩X0; or
• every orbit of GI is dense in I, and then p(I) is a maximal point in X1.
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Case 3: Fix(G) = ∅ and G admits a closed orbit G(x). In that case
there is g ∈ G such that g(x) > x and ]x, g(x)[ is an elementary interval.
Let Gx be the stabilizer of x. Then Fix(Gx) corresponds to the union of all
closed orbits of G. Let I be a connected component of R− Fix(Gx) and let
GI denote the group of diffeomorphisms of I induced by Gx. Then GI has
no fixed point in I and exactly as in the previous case, either

• GI is a cyclic group, and then all orbits of I are stable proper and p(I)
is a circle in X1 ∩X0; or
• every orbit of GI is dense in I, and p(I) is a maximal point in X1.

Case 4: G admits an exceptional minimal set. Denjoy’s argument proves
that, if G is finitely generated, then it has no exceptional minimal set.
However, according to (P4), there are examples of abelian groups of C2-
diffeomorphisms of R having an exceptional minimal set m. Each connected
component of R−m is an elementary interval I, and we consider the group
GI induced by the stabilizer of I. Then either

• GI = {idI} and p(I) is an interval in X1 ∩X0; or
• GI is a cyclic group without fixed point, and p(I) is a circle in X1∩X0;

or
• GI is an abelian group of rank larger than 2, and all orbits of GI are

dense in I so that p(I) is a maximal point in X1; or
• GI admits a fixed point in I, and p(I) is homeomorphic to I/G̃I which

has height 1, according to Case 2 above.

The paper [Sal1] builds a nonabelian countable subgroup G of Diff∞+ (R)
without minimal set. Thus, in Theorem 1.9 we need the assumption that G
is abelian.

If in Theorem 1.9 we assume that G is finitely generated, then we obtain
the following result:

Proposition 4.5. Let X be an admissible T0-space. Then X is the
quasi-orbit space of a finitely generated abelian subgroup G ⊂ Diff2

+(R) if
and only if ht(X) ≤ 1 and either

• X is not of type T2 (i.e. X0 has more than 1 point); or
• X is of type T2 and X1 = X −X0 consists of at most two connected

components, which are of type T1, T2, or T3.

Proof. For the “only if” part, notice that a finitely generated abelian
group of C2-diffeomorphisms has no exceptional minimal set (see (P3)).
So if X is of type T2, it corresponds to a unique fixed point or a unique
closed orbit. In the first case, X1 has two connected components, and in
the second case, it is connected. Furthermore, the group GI corresponding
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to each connected component has no fixed point, so that the connected
components of X1 cannot be of type T0 or T4.

Conversely, if X is an admissible space satisfying the extra condition
above, one easily realizes it as the quasi-orbit space of a finitely generated
group of C∞-diffeomorphisms of R. This construction is analogous to the
one for Theorem 1.8. We just need to choose, on each elementary interval, a
diffeomorphism which extends smoothly on the extremities of the interval,
the extremities being C∞-tangent to the identity: this allows us to glue the
dynamics on one elementary interval with the dynamics outside the interval.
We leave the precise construction to the reader.

Theorem 1.10 describes the quasi-orbit spaces of subgroups G⊂Diffω+(R)
of analytic diffeomorphisms. Its proof is identical to the proof of Theo-
rem 1.9: it consists in considering all the possible minimal sets for the
group G, using the following properties (which are analogous to the case
of an abelian group of C2-diffeomorphisms):

• G has at least one minimal set (see [God, Exercice A.12]);
• (an unpublished result of G. Hector, see for instance [God, Theo-

rem A.6]) if G is a group of analytic diffeomorphisms of [0,∞[ without
fixed point in ]0,∞[, then either

– every orbit of x ∈ ]0,∞[ is dense in ]0,∞[, or
– G is a cyclic group.

Remark 4.6. Notice that some admissible T0-spaces X with ht(X) ≤ 2
are not the quasi-orbit space of any subgroup G ⊂ Diffω+(R). For example,
if X0 contains an interval, this means that all the elements of the group
coincide with the identity on that interval. As they are analytic, they are
equal to the identity map and X = X0 = R. We do not know if there are
other restrictions.

Examples. The following example shows that some dynamical proper-
ties of the group can be read off from the topology of the admissible space.

1) Let Y = {a, b1, b2, c1, c2}, equipped with the topology defined by
{a} = {a}, and for i = 1, 2, {bi} = {a, bi}, {ci} = {a, bi, ci} (Fig 3). Then Y
is the singular part of an admissible space of type T2 or T4′′ . A group G such
that X − X0 = Y has necessarily a fixed point or an exceptional minimal
set. Let us show this claim. Assume towards a contradiction that the point
a corresponds to a closed (nonfixed) orbit. As in Section 4.2.3 we can take
g ∈ G such that I = ]x0, g(x0)[ is an elementary interval. We consider the
group H induced by restricting the elements of Gx0 to I. The group H has
no fixed point, but has two distinct minimal sets corresponding respectively
to b1 and b2. So these minimal sets correspond to closed orbits.



286 C. Bonatti et al.

So by Lemma 4.4, {c1} contains two minimal elements of Y −{a}, which
contradicts the hypotheses.

Fig. 3

We now present some examples of spaces Y which cannot be the singular
part of an admissible space.

2) The fact that a nonminimal orbit contains in its closure at most
two minimal sets implies that the set Y = {a1, a2, a3, b} equipped with the
topology defined by {ai} = {ai} and {b} = Y cannot be the singular part
of an admissible space.

Fig. 4

3) The fact that a nonminimal orbit of a group having closed orbits
contains in its closure exactly two closed orbits implies that the set Y =
{a1, a2, b1, b2} equipped with the topology defined by {ai} = {ai} and {b1} =
{a1, a2, b1} and {b2} = {a2, b2} cannot be the singular part of the quasi-orbit
space of a group without fixed point.

Fig. 5

4) Let Y = {a1, a2, a3, a4, b1, b2, b3}, equipped with the topology de-
fined by {ai} = {ai}, {b1} = {a1, a2, b1}, {b2} = {a2, a3, b2} and {b3} =
{a2, a4, b3}. Since Y{a2,a4} 6= ∅ (= {b3}), Y is not the singular part of an
admissible space.

Fig. 6
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5. Codimension one foliations and finite T0-spaces. We recall that
a codimension one foliation on an m-manifold M is in particular an open
equivalence relation on M such that any equivalence class, called a leaf, is
a weakly embedded submanifold of dimension m− 1. Then we can define a
proper leaf, a locally dense leaf, a class of leaves, the leaf space M/F , and
the quasi-leaf space M/F̃ .

We can exhibit an infinite countable well ordered T0-space with only
one maximal element such that every irreducible closed subset has a generic
point but it cannot be the quasi-leaf space of a transversally codimension-one
foliation on a closed manifold [BES, Example 3.10]. Yet for finite T0-spaces,
we obtain Theorem 1.11.

In this section we will prove Theorem 1.12. We first consider the case of
a space Y with height 0, that is, a discrete space. We will use two lemmas:

Lemma 5.1. There is a compact connected oriented three-manifold N
such that, for any k ∈ {1, 2, . . . ,∞}, there is a codimension one oriented
C1-foliation Fk on N with the following properties:

• Fk has a unique minimal set mk;
• any leaf L⊂N−mk is proper and L−L=mk. In particular ht(Fk)=1;
• if X(Fk) is the quasi-leaf space of Fk then the regular part X0 of X

consists of k circles;
• for any connected component c of X0 there is a closed transversal

curve γc embedded in N such that γc intersects each leaf L ⊂ p−1(c)
in exactly one point, and is disjoint from the minimal set mk and from
the leaves corresponding to the other components c′ 6= c of X0;
• there is a closed transversal γmk which intersects every leaf of Fk.

Proof. The manifold N is the product S × S1 where S is a closed con-
nected oriented surface of genus 2. Recall that there is an onto (surjective)
homomorphism ρ from the fundamental group π1(S) onto the free group F2.
The foliation Fk is obtained as a suspension of a morphism of π1(S) in the
set of diffeomorphisms of the circle S1 (which factorizes through ρ), whose
image is the free group generated by:

• a diffeomorphism f : S1 → S1 having a Denjoy minimal set mf and
precisely k orbits of wandering intervals (connected components of
S1−mf ); consider k wandering intervals I1, . . . , Ik which are connected
components of S1 −mf , not pairwise equivalent; hence every orbit of
S1 −mf meets

⋃k
i=1 Ii in precisely one point.

• g is a diffeomorphism of S1 which is the identity map off
⋃k
i=1 Ii and

satisfies g(x) > x for x ∈
⋃k
i=1 Ii.

One easily verifies that the foliation Fk has all the announced properties.
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Lemma 5.2. For any integers l, k > 0 there is an oriented codimension
one C1-foliation Fl,k on a closed oriented connected three-manifold Ml,k with
the following properties:

(1) Fl,k has exactly l minimal sets, m1, . . . ,ml;
(2) every leaf L contained in Ml,k is a proper leaf and L−L is contained

in
⋃l
j=1mj, so the foliation Fl,k has height 1;

(3) the regular part X0(Fl,k) of the quasi-leaf space of Fl,k consists of
precisely kl + 1 circles;

(4) for any connected component c of X0(Fl,k), there is a closed transver-
sal curve γc disjoint from the leaves not in c, and intersecting each
leaf in c in exactly one point;

(5) for every j, there are k components of X0(Fl,k) corresponding to
leaves L such that L− L = mj;

(6) there is one component of X0(Fl,k) corresponding to leaves L such
that L− L =

⋃l
j=1mj;

(7) for every j there is a closed transversal γj intersecting mj and dis-
joint from any mj′ for j′ 6= j; furthermore, γj is disjoint from every
leaf L whose closure is disjoint from mj.

Proof. One builds Fl,k as follows: one considers l disjoint copies
N1, . . . , Nl of the manifold N endowed with the foliation Fk+1 given by
Lemma 5.1. In N1 we remove l−1 disjoint solid tori which are small tubular
neighborhoods of closed transversal curves parallel to the curve γck+1

. In
each Nj , j ∈ {2, . . . , l}, we remove a solid torus parallel to the curve γck+1

.
Hence we get manifolds with boundary Ñ1 (with l−1 boundary components
diffeomorphic to a torus T2, transverse to the foliation) and Ñ2, . . . , Ñl (with
one boundary component diffeomorphic to T2, transverse to the foliation).

Now we glue each torus ∂Ñj , j ≥ 2, to a component of ∂N1, in order
to glue the induced foliation. One gets a closed connected orientable three-
manifold Ml,k endowed with an orientable codimension one foliation Fl,k,
which has all the announced properties (the transversal γj corresponds to
the transversal curves in Nj meeting every leaf of the foliation Fk+1; this
closed curve induces on Ml,k a closed transversal intersecting the minimal
set mj and disjoint from any leaf L whose closure is disjoint from mj).

We are now ready to prove Theorem 1.12.

Proof. The step ht(Y ) = h = 0 of this induction argument is given by
Lemma 5.2.

We assume (induction hypothesis) that Theorem 1.12 is proved for fi-
nite set Y ′ with ht(Y ′) ≤ h − 1 and we consider a finite T0-space Y with
ht(Y ) = h. We denote Y 0 the set of height 0 points in Y , and Y ′ = Y −Y 0.
Notice that Y ′ is a finite T0-space with ht(Y ′) ≤ h − 1 so that one may
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apply the inductive hypothesis. We denote by M ′,F ′ the closed connected
oriented three-manifold endowed with an oriented codimension one foliation,
associated to Y ′ by the inductive hypothesis.

Let l denote the cardinality of Y 0 = {x1, . . . , xl} and k the cardinality of
Y ′ = {y1, . . . , yk}. We consider the foliation Fl,k on the manifold Ml,k given
by Lemma 5.2. We need to consider some closed transversal curves of the
foliations F ′ and Fl,k:
• for every i ∈ {1, . . . , k} we denote by σi a closed transversal of the

foliation F ′ such that a class of leaves y ∈ Y ′ meets σi if and only if
yi ⊂ y; for j ∈ {1, . . . , l} we denote by σj,i a family of disjoint l circles
parallel to σi; hence each σj,i is a closed transversal of F ′ such that a
class of leaves y ∈ Y ′ meets σj,i if and only if yi ⊂ y;
• for every j ∈ {1, . . . , l}, we denote by mj the minimal sets of Fl,k, and

by cj,i, i ∈ {1, . . . , k}, the k connected components of Ml,k −
⋃l
j=1mj

whose leaves L (of the foliation Fl,k) satisfy L − L = mj . We denote
by γj,k the closed transversal curves, given by Lemma 5.2, contained
in the component cj,k and meeting each leaf L ⊂ cj,k in exactly one
point.

One gets the announced foliation F by gluing F ′ to Fl,k according to
the following rules: for any (j, i) such that the point yi ∈ Y ′ ⊂ Y contains
xj ∈ Y 0 ⊂ Y in its closure (xj ∈ yi) one removes two solid tori which are
small tubular neighborhoods of σj,i and of γj,i; hence we create two boundary
components diffeomorphic to T2 and we glue one component to the other in
order to glue F ′ to Fl,k.

6. Open problems

6.1. Quasi-orbit spaces associated to some T0-spaces. Let Y be
a T0-space. Theorem 1.1 allows us to state the following problem:

Problem 6.1. Is it possible to choose E to be compact or at least locally
compact such that Y is homeomorphic to a quasi-orbit space E/G̃?

Example 6.2. Let Y = N ∪ {ω} equipped with the right topology (a
basis for this topology is the family {{x, x + 1, . . .} : x ∈ N} ∪ {ω} [Bou,
Chapitre I p. 89, Exercice 2]). From Theorem 1.1(a) there are a connected
second countable metric space E and an abelian subgroup G of Homeo(E)
such that Y is homeomorphic to the quasi-orbit space E/G̃. [HS, Lemma 2.2]
shows that E need not be a locally compact space; indeed, N = Y − {ω} is
an irreducible closed subset without generic point.

According to Example 6.2, if Y is infinite then the answer to Problem
6.1 is “no”. It remains to study the case of Y finite.
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We would like to know if Theorem 1.8 remains true if G is a group of
diffeomorphisms; more precisely:

Problem 6.3. Let X be an admissible space. Does there exist a finitely
generated abelian subgroup G ⊂ Diff1

+ (R) such that X is the quasi-orbit
space of G?

We know that the answer to this problem is “no” if we replace Diff1
+ (R)

by Diff2
+ (R). In fact the quasi-orbit space X of a subgroup of Diff2

+ (R)
always has ht(X) ≤ 2 (see Theorem 1.9).

Problem 6.4. Let X be an admissible space. Does there exist a finitely
generated subgroup G ⊂ Diffr+ (R), r > 1, such that X is the quasi-orbit
space of G?

If the answer is “no” characterize the admissible spaces which are the
quasi-orbit spaces of a subgroup G ⊂ Diffr+ (R), r > 1.

We know that the answer to this problem is “no” if we replace Diffr+ (R)
by Diffω+ (R) (the group of analytic diffeomorphisms). In fact the quasi-orbit
spaceX of a subgroup of Diffω+ (R) always has ht(X) ≤ 2 (see Theorem 1.10).

Theorem 1.9 asserts that an abelian group G ⊂ Diff2
+(R) has ht(R/G̃)

≤ 2. However, a group G with ht(R/G̃) = 2 necessarily has an exceptional
minimal set and an elementary interval I such that the induced group GI
has a fixed point. As far as we know, there are no examples available.

Problem 6.5. Does there exist a group G⊂Diff2
+(R) with ht(R/G̃) = 2?

More generally, which admissible spaces X with ht(X) ≤ 2 are quasi-
orbit spaces of groups G ⊂ Diff2

+(R)?

Problem 6.6. Which admissible spaces X with ht(X) ≤ 2 are quasi-
orbit spaces of (finitely generated or not) subgroups G ⊂ Diffω+(R)?

6.2. Codimension one foliations and T0-spaces. Theorem 1.11
shows that every finite T0-space is always the singular part of the quasi-leaf
space of a codimension one C1-foliation.

Problem 6.7. Characterize the finite T0-spaces which are the singular
part of the quasi-leaf space of a codimension one Cr-foliation (r ≥ 2).

Problem 6.8. Characterize the T0-spaces with finite singular part which
are the quasi-leaf space of a codimension one foliation.
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Tunisia), l’Institut de Mathématiques de Bourgogne, Dijon, France, and the
cooperation DGRSRT-CNRS. The authors gratefully acknowledge helpful
corrections, comments and suggestions of the referee.



Quasi-orbit spaces associated to T0-spaces 291

References

[BES] E. Bouacida, O. Echi et E. Salhi, Feuilletages et topologie spectrale, J. Math. Soc.
Japan 52 (2000), 447–464.

[Bou] N. Bourbaki, Topologie générale, chapitres 1 à 4, Masson, 1990.
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