
FUNDAMENTA
MATHEMATICAE

171 (2002)

On an analytic approach to the Fatou conjecture

by

Genadi Levin (Jerusalem)

Abstract. Let f be a quadratic map (more generally, f(z) = zd + c, d > 1) of the
complex plane. We give sufficient conditions for f to have no measurable invariant linefields
on its Julia set. We also prove that if the series

∑
n≥0 1/(fn)′(c) converges absolutely,

then its sum is non-zero. In the proof we use analytic tools, such as integral and transfer
(Ruelle-type) operators and approximation theorems.

1. Statements and remarks. The Fatou conjecture says that every
rational map can be approximated by hyperbolic rational maps. We focus on
the family of quadratic polynomials. It follows from a general result [MSS]
that a quadratic polynomial f can be approximated by hyperbolic quadratic
polynomials if and only if f has no (measurable) invariant linefield on its
Julia set. Thus the Fatou conjecture is reduced to the problem whether f
can carry such a linefield. For the quadratic family, the Fatou conjecture is
also equivalent to the following conjectural picture: every component of the
interior of the Mandelbrot set consists of hyperbolic maps; the latter would
also follow from a stronger MLC (“Mandelbrot set is locally connected”)
conjecture [DH].

In what follows we fix a quadratic polynomial f(z) = z2 + c such that
the Julia set J of f is connected, and f has no attracting or parabolic
periodic orbits. (For the basic definitions and necessary background see e.g.
[CG], [Mc].)

Denote by

c0 = 0, c1 = f(0) = c, c2 = f2(0) , . . . , cn = fn(0), . . .

the forward iterates of the critical point c0 = 0. By the assumptions, all cn
are in J .
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Introduce the following sequence of (complex) measures νn. Let δx be
the measure of mass 1 concentrated at the point x (Dirac’s measure). For
any n > 0, set

νn =
1
∆n

n∑

k=1

1
(fk−1)′(c)

δck ,

where
∆n = 1 +

1
|f ′(c)| + . . .+

1
|(fn−1)′(c)| ,

so that the total variation of the measure νn is 1.

Theorem 1. Assume that f admits an invariant linefield on its Julia
set J . Assume that

(∗) (fni−1)′(c)∆ni →∞
along a sequence ni →∞. Then the sequence of measures νni tends to zero
in the weak topology.

If cni → c0 then νni → 0 without the assumption (∗) (which holds auto-
matically in this case).

Note that

|(fni−1)′(c)|∆ni = 1 +
ni−1∑

k=1

|(fk)′(cni−k)|.

We do not know of any example of a non-hyperbolic quadratic map for which
(∗) is not true. (Natural candidates are maps with non-locally connected
Julia sets.) Note however that condition (∗) arises naturally in the proof of
Theorem 1, so it makes sense to study it separately. It turns out that the
same method as in the proof of Theorem 1 works (in the case cni → c0) to
prove that if (∗) does not hold then f has no linefields (see Remark 3 and
Theorem 2).

Remark 1. Each νn is a discrete complex measure of total variation 1.
Therefore, νni → 0 means (informally speaking) that there are a lot of
cancellations in the limit.

If the increasing sequence ∆n, n > 0, is bounded (i.e. the series∑
n≥0 1/|(fn)′(c)| converges to a finite limit ∆) then (fn)′(c)→∞, and, by

Theorem 1, if f has an invariant linefield, then the sequence νn converges
to the zero measure. On the other hand, in this case νn converges to the
measure

ν =
1
∆

∞∑

k=1

1
(fk−1)′(c)

δck ,

which is non-zero (it is purely atomic). Therefore, we have the first part of
the following
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Corollary 1. Assume that the series
∑

n≥1

1
|(fn−1)′(c)|

converges. Then:

(a) f has no invariant linefields on its Julia set.
(b) the series

∑

n≥1

1
(fn−1)′(c)

converges to a non-zero number S∗ 6= 0.

Remark 2. Corollary 1(a) is not new: in [BS] and in [R-L] stronger
results are shown, which imply in particular that the area of J is zero.
Moreover, in [R-L] it is proved that the Mandelbrot set is locally connected
at such c. Note however that the methods of [BS], [R-L] are very different
from ours: the authors use sharp distortion estimates as well as probabilistic
and geometric considerations.

Let us comment on part (b) of Corollary 1. Although our proof of Corol-
lary 1(b) is analytic, it has the following geometrical interpretation. Denote
by c′n the derivative of fn(0) (which is a polynomial in c) with respect to
the parameter c at the point c. Then the statement of Corollary 1(b) means
that c′n/(f

n−1)′(c)→ S∗ 6= 0 as n→∞.
A particular case of Corollary 1(b) (namely, for c such that the series∑
n>0 |(fn)′(c)|−1/2 converges) is proved in [R-L] (by geometrical consid-

erations). The quantity S∗ arises naturally in [R-L] as a similarity factor
between the Mandelbrot set around such a c, and the corresponding Julia
set.

See also Section 4, Remark 13.

Remark 3. Having Corollary 1, we can assume in Theorem 1 that∆n →
∞. In particular, condition (∗) holds if the sequence (fni−1)′(c) stays away
from zero. Moreover, the following statement shows that if cni → c0 and
condition (∗) does not hold then f has no invariant linefields. (This implies,
for example, that if cni → c0 then (∗) can be dropped in the statement of
Theorem 1). Note in this regard that if cni does not tend to the critical
point c0 for any sequence ni (i.e. c0 is not recurrent) then it is well known
that f has no invariant linefields.

Theorem 2. (a) If cni → c0 and the sequence (fni−1)′(c)∆ni does not
tend to infinity , then f has no invariant linefields.

(b) Let (c−n)n≥1 be a sequence of pre-images of the critical point c0 = 0:

f(c−n) = c−(n−1), n = 1, 2, . . .
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If
∞∑

n=1

|(fn)′(c−n)| <∞

then f has no invariant linefields, and moreover ,

S∗ := 1 +
∞∑

n=1

(fn)′(c−n) 6= 0.

Remark 4. S∗ 6= 0 has similar geometric meaning to S∗ 6= 0. Namely,
c′−n(fn)′(c−n) → −S∗ 6= 0 as n → ∞, where c′−n is the derivative with
respect to c.

We prove that similar results hold for renormalizations of f . Given a set
E, define

νn,E =
1

∆n,E

∑

1≤k≤n, ck∈E

1
(fk−1)′(c)

δck ,

where

∆n,E =
∑

1≤k≤n, ck∈E

1
|(fk−1)′(c)| .

Then we have:

Theorem 1′. Assume that f admits an invariant linefield on its Julia
set J . Let J ′ ⊂ J be the Julia set of a renormalization fp : J ′→ J ′ of f .
If (fni−1)′(c)∆ni,J ′ → ∞ for a sequence ni → ∞, then the sequence of
measures νni,J ′ tends to zero in the weak topology.

As above, we have

Corollary 1′. Assume that the series
∑

n≥1, cn∈J ′

1
|(fn−1)′(c)|

converges. Then f has no invariant linefields on its Julia set.

We derive Theorems 1 and 1′ from the propositions below.
Introduce the following notations:

S1 = 1, Sn = 1 +
1

f ′(c)
+ . . .+

1
(fn−1)′(c)

, n > 1;

let Q(c0) = 0, Q(c1) = 1, and in general

Q(cn) = (fn−1)′(c)Sn = (fn−1)′(c)
(

1 +
1

f ′(c)
+ . . .+

1
(fn−1)′(c)

)
.

For the meaning of the values Q(cn), see Remark 6(a).

The following statements are of independent interest.
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Proposition 1. Assume that f admits a non-trivial invariant linefield
on its Julia set J . Then:

(a) there exists M1 such that

|Q(cn)| ≤M1, n = 1, 2, . . . ;

(b) the sequence Q(cn) extends to a continuous function Q on the plane
which has the following properties:

• there is a constant K (which depends only on f) so that , for every
x, y ∈ C,

|Q(x)−Q(y)| ≤ K|x− y| log |x− y|−1;

• Q is holomorphic outside J ;
• for every point z of the plane such that (fn)′(z)→∞ as n→∞,

Q(z) = −
∞∑

n=1

1
(fn)′(z).

Proposition 1 immediately implies

Proposition 2. Assume that f has an invariant linefield on J . Then
the function which is defined outside J by the latter formula extends uniquely
to a continuous function on the plane, namely , to the function Q.

Note that the geometrical meaning of Propositions 1–2 will become trans-
parent in view of Remark 12 of Section 2.

Corollary 2. Assume that f has a non-trivial invariant linefield on J .
If (fni)′(c)→∞ along a sequence ni →∞, then

|Sni+1| =
∣∣∣∣1 +

1
f ′(c)

+ . . .+
1

(fni)′(c)

∣∣∣∣ ≤
M1

|(fni)′(c)| → 0.

In particular , if (fn)′(c)→∞ as n→∞, then

1 +
1

f ′(c)
+ . . .+

1
(fn)′(c)

+ . . . = 0.

Remarks. 5. The approach in Section 2 is somewhat similar to [Mak],
where probably for the first time the function µ̂ is used to study the problem.
A difference with [Mak] is that I derive and use a functional equation for
µ̂ (see Section 2; Proposition 1 of this paper was proved before I became
acquainted with [Mak]).

Proposition 1 strengthens Theorem B of [Mak] (being applied to the
quadratic polynomials).

6. Note that part (a) of Proposition 1 (but not part (b) or Proposition 2
or Proposition 3′(b) below) follows immediately from the following two facts,
where the first one is easy to verify, and the second one is well known:
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(a) Q(cn) = c′n, where, as in Remark 2, c′n denotes the derivative of fn(0)
with respect to c;

(b) the family of polynomials fn(0) is normal at c (if f has an invariant
linefield).

7. All the results (except for Propositions 1 and 2) and their proofs
hold without any changes if we replace the assumption: “f has an invariant
linefield on its Julia set” by a weaker assumption: “the sequence Q(cn) is
bounded” (for the meaning of the values Q(cn), see Remark 6(a)).

8. Our approach carries over to non-quadratic maps as well. More ex-
actly, all results and proofs hold for zd + c, d > 1. (Then, in Theorem 1′,
the set J ′ can be the Julia set of a generalized renormalization as well.) For
other rational maps, some modifications of the method are needed.

To prove the main results of the paper, i.e. Theorems 1 and 1′, and
Corollary 1(b), we introduce and study the following sequence of functions:
for every n ≥ 1, let

φn(z) =
1

z − c1
+

1
f ′(c)(z − c2)

+ . . .+
1

(fn−1)′(c)(z − cn)
,

which is a holomorphic function outside J .

Proposition 3. Assume that f has an invariant linefield on J .

(a) Let V be a neighborhood of J such that U = f−1(V ) is contained
in V . There exists a constant M2, which depends only on f and V , such
that , for all n,

�

V \U
|φn(z)| dσz ≤

M2

|(fn−1)′(c)| .

Here dσ is the Lebesgue measure on the plane.
(b) For every compact set K on the plane such that K ∩ J = ∅, there

exists a constant M3, depending only on f and K, such that , for all n and
every z ∈ K,

|φn(z)| ≤ M3

|(fn−1)′(c)| .

In particular,

Corollary 3. Assume that f has an invariant linefield on its Julia
set J . Assume also that (fni−1)′(c) → ∞ along a sequence ni → ∞. Then
the sequence of functions φni tends to zero uniformly on compact subsets of
C \ J .

Making use of the same ideas as in the proof of Proposition 3, we can
substantially refine the statements above as follows. Roughly speaking, we
show that all statements hold for the renormalizations of f . To be more
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precise, let ω denote the ω-limit set of the critical point of f . Call a bounded
domain Ω on the plane a Y-domain if the boundary of Ω intersects the Julia
set J at finitely many points a, and every such a is (pre)periodic under f .
(One can assume that ∂Ω outside J consists of finitely many arcs of external
rays and equipotentials of f ; in what follows, Y-domains will be finite unions
of Yoccoz puzzle pieces of f .)

Remark 9. It follows from a theorem of Yoccoz (see [H]) that a quadra-
tic polynomial with an invariant linefield has to be infinitely renormalizable.
For an appropriate construction of the puzzle structure for infinitely renor-
malizable maps see e.g. [Le]. On the other hand, our approach carries over
to non-quadratic maps as well (see Remark 8).

Proposition 4. Assume that f has an invariant linefield on J . Then
for every Y-domain Ω with closure disjoint from ω, there exists a constant
M5, depending only on f and Ω, such that , for all n and every z ∈ Ω,

|φn(z)| ≤ M5

|(fn−1)′(c)| .

To put the latter statement in the right context, observe that the compact
set ω ⊂ J is disjoint from the set of all (pre)periodic points of f (the latter set
is dense in J). Indeed, it is known that otherwise J has zero area. In partic-
ular, the boundary of the Y-domain Ω is always disjoint from ω, and we can
assume in Proposition 4 that Ω itself is disjoint from ω. It also shows that ω
is a proper subset of J . More exactly, denote by Y (ω) the intersection of all
covers of ω by puzzle pieces. Then the compact set Y (ω) ⊂ J is also disjoint
from the set of (pre)periodic points of f . Note that if J happens to be locally
connected, then Y (ω) = ω and ω is a Cantor set (otherwise the boundary
of a puzzle piece would intersect an arc in ω at a (pre)periodic point).

Let us draw two corollaries.

Corollary 4. Assume that f has an invariant linefield on J . For every
compact set K on the plane such that K ∩Y (ω) = ∅, there exists a constant
M , depending only on f and K, such that , for all n and every z ∈ K,

|φn(z)| ≤ M

|(fn−1)′(c)| .

In turn, this implies that the same estimates hold for parts of φn corre-
sponding to renormalizations of f !

Namely, given a set E, define

φn,E(z) =
∑

1≤k≤n, ck∈E

1
(fk−1)′(c)(z − ck)

,

Sn,E =
∑

1≤k≤n, ck∈E

1
(fk−1)′(c)

.
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Proposition 3′. Assume that f has an invariant linefield on J . Let
J ′ ⊂ J be the Julia set of a renormalization fp : J ′ → J ′ of f . Then:

(a) For every compact set K on the plane such that K ∩ J ′ = ∅, there
exists a constant M6 such that , for all n and every z ∈ K,

|φn,J ′(z)| ≤ M6

|(fn−1)′(c)| .

(b) There exists a constant M7 such that , for every n,

|Sn,J ′ | ≤
M7

|(fn−1)′(c)| .

Remark 10. For example, if (fn)′(c) → ∞, then not only the sum∑
n≥0 1/(fn)′(c) is zero, but any subseries with indices corresponding to

a renormalization of f also has zero sum. Note that it is not clear how to
derive all these properties for the renormalization of the map f using the
corresponding properties of another quadratic map to which the renormal-
ization of f is quasi-conformally conjugate.

Acknowledgements. I thank Peter Makienko for useful discussions
and for pointing out Lemma 7; Alex Eremenko, Benjamin Weiss, Feliks Przy-
tycki for useful discussions; and Sebastian van Strien for careful reading of
part of the manuscript and for stimulating and helpful comments. I would
also like to thank the referee for suggesting a shorter proof of Lemma 6.
Part of this work was done during my visit to the Institute of Mathematics,
Polish Academy of Sciences, Warsaw (first half of October, 2000). I thank
the Institute for invitation and hospitality.

2. Proof of Proposition 1. Assume that f does have a measurable
invariant linefield on J . Then the area of J is positive, and there is a function
µ defined almost everywhere on J such that

|µ(z)| = 1 on a subset of J of positive measure,(1)

µ(f(z)) = (f ′(z)/|f ′(z)|)2µ(z) a.e.(2)

Define also

(3) µ = 0 off J .

Consider the so-called Cauchy transform of µ:

µ̂(z) =
� µ(w)
z − w dσw,

where the integral is taken over the whole plane.

Lemma 1. The function µ̂(z) is defined for every z, is bounded and con-
tinuous on the plane (holomorphic outside J); moreover , there is a constant
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K such that

|µ̂(z1)− µ̂(z2)| ≤ K|z1 − z2| log |z1 − z2|−1

for every z1, z2.

Proof. All these properties of the Cauchy transform of an L∞ function
with compact support are standard and can be easily verified.

Complement to Lemma 1. It can be shown that µ̂ satisfies a stronger
Zygmund condition: there is M such that, for every z, h,

|µ̂(z + h) + µ̂(z − h)− 2µ̂(z)| ≤M |h|.
In what follows, an important role is played by the following formula:

(∗∗)
∑

f(w)=u

1
[f ′(w)]2(z − w)

=
1

f ′(z)

(
1

u− c +
1

f(z)− u

)
.

It can be easily derived e.g. by applying the Residue Theorem to the integral
(2πi)−1 �

Γ
[f ′(w)(f(w)− u)(z − w)]−1 dw, where Γ is a contour around the

infinity.
(Note that all this holds also for f(z) = zd + c, with any integer d ≥ 2.)

Lemma 2. µ̂ satisfies the following functional equation:

(4) f ′(z)µ̂(z)− µ̂(f(z)) = −µ̂(c).

Proof. We use the property (2) of µ, make a change of variable u = f(w)
in the integral which defines µ̂, and then use the identity (∗∗):

µ̂(z) =
�
µ(u)

∑

f(w)=u

1
[f ′(w)]2(z − w)

dσu

=
1

f ′(z)

�
µ(u)

(
1

u− c +
1

f(z)− u

)
dσu =

1
f ′(z)

(µ̂(f(z))− µ̂(c)).

Lemma 3. µ̂(c) 6= 0.

Proof. Assume the contrary. Then from the functional equation (4) we
see that µ̂(z) = µ̂(fn(z))/(fn)′(z), n > 0. If z 6∈ J , then fn(z) → ∞, and
we get µ̂(z) = 0 off J . Since µ̂ is continuous on the plane and J is nowhere
dense, µ̂ is identically zero. But µ is a generalized derivative of µ̂ with respect
to z [Ah], hence, it is zero as well, a contradiction.

Now we can normalize µ̂: define

(5) Q(z) = µ̂(z)/µ̂(c).

Thus we have

(6) f ′(z)Q(z)−Q(f(z)) = −1 for every z.
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Remark 11. This functional equation (with a spectral parameter before
Q(f(z))) has already been studied in [LSY] as an equation for the Cauchy
transform of eigenvectors of the adjoint operator of some Ruelle operator
T (see below) which was defined in [LSY] for hyperbolic maps. See also
Remark 13 and references there.

Lemma 4. (a) Q(0) = 0.
(b) If for some z, (fn)′(z)→∞ as n→∞, then

Q(z) = −
(

1
f ′(z)

+ . . .+
1

(fn)′(z)
+ . . .

)
.

(c) Q(cn) is indeed equal to (fn−1)′(c)(1 + 1/f ′(c) + . . .+ 1/(fn−1)′(c))
(consistent with the definition in the Introduction).

Proof. It follows from (2) that µ is an even function. J is symmetric
with respect to the origin. Hence,

µ̂(0) =
� µ(w)

w
dσw = 0.

This proves (a).
(b)–(c) follow from the functional equation (6) for Q(z).

Parts (a)–(b) of Proposition 1 follow immediately from Lemmas 1 and 4.

Remark 12. In fact, for any z ∈ C, Q(z) has a transparent geometrical
meaning. Recall [MSS] that since f(z) = fc(z) = z2 + c has an invariant
linefield, there is a neighborhoodW of c such that, for every ĉ ∈W , the maps
fc(z) and fĉ(z) = z2+ ĉ are conjugate by a quasi-conformal homeomorphism
hĉ of the plane. Moreover, for a.e. z ∈ C, the dilatation

∂hĉ(z)
∂z

/∂hĉ(z)
∂z

is holomorphic in ĉ. The interpretation of Q(z) is now the following: for
every z,

Q(z) =
∂hĉ(z)
∂ĉ

∣∣∣∣
ĉ=c

.

In order to prove this, we set P (z) = (∂hĉ(z)/∂ĉ)|ĉ=c and then observe
the following. By the theory of quasi-conformal mappings [Ah], P (z) is a
continuous function on the plane. On the other hand, we check that if z is
outside the Julia set of fc, P (z) is holomorphic in z, bounded at infinity,
and satisfies the same functional equation (6). All this follows easily from
the expression of hĉ outside the Julia set as B−1

ĉ ◦ Bc(z), where Bĉ is the
Böttcher coordinate of fĉ outside its Julia set. Another way to see that
P satisfies (6) is to differentiate the identity hĉ(fc(z)) = [hĉ(z)]2 + ĉ with
respect to ĉ.
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3. Proof of Proposition 3. For every function g which is defined and
holomorphic outside J , define

(Tg)(z) =
∑

f(w)=z

g(w)
(f ′(w))2 ,

which is again a holomorphic function outside J .

Lemma 5.
(Tφn)(z) = φn +Rn(z),

where

Rn(z) =
1

(fn)′(c)
· 1
z − cn+1

− Sn+1

z − c1
=

1
(fn−1)′(c)

· cn
2(z − c)(z − cn+1)

− Sn
z − c

=
1

(fn−1)′(c)
· T
(

1
z − cn

)
− Sn
z − c .

Proof. Let ga(z) = 1/(z − a), where a ∈ J is a parameter, and z is not
in J . The identity (∗∗) means that

(T (ga))(z) =
1

f ′(a)
·
(

1
z − f(a)

− 1
z − c1

)
.

Then the desired formulae are easily verified.

Choose a bounded neighborhood V of J such that U = f−1(V ) is con-
tained in V .

Now we use an idea which is somewhat similar to [Ts]. We can write
�

V \J
|φn(z)| dσz =

�

V \J
|(Tφn)(z)−Rn(z)| dσz

≤
�

V \J

∑

f(w)=z

|φn(w)|
|f ′(w)|2 dσz +

�

V \J
|Rn(z)| dσz

=
�

U\J
|φn(z)| dσz +

�

V \J
|Rn(z)| dσz.

Therefore,
�

V \U
|φn(z)| dσz ≤

�

V \J
|Rn(z)| dσz

≤ 1
|(fn−1)′(c)|

�

V \J

∣∣∣∣T
1

z − cn

∣∣∣∣ dσz + |Sn|
�

V \J

dσz
|z − c1|

≤ 1
|(fn−1)′(c)|

�

U\J

dσz
|z − cn|

+ |Sn|
�

V \J

dσz
|z − c1|

.
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Given the domain V , find a constant M4 such that, for every a ∈ V ,
�

V

dσw
|w − a| ≤M4.

Then

(∗∗∗)
�

V \U
|φn(z)| dσz ≤M4

(
1

|(fn−1)′(c1)| + |Sn|
)
.

Assume (from now on) that f has an invariant linefield on J . Then, by
Proposition 1(a), |Sn| ≤M1/|(fn−1)′(c1)|. Therefore,

�

V \U
|φn(z)| dσz ≤

M2

|(fn−1)′(c1)| ,

where M2 = M4(1 +M1), which proves part (a) of Proposition 3.

To prove part (b), note that any compact set K disjoint from J can be
covered by finitely many domains of the form V \ f−1(V ), where V is as in
part (a). Therefore, part (b) will be an immediate consequence of (a) and
the following well known simple fact.

Lemma 6. Let Ω be a domain of the plane, and K ⊂ Ω a compact set.
Then there exists a constant M such that for every function g holomorphic
in Ω, and every z ∈ K,

|g(z)| ≤M
�

Ω

|g(w)| dσw.

Proof. Let δ be the distance between K and ∂Ω. For z ∈ K, we have

g(z) =
1
πδ2

�

D(z,δ)

g(w) dσw,

so

|g(z)| ≤ 1
πδ2

�

D(z,δ)

|g(w)| dσw ≤
1
πδ2

�

Ω

|g(w)| dσw,

and we can take M = 1/(πδ2).

4. Proof of Theorem 1 and Corollary 1(b). So, we assume that f
has an invariant linefield on J , and that

(fni−1)′(c)∆ni →∞.
Recall that

∆n = 1 +
1

|f ′(c)| + . . .+
1

|(fn−1)′(c)| ,
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νn =
1
∆n

n∑

k=1

1
(fk−1)′(c)

δck .

Introduce functions ψn defined and holomorphic outside J as follows:

ψn(z) =
1
∆n

φn(z).

Then one can write

ψn(z) =
�

J

dνn(w)
z − w .

On the other hand, it follows from Proposition 3(b), and the assumption,
that the sequence ψni tends to zero uniformly on compact sets outside J .
Since the total variation of each measure νn is equal to 1, every subsequence
of νn contains a converging subsubsequence. So, we have to prove that if a
subsequence of νni converges to a measure ν, then ν = 0. From the above
we deduce that the function �

J

dν(w)
z − w

is equal to zero for every z outside J .
The following statement was pointed out to me by P. Makienko (cf. [Ga,

Ch. 2, Th. 8.1]):

Lemma 7. Let m be a complex measure on the plane with a compact
support K such that any continuous function on K can be uniformly ap-
proximated by rational functions with poles outside K. If

� dm(w)
z − w = 0

outside K, then m = 0.

Proof. If r is any rational function as above, then choosing a contour γ
enclosing K close enough to K and applying Fubini’s theorem shows that

�
r(z) dm(z) =

�
dm(z)

1
2πi

�

γ

r(w)
z − w dw =

1
2πi

�

γ

r(w) dw
� dm(z)
z − w dz = 0.

If now g is continuous on K, for any ε > 0 find r as above such that
|g(z) − r(z)| < ε/|m| on K, where |m| is the total variation of m. Then
| � g(z) dm(z)| ≤ | � r(z) dm(z)|+ ε = ε. Thus � g dm = 0 for any continuous
function on K, and the statement follows.

Since f has an invariant linefield, the Julia set J does not separate the
plane. Therefore, by Mergelyan’s theorem [Ga] the compact set K = J
satisfies the condition of Lemma 7. As a consequence, we conclude that
ν = 0.
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Let us prove Corollary 1(b) by contradiction. Assume that the sequence
Sn converges to zero. Introduce the following (complex) measure:

ν′ =
∞∑

k=1

1
(fk−1)′(c)

δck .

The definition is correct, because the series
∑
k>0 1/|(fk−1)′(c)| converges.

Now define

φ(z) =
�

J

dν′(w)
z − w .

Then:

(1) φ is a holomorphic function in each component of C \ J , and φ is
locally integrable on the plane.

Since Sn → 0, the formula of Lemma 5 shows that

(2) Tφ = φ off J .

Claim. For every quadratic polynomial f , the conditions (1)–(2) above
imply φ = 0 off J .

Proof. Let Ω be a component of C \ J . We prove that φ = 0 on Ω. If
Ω is the unbounded component, then we choose an open set V in Ω such
that U = f−1(V ) is a subset of V and V \ U is a non-empty open set.
We know that Tφ = φ implies �

V
|φ| dσ ≤ �

U
|φ| dσ, i.e. �

V \U |φ| dσ = 0,
hence, by Lemma 6, φ = 0 on Ω. If Ω is a bounded component of C \ J ,
set VΩ =

⋃
n≥0 f

−n(Ω). If Ω is not periodic (just eventually periodic), then
VΩ \ f−1(VΩ) = Ω. Then again �

Ω
|φ| dσ = 0, and φ = 0 on Ω. Finally, let

Ω be a periodic component of period p > 0: f p(Ω) = Ω. Then Ω is a Siegel
disc, and f−1(Ω) consists of two different components, one of which is not
periodic. By the above, φ = 0 on this component. Since Tφ = φ, this implies
that φ(fp(w))[(fp)′(w)]2 = φ(w) for every w ∈ Ω. Conjugating fp with an
irrational rotation, we see that again φ = 0 on Ω. The claim is proved.

Thus φ = 0 outside J . By [Ga, Ch. 8, Corr. 8.4], the compact set J
satisfies the condition of Lemma 7. By Lemma 7, ν ′ = 0, a contradiction.

Remark 13. Corollary 1(b) can be generalized at least in two directions.
One of them is the generalization to rational functions which satisfy the
summability condition at the critical points in the Julia set. Let us describe
another one. Namely, let us show that under the condition of Corollary 1,
for any complex number λ such that |λ| ≤ 1, we have

D(λ) 6= 0, where D(λ) = 1 +
∞∑

n=1

λn

(fn)′(c)
.



Fatou conjecture 191

The proof is essentially the same as above: fix λ with |λ| ≤ 1, and let

φλ(z) =
∞∑

k=1

λk−1

(fk−1)′(c)(z − ck)
.

If D(λ) = 0, then λ·Tφλ = φλ, and hence φλ = 0 off J , again a contradiction
with Lemma 7 (see also proof in the next section). This proof even shows
that D(λ) 6= 0 inside the circle of convergence without the summability
condition, provided |λ| ≤ 1. Note that D is the Fredholm determinant of
the (Ruelle) operator T in an appropriate function space (cf. [LSY], [LSY1],
[Le1], [ELS]).

5. Proof of Theorem 2. We prove first part (b) and then derive (a)
from (b). So, assume that the series

1 +
∑

n≥1

(fn)′(c−n)

converges absolutely, and denote by S∗ its sum. Introduce the function

φ−(z) =
1
z

+
∞∑

n=1

(fn)′(c−n)
z − c−n

,

defined and holomorphic outside J . Now we continue as in the proofs above.
First, check that

(Tφ−)(z) = φ−(z)− S∗

z − c1
.

Assume now that S∗ = 0. Then Tφ− = φ−. Applying the Claim from the
previous section, we find that φ− = 0 outside J . On the other hand,

φ−(z) =
� dν−(w)
z − w

with the measure
ν− = δc0 +

∑

n≥1

(fn)′(c−n)δc−n ,

a contradiction with Lemma 7.
Thus we have proved that S∗ 6= 0.
To finish the proof of part (b), we assume that f does have an invariant

linefield, and show that this implies S∗ = 0. Indeed, then the functional
equation (6) for the function Q gives us

1 +
n−1∑

k=1

(fk)′(c−k) = −(fn)′(c−n)Q(c−n).
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Since
∑
n≥1 |(fn)′(c−n)| < ∞, it follows that (fn)′(c−n) → 0. Clearly, by

Proposition 1, Q is bounded. Hence, (fn)′(c−n)Q(c−n) → 0, and we con-
clude that S∗ = 0, a contradiction.

To derive (a) from (b), assume that there is M such that, for every i,

|(fni−1)′(c)|∆ni = 1 +
ni−1∑

k=1

|(fk)′(cni−k)| < M.

Using the standard diagonal procedure and passing to a subsequence, one
can assume that, for every k, the sequence cni−k converges to some point
c−k so that f(c−k) = c−(k−1), k ≥ 1, and c0 = 0. It is easy to see that

1 +
∞∑

k=1

|(fk)′(c−k)| ≤M,

because for every fixed N ,

1 +
N∑

k=1

|(fk)′(c−k)| = lim
i→∞

(
1 +

N∑

k=1

|(fk)′(cni−k)|
)
≤M.

It remains to apply part (b).

6. Proof of Proposition 4. Let Ω be a Y-domain and a be a point of
∂Ω ∩ J . Since the point a is (pre)periodic, there exists a sequence of puzzle
pieces of f which shrink to a. Therefore and because of Proposition 3(b), it
is enough to prove the statement assuming that Ω is one of the puzzle pieces
disjoint from ω. Moreover, one can assume that there is a neighborhood Ω ′

of Ω also disjoint from ω. Hence, every φn is holomorphic in Ω′ (ω contains
all cj). In view of Lemma 6, it is enough to find a constant M such that, for
all n, �

Ω

|φn(z)| dσz ≤
M

|(fn−1)′(c)| .

(Strictly speaking, the required estimate will then hold not for Ω itself but
for the puzzle pieces inside Ω.)

We estimate the latter integral, say I, in two steps.

Step 1. First, we express Ω as a union of pairwise disjoint sets Ek\Ek+1,
k = 0, 1, . . . (such that Ek+1 ⊂ Ek), and the rest

⋂
k≥0 Ek, which is a set of

zero area. Hence,
�

Ω

|φn(z)| dσz =
∞∑

k=0

Ik

where
Ik =

�

Ek\Ek+1

|φn(z)| dσz.
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Second, for every k we find an open set Vk such that

Ik ≤
M8

|(fn−1)′(c1)|Ck,

where M8 is an absolute constant, and

Ck = sup
j>0

�

Vk

dσz
|z − cj |

.

It is easy to see that the supremum is finite.

Step 2. Then we show that Ck tends to zero at least exponentially fast
as k →∞.

Steps 1–2 will prove the statement.

To construct the sets Ek and Vk, we need some general (and well known)
properties of first return maps.

Let E be any open set. Denote by DE the set of points x such that there
is n > 0 so that fn(x) ∈ E. Then define the first return map RE : DE → E
to E as

RE(x) = fp(x),

where p > 0 is the minimal n as above. From now on E will be a collection
of disjoint puzzle pieces. Then every component of DE is either disjoint from
or contained in E. Define

D0
E = DE ∩ E, D∞E = DE \D0

E,

and let fE be the restriction of RE to D0
E . Note that D0

E = f−1
E (E). Let also

V (E) = E ∪DE = E ∪D∞E . The following two lemmas are quite standard
and easy to verify:

Lemma 8.

1. f−1(V (E)) ⊂ V (E).
2. V (E) \ f−1(V (E)) = E \D0

E.

Lemma 9.

1. DD0
E

= R−1
E (D0

E).
2. RD0

E
= RE |R−1

E (D0
E).

Step 1. Define now E0 = Ω, E1 = D0
E0
, . . . , Ek = D0

Ek−1
, . . . Then

Ek ⊂ Ek−1. From Lemma 9, DEk = R−1
E (Ek) and Ek = f−kE (Ω). Set further

Vk = V (Ek) = Ek ∪DEk . Then Vk = Ek ∪R−1
E (Ek). From Lemma 8,

f−1(Vk) ⊂ Vk and Vk \ f−1(Vk) = Ek \Ek+1.
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This allows us to repeat an estimate of the proof of Lemma 5 and write

Ik =
�

Ek\Ek+1

|φn(z)| dσz

≤ 1
|(fn−1)′(c1)|

�

f−1(Vk)

dσz
|z − cn|

+
M1

|(fn−1)′(c1)|
�

Vk

1
|z − c1|

dσz

≤ M8

|(fn−1)′(c1)|Ck,

where M8 = M1 + 1 is an absolute constant (depending on f), and

Ck = sup
j>0

�

Vk

dσz
|z − cj |

.

This finishes Step 1.

Step 2. Let us prove the statements about the measure of the set
⋂
k≥0Ek

and the estimates of Ck. Let U be any component of DEk . Then an iterate f q

of f maps U univalently onto Ω, and, moreover, a neighborhood U ′ of U onto
the neighborhood Ω′ of Ω. Therefore, the distortion of f q on U is bounded
uniformly over all U and all k. If now W is the union of all components
of DEk+1 which are contained in the component U of DEk , then U \W is
mapped by f q onto Ω \E1 with uniformly bounded distortion. Hence, if |A|
denotes the area of a set A, there is a universal λ0 between 0 and 1 such that
|U \W | > λ0|U |. In particular, it follows that |Ek| < (1 − λ0)k|Ω|, k > 0.
This shows that

⋂
k≥0 Ek has zero area.

Let us pass to the estimate of Ck. The set Vk consists of infinitely many
components Uki , i ∈ Λk. Denote by Li,k the Euclidean distance between
Uki and the set ω (which contains all cj), and by di,k the diameter of Ui,k.
Bounded distortion considerations show that there is an absolute positive
constant λ1 such that Li,k > λ1di,k for all k and i. Let d(A, b) denote the
distance between a set A and a point b. Then, for each cj and all z ∈ Uki ,

|z − cj | < d(Uki , cj) + di,k < d(Uki , cj) +
Li,k
λ1
≤
(

1 +
1
λ1

)
d(Uki , cj),

and, hence,

λ2
|Uki |

d(Uki , cj)
≤

�

Uki

dσz
|z − cj |

≤ |Uki |
d(Uki , cj)

,

where λ2 = 1/(1 + 1/λ1). Therefore,

λ2Σ(k, j) ≤
�

Vk

dσz
|z − cj |

≤ Σ(k, j),
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where

Σ(k, j) =
∑

i∈Λk

|Uki |
d(Uki , cj)

.

Since

Ck = sup
j>0

�

Vk

dσz
|z − cj |

is finite, we see that
Σ(k) = sup

j>0
Σ(k, j)

is finite as well, and
λ2Σ(k) ≤ Ck ≤ Σ(k)

for every k ≥ 0. Let us estimate Σ(k + 1)/Σ(k). Let Uk+1
r be all compo-

nents of Vk+1 which are contained in Uki . Then we know that
∑
r |Uk+1

r | ≤
(1 − λ0)|Uki |. On the other hand, for every cj and every r, d(Uk+1

r , cj) ≥
d(Uki , cj). Hence, Σ(k + 1, j) ≤ (1− λ0)Σ(k, j), and finally

Σ(k + 1) ≤ (1− λ0)Σ(k) ≤ (1− λ0)kΣ(0),

that is,
∑

k≥0

Ck ≤
∑

k≥0

Σ(k) ≤ Σ(0)
λ0

.

This completes Step 2 and the proof of Proposition 4.

7. Proof of Corollary 4, Proposition 3′, and Theorem 1′. Corol-
lary 4 is an immediate consequence of Proposition 4 because any compact set
K outside Y (ω) is covered by finitely many puzzle pieces which are disjoint
from Y (ω).

Let us prove Proposition 3′. Given a compact set K outside J ′, find a
puzzle pieceΩ such that the closure ofΩ is disjoint fromK, J ′ is contained in
the closure ofΩ, andΩ contains only those iterates of the critical point which
are inside J ′. Let γ = ∂Ω. Note that γ ∩ Y (ω) = ∅. Then, by Corollary 4,
there is M such that for all n and z ∈ γ,

|φn(z)| ≤ M

|(fn−1)′(c)| .

Therefore, for any a ∈ K we can write

|φn,J ′(a)| =
∣∣∣∣

1
2πi

�

γ

φn(z)
a− z dz

∣∣∣∣ ≤
M6

|(fn−1)′(c)| ,

with M6 = (2π)−1LM/d(K, γ), where L is the length of γ and d(K, γ) is
the distance between the disjoint compact sets K and γ.
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In the same way, we estimate

Sn,J ′ =
1

2πi

�

γ

φn(z) dz.

This proves (a)–(b).
Theorem 1′ is proved similarly to the proof of Theorem 1 using Propo-

sition 3′(a).
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[LSY] G. Levin, M. Sodin and P. Yuditskĭı, Ruelle operators with rational weights for
Julia sets, J. Anal. Math. 63 (1994), 303–331.

[LSY1] —, —, —, A Ruelle operator for a real Julia set , Comm. Math. Phys. 141 (1991),
119–132.

[Mak] P. Makienko, Remarks on Ruelle operator and invariant line fields problem,
preprint, July 2000.

[Mc] C. McMullen, Complex Dynamics and Renormalization, Ann. of Math. Stud.
135, Princeton Univ. Press, 1994.
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