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Commuting involutions whose fixed point set
consists of two special components

by

Pedro L. Q. Pergher (São Carlos) and
Rogério de Oliveira (Três Lagoas)

Abstract. Let Fn be a connected, smooth and closed n-dimensional manifold. We
call Fn a manifold with property H when it has the following property: if Nm is any
smooth closed m-dimensional manifold with m > n and T : Nm → Nm is a smooth
involution whose fixed point set is Fn, then m = 2n. Examples of manifolds with this
property are: the real, complex and quaternionic even-dimensional projective spaces RP 2n,
CP 2n and HP 2n, and the connected sum of RP 2n and any number of copies of Sn × Sn,
where Sn is the n-sphere and n is not a power of 2. In this paper we describe the equiv-
ariant cobordism classification of smooth actions (Mm;Φ) of the group Zk

2 on closed
smooth m-dimensional manifolds Mm for which the fixed point set of the action consists
of two components K and L with property H, and where dim(K) < dim(L). The de-
scription is given in terms of the set of equivariant cobordism classes of involutions fixing
K ∪ L.

1. Introduction. A natural question in equivariant cobordism is the
classification, up to cobordism, of smooth Zk2 -actions (Mm;Φ), defined on
closed and smooth m-dimensional manifolds Mm, with a given condition
on the fixed data of Φ. Here, Zk2 is considered as the group generated by k
commuting involutions T1, . . . , Tk, and the fixed data of Φ is η =

⊕
% ε% → F,

where F is the fixed point set of Φ and η =
⊕

% ε% is the normal bundle of F
in Mm decomposed into eigenbundles ε% with % running through the 2k − 1
nontrivial irreducible representations of Zk2 . For example, see [12] (F =
real projective space RP 2n and k = 1), [3] (F with constant dimension n,
dim(η) ≥ n and k = 1), [2, Section 31] (F = a set of isolated points and
k = 2), [10] (F = union of two real projective spaces and k = 1) and [5] (F
= a connected n-dimensional manifold, dim(η) ≥ (2k − 1)n and any k).
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An interesting feature of this question is that, in some cases, the clas-
sification for k = 1 completely determines the corresponding classification
for any k ≥ 1. For example, this happens when F = RP 2n, CP 2n, HP 2n

or QP 2, the real, complex or quaternionic even-dimensional projective space,
or the Cayley projective plane (see [12] and [1]); this also happens when
F = V n ∪ {p}, where p is a point and V n is any n-dimensional connected
manifold with n > 0 (see [6]). In all these cases, the equivariant cobor-
dism classes of Zk2 -actions fixing F can be represented by a special set of
Zk2 -actions obtained from involutions fixing F .

More precisely, this can be placed in the following general setting. Let
(W ;T ) be any involution. For each r with 1 ≤ r ≤ k, one may construct
a special action of Zk2 on the product W 2r−1

= W × · · · × W (2r−1 fac-
tors), which we denote by Γ kr (W ;T ), in the following inductive way. First
set Γ 1

1 (W ;T ) = (W ;T ). Taking k ≥ 2 and supposing by induction that one
has constructed Γ k−1

k−1 (W ;T ), define Γ kk (W ;T ) = (W 2k−1
;T1, . . . , Tk), where

(W 2k−1
;T1, . . . , Tk−1) = (W 2k−2 × W 2k−2

;T1, . . . , Tk−1) = Γ k−1
k−1 (W ;T ) ×

Γ k−1
k−1 (W ;T ) and Tk acts by switching W 2k−2×W 2k−2

. This defines Γ kk (W ;T )
for any k ≥ 1. Next, define Γ kr (W ;T ) = (W 2r−1

;T1, . . . , Tk) by setting
(W 2r−1

;T1, . . . , Tr) = Γ rr (W ;T ) and letting Tr+1, . . . , Tk act trivially. If F is
a connected manifold, one has the twist involution t : F × F → F × F ,
given by t(x, y) = (y, x), and Γ kr (F × F ; t) = (F 2r

;T1, . . . , Tk), where
(T1, . . . , Tr) is the usual twist Zr2 -action on F 2r

which interchanges fac-
tors and Tr+1, . . . , Tk act trivially. In this special case, we allow r to be
zero, setting Γ k0 (F × F ; t) = (F ;T1, . . . , Tk), where each Ti is the identity
involution.

Now, from a given Zk2 -action (M ;Φ), Φ = (T1, . . . , Tk), we can obtain a
collection of new Zk2 -actions, described as follows: first, each automorphism
σ : Zk2 → Zk2 yields a new action given by (M ;σ(T1), . . . , σ(Tk)); we denote
this action by σ(M ;Φ). Next, it was shown in [7] that if (M ;Φ) has fixed
data

⊕
% ε% → F and one of the eigenbundles εθ is isomorphic to ε′θ ⊕ R,

where R→ F is the trivial one-dimensional bundle, then there is an action
(N ;Ψ) with fixed data

⊕
% µ% → F , where µ% = ε% if % 6= θ and µθ = ε′θ.

Thus, the iterated process of removing sections may possibly enlarge the set
{σ(M ;Φ) | σ ∈ Aut(Zk2 )}.

Summarizing, from a given involution (W ;T ), we obtain a collection of
Zk2 -actions by applying the operations σΓ kr to (W ;T ) and next by removing
the (possible) sections from the resulting eigenbundles. If (W ;T ) and (N ;S)
are Z2-cobordant, then the actions obtained by removing the same sections
from σΓ kr (W ;T ) and σΓ kr (N ;S) are Zk2 -cobordant, and the converse is also
true (it suffices to look at the fixed data; see Section 2). Also, if (W ;T )
fixes F , then every Zk2 -action of the above collection fixes F .
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Now, for a given F , denote by Ak(F ) the set of all equivariant cobordism
classes of Zk2 -actions containing a representative (M ;Φ) with F as fixed point
set, and by Amk (F ) ⊂ Ak(F ) the subset of m-dimensional classes. Denote
by Bk(F ) ⊂ Ak(F ) the subset consisting of the classes obtained from A1(F )
through the above procedure, and by Bmk (F ) ⊂ Bk(F ) the subset of m-
dimensional classes. For a fixed partition τ = {τ1, . . . , τp} (p ≥ 1) of the
set of components of F , write F as the disjoint union F = F1 ∪ · · · ∪ Fp,
where each Fi is the union of the members of τi. If [(Mm

i ;Φi)] ∈ Bmk (Fi),
1 ≤ i ≤ p, then

⋃p
i=1(Mm

i ;Φi) represents a class of Amk (F ); denote by
Pmk,τ (F ) ⊂ Amk (F ) the subset consisting of the classes obtained in this way,
and set

Pk(F ) =
⋃
m

⋃
τ

Pmk,τ (F ) ⊂ Ak(F ).

Then one looks, in general, for those F for whichAk(F ) = Pk(F ) (this makes
precise the statement “the classification for k = 1 completely determines the
corresponding classification for any k ≥ 1”). Under this setting, the above
mentioned results say that this is true for F= V n∪{p}, RP 2n, CP 2n, HP 2n

and QP 2 (if F is connected, then Pk(F ) = Bk(F ); in the case F= V n∪{p},
also Pk(F ) = Bk(F ), since an involution cannot have precisely one fixed
point).

Recently, in [8], we introduced the following concept: given a connected,
smooth, closed n-dimensional manifold Fn, we call Fn a manifold with prop-
erty H if every involution (Mm;T ) fixing Fn has m = n or m = 2n. This
definition was inspired by [2, Theorem 27.7] and [12], where it was shown
that RP 2n has this property (similar arguments show that CP 2n, HP 2n and
QP 2 have this property). The following facts concerning property H were
proved: if Fn has propertyH, then n is even, Fn is nonbounding, the tangent
bundle over Fn does not have sections and Fn cannot be the total space of a
nontrivial differentiable fibering of closed manifolds. Also, property H is not
a cobordism invariant, but is a homotopy invariant (an intrinsic characteri-
zation of these manifolds is still an open question). In addition, we presented
a lot of new examples of manifolds with this property (that is, not homotopy
equivalent to the known examples RP 2n, CP 2n, HP 2n and QP 2): all non-
bounding 2-dimensional manifolds, all simply connected and nonbounding
4-dimensional manifolds (for example, the connected sum of CP 2 and any
number of copies of S2× S2), all nonbounding 8-dimensional manifolds M8

with H1(M8, Z2) = 0 and H2(M8, Z2) = 0, all nonbounding 16-dimensional
manifolds M16 with H i(M16, Z2) = 0 for 1 ≤ i ≤ 4, and the connected sum
RP 2n # (Sn × Sn) # · · ·# (Sn × Sn) where n is not a power of 2.

Generalizing [1], where it had been shown that every Zk2 -action fix-
ing RP 2n is equivariantly cobordant to σΓ kr (RP 2n × RP 2n; t) for some
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σ : Zk2 → Zk2 and 1 ≤ r ≤ k (again similar arguments, strongly based on
the structure of the real K-theory of these spaces, work for CP 2n, HP 2n

and QP 2), we showed in [8] that the same result is true for any manifold
with property H; in other words, Ak(F ) = Pk(F ) = Bk(F ) for any F with
property H.

The objective of this paper is to show that Ak(F ) = Pk(F ) when F is
the disjoint union of two manifolds with property H, F = K ∪ L, where
dim(K) < dim(L). At the end of the paper we give some simple examples of
manifolds F for whichAk(F ) 6= Pk(F ) and of pairs K,L for whichAk(K∪L)
can be explicitly computed from our results.

2. Preliminaries. First we need some basic facts about Zk2 -actions.
Given a Zk2 -action (M ;Φ), Φ = (T1, . . . , Tk), the fixed point set of Φ, F ,
is a disjoint union of closed submanifolds of M . The normal bundle of F
in M , η, decomposes under Φ into the Whitney sum of subbundles on which
Zk2 acts as one of the irreducible (nontrivial) real representations, which are
all one-dimensional and can be described by epimorphisms % : Zk2 → Z2 =
{+1,−1}: g ∈ Zk2 acts on the reals as multiplication by %(g). In other words,
η =

⊕
% ε%, where ε% is the subbundle of η on which Zk2 acts in the fibers

as %; that is, where each Tj acts as multiplication by %(Tj), and where the
sum excludes the trivial homomorphism 1 ∈ Hom(G,Z2). Alternatively, ε%
is the normal bundle of F in the fixed point set F% of the subgroup ker(%).

Setting P = Hom(Zk2 , Z2)−{1}, we can write the fixed data of (M ;Φ) as
(F ; {ε%}%∈P), the fixed set F and a list of 2k−1 vector bundles over it indexed
by P. Each s-dimensional component of (F ; {ε%}%∈P) can be considered as
an element of Ns(

∏
%∈P BO(n%)), the bordism of s-dimensional manifolds

with a map into a product of classifying spaces BO(n%) for n%-dimensional
vector bundles, where n% denotes the dimension of ε% over the component
(this is the simultaneous cobordism between lists of vector bundles: if P
is any finite set, two lists (indexed by P) of vector bundles over closed
n-dimensional manifolds, (Fn; {ε%}%∈P) and (V n; {µ%}%∈P), are simultane-
ously cobordant if there exists an (n+ 1)-dimensional manifold Wn+1 with
boundary ∂(Wn+1) = Fn ∪ V n (disjoint union) and a list of vector bun-
dles over Wn+1, (Wn+1; {η%}%∈P), so that each η% restricted to Fn ∪ V n is
equivalent to ε% ∪ µ%). According to [11], the equivariant cobordism class of
(M ;Φ) is determined by the simultaneous cobordism class of (F ; {ε%}%∈P).

For example, if (W ;T ) is an involution fixing F and if η → F is the
normal bundle of F in M , then the fixed data of the Zk2 -action Γ kr (W ;T )
described in Section 1 is (F ; {ε%}%∈P), where {ε%}%∈P consists of 2r−1 copies
of η → F , 2r−1−1 copies of the tangent bundle τ → F and 2k−2r copies of
the zero-dimensional bundle 0→ F . In terms of the representations % ∈ P,
ε% = 0 when H = ker(%) does not contain all the involutions Tr+1, . . . , Tk
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(equivalently, some Tj with r + 1 ≤ j ≤ k acts in ε% as −1), ε% = η when
H contains Tr+1, . . . , Tk and does not contain T1 (equivalently, each Tj with
r + 1 ≤ j ≤ k acts in ε% as 1, and T1 acts in ε% as −1), and ε% = τ when H
contains T1, Tr+1, . . . , Tk (equivalently, each Tj with r + 1 ≤ j ≤ k and T1

act in ε% as 1). In particular, for a given F , the fixed data of the Zr2 -twist
Zk2 -action (F 2r

;T1, . . . , Tk) = Γ kr (F × F ; t) is (F ; {ε%}%∈P), where {ε%}%∈P
consists of 2r − 1 copies of the tangent bundle τ → F and 2k − 2r copies
of the zero bundle 0 → F ; in terms of % ∈ P, ε% = τ when each Tj with
r + 1 ≤ j ≤ k acts in ε% as 1, and ε% = 0 for the remaining % ∈ P.

Remark. Suppose that (F ; {ε%}%∈P) is the fixed data of a Zk2 -action
(M ;Φ). Denote by A the set of vector bundles over F which lie in {ε%}. Then
(F ; {ε%}) gives a map θ : P → A, and if σ : Zk2 → Zk2 is an automorphism,
then σ(M ;Φ) gives rise to a new map P→A which is θ composed with some
bijection P→P. We note that not every bijection P → P gives a map P→A
which is derived from some automorphism Zk2 → Zk2 , since the number of
such bijections may be greater than the number of bases of Zk2 . In particu-
lar, we cannot in principle guarantee that all such maps P → A come from
Zk2 -actions. This is not the case, however, when k = 2; if (F ; {ε%1 , ε%2 , ε%3})
is the fixed data of a Z2

2 -action with map P = {%1, %2, %3} → A, then all the
other possible maps P → A come from Z2

2 -actions, since they are derived
from automorphisms Z2

2 → Z2
2 . Therefore all the assertions made in this

paper concerning Z2
2 -actions will be independent of the map P → A.

3. Individual cobordism of the bundles of the fixed data. Sup-
pose that K and L are two manifolds with property H and with dim(K) <
dim(L). As mentioned in Section 1, we are concerned with the cobordism
classification of the Zk2 -actions (M ;Φ) for which the fixed point set is K∪L.
Let (K; {ε%}%∈P)∪ (L; {µ%}%∈P) be the fixed data of Φ. Our first goal is the
analysis of the individual cobordism of the eigenbundles ε% and µ%, and in
this direction Theorems 3.9 and 3.10 are the central part of this section. In
the next section we will be concerned with the final task, the determination
of the simultaneous cobordism of the lists {ε%}%∈P and {µ%}%∈P .

We need a lot of preliminary results, and the first five such results (Lem-
mas 3.1–3.5) are of general nature. Let (M ;Φ) be a Zk2 -action with fixed data
(F ; {ε%}%∈P), and let Ω be a subgroup of Hom(Zk2 , Z2). Our first step will
be to show that the part of the fixed data of (M ;Φ) given by (F ; {ε%}%∈Ω∩P)
can be realized as the fixed data of some subgroup G ⊂ Zk2 acting (by re-
striction) on the fixed point set of the restriction of Φ to some appropriate
subgroup H ⊂ Zk2 .

First note that there exists a subgroup G ⊂ Zk2 such that the restriction
Hom(Zk2 , Z2) → Hom(G,Z2) maps Ω isomorphically onto Hom(G,Z2). In
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fact, consider the natural isomorphism Zk2 → Hom(Hom(Zk2 , Z2), Z2) given
by T 7→ ϕT , where ϕT (%) = %(T ) for any % ∈ Hom(Zk2 , Z2). Choose a ba-
sis (%1, . . . , %r, ξ1, . . . , ξk−r) for Hom(Zk2 , Z2) so that (%1, . . . , %r) is a basis
for Ω, and consider the basis (T1, . . . , Tr, S1, . . . , Sk−r) for Zk2 which corre-
sponds to the dual basis (%∗1, . . . , %

∗
r , ξ
∗
1 , . . . , ξ

∗
k−r) of Hom(Hom(Zk2 , Z2), Z2)

under the above isomorphism. Evidently, (%1, . . . , %r, ξ1, . . . , ξk−r) is the dual
basis of (T1, . . . , Tr, S1, . . . , Sk−r). Set G = 〈T1, . . . , Tr〉. Since %i(Tj) = −1
if i = j and %i(Tj) = 1 if i 6= j, one sees that (%1|G, . . . , %r|G) is a ba-
sis for Hom(G,Z2), and thus the restriction maps Ω isomorphically onto
Hom(G,Z2). Now set H = 〈S1, . . . , Sk−r〉, FH = the fixed point set of H
and Ψ = the restriction of Φ to G× FH . One then has the following

Lemma 3.1. The fixed data of the G-action (FH ;Ψ) is (F ; {µ%′}%′∈P ′),
where for each %′ ∈ P ′ = Hom(G,Z2) − {1} one has µ%′ = ε%, where % is
the unique element of Ω ∩ P with %|G = %′. In other words, the fixed data
of G acting on the fixed set of H is F with the subbundles ε%, % ∈ Ω ∩ P,
and in terms of P ′ = Hom(G,Z2) − {1}, these subbundles are indexed by
the restriction Ω ∩ P → P ′.

Proof. See Lemma 3.1 of [8].

Lemma 3.2. Let (M ;Φ) be a Zk2 -action with fixed data (F ; {ε%}%∈P),
and take %0 ∈ P. Then there is an automorphism σ : Zk2 → Zk2 such that ,
if the fixed data of σ(M ;Φ) is (F ; {µ%}%∈P), then µ%1 = ε%0 , where %1 :
Zk2 → Z2 = {+1,−1} is the representation given by %1(T1) = −1 and
%1(Ti) = 0 for i ≥ 2.

Proof. Choose τ2, . . . , τk generating ker(%0) and τ1 /∈ ker(%0). Then the
automorphism σ : Zk2 → Zk2 defined by σ(Ti) = τi, 1 ≤ i ≤ k, clearly
works.

Again considering a Zk2 -action (M ;Φ) with fixed data (F ; {ε%}%∈P),
choose %0 ∈ P and let P ⊂ M be any component of the fixed point set
of H = ker(%0). Denote by FP the union of the components of F that are
contained in P , and take T /∈ H. Then the involution (P ;T ) has FP as fixed
point set, with the normal bundle of FP in P being ε%0 → FP . Each nontriv-
ial homomorphism from H into Z2 gives rise to the pair of representations
θ, θ′ ∈ P, given by θ = θ′ = the given homomorphism on H, θ(T ) = 1 and
θ′(T ) = −1. One may consider the nontrivial homomorphisms from H into
Z2 as being indexed by the homomorphisms θ, and the part of the fixed data
of (M ;Φ) over FP can be written as (FP ; ε%0 , {εθ, εθ′}θ). Consider the real
projective space bundle RP (ε%0)→ FP associated to ε%0 → FP , and denote
by ξ → RP (ε%0) the line bundle of the double cover S(ε%0) → RP (ε%0),
S(ε%0) being the sphere bundle of ε%0 . Then one has the object

(RP (ε%0); ξ, {εθ ⊕ (ξ ⊗ εθ′)}θ),
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the projective space bundle RP (ε%0) and a list of bundles over it formed
by the standard line bundle ξ and the bundles εθ ⊕ (ξ ⊗ εθ′), where we are
suppressing bundle maps. If we set mθ = dim(εθ⊕(ξ⊗εθ′)) and j = dim(P ),
this object represents an element in the bordism group

Nj−1

(
BO(1)×

∏
θ

BO(mθ)
)
.

Lemma 3.3. The object (RP (ε%0); ξ, {εθ⊕(ξ⊗εθ′)}θ), which is the union
of the corresponding objects over each component of FP , bounds as an ele-
ment of Nj−1(BO(1)×

∏
θ BO(mθ)).

Proof. This follows from the argument outlined in [6, Section 3; pp.
88–90] (or in [5, Section 2; pp. 107–108]), adapted to the situation in which
FP may have several components.

Lemma 3.4. Let F be a connected closed manifold , ε → F a vector
bundle over F with dim(ε) = dim(F ) and ξ → RP (ε) the usual line bundle.
Suppose that {κ%} and {κ′%} are lists of vector bundles over F , indexed
by the same set Q, such that the list (RP (ε); ξ, {κ% ⊕ (ξ ⊗ κ′%)}%∈Q) is a
(simultaneous) boundary. Then the list (F ; ε, {κ%, κ′%}%∈Q) is simultaneously
cobordant to (F ; τ, {κ%, κ′%}%∈Q), where τ is the tangent bundle of F .

Proof. The proof is exactly the argument involving characteristic num-
bers used in the proof of part b) of the lemma of [5, Section 3; p. 108].

Lemma 3.5. Let (M ;Φ) be a Zk2 -action whose fixed point set consists
of two components, K and L, and let (K; {ε%}%∈P) ∪ (L; {µ%}%∈P) be the
fixed data of Φ. Suppose that , for every % ∈ P, dim(ε%) = dim(K) (in
particular , dim(M) = 2k dim(K)) and either µ% = 0 or dim(µ%)+dim(L) 6=
dim(ε%) + dim(K). Then the list (K; {ε%}%∈P) is simultaneously cobordant
to (K; {τ%}%∈P), where, for each % ∈ P, τ% is the tangent bundle of K.

Proof. If µ% = 0, then L is a component of the fixed point set of ker(%),
and thus the component of ker(%) containing K does not contain L. If
dim(µ%) + dim(L) 6= dim(ε%) + dim(K), the component of ker(%) contain-
ing K (with dimension dim(ε%) + dim(K) = 2 dim(K)) is different from the
component of ker(%) containing L (with dimension dim(µ%)+dim(L)). Thus,
for every % ∈ P, the component of ker(%) containing K does not contain L.
By Lemma 3.3, the list (RP (ε%); ξ, {εθ ⊕ (ξ ⊗ εθ′)}θ) is then a simultaneous
boundary for any % ∈ P. By iteratively applying Lemma 3.4 2k − 1 times,
one gets the result.

Returning to actions (M ;Φ) with fixed data (K; {ε%}%∈P)∪(L; {µ%}%∈P),
where K and L have property H, set dim(M) = m and dim(K) = p <
dim(L) = q. To ease the notation, for a vector bundle θ over K (resp.
over L), write θ ≡ η when there exists an involution (W ;T ) fixing K ∪ L
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and θ is the normal bundle of K (resp. of L) in M ; if W is not connected,
we require that all components of W have the same dimension. Also write
0 for the zero bundle over K (resp. over L) and θ ≡ τ when θ is cobordant
to the tangent bundle over K (resp. over L).

Lemma 3.6. (ε%, µ%) ≡ (η, η), (τ, τ), (0, 0), (τ, 0) and (0, τ) are the pos-
sibilities for the cobordism types of the pairs (ε%, µ%), % ∈ P.

Proof. For each % ∈ P, denote by U% and V% the components of the fixed
point set of the subgroup ker(%) containing K and L, respectively. Then ei-
ther U% = V% or U%∩V% = ∅. Choose T ∈ Zk2−ker(%). In the first case, (U%, T )
is an involution fixing K ∪L, which means that (ε%, µ%) ≡ (η, η). In the sec-
ond case, (U%, T ) and (V%, T ) are involutions fixing K and L respectively.
Since K has property H, dim(U%) = p or 2p. If dim(U%) = p, then (U%, T ) =
(K, Id) and ε% = 0. If dim(U%) = 2p, then (U%, T ) is cobordant to (K×K; t)
and ε% ≡ τ (see [3]). Similarly, dim(V%) = q or 2q; µ% = 0 when dim(V%) = q
and µ% ≡ τ when dim(V%) = 2q. Thus, (ε%, µ%) ≡ (τ, τ), (0, 0), (τ, 0) or (0, τ)
in the second case (for dimensional reasons, all these types are different,
except for (η, η) and (τ, 0) when dim(L) = 2 dim(K)).

For Z2
2 -actions with fixed data (K; {ε%1 , ε%2 , ε%3}) ∪ (L; {µ%1 , µ%2 , µ%3}),

we additionally have the following

Lemma 3.7. Suppose that (ε%i , µ%i) ≡ (η, η) for at least one i ∈
{1, 2, 3}. Then the only possibilities for the cobordism types of the objects
((ε%1 , ε%2 , ε%3), (µ%1 , µ%2 , µ%3)) are, up to permutations, ((η, η, τ), (η, η, τ))
and ((η, 0, 0), (η, 0, 0)).

Proof. Using Lemma 3.6 and the facts that p < q, p+
∑3

i=1 dim(ε%i) =
q+

∑3
i=1 dim(µ%i) and p+ dim(ε%i) = q+ dim(µ%i) when (ε%i , µ%i) ≡ (η, η),

we can easily show that all the possibilities except the two listed above are
impossible for dimensional reasons.

In Lemma 3.6, if U% ∩ V% = ∅ for every % ∈ P, the argument shows that
the possibilities for (ε%, µ%) are (τ, τ), (0, 0), (τ, 0) and (0, τ). We will be first
concerned with this case; to do this, recall the following

Lemma 3.8. Suppose (M ;Φ), Φ = (T1, . . . , Tk), is a Zk2 -action fix-
ing F , where F has property H. Then (M ;Φ) is equivariantly cobordant to
σΓ kr (F × F ; t) for some automorphism σ : Zk2 → Zk2 and some 0 ≤ r ≤ k.

Proof. As mentioned in Section 1, this is the main result of [8].

Returning to our previous notations, one then has the following

Theorem 3.9. Suppose U% ∩ V% = ∅ for every % ∈ P. Then there exist
1 ≤ r ≤ k, 0 ≤ s ≤ k and automorphisms σ, σ′ : Zk2 → Zk2 such that (M ;Φ)
is equivariantly cobordant to σΓ kr (K ×K; t) ∪ σ′Γ ks (L× L; t).
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Proof. Write MK and ML for the components of M containing K and
L respectively. Since (M − (MK ∪ ML);Φ) is a Zk2 -action without fixed
points, the main result of [11] says that (M − (MK ∪ML);Φ) bounds as a
manifold with Zk2 -action. Thus we can suppose, without loss of generality,
that M = MK ∪ ML. If MK ∩ ML = ∅, we obtain the desired result by
applying Lemma 3.8 to the actions (MK ;Φ) and (ML;Φ) (and in this case
we can have r = 1 and s = 0). Therefore we can assume thatM = MK = ML

is connected (and m > q > p). Since

dim(K) +
∑
%∈P

dim(ε%) = dim(L) +
∑
%∈P

dim(µ%),

the number of bundles ε% ≡ τ is ≥ 2. Let Ω be the subset of Hom(Zk2 , Z2)
given by Ω = {1} ∪ {% ∈ P | ε% ≡ τ}.

We assert that Ω is a subgroup of Hom(Zk2 , Z2). In fact, take %1, %2 ∈ Ω
with %1 6= %2, and suppose ε%3 = 0, where %3 = %1%2. Since {1, %1, %2, %3} is
a subgroup of Hom(Zk2 , Z2), by Lemma 3.1 there exist subgroups G,H ⊂
Zk2 with G isomorphic to Z2

2 and Zk2 = G ⊕ H, so that the fixed data
of the Z2

2 -action obtained by letting G act on the fixed point set FH of
H is (K; {ε%1 , ε%2 , ε%3}) ∪ (L; {µ%1 , µ%2 , µ%3}). Again we can write FH =
FK ∪ FL, where FK and FL are the components of FH containing K and
L respectively. If FK ∩ FL = ∅, the Z2

2 -action (FK ;Φ|G) has fixed data
(K; {ε%1 , ε%2 , ε%3}) with ε%1 ≡ τ , ε%2 ≡ τ and ε%3 = 0, thus contradicting
Lemma 3.8. Therefore FK = FL and the Z2

2 -action (FK ;Φ|G) has fixed data
(K; {ε%1 , ε%2 , ε%3})∪ (L; {µ%1 , µ%2 , µ%3}) with at least one µ%i being nonzero.
Because

dim(FK) = dim(K) + dim(ε%1) + dim(ε%2) + dim(ε%3) = 3p
= dim(L) + dim(µ%1) + dim(µ%2) + dim(µ%3) ≥ 2q

and q > p, one necessarily has dim(L)+dim(µ%1)+dim(µ%2)+dim(µ%3) = 2q
and there is only one µ%i with µ%i ≡ τ . By Lemma 3.2, there is then
an automorphism σ : Z2

2 → Z2
2 such that (L; {µ%1 , µ%2 , µ%3}) is simulta-

neously cobordant to the fixed data of the Z2
2 -action σΓ 2

1 (L × L; t), and
hence (FK ;Φ|G) ∪ σΓ 2

1 (L × L; t) is equivariantly cobordant to a Z2
2 -action

with fixed data (K; {ε%1 , ε%2 , ε%3}). This again contradicts Lemma 3.8, which
forces ε%3 ≡ τ and Ω to be a subgroup of Hom(Zk2 , Z2). In particular, the
number of bundles ε% with ε% ≡ τ is 2r − 1 for some 2 ≤ r ≤ k (r is the
dimension of Ω as Z2-vector space) and m = 2rp.

By Lemma 3.1, there exist subgroups G,H ⊂ Zk2 with G isomorphic
to Zr2 and Zk2 = G ⊕ H, so that the fixed data of G acting on the fixed
point set FH of H is (K; {ε%}%∈Ω∩P) ∪ (L; {µ%}%∈Ω∩P). As in the previous
argument, write FH = FK ∪ FL. Since ε% = 0 for every % ∈ P − (Ω − {1}),
M = FK = FL = FH . Then one has a Zr2 -action (M ;Φ|G) with fixed data
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(K; {ε%}%∈Ω∩P) ∪ (L; {µ%}%∈Ω∩P) where, for each % ∈ Ω ∩ P, dim(ε%) =
dim(K) and either µ% = 0 or dim(µ%) + dim(L) = 2q > 2p = dim(ε%) +
dim(K). By Lemma 3.5, it follows that the list (K; {ε%}%∈Ω∩P) is simulta-
neously cobordant to (K; {τ%}%∈Ω∩P), where, for each % ∈ Ω ∩ P, τ% is the
tangent bundle τ → K.

Now choose a basis (T ′1, . . . , T
′
r, T

′′
r+1, . . . , T

′′
k ) for Zk2 so that (T ′1, . . . , T

′
r)

is a basis for G and (T ′′r+1, . . . , T
′′
k ) is a basis for H. Consider the auto-

morphism ϕ : G → G where ϕ(Ti) = T ′i if 1 ≤ i ≤ r and ϕ(Ti) = T ′′i
if r < i ≤ k, and the Zk2 -action ϕ(Mm;Φ). To describe the part of the
fixed data of this action over K, note that if % ∈ P is the trivial homo-
morphism on H, then % ∈ Ω and thus ε% ≡ τ ; otherwise, % /∈ Ω, which
means that ε% = 0. Since the list {ε%}%∈Ω∩P is simultaneously cobordant to
{τ%}%∈Ω∩P , the part of the fixed data of ϕ(Mm;Φ) over K is then simulta-
neously cobordant to the list {ε%}%∈P given by ε% = τ when % is the trivial
homomorphism on H and ε% = 0 otherwise, which in turn is the fixed data
of the Zk2 -action Γ kr (K×K; t). Setting σ = ϕ−1, one sees that the Zk2 -action
(M ;Φ) ∪ σΓ kr (K ×K; t) is equivariantly cobordant to a Zk2 -action fixing L.
By Lemma 3.8, this action is equivariantly cobordant to σ′Γ ks (L× L; t) for
some automorphism σ′ : Zk2 → Zk2 and some 1 ≤ s ≤ k, which gives the
result.

Remark. Note that, if the Zk2 -action (M ;Φ) is equivariantly cobordant
to σΓ kr (K ×K; t)∪ σ′Γ ks (L×L; t), then dim(M) = 2r dim(K) = 2s dim(L).
Writing dim(K) = 2ab and dim(L) = 2cd, where b and d are odd, one then
has b = d. Thus, if b 6= d, there is no action of the above type fixing K ∪ L.

In the terminology of Section 1, Theorem 3.9 says that, under the hy-
potheses in question, (M ;Φ) belongs to Pmk,τ (K∪L) ⊂ Pk(K∪L), where τ is
the partition {{K}, {L}}. Therefore we can assume from now on that there
is at least one % ∈ P for which U% = V%. Writing as before M = MK ∪ML,
one has in this case M =MK =ML connected because MK ⊃U% = V%⊂ML.
The following result closes the task proposed in this section.

Theorem 3.10. Let (M ;Φ) be a Zk2 -action with fixed data (K; {ε%}%∈P)
∪ (L; {µ%}%∈P) as above. Write P1 = {% ∈ P | (ε%, µ%) ≡ (η, η)}, P2 =
{% ∈ P | (ε%, µ%) ≡ (τ, τ)} and P3 = {% ∈ P | (ε%, µ%) = (0, 0)}. Then
P = P1 ∪P2 ∪P3 , P1 has 2r−1 elements and P2 has 2r−1 − 1 elements for
some 1 ≤ r ≤ k (consequently , P3 has 2k − 2r elements). Further , there is
an automorphism σ : Zk2 → Zk2 such that the pairs (ε%, µ%) are indexed by
P following the pattern of an action of the type σΓ kr (W ;T ), where (W ;T )
is an involution fixing K ∪ L with W connected.

Proof. By hypothesis, there is at least one %0 ∈ P for which U%0 = V%0 ,
and (ε%0 , µ%0) ≡ (η, η). For any % ∈ P − {%0}, we apply Lemma 3.1 to
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the subgroup {1, %0, %, %0%} ⊂ Hom(Zk2 , Z2) to conclude that there exist
subgroups G,H ⊂ Zk2 with G isomorphic to Z2

2 and Zk2 = G ⊕ H, so that
the fixed data of the Z2

2 -action obtained by letting G act on the fixed point
set FH of H is (K; {ε%0 , ε%, ε%0%}) ∪ (L; {µ%0 , µ%, µ%0%}). By the argument
outlined before Lemma 3.1, H ⊂ ker(%0); writing as before FH = FK ∪ FL,
one then has U%0 = V%0 ⊂ FH , and thus FH = FK = FL is connected. By
Lemma 3.7, one has the following possibilities:

(i) (ε%, µ%) = (0, 0) and (ε%0%, µ%0%) = (0, 0);
(ii) (ε%, µ%) = (η, η) and (ε%0%, µ%0%) = (τ, τ); or

(iii) (ε%, µ%) = (τ, τ) and (ε%0%, µ%0%) = (η, η).

This gives P = P1 ∪P2 ∪P3; further, this shows that % 7→ %0% determines a
bijection between P1 and P2 ∪ {1}, with inverse given by the same rule.

We assert that P2 ∪ {1} is a subgroup of Hom(Zk2 , Z2). In fact,
take %1, %2 ∈ P2 with %1 6= %2. As before, Lemma 3.1 gives a Z2

2 -action
(FK∪FL;ψ) with fixed data (K; {ε%1 , ε%2 , ε%1%2})∪(L; {µ%1 , µ%2 , µ%1%2}). Sup-
pose FK =FL, and set x = dim(ε%1%2), and y = dim(µ%1%2). If (ε%1%2 , µ%1%2)
≡ (η, η), then the Z2

2 -action (FK ∪ FL;ψ) contradicts Lemma 3.7 because
(τ, τ) 6= (η, η). Since 3p + x = 3q + y and p < q, we find that x > y and
thus x 6= 0. This means that we cannot have (ε%1%2 , µ%1%2) ≡ (τ, τ), (0, τ) or
(0, 0), and there remains the possibility (ε%1%2 , µ%1%2) ≡ (τ, 0). In this case,
(FK ∪FL;ψ) satisfies the hypotheses of Lemma 3.5, and thus (ε%1 , ε%2 , ε%1%2)
is simultaneously cobordant to (τK , τK , τK), where τK → K is the tangent
bundle of K. It follows that the Z2

2 -action (FK ∪ FL;ψ) ∪ Γ 2
2 (K ×K; t) is

equivariantly cobordant to a Z2
2 -action with fixed data (L; {µ%1 , µ%2 , µ%1%2}),

which contradicts Lemma 3.8. Hence FK∩FL = ∅, and we can apply Lemma
3.8 to the Z2

2 -actions (FK ;ψ) and (FL;ψ) to conclude that (ε%1%2 , µ%1%2) ≡
(τ, τ), thus showing the assertion. It follows that P2 has 2r−1 − 1 elements,
and consequently P1 has 2r−1 elements for some 2 ≤ r ≤ k.

To prove the last statement of the theorem, first note that P1 ∪P2 ∪{1}
is a subgroup of Hom(Zk2 , Z2) isomorphic to Zr2 : if %1, %2 ∈ P1, then %0%1 and
%0%2 belong to the subgroup P2 ∪ {1} and (%0%1)(%0%2) = %1%2 ∈ P2 ∪ {1}.
If %1 ∈ P1 and %2 ∈ P2, then %2 can be written as %2 = %′1%0 with
%′1 ∈ P1, and %1%

′
1 ∈ P2 ∪ {1} by the previous argument; thus %1%2 =

%0(%1%
′
1) ∈ P1. In this way, Lemma 3.1 gives a decomposition Zk2 = G⊕H,

with G isomorphic to Zr2 and with the Zr2 -action (FH ;Φ|G) having fixed
data (K; {ε%}%∈P1∪P2) ∪ (L; {µ%}%∈P1∪P2). For dimensional reasons, FH =
FK∪FL = FK = FL = M , and thus each element of H acts in M as the iden-
tity involution. Applying again Lemma 3.1 to the action (M ;Φ|G) and the
subgroup P2∪{1} ⊂ P1∪P2∪{1}, one obtains a decomposition G = G1⊕G2

and the action (FG2 ;Φ|G1
) with fixed data (K; {ε%}%∈P2) ∪ (L; {µ%}%∈P2).

Since G1 is isomorphic to Zr−1
2 , G2 is isomorphic to Z2; denote by S the
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generator of G2 and by ν → FG2 = FS the normal bundle of FG2 in M . One
knows that S acts as −1 in ν. Since

ν|K∪L =
( ⊕
%∈P1

ε% → K
)
∪
( ⊕
%∈P1

µ% → L
)
,

S acts as −1 in ε% and in µ% for every % ∈ P1. Evidently, S acts as 1 in
FG2 = FS and thus S acts as 1 in ε% and in µ% for every % ∈ P2. Choose
τr+1, . . . , τk generating H (one may have H = {1}, in which case this step
is unnecessary) and f2, . . . , fr generating G1. Consider the automorphism
ϕ : Zk2 → Zk2 given by ϕ(T1) = S, ϕ(Ti) = fi if 2 ≤ i ≤ r and ϕ(Ti) = τi
if r + 1 ≤ i ≤ k. Then in the fixed data of the Zk2 -action ϕ(M ;Φ) the pairs
(ε%, µ%) are indexed by P following the pattern of an action of the type
Γ kr (W ;T ), where (W ;T ) is an involution fixing K ∪ L with W connected.
Setting σ = ϕ−1, one gets the result.

4. Simultaneous cobordism of the fixed data. As we have seen, a
Zk2 -action (M ;Φ) as in Theorem 3.10 gives rise to a set of 2r−1 involutions
(U% ∪ V%;T%), % ∈ P1, where dim(U%) = dim(V%), T% /∈ ker(%) and the fixed
point set of T% is K ∪ L. These involutions determine, in turn, a subset
of the set of all equivariant cobordism classes of involutions fixing K ∪ L,
A1(K ∪ L). In order to better understand this subset, one needs to know
some additional facts about it. In general, for a given F which is not a
boundary, A1(F ) may be empty (take for instance F = Sn∪{point}, Sn the
n-sphere with n 6= 1, 2, 4 and 8 [2, Theorem 27.6]) and it is always finite (this
follows from the strengthened Boardman 5/2-theorem of [3]). Denote by Rj

(resp. by R) the trivial j-dimensional resp. (resp. one-dimensional) vector
bundle over any base space. An element [(Wn;T )] ∈ A1(F ) is determined
by the cobordism class of the normal bundle η → F , which is a union of
bundles over the components of F . There is a greatest natural number p ≥ 0
for which η is cobordant to a bundle κ ⊕ Rp → F (p is the same over all
the components). Now one knows from [2, Theorem 26.4] that if η → F is
the fixed data of an involution and η → F is equivalent to η′ ⊕ R → F ,
then η′ → F is also the fixed data of an involution. It follows that there
are involutions (Wn−p+i;T ) fixing F for which the normal bundle of F in
Wn−p+i is κ ⊕ Ri for 0 ≤ i ≤ p, with (Wn−p+p;T ) cobordant to (Wn;T ).
Further, one knows how to add additional trivial bundles to the normal
bundle of an involution. One may form

Γ (Wn;T ) =
(
S1 ×Wn

−1× T
; conjugation× 1

)
.

The fixed point set of this involution consists of a copy of F with normal
bundle η ⊕R→ F and a copy of Wn with normal bundle R→ Wn. If Wn
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bounds as a manifold, then R → Wn bounds as a bundle and Γ (Wn;T )
is cobordant to an involution with fixed data η ⊕ R → F . This procedure
of removing sections and adding trivial bundles provides a subset of A1(F )
with representatives having fixed data κ ⊕ Ri → F , 0 ≤ i ≤ p + t, t ≥ 0,
where, in the process of adding trivial bundles, t is the first number for which
the involution (Wn+t;T ) has the underlying manifold Wn+t nonbounding,
and A1(F ) is a disjoint union of subsets of this type.

Now, if (W ;T ) has fixed data η → F , then the fixed data of a Zk2 -action
obtained by removing sections from the fixed data of an action of the type
σΓ kr (W ;T ) has 2r−1 eigenbundles obtained by removing sections from η.
Thus, the corresponding 2r−1 involutions (fixing F ) belong to the same sub-
set of A1(F ). Also this fixed data has 2r−1 − 1 eigenbundles obtained by
removing sections from the tangent bundle of F ; in particular, if some com-
ponent of F has property H, then the tangent bundle over this component
has no sections (see [8]), and thus no section can be removed from these
2r−1−1 eigenbundles over F . By comparison, our next (and final) task is to
show that the 2r−1 involutions (U%∪V%;T%), % ∈ P1, given by Theorem 3.10,
belong to the same subset of A1(K ∪ L), and that the lists (K; {ε%}%∈P)
and (L; {µ%}%∈P), with the description in terms of individual cobordism
given by Theorem 3.10, are simultaneously cobordant to lists over K and L
respectively, as described above.

This will be done by combining Lemma 3.4 with the following

Lemma 4.1. Let F be a connected closed manifold , ε → F a vector
bundle over F with dim(ε) = dim(F ) and ξ → RP (ε) the usual line bundle.
Suppose that {κ%} and {κ′%} are lists of vector bundles over F , indexed by the
same set Q, such that the list (RP (ε); ξ, {κ% ⊕ (ξ ⊗ κ′%)}%∈Q) is a (simulta-
neous) boundary. Choose any %0 ∈ Q, and set p = dim(κ%0), q = dim(κ′%0).
Then the list (F ; ε, κ%0 , κ

′
%0 , {κ%, κ

′
%}%∈Q−{%0}) is simultaneously cobordant

to (F ; ε, κ%0 , κ%0 ⊕ Rq−p, {κ%, κ′%}%∈Q−{%0}) when p ≤ q, and simultaneously
cobordant to (F ; ε, κ′%0 ⊕R

p−q, κ′%0 , {κ%, κ
′
%}%∈Q−{%0}) when p ≥ q.

Proof. Set n = dim(F ) = dim(ε), m% = dim(κ%) and n% = dim(κ′%) for
each % ∈ Q; in particular, m%0 = p and n%0 = q. Let

W (F ) = 1 + w1 + · · ·+ wn,

W (ε) = 1 + θ1 + · · ·+ θn,

W (κ%) = 1 + u%1 · · ·+ u%m%
,

W (κ′%) = 1 + v%1 + · · ·+ v%n%

be the respective Stiefel–Whitney classes. Letting c ∈ H1(RP (ε);Z2) be
the first Stiefel–Whitney class of the line bundle ξ, one knows that the
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Stiefel–Whitney class of RP (ε) is

W (RP (ε)) = (1+w1+· · ·+wn)·{(1+c)n+θ1(1+c)n−1+· · ·+θn−1(1+c)+θn},
the Stiefel–Whitney class of ξ is W (ξ) = 1+c, and the Stiefel–Whitney class
of κ% ⊕ (ξ ⊗ κ%′) is

W (κ% ⊕ (ξ ⊗ κ%′)) = (1 + u%1 + · · ·+ u%m%
)

· {(1 + c)n% + v%1(1 + c)n%−1 + · · ·+ v%n%−1(1 + c) + v%n%
}.

Because (RP (ε); ξ, {κ%⊕(ξ⊗κ′%)}%∈Q) is a boundary, any class of dimension
2n−1 given by a product of classes wi(RP (ε)), c and wj(κ%⊕(ξ⊗κ%′)) gives a
zero characteristic number forRP (ε). We will apply this using certain special
classes, which are polynomials in the above classes, and were introduced
in [9]. Specifically, for any r, one lets

W [r] =
W (RP (ε))
(1 + c)n−r

and W%[r] =
W (κ% ⊕ (ξ ⊗ κ%′))

(1 + c)n%−r .

That is,

W [r] = (1 + w1 + · · ·+ wn)

·
{

(1 + c)r + θ1(1 + c)r−1 + · · ·+ θr +
θr+1

1 + c
+ · · ·+ θn

(1 + c)n−r

}
,

W%[r] = (1 + u%1 + · · ·+ u%m%
)

·
{

(1+ c)r + v%1(1+ c)r−1 + · · ·+ v%r +
v%r+1

1+ c
+ · · ·+

v%n%

(1+ c)n%−r

}
.

These classes have the following special properties (see [9]):

W [r]2r = wrc
r + terms with smaller c powers,

W [r]2r+1 = (wr+1 + θr+1)cr + terms with smaller c powers,

W [r]2r+2 = θr+1c
r+1 + terms with smaller c powers,

and in the same way,

W%[r]2r = u%rc
r + terms with smaller c powers,

W%[r]2r+1 = (u%r+1 + v%r+1)cr + terms with smaller c powers,

W%[r]2r+2 = v%r+1c
r+1 + terms with smaller c powers.

For a sequence ω = (i1, . . . , is) of natural numbers, one lets |ω| = i1 +
· · · + is, and for w = 1 + w1 + · · · + wp, one lets wω = wi1 · · ·wis be the
product of the classes wi.

Then given sequences ω = (i1, . . . , is), ω′ = (j1, . . . , jt), ω% = (i%1, . . . , i
%
s%)

and ω′% = (j%1 , . . . , j
%
t%) for each % ∈ Q, and a natural number 1 ≤ r ≤

max{p, q} with

|ω|+ |ω′|+
∑
%

|ω%|+
∑
%

|ω′%|+ r = n,
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one may form the class

X =
(∏
i∈ω

W [i]2i
)
·
( ∏
i∈ω′

W [i− 1]2i
)

·
∏
% 6=%0

{( ∏
i∈ω%

W%[i]2i
)
·
( ∏
i∈ω′%

W%[i− 1]2i
)}

·
( ∏
i∈ω%0

W%0 [i]2i
)
·
( ∏
i∈ω′%0

W%0 [i− 1]2i
)
·W%0 [r − 1]2r−1.

Since X has dimension 2n − 1 and is a polynomial in the characteristic
classes of RP (ε), ξ and κ%⊕ (ξ⊗κ%′), it gives the zero characteristic number
X[RP (ε)] for RP (ε). From the properties listed above, one has∏

i∈ω
W [i]2i = W (F )ω · c|ω| + terms with smaller c powers,

∏
i∈ω′

W [i− 1]2i = W (ε)ω′ · c|ω
′| + terms with smaller c powers,

∏
i∈ω%

W%[i]2i = W (κ%)ω% · c|ω%| + terms with smaller c powers,

∏
i∈ω′%

W%[i− 1]2i = W (κ′%)ω′% · c
|ω′%| + terms with smaller c powers,

W%0 [r − 1]2r−1 = (u%0r + v%0r ) · cr + terms with smaller c powers.

It follows that

X = W (F )ω ·W (ε)ω′ ·
∏
%6=%0

(W (κ%)ω% ·W (κ′%)ω′%) ·W (κ%0)ω%0
·W (κ′%0)ω′%0

· (u%0r + v%0r ) · cn−1 + terms with smaller c powers.

Now if a term of dimension 2n− 1 involves a power of c less than n− 1,
it necessarily has a factor of dimension greater than n coming from the
cohomology of F , which is zero. Also one knows that H∗(RP (ε);Z2) is the
free H∗(F ;Z2)-module on 1, c, c2, . . . , cn−1. Therefore

0 = X[RP (ε)] = W (F )ω ·W (ε)ω′ ·
∏
%6=%0

(W (κ%)ω% ·W (κ′%)ω′%)

·W (κ%0)ω%0
·W (κ′%0)ω′%0

· (u%0r + v%0r ) · cn−1[RP (ε)]

= W (F )ω ·W (ε)ω′ ·
∏
%6=%0

(W (κ%)ω% ·W (κ′%)ω′%)

·W (κ%0)ω%0
·W (κ′%0)ω′%0

· (u%0r + v%0r )[F ]
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and thus

W (F )ω ·W (ε)ω′ ·
∏
% 6=%0

(W (κ%)ω% ·W (κ′%)ω′%) ·W (κ%0)ω%0
·W (κ′%0)ω′%0

· u%0r [F ]

= W (F )ω ·W (ε)ω′ ·
∏
%6=%0

(W (κ%)ω% ·W (κ′%)ω′%) ·W (κ%0)ω%0
·W (κ′%0)ω′%0

·v%0r [F ].

This says that any class u%0r and any class v%0r in a characteristic number
of (F ; ε, κ%0 , κ

′
%0 , {κ%, κ

′
%}%∈Q−{%0}) can be replaced by v%0r and u%0r respec-

tively without changing the value of the characteristic number. In partic-
ular, if p ≤ q and p < r ≤ q, then any class v%0r can be replaced by the
zero class, and thus (F ; ε, κ%0 , κ

′
%0 , {κ%, κ

′
%}%∈Q−{%0}) and (F ; ε, κ%0 , κ%0 ⊕

Rq−p, {κ%, κ′%}%∈Q−{%0}) have the same characteristic numbers. Similarly,
(F ; ε, κ%0 , κ

′
%0 , {κ%, κ

′
%}%∈Q−{%0}) and (F ; ε, κ′%0⊕R

p−q, κ′%0 , {κ%, κ
′
%}%∈Q−{%0})

have the same characteristic numbers when p ≥ q, and the result follows.

Theorem 4.2. Let (M ;Φ) be a Zk2 -action as in Theorem 3.10. Let
1 ≤ r ≤ k and σ : Zk2 → Zk2 be the automorphism given by Theorem 3.10.
Then there exists an involution (W ;T ) fixing K ∪L with W connected such
that (M ;Φ) is equivariantly cobordant to a Zk2 -action obtained by removing
sections from the fixed data of σΓ kr (W ;T ). In other words, (M ;Φ) belongs
to Bmk (K ∪ L) ⊂ Pk(K ∪ L).

Proof. The proof is a continuation of the proof of Theorem 3.10.
For each % ∈ P2, we have U% ∩ V% = ∅. Then we can iteratively apply
Lemmas 3.3 and 3.4 on the components U% and V%, % ∈ P2, to conclude
that the lists (K; {ε%}%∈P and L; {µ%}%∈P) are simultaneously cobordant
to (K; {ε%}%∈P1∪P3 , {τK% }%∈P2) and (L; {µ%}%∈P1∪P3 , {τL% }%∈P2) respectively,
where each τK% , % ∈ P2, is the tangent bundle of K, and each τL% , % ∈ P2, is
the tangent bundle of L.

For each % ∈ P1, set n% = dim(ε%) and m% = dim(µ%). Choose %0 ∈ P1

so that n%0 ≤ n% for any % ∈ P1; since p + n% = q + m% when % ∈ P1,
also m%0 ≤ m% for any % ∈ P1. Taking any % ∈ P1 with % 6= %0, one knows
that % = %%0 ∈ P2 (see the proof of Theorem 3.10), which implies that
U% ∩ V% = ∅. Note that, if H = ker(%), then %|H = %0|H , and if T /∈ H, then
either %(T ) = 1 and %0(T ) = −1, or %(T ) = −1 and %0(T ) = 1. This means
that, in the argument outlined before Lemma 3.3, % and %0 are paired with
respect to %; that is, with the notation of Lemma 3.3, {%, %0} = {θ, θ′} for
some θ.

Then we can iteratively apply Lemmas 3.3 and 4.1 on the (disjoint) com-
ponents U% and V%, where, for each % ∈ P1 − {%0}, % = %%0, to conclude
that the list (K; {ε%}%∈P1∪P3 , {τK% }%∈P2) is simultaneously cobordant to
(K; {ε%0⊕Rn%−n%0}%∈P1 , {τK% }%∈P2 , {ε%}%∈P3), and (L; {µ%}%∈P1∪P3 , {τL% }%∈P2)
is simultaneously cobordant to (L;{µ%0⊕Rm%−m%0}%∈P1 , {τL% }%∈P2 , {µ%}%∈P3).
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Now choose %1 ∈ P1 with n%1 ≥ n% for every % ∈ P1; then also m%1 ≥ m%

for every % ∈ P1. Since there is % ∈ P1 for which U% = V% (that is, with
dim(µ%) > 0), we have m%1 > 0 and thus U%1 = V%1 . For T /∈ ker(%1), the
involution (U%1 ;T ) then has fixed data (K; ε%1)∪ (L;µ%1), and thus (U%1 ;T )
is equivariantly cobordant to an involution (W ;T ) with W connected and
with fixed data (K; ε%0 ⊕ Rn%1−n%0 ) ∪ (L;µ%0 ⊕ Rm%1−m%0 ). The fixed data
of the Zk2 -action σΓ kr (W ;T ) is then (K; {ε′%}%∈P1 , {τK% }%∈P2 , {ε%}%∈P3) ∪
(L; {µ′%}%∈P1 , {τL% }%∈P2 , {µ%}%∈P3), where, for each %∈P1, ε′% = ε%0⊕Rn%1−n%0

and µ′% = µ%0 ⊕Rm%1−m%0 . Thus the fixed data of (M ;Φ) is simultaneously
cobordant to a list obtained by removing sections from the fixed data of
σΓ kr (W ;T ), and the theorem is proved.

Examples and final remarks. 1. Let F be the space consisting of p
isolated points. It is well known (see [2]) that Ak(F ) = ∅ for p = 1 and any
k ≥ 1, and A1(F ) = ∅ for any p ≥ 1 odd. However, there exist Zk2 -actions
fixing F for each k ≥ 2 and p ≥ 3 odd. In fact, consider the Zk2 -actions
(RP 2;T1, . . . , Tk) and (S2;T ′1, . . . , T

′
k), where S2 ⊂ R3 is the standard 2-

sphere in the 3-dimensional euclidean space, T1[x0, x1, x2] = [−x0, x1, x2],
T2[x0, x1, x2] = [x0,−x1, x2], T ′1(x, y, z) = (−x,−y, z), Ti = Id for i ≥ 3 and
T ′i = Id for i ≥ 2. The first action fixes three points and the second fixes two
points. Write p = 3 + 2t, t ≥ 0. Then the disjoint union of (RP 2;T1, . . . , Tk)
and t copies of (S2;T ′1, . . . , T

′
k) is a Zk2 -action fixing p points. This means

that Ak(F ) 6= ∅ for k ≥ 2 and p ≥ 3 odd. On the other hand, if p ≥ 3 is odd
and τ = {τ1, . . . , τs} (s ≥ 1) is a partition of the set of components of F ,
then some τi0 necessarily has an odd number of components. Thus, if Fi0 is
the subspace of F corresponding to τi0 , then A1(Fi0) = ∅, and consequently
Bk(Fi0) = ∅ and Pk(F ) = ∅ for every k ≥ 2.

2. Suppose F is an n-dimensional (n ≥ 1), connected and closed man-
ifold having Euler characteristic χ(F ) odd (for example, a cartesian prod-
uct of any number of copies of even-dimensional projective spaces). Let
η → F be any s-dimensional vector bundle over F with s ≥ 3 odd, and let
p : RP (η)→ F be the projection map. For k ≥ 2, consider E ⊂ (RP (η))2

k
,

E = {(x1, . . . , x2k) ∈ RP (η))2
k | p(x1) = · · · = p(x2k)}. Then E is a closed

(n + 2k(s − 1))-dimensional submanifold of (RP (η))2
k
. On E one has the

fiberwise twist Zk2 -action (E;Φ) fixing a diagonal copy of RP (η) and with
fixed data (RP (η); {ε%}%∈P), where each ε% is the (s − 1)-dimensional vec-
tor bundle µ → RP (η) tangent along the fiber. Since RP (η) is connected,
Pk(RP (η)) = Bk(RP (η)). Because dim(ε%) > 0 for every %, if (E;Φ) ∈
Bk(RP (η)) then necessarily (E;Φ) is, up to automorphisms of Zk2 , equivari-
antly cobordant to Γ kk (W ;T ) for some involution (W ;T ) fixing RP (η). But
then µ→ RP (η) is obtained by removing n sections from some (n+ s− 1)-
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dimensional vector bundle θ → RP (η) cobordant to the tangent bundle
of RP (η). Thus wn+s−1(θ) = wn+s−1(RP (η)) = 0, where wn+s−1 denotes
the top-dimensional Stiefel–Whitney class. Now if W (F ) = 1+w1+· · ·+wn,
W (η) = 1 + v1 + · · ·+ vs and W (ξ) = 1 + c are the Stiefel–Whitney classes
of F , η and the usual line bundle ξ, then

W (RP (η)) = (1+w1+· · ·+wn)((1+c)s+v1(1+c)s−1+· · ·+vs−1(1+c)+vs))

with cs + v1c
s−1 + · · ·+ vs−1c+ vs = 0. Hence

wn+s−1(RP (η)) = wn

( s−1∑
t=0

(
s− t

s− t− 1

)
cs−t−1vt

)
.

Because s is odd and for dimensional reasons one then gets wn+s−1(RP (η))
= wnc

s−1. Since

wnc
s−1[RP (η)] = wn[F ] ≡ χ(F ) mod 2 (see [2, Lemma 27.2]),

this gives a contradiction, and Ak(RP (η)) 6= Pk(RP (η)).

3. Together with Theorems 3.9 and 4.2, the explicit determination of
A1(K ∪L) provides an explicit determination of Ak(K ∪L) for every k ≥ 2.
For example, in the recent paper [4], we obtained the cobordism classification
of involutions whose fixed point set is RP 2 ∪RP 2n for every n > 1. There-
fore this gives, up to cobordism, all Zk2 -actions with this specific fixed set.
The details concerning the explicit description of Ak(RP 2∪RP 2n) for k ≥ 2
can be seen in [4, pp. 41–43]. As other simple examples, consider K ∪ L =
RP 6∪CP 4, RP 2∪CP 4 and CP 2∪RP 6. Denote by λ→ RPn and ν → CPm

the canonical real and complex line bundles over RPn and CPm, respec-
tively. A routine calculation of characteristic numbers based on [2, The-
orem 28.1] shows that A1(RP 6 ∪ CP 4) = ∅, A1(RP 2 ∪ CP 4) = ∅ and
A1(CP 2 ∪ RP 6) = {[(W 7;T )], [Γ (W 7;T )], [Γ 2(W 7;T )]}, where (W 7;T ) is
an involution with fixed data (ν ⊕ R → CP 2) ∪ (λ → RP 6) (this means
that A1(CP 2 ∪RP 6) has only one subset of the type previously described).
Thus, up to cobordism, the possible Zk2 -actions fixing either RP 6 ∪CP 4 or
RP 2∪CP 4 are those given by Theorem 3.9; because of the remark after The-
orem 3.9, Ak(RP 6∪CP 4) = ∅, and Ak(RP 2∪CP 4) consists of classes whose
representatives are of the form σΓ kr (RP 2×RP 2; twist)∪ σ′Γ ks (CP 4×CP 4;
twist), where k ≥ 2, 2 ≤ r ≤ k and s = r − 2.

Concerning K ∪ L = CP 2 ∪ RP 6, again for dimensional reasons, no
action is given by Theorem 3.9. Then every Zk2 -action fixing CP 2 ∪ RP 6

is cobordant to a Zk2 -action obtained by removing sections from the fixed
data of an action of the type σΓ kr (Γ 2(W 7;T )). For example, up to auto-
morphisms of Z2

2 , A2(CP 2 ∪ RP 6) consists of the classes [Γ 2
i (Γ j(W 7;T ))],

i = 1, 2, j = 0, 1, 2, and three more classes obtained by removing sections
from Γ 2

2 (Γ 2(W 7;T )) (with fixed data (ν⊕R3, ν⊕R2, τ)∪ (λ⊕R2, λ⊕R, τ),
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(ν ⊕R3, ν ⊕R, τ)∪ (λ⊕R2, λ, τ) and (ν ⊕R2, ν ⊕R, τ)∪ (λ⊕R, λ, τ)). By
applying all the possible automorphisms to these representatives, we obtain
a total of 36 classes for A2(CP 2 ∪RP 6).
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