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Weak Wecken’s theorem for periodic points in dimension 3

by

Jerzy Jezierski (Warszawa)

Abstract. We prove that a self-map f : M →M of a compact PL-manifold of dimen-
sion ≥ 3 is homotopic to a map with no periodic points of period n iff the Nielsen numbers
N(fk) for k dividing n all vanish. This generalizes the result from [Je] to dimension 3.

1. Introduction. We consider a self-map f : X → X of a topological
space and its set of periodic points Fix(fn) = {x ∈ X; fn(x) = x} for a
fixed n ∈ N. In 1982 Boju Jiang [Ji1] introduced a Nielsen type homotopy
invariant NFn(f), which is a lower bound for the cardinality of the set of
periodic points: # Fix(fn) ≥ NFn(f). Benjamin Halpern then conjectured
that this number is the best such homotopy invariant (for self-maps of com-
pact manifolds of dimension ≥ 5), i.e. every self-map f : M →M of such a
manifold is homotopic to a map g satisfying # Fix(gn) = NFn(f) (Theorem
4.14 in Section III of [Ji1]). In [Je] we proved

Theorem 1.1. Any self-map f of a compact PL-manifold of dimension
≥ 4 is homotopic to a map g without periodic points of period n (i.e. gn(x)
6= x) iff the Nielsen number N(fk) is 0 for any divisor k of n.

This answers positively the Halpern Conjecture under the assumption
that NFn(f) = 0 since the last equality is equivalent to N(f k) = 0 for all k
dividing n.

In this paper we extend this result to manifolds of dimension 3. The
main idea of this modification is “reparametrization of the path” (see the
proof of Lemma 3.8). This allows us to minimize (in the homotopy sense)
some inverse images and then to construct homotopies with no new periodic
points. This in turn reduces the problem to a local one: see Theorem 3.1. We
also hope that the present approach will give an easier proof of this result
also in all dimensions > 3.
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Let us add that in dimension 2 the Conjecture is not true since even in
the case of fixed points the Nielsen number is usually much less than the
least number of fixed points in the homotopy class of the given map (see [K]).

I would like to thank the referee for a very careful reading which allowed
me to remove numerous mistakes.

2. Preliminaries. In this section we introduce the basic notions of the
Nielsen fixed point theory and we sketch the proof of (a weak form of)
the classical Wecken theorem. Then we give an outline of the proof of its
generalization to periodic points (Theorem 2.5), which is the main result of
the present paper.

We consider a self-map f : X → X of a topological space X and its
fixed point set Fix(f). We define the Nielsen relation on Fix(f) by declaring
x ∼ y iff there is a path ω : [−1, 1]→ X such that ω(−1) = x, ω(1) = y and
the path fω is fixed end point homotopic to ω (for some technical reasons
we will use paths parametrized by the interval [−1, 1] rather than [0, 1] as
usual). This relation splits Fix(f) into (a finite number of) mutually disjoint
Nielsen classes. A Nielsen class A is called essential if its fixed point index is
nonzero: ind(f ;A) 6= 0. The Nielsen number N(f) is defined as the number
of essential Nielsen classes. This number is a homotopy invariant (f ∼ g
implies N(f) = N(g)) and is a lower bound of the cardinality of the fixed
point set (# Fix(g) ≥ N(f) for all g homotopic to f). Franz Wecken proved
in 1942 [W] that the Nielsen number is the best such lower bound for all
self-maps of manifolds of dimension ≥ 3.

Theorem 2.1 ([W]). Any self-map f : M →M of a compact topological
manifold of dimension at least 3 is homotopic to a map having exactly N(f)
fixed points.

In particular for N(f) = 0 we get

Corollary 2.2. A self-map f : M → M of a compact manifold of
dimension at least 3 is homotopic to a map with no fixed points⇔ N(f) = 0.

Sketch of proof (cf. [Ji2]). ⇒ is obvious since N(f) does not exceed the
number of fixed points of any map homotopic to f .
⇐ Let f : M → M satisfy N(f) = 0, dimM ≥ 3. Then each Nielsen

class A ⊂ Fix(f) is inessential, i.e. ind(f ;A) = 0. By a transversality lemma
we may assume that Fix(f) is finite and f is a linear homeomorphism
near each fixed point, which implies ind(f ;x) = ±1 for x ∈ Fix(f). Since
ind(f ;A) = 0, A splits into pairs {x1, y1, . . . , xs, ys} such that ind(f ;xi) +
ind(f ; yi) = 0. It remains to remove a pair xi, yi by a homotopy which
is constant in a neighbourhood of the remaining fixed points and which
does not add any new fixed points. A path ω joining these two points and
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satisfying fω ∼ ω can be chosen an arc. If we assume moreover that the
image fω is close to ω in the sense that there is a Euclidean neighbour-
hood containing both ω and fω then the Hopf lemma and the assumption
ind(f ;xi) + ind(f ; yi) = 0 allow us to remove these two fixed points by a
homotopy with carrier in a prescribed neighbourhood of ω.

Thus the main problem in the general case (fω and ω distant) is to
find a homotopy which does not change the fixed point set and after which
the paths ω , fω are contained in a Euclidean neighbourhood. A homotopy
making fω close to ω exists by the definition of the Nielsen relation. The
main difficulty is to avoid producing a new fixed point during this homotopy.
If dimM ≥ 3 then the homotopy can be deformed to avoid the arc ω(0, 1)
since M \ ω ≈ M \ ∗ and the image of the homotopy of an arc is two-
dimensional.

We follow a similar scheme to prove the main theorem of the present
paper. We will confine ourselves to PL-manifolds although in what follows
only the proof of the referenced Theorem 2.4 uses PL arguments.

Theorem 2.3. Any self-map f : M → M of a compact PL-manifold of
dimension ≥ 3 is homotopic to a map g without periodic points of period n
(i.e. gn(x) 6= x) iff N(fk) = 0 for any divisor k of n.

Proof. ⇒ is evident. The rest of the paper is the proof of ⇐. We use
induction with the respect to the divisors of the given n ∈ N: for every k |n
we show that

f is homotopic to a map g satisfying gl(x) 6= x for all l |n, l ≤ k.

For k = 1 this follows from the above Wecken theorem. Now we assume
that it holds for all divisors of n which are less than k. We will show how to
remove the k-periodic points.

Theorem 2.4 ([Je]). Let M ⊂ RN be a compact PL-submanifold with
metric induced by the Euclidean metric in RN . Fix n ∈ N. Then any contin-
uous map f : M → M is homotopic to a map g such that Fix(gn) is finite
and g is a PL-homeomorphism near any point x ∈ Fix(gn). Moreover for
any ε > 0 we may choose g to satisfy d(f, g) < ε.

By the above theorem we may assume that Fix(fn) is finite and f is a
linear homeomorphism near each x ∈ Fix(fn). In particular ind(fk;x) = ±1
at these points. Consider an orbit of Nielsen classes A ⊂ Fix(f k). Since by
the induction assumption f l(x) 6= x (l |n, l < n, x ∈M), all orbits of points
in Fix(fk) have length k. Since N(fk) = 0, we have ind(fk;A) = 0, hence A
splits into finitely many pairs of orbits {x1, . . . , xk}, {y1, . . . , yk} such that
there is a path ω : [−1, 1] → M establishing the Nielsen relation between
x1, y1 and ind(fk;x1) + ind(fk; y1) = 0.
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Thus the induction step will be done once we prove that the orbits
{x1, . . . , xk}, {y1, . . . , yk} can be removed by a homotopy which is constant
in a neighbourhood of the other fixed points and which does not produce
new fixed points. In other words, it remains to show the following

Theorem 2.5 (Cancelling Procedure). Let f : M → M be a map with
Fix(fk) finite (dimM ≥ 3). Assume that

(1) {x0, . . . , xk−1}, {y0, . . . , yk−1} are disjoint orbits of length k which
are Nielsen related , i.e. there is a path ω : [−1, 1]→M from f(−1) =
x0 to f(1) = y0 such that fkω and ω are fixed end point homotopic,

(2) f is a PL-homeomorphism near each point from {x0, . . . , xk−1;
y0, . . . , yk−1}.

(3) ind(fk;x0) + ind(fk; y0) = 0.

Then there is a homotopy {ft} starting from f0 = f constant in a neigh-
bourhood of Fix(fk) \ {x0, . . . , xk−1; y0, . . . , yk−1} and satisfying

Fix(fk1 ) = Fix(fk) \ {x0, . . . , xk−1; y0, . . . , yk−1}.
The rest of the paper is the proof of Theorem 2.5. We end this section

by an outline of this proof.

Some technical lemmas allow us to make ω and its images fω, . . . , f k−1ω
flat arcs and f a homeomorphism in neighbourhoods of these arcs (more
exactly in neighbourhoods of f iω[−1, 0) and f iω(0, 1] for i = 0, . . . , k − 2).

If moreover it happens that fkω is close to ω then the use of a modi-
fied Hopf lemma allows us to remove the two orbits. Thus the main diffi-
culty in the general case is to make f kω close to ω without adding new
periodic points. For some technical reasons the image of such a homo-
topy should avoid the arc fk−1ω and some of its inverse images. In [Je]
we used some transversality arguments to reduce the dimension of these
inverse images to 1. Thus the assumption dimM ≥ 4 allowed us to deform
the (two-dimensional) homotopy to avoid these (one-dimensional) inverse
images. This is the only place in [Je] which does not work in dimension 3.
In this paper we modify the last deformation so as not to produce new pe-
riodic points also in dimension 3. The main idea of this modification is a
reparametrization of the segment ωk−1 = fk−1ω.

3. Proof of Theorem 3.1. The crucial step in the proof of Theorem 2.5
is the following theorem which makes the path f kω close to ω. This step cor-
responds to the reduction to the Euclidean case in the proof of the classical
Wecken theorem. Let V ⊂ Rm−1 × R. We set

V + = {(x, t) ∈ V ; t > 0}, V − = {(x, t) ∈ V ; t < 0},
V 0 = {(x, t) ∈ V ; t = 0}.
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Theorem 3.1. Under the assumptions of the Cancelling Procedure (The-
orem 2.5) there exists a homotopy which does not change Fix(f k), is constant
in a neighbourhood of Fix(fk), and after which the map f satisfies:

(1) a path ω0 : [−1, 1] → M establishing the Nielsen relation between
x0, y0 ∈ Fix(fk) is a PL-arc avoiding other periodic points,

(2) there exist mutually disjoint Euclidean neighbourhoods V ′0 , . . . , V
′
k−1

such that f iω(t) = (0, t) ∈ V ′i = Rm−1 × R (i = 0, . . . , k − 1),
f(V ′i )

+ ⊂ (V ′i+1)+, f(V ′i )
− ⊂ (V ′i+1)−, f((V ′i )

0) = 0 ∈ V ′i+1 = Rm for
i = 0, . . . , k − 2,

(3) the restriction of f to V ′i \ (V ′i )
0 is a homeomorphism onto its image

(i = 0, . . . , k − 2),
(4) there is a Euclidean neighbourhood W such that V ′0⊂W , f(V ′k−1)⊂W

and the restriction of fk−1 to W \W 0 (= W+ ∪W− = {(x, t) ∈W ;
t 6= 0}) is a homeomorphism.

Theorem 3.1 will follow from a sequence of lemmas. Let f : M → M
satisfy the assumptions of Theorem 3.1 (i.e. of the Cancelling Procedure).

Lemma 3.2. Under the assumptions of the Cancelling Procedure, there
is a homotopy {ft} starting from f0 = f and an arc ω0 : [−1, 1]→M from
ω0(−1) = x0 to ω0(1) = y0 satisfying :

(1) ω0, ω1 = f1ω0, . . . , ωS = fS1 ω0 (S = 3k − 1) are PL-arcs whose
interiors, ωi(−1, 1) are mutually disjoint and disjoint from Fix(f k1 )
as indicated in Figure 1,

x0

y0

x1

y1

xk−1

yk−1

ω0

ωk

ω2k

ω1

ωk+1

ω2k+1

ωk−1

ω2k−1

ω3k−1

Fig. 1

(2) {ft} is constant in a prescribed neighbourhood of Fix(fk),
(3) {ft} can be arbitrarily small ,
(4) Fix(fk1 ) = Fix(fk).

Proof. We will concentrate on proving (1). Compare Section 3 in [Je].
Since dimM ≥ 3, ω0 may be chosen to be a PL-arc such that ω0(t) /∈

Fix(fk) for −1 < t < 1. Since f is a linear homeomorphism in neighbour-
hoods of x0 and y0, there exists an ε > 0 such that fω0[−1,−1 + ε] and
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fω0[1− ε, 1] are segments in the corresponding Euclidean neighbourhoods.
Since dimM ≥ 3, there exists a small homotopy (rel. ends) on ω0[−1+ε, 1−ε]
after which the path fω0[−1+ε, 1−ε] also becomes a PL-arc; moreover, the
homotopy may be extended to a homotopy on the whole M with carrier in
a prescribed neighbourhood of ω0[−1 + ε, 1− ε]. Thus we may assume that
ω1 = fω0 is also an arc and is disjoint from ω0[−1, 1].

We repeat the above construction for the arc ω1 and deduce that ω2 is
also an arc disjoint from ω0 and ω1. Thus we may assume that ω0, ω1, . . . ,
ωk−1 are mutually disjoint arcs. Recall that f is a PL-homeomorphism in
neighbourhoods of the points {x0, . . . , xk−1; y0, . . . , yk−1}. We may continue
this procedure to make the arcs f k[−1+ε, 1−ε], . . . , fS[−1+ε, 1−ε] mutually
disjoint. Since f is a PL-homeomorphism near the points {xi; yj} and ε > 0
may be arbitrarily small, we may assume that i 6= j and f iω0(t) = f jω0(s)
imply k | (j − i) and t = s = ±1 for i, j = 0, . . . , S = 3k − 1 (see Fig. 1).

It remains to notice that all the above deformations have carrier isolated
from Fix(fk). Thus we have (2) and (3), which implies (4).

Set zi = ωi(0) for i = 0, . . . , k − 1.

Lemma 3.3. Let f satisfy the assumptions of the Cancelling Procedure.
Then there is a homotopy {ft} starting from f0 = f satisfying

(1) {ft} is constant in a prescribed neighbourhood of Fix(fk),

(2) {ft} can be arbitrarily small ,

(3) there exists a neighbourhood Uk−1 3 zk−1 such that the union

clUk−1 ∪ f−1
1 (clUk−1) ∪ · · · ∪ f−(k−1)

1 (clUk−1)

is contained in the interior of a finite union of mutually disjoint
closed m-balls.

Proof. Compare Corollary 4.6 in [Je]. We may assume that f has the
properties of f1 in Lemma 3.2. Since ωi are mutually disjoint arcs, we may
choose disjoint Euclidean neighbourhoods Vi where ωi(t) = (0, t) ∈ Vi =
Rm−1 × R (i = 0, . . . , k − 1). Since the points zi = ωi(0) (i = 0, . . . , k − 1)
do not belong to Fix(fk), we may deform f in small neighbourhoods Ui
(zi ∈ Ui ⊂ Vi = Rm) so that f takes there the form

Ui 3 (t, x) 7→ (t, x) ∈ Vi+1 for (x, t) ∈ Rm−1 × R and i = 0, . . . , k − 2.

Moreover we may assume that f does not vary on ωi[−1, 1] during these
deformations. Compare Lemma 4.1 in [Je].

Now we make the map f transverse to the point zk−1. The homo-
topy can be assumed to be arbitrarily small and to be constant in neigh-
bourhoods of the arcs ωi[−1, 1] for i = 0, . . . , S − 1 (= 3k − 2) since

f−1(zk−1)∩⋃S−1
i=0 ωi[−1, 1] = {zk−2} and f is a homeomorphism on Uk−2 3
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zk−2. Then f−1(zk−1) becomes a discrete (hence finite) set. Next we no-

tice that f−2(zk−1) ∩ ⋃S−2
i=0 ωi[−1, 1] = {zk−3} so we may correct f to ob-

tain a map transverse to f−1(zk−1) and we may assume as above that the

deformation is constant on
⋃S−3
i=0 ωi[−1, 1]. Continuing this process we get

f, f2, . . . , fk−1 transverse to zk−1 by means a homotopy constant in a neigh-

bourhood of
⋃2k−1
i=0 ωi[−1, 1] (since 2k − 1 = S − k).

Now
⋃k−1
i=0 f

−i(zk−1) is a finite set and f i is a homeomorphism in a neigh-
bourhood of each point of f−i(zk−1) (i = 1, . . . , k − 1). Thus there is an

m-ball neighbourhood U ′ 3 zk−1 such that W =
⋃k−1
i=0 f

−i(clU ′) is a finite
union of mutually disjoint m-balls, each mapped homeomorphically onto
U ′. Fix a smaller neighbourhood U satisfying zk−1 ∈ U ⊂ clU ⊂ U ′. Now⋃k−1
i=0 f

−i(clU) ⊂W (a compact subset of an open set). This proves (3). Re-
call that the homotopy may be arbitrarily small and constant near Fix(f k).
Now the other statements of the lemma also follow.

Remark 3.4. Notice that property (3) of Lemma 3.3 is stable in the
following sense: for a given neighbourhood of Fix(f k1 ) there exists a δ > 0
such that the conditions d(f1, f

′) < δ and f1 = f ′ in this neighbourhood
imply that f ′ also satisfies (3) of Lemma 3.3.

Lemma 3.5. Let f satisfy the assumptions of the Cancelling Procedure.
Then there is a homotopy {ft} starting from f0 = f and satisfying :

(1) there exist mutually disjoint Euclidean neighbourhoods V0, . . . , Vk−1

⊂ M where ωi(t) = (0, t) ∈ Vi = Rm−1 × R for −1 ≤ t ≤ 1 and
i = 0, . . . , k − 1,

(2) f1(V +
i ) ⊂ V +

i+1, f1(V −i ) ⊂ V −i+1, f1(V 0
i ) = zi+1 ∈ V 0

i+1 for i =
0, . . . , k − 2,

(3) the restriction of f1 to Vi \ V 0
i is a homeomorphism onto its image,

(4) {ft} is constant in a prescribed neighbourhood of Fix(fk),
(5) {ft} can be arbitrarily small ,
(6) Fix(fkt ) does not depend on t.

Proof. We may assume that f satisfies (3) of Lemma 3.3. We will correct
f to make it a homeomorphism near ωi[−1, 0) and ωi(0, 1] for i = 0, . . . , k−2.
For the details of this construction see Lemma 3.3 and Corollary 4.7 in [Je].
Here we give only an outline of how to make f a homeomorphism near
ω0[−1, 0) and ω0(0, 1].

We fix disjoint Euclidean neighbourhoods U0 and U1 of ω0 and ω1 = fω0

respectively. We may assume that ω0(t) = (0, t) ∈ Rm−1 × R = U0 and
fω0(t) = (0, t) ∈ Rm−1 × R = U1.

We fix m-simplices σx, σy containing x0 and y0 respectively on which f is
a homeomorphism. Moreover we assume that some (m−1)-dimensional faces
σ−1+ε ⊂ σx, σ1−ε ⊂ σy lie in the hyperplanes xm = −1 + ε and xm = 1− ε
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σy
y0

x0 σx

fy0 = y1

fx0 = x1

ω0
fω0 = ω1

1
1− ε

0

−1 + ε
−1

Fig. 2

respectively. Figure 2 illustrates how we will modify f to a homeomorphism
near ω0[−1, 0) and ω0(0, 1].

Let p′ : Rm → Rm−1 and p′′ : Rm → R denote the projections p′(x, t) = x
and p′′(x, t) = t for (x, t) ∈ Rm−1 × R = Rm. Let σ0 be an (m− 1)-simplex
contained in p′(σ−1+ε) ∩ p′(σ1−ε) and let 0 ∈ intσ0. If σ0 is chosen small
enough then p′′(f(x,−1 + ε)) < 0 < p′′(f(x, 1 − ε)) for x ∈ σ0. We define
the map f ′ : σ0 × [−1 + ε, 1− ε]→ Rm by the formula

f ′(x, t) =





t

1− ε f(x, 1− ε) for 0 ≤ t ≤ 1− ε,
t

−1 + ε
f(x,−1 + ε) for −1 + ε ≤ t ≤ 0.

Then the restrictions of f ′ to σ0 × [−1 + ε, 0) and to σ0 × (0, 1 − ε] are
homeomorphisms. Fix a number η > 0. If the simplex σ0 is small enough
then d(f ′(x, t), f(x, t)) < η for (x, t) ∈ σ0 × [−1 + ε, 1 − ε]. Moreover the
homotopy from f to f ′ (by segments) is still an η-homotopy and admits an
extension onto M which is constant outside a prescribed neighbourhood of
σ0 × [−1 + ε, 1− ε]. Thus we may assume that after this homotopy no new
periodic point (of minimal period l ≤ k, l |n) appears (Lemma 1.2 in [Je]).

On the other hand f ′(x, 1− ε) = f(x, 1− ε), f ′(x,−1 + ε) = f(x,−1 + ε)
for x ∈ σ0 so we may assume that the homotopy is constant on σx, σy. For
a sufficiently small number ε′ > 0 we have σ0 × [1 − ε′, 1 + ε′] ⊂ σy and
σ0× [−1− ε′,−1 + ε′] ⊂ σx, hence the restriction of f to σ0× (0, 1 + ε′] and
to σ0×[−1−ε′, 0) is a homeomorphism. Finally, V0 = intσ0×(−1−ε′, 1+ε′)
is the desired Euclidean neighbourhood.

In general we proceed as follows: we fix a Euclidean neighbourhood Vk−1

of ωk−1 in which ωk−1(t) = (0, t). The above construction gives a neighbour-
hood Vk−2 ⊃ ωk−2 such that f : Vk−2 \ V 0

k−2 → Vk−1 is a homeomorphism
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onto its image. Then we choose Vk−3 and so on. The resulting map satis-
fies items (1), (2), and (3) of the lemma by the very construction of the
homotopy. Since the carrier of the homotopy is contained in (thin) neigh-
bourhoods of the paths ωi and the homotopy is constant near the ends xi, yi
of these paths, (4) holds. Since the above neighbourhoods of the paths ωi
may be arbitrarily thin, (5) is satisfied, which in turn implies (6).

Remark 3.6. Since the last homotopy may be small, we may assume
that the resulting map f1 also satisfies Lemma 3.3(3) (see Remark 3.4).

Remark 3.7. Since ωk, . . . , ω2k−1 are mutually disjoint, so also are
f(Vk−1), . . . , fk(Vk−1) for a sufficiently thin Vk−1.

The assumption of the next lemma differs from the earlier ones: the path
ω0 exceptionally does not join periodic points. This lemma will be applied
for a = 1− ε in Remark 3.9 and in the proof of Lemma 3.10.

Lemma 3.8. Let f : M → M be a self-map of a compact PL-manifold
of dimension ≥ 3. Assume that

(a) Fix(fk) is finite,
(b) ω0 : [−a, a]→M is a PL-arc such that ωi = f iω for i = 0, . . . , 2k−1

are mutually disjoint arcs, each disjoint from Fix(fk),
(c) V0 ⊂ M is a Euclidean neighbourhood such that ω0(t) = (0, t) ∈

Rn−1 × R = V0,
(d) ωk(−a), ωk(a) ∈ V0, ωk is homotopic (in M , rel. end points) to a

path lying in V0,
(e) there exists a neighbourhood Uk−1 3 zk−1 such that the union

clUk−1 ∪ f−1
1 (clUk−1) ∪ · · · ∪ f−(k−1)

1 (clUk−1)

is contained in the interior of a finite union of mutually disjoint
m-balls.

Then there is a partial homotopy hs : ωk−1[−a, a]→M (0 ≤ s ≤ 2) satisfy-
ing :

(1) h0 = f|ωk−1
, h2 is a path in V0, h2(ω0[−a, a]) ∩ ω0[−a, a] = ∅,

(2) hs is constant at the ends ωk−1(−a) and ωk−1(a),
(3) f ihsωk−1[−a, a] is disjoint from ωk−1[−a, a] for i = 0, . . . , k − 1,
(4) in particular f ihs(x) 6= x for x ∈ ωk−1[−a, a], 0 ≤ s ≤ 2, i =

0, . . . , k − 1.

Proof. The partial homotopy {hs} will be obtained in two steps: re-
parametrization (for 0 ≤ t ≤ 1) and contraction of the path fωk−1 to V0

(for 1 ≤ t ≤ 2).
1. Let η > 0 be so small that 0 × [−η, η] ⊂ Uk−1 ⊂ Rm−1 × R = Vk−1

(Uk−1 is the neighbourhood from assumption (e)). Let r : [−a, a]→ [−a, a]
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−a −η η a−a

a

Fig. 3

be the map given by Figure 3, and let rt : ωk−1[−a, a] → ωk−1[−a, a] be
the linear homotopy from r0 = idωk−1[−a,a] to r1(ωk−1(t)) = ωk−1(r(t))
(reparametrization of the path ωk−1). We define a partial homotopy ht :
ωk−1[−a, a]→M putting

ht(x) = frt(x) for x ∈ ωk−1[−a, a].

Notice that r1(ωk−1[−a,−η]) and r1(ωk−1[η, a]) are points, hence so are
h1(ωk−1[−a,−η]) and h1(ωk−1[η, a]).

2. The homotopy hs (for 1 ≤ s ≤ 2) will be constant on ωk−1[−a,−η]
and on ωk−1[η, a]. We are going to define this homotopy on ωk−1[−η, η].

By assumption (d) the restriction of f to ωk−1 is homotopic to a path
ω : ωk−1[−a, a]→ V0, hence also the maps h1 = fr1, ωr1 : ωk−1[−a, a]→M
are homotopic rel. ends. Since both h1 = fr1, ωr1 are constant on the
segments ωk−1[−1,−η] and ωk−1[η, 1], we may assume the same about the
homotopy {hs} (1 ≤ s ≤ 2) between them. We will show that the last
homotopy can be made to avoid the set

clUk−1 ∪ f−1
1 (clUk−1) ∪ · · · ∪ f−(k−1)

1 (clUk−1).

fk(ω0(−a))

.....

ω0(−a)

ω0(a) fk(ω0(a))

ω0ω1ωk−1

ω̄V0

ωk = fωk−1

Fig. 4
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In fact by assumption (e) this union is contained in a finite union
⋃
αKα

of mutually disjoint balls. Since dimM ≥ 3,

π2

(
M,M −

⋃

α

Kα

)
= π2(M,M − finite set) = 0

so the image of the (two-dimensional homotopy) hs : ωk−1[−η, η]× [1, 2]→
M can be deformed (rel. boundary of [−η, η]× [1, 2]) so as to avoid

⋃
αKα.

Here the assumption dimM ≥ 3 is sufficient.
Thus we may assume that hs(ωk−1(t)) /∈⋃k−1

i=0 f
−i(clU). Since ωk−1[−η, η]

⊂ U we get (3) and (4) (in ωk−1[−η, η]). We extend the homotopy ht onto
ωk−1[−a, a] by the constant homotopy outside ωk−1[−η, η] and 1 ≤ t ≤ 2.
Now the homotopy {ht} for 0 ≤ t ≤ 2 is as desired.

Remark 3.9. Let f = f1 : M → M satisfy (3) of Lemma 3.3 and (1),
(2) of Lemma 3.5. Let ε > 0 be so small that f kω0[−1,−1+ε]∪fkω0[1−ε, 1]
⊂ V0. Then the assumptions of Lemma 3.8 are satisfied for a = 1− ε.

Lemma 3.10. The partial homotopy from Lemma 3.8 can be extended to
ft : M →M , where

(1) the carrier of {ft} is contained in D × [−1 + ε, 1 − ε] ⊂ Vk−1 =
Rm−1 × R, where D is any prescribed neighbourhood of 0 ∈ Rm−1,

(2) Fix(fk1 ) = Fix(fk).

Proof. By Remark 3.9 we may assume that we have a partial homotopy
ht : ωk[−1 + ε, 1− ε]→M from Lemma 3.8. Let D ⊂ Rm−1 be a closed ball
centred at 0. Take an arbitrary extension f ′t of the partial homotopy onto
M . We consider the metric space X = M \ {ωk−1(−1 + ε), ωk−1(1 − ε)}.
Then the sets X \ D × [−1 + ε, 1 − ε] and 0 × (−1 + ε, 1 − ε) are disjoint
closed subsets of X. Let λ : X → [0, 1] be an Urysohn function satisfying

λ |X \D × [−1 + ε, 1− ε] = 0, λ | 0× [−1 + ε, 1− ε] = 1.

Then the map ft : M →M defined by

ft(x) =

{
f ′λ(x)t(x) for x /∈ {ωk−1(−1 + ε), ωk−1(1− ε)},
f(x) for x ∈ {ωk−1(−1 + ε), ωk−1(1− ε)},

gives a homotopy satisfying (1) (ft is continuous at the points ωk−1(−1 + ε)
and ωk−1(1− ε) since the homotopy f ′t is constant there).

It remains to show that if D is small enough then Fix(f k2 ) = Fix(fk).
Suppose otherwise. Let Dn be a concentric ball of radius 1/n. Now we have
xn ∈ Dn and 0 ≤ tn ≤ 2 such that f ′ktn(xn) = xn. By compactness there
are subsequences converging to x0 ∈ 0 × [−1 + ε, 1 − ε] and 0 ≤ t0 ≤ 2
respectively. Then fkt0(x0) = x0 contradicts (4) of Lemma 3.8.

Remark 3.11. Since the only condition on the path ω was ω(t) ∈ V0 \
ω0[−1, 1], we may assume ω(0) ∈ V −0 . Then f2(zk−1) = ω(0) ∈ V −0 .
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End of the proof of Theorem 3.1. Let f = f1 from Lemma 3.10. Then
(1)–(3) follow from Lemma 3.5 since Lemma 3.10 does not change f on
V0, . . . , Vk−1. To get (4) we proceed as follows. We take W = V0 and we find
V ′k−1 ⊂ Vk−1 satisfying the assertion of Lemma 3.5 and fV ′k−1 ⊂W . If V ′k−1
is thin enough, then f(V ′k−1) ⊂W . Then we find V ′k−2 ⊂ Vk−2 satisfying the
assertion of Lemma 3.5 and fV ′k−2 ⊂ V ′k−1 and so on until we get V ′0 ⊂ V0.

4. Extension of the partial homotopy. We will show that the map
f satisfying the conclusion ofTheorem 3.1 may be deformed so that f k is
given, near the arc ω0[−1, 1], by a prescribed formula. We will need a lemma
extending the partial homotopy to a global homotopy with no new periodic
points.

We assume that f : M → M satisfies the conclusion of Theorem 3.1,
and consider the orbits {x0, . . . , xk−1}, {y0, . . . , yk−1}. Since f is a PL-
homeomorphism in a neighbourhood of each periodic point and ind(f k; y0)+
ind(fk;x0) = 0, we may assume that ind(fk;x0) = 1, ind(fk; y0) = −1.

In [Je] we considered the map: h : P → Rm (P = [−2, 2]m) given by the
formula h(x, t) = (1

3 |t|x, η(t)) where (x, t) ∈ Rm−1 × R and η : [−2, 2] → R
is a function satisfying: η(t) = t⇔ t = ±1, η(−2) > −2, η(0) < 0, η(2) > 2
as indicated in Figure 5.

(−2,−2)

(2, 2)

(0, 0)

(−1,−1)

(1, 1)

η(t)

Fig. 5

In this section we will show

Theorem 4.1. Let the map f : M → M satisfy the conclusion of The-
orem 3.1. Then there is a homotopy ft : M → M with carrier in V ′k−1
satisfying :

(1) ft(V
′
k−1) ⊂W ,

(2) Fix(fkt ) is constant ,
(3) fk1 (x) = h(x) for x ∈ P = [−2, 2]k ⊂ Rm = V ′0 ⊂ M (here we

consider P ⊂ Rm as a subset of the Euclidean neighbourhood V ′0).

The theorem will follow from a series of lemmas.
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Observe that the restriction f k|P and h : P →M satisfy

ind(h;x0) = +1 = ind(fk;x0), ind(h, y0) = −1 = ind(fk; y0)

and moreover, if we set P0 = [−2, 2]m−1 × 0, then both h(P0) and fk(P0)
are points.

The next lemma from [Je] is a modification of the Hopf lemma.

Lemma 4.2. Let Q = [0, 1]m, Q0 = [0, 1]m−1×0 and let f0, f1 : Q→ Rm
be maps satisfying f0(z) 6= z 6= f1(z) for z ∈ bdQ and ind(f0) = ind(f1).
Assume moreover that :

(a) f0(Q0) and f1(Q0) are points,
(b) γ : [0, 1]→ Rm \Q0 is a path from γ(0) = f0(Q0) to γ(1) = f1(Q0),
(c) m ≥ 3.

Then there is a homotopy H : Q× I → Rm satisfying

(1) H(z, i) = fi(z) for i = 0, 1, z ∈ Q,
(2) H(z, t) 6= z for t ∈ I, z ∈ bdQ,
(3) H(z, t) = γ(t) for z ∈ Q0 t ∈ I.

Proof. See Theorem 5.2 and Lemma 5.3 in [Je].

The above lemma yields a homotopy {ht} from h0 = fk (more precisely
its restriction to P ) and h1 = h (given above by a formula) such that P0

is sent to a point and no point from bdP ∪ P0 is fixed at any moment of
this homotopy. This induces a partial homotopy f ′t : fk−1(P ) → M by the
formula

f ′t(x) = ht(y) for x = fk−1(y), y ∈ P.
In other words, f ′t(x) = ht((f

k−1
| )−1(x)), where fk−1

| denotes the restriction

fk−1 : P → Vk−1 = Rm. Since fk−1
| is injective on P − P0 and ht(P0) is a

point (for any fixed t), the definition is correct. Moreover we recall that the
points f(zk−1) = fk(z0) and h(z0) belong to V −0 (see Remark 3.11 and recall
that h(0, 0) = (0, η(0)) where η(0) < 0). Thus we may join these two points
with a path γ : [0, 1]→ V −0 and we may assume that f ′t(f

k−1P0) = γ(t).

Lemma 4.3. The partial homotopy f ′t : fk−1(P )→M admits an exten-
sion f : M → M with carrier contained in any prescribed neighbourhood of
fk−1(P ) and such that the set

{x ∈ Fix(f ′kt ); the orbit of x is disjoint from fk−1(P )}
does not depend on t.

Proof. The assertion follows from Lemma 4.4 applied for X = M , A =
fk−1(P ), A′ = U ′ = ∅. It remains only to check that the set

A′ = {x ∈ bd fk−1(P ); fk−1f ′t(x) = x for some x ∈ fk−1(P )}
is indeed empty.
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Suppose that, on the contrary, f k−1(f ′t(x)) = x for some x = fk−1(y),
y ∈ bdP . Assume first that x = zk−1. Then fk−1(f ′t(x)) = fk−1(ht(z0)) =
fk−1(γ(t)). Since γ(t) ∈ V −0 , we have fk−1(γ(t)) ∈ V −k−1, hence fk−1(γ(t))
6= zk−1.

Now let x 6= zk−1. Then x = fk−1(y), where y ∈ P \ P0. Since f ′t(x) =
ht(y), the equalities x = fk−1(f ′t(x)) = fk−1(ht(y)) and x = fk−1(y) imply
fk−1(ht(y)) = fk−1(y). Since fk−1 is a homeomorphism on W \ W 0 =
W+∪W−, y = ht(y) ∈ bdP is a fixed point on the boundary, contradicting
the construction of {ht}.

Lemma 4.4. Let A ⊂ X be compact ANRs, k ∈ N, f : X → X a con-
tinuous map, h′t : A → X a partial homotopy and let A′ = {x ∈ bdA; x =
fk−1h′t(x) for some t ∈ [0, 1]}. Moreover , assume that :

(1) h′0(a) = f(a) for a ∈ A,
(2) the sets A,A1 = {h′t(a); a ∈ A, 0 ≤ t ≤ 1}, A2 = f(A1), . . . , Ak−1 =

fk−2(A1) are mutually disjoint ,
(3) there exists an open subset U ′ ⊂ X satisfying :

(a) h′t(x) ∈ U ′ for x ∈ A′ and 0 ≤ t ≤ 1,
(b) fk−1(clU ′) ⊂ A.

Then there exists an extension of the partial homotopy {h′t} to ht : X → X
satisfying :

(1) h0 = f ,
(2) the carrier of the homotopy {ht} is contained in an arbitrarily pre-

scribed neighbourhood of A,
(3) {x ∈ Fix(hkt ); the orbit of x is disjoint from A} does not depend on

t ∈ [0, 1].

Proof. LetH : X → X be an arbitrary extension of the partial homotopy
h′t to X. Then H(A′ × I) ⊂ U ′, hence by compactness there exists an open
subset U ⊂ X containing A′ and satisfying H(clU × I) ⊂ U ′. Moreover if U
is sufficiently small then, by assumption (2), the sets

clU ∪ A, B1 = H((clU ∪ A)× I), B2 = f(B1), . . . , Bk−1 = fk−2(B1)

are mutually disjoint. Then setting h′t=H(·, t) we have (h′t)
k(x)=fk−1h′t(x)

for all x ∈ clU .
We will show that (h′t)

k(x) 6= x for all x ∈ clU \A and t ∈ [0, 1]. In fact
x ∈ clU \A implies x ∈ clU , hence h′t(x) ∈ U ′. Now (h′t)

k(x) = fk−1h′t(x) ∈
fk−1U ′ ⊂ A implies (h′t)

k(x) 6= x since x /∈ A.
Now we show that (h′t)

k(x) 6= x for all x ∈ bd(A ∪ clU). Suppose other-
wise, i.e. (h′t)

k(x) = x. We notice that bd(A∪ clU) ⊂ bdA∪ bd(clU). First
we assume that x ∈ bdA. Then the equality (h′t)

k(x) = x implies x ∈ A′
so x ∈ A′ ⊂ U ⊂ int(A ∪ clU) and hence x /∈ bd(A ∪ clU), contrary to the
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assumption. If x ∈ bd(clU) \ bdA then x ∈ clU \ A and (h′t)
k(x) 6= x as

above.

Let B = {x ∈ X \ A; (h′t)
k(x) = x for some t ∈ I}. By the above, B is

a closed subset of X disjoint from A. Let V be a neighbourhood of A. Let
λ : X → [0, 1] be an Urysohn function with λ |A = 1 and λ |B∪(X \V ) = 0.
We will show that ht(x) = h′λ(x)t(x) is the desired homotopy. In fact (1) is

evident. To see that (2) holds we notice that ht(x) = h′λ(x)t(x) = h′0(x) =

f(x) for all x /∈ V . It remains to show (3). Fix t ∈ [0, 1] and consider an
orbit of ht avoiding A. This orbit must lie in B. Now ht(x) = h′λ(x)t(x) =

h′0(x) = f(x) for any x from the orbit, which implies that this is also an
orbit of f . The same arguments show that each orbit of f = h0 avoiding A
lies in B and is an orbit of ht, which gives (3).

Proof of Theorem 4.1. As we have noticed the modified Hopf lemma
induces a partial homotopy f ′t (on fk−1(P )) starting from f and so that
f ′1f

k−1 = h on P ⊂ Rm = V ′0 . Then Lemma 4.3 extends the local homotopy
to a global one. The carrier of ft may be as small as we please, hence we can
assume that it is contained in V ′k−1. On the other hand, since f k−1f ′1(x) = x
iff x = xk−1 or x = yk−1, the condition on orbits in Lemma 4.3 makes
Fix(fkt ) independent of t.

5. End of the proof of the Cancelling Procedure (Theorem 2.5).
We may assume that f : M → M satisfies the conclusion of Theorem 3.1
and by the last section we may moreover assume that f k(x, t) =

(
1
3 |t|x, η(t)

)

for (x, t) ∈ P ⊂W = Rm.

We will use the following technical lemma (proved in [Je]).

Lemma 5.1 ([Je, Lemma 5.5]). There is a homotopy hs : P → Rm
(0 ≤ s ≤ 3) satisfying

(1) h0(x, t) =
(

1
3 |t|x, η(t)

)
,

(2) hs(P0) is a point , for each fixed s,

(3) hs(z) 6= z for z ∈ bdP ,

(4) hs(x, t) = h0(x, t) for (x, t) ∈ bdP , |t| ≥ ε,
(5) hs(x, t) ∈ intP for |t| < ε,

(6) h3(z) 6= z for all z ∈ P ,

(7) h3(0) ∈ intP \ P0.

Since fk−1 is a homeomorphism on P \P0, the homotopy hs from Lemma
5.1 induces a partial homotopy h′s : fk−1(P ) → M by the formula h′s(x) =
hs((f

k−1
| )−1(x)). The definition is correct by property (2) because f k−1 is a

homeomorphism on P \ P0 ⊂W \W 0.

We will show
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Claim 1. Lemma 4.4 can be applied to the above partial homotopy with

X = M, A = fk−1(P ), A′ = fk−1(P0) = zk−1 = a point.

This gives a homotopy {h̃s}, 0 ≤ s ≤ 3, starting from h̃0 = f .

Claim 2. Fix(h̃k3) = Fix(fk) \ {x0, . . . , xk−1; y0, . . . , yk−1}.
Now h̃3 is the desired map homotopic to f satisfying the Cancelling

Procedure.
It remains to prove the above two claims.

Proof of Claim 1. We show that the assumptions of Lemma 4.4 are
satisfied.

(1) is evident.
(2) We recall that the sets W,f(W ), . . . , f k−2(W ) are disjoint from

fk−1(W ) (if only W was chosen sufficiently thin—see Remark 3.7). On
the other hand, A1 =

⋃
t h
′
t(f

k−1P ) =
⋃
t ht(P ) ⊂ Rm = W hence A2 ⊂

f(W ), . . . , Ak−1 ⊂ fk−2(W ) are disjoint from A = fk−1(P ) ⊂ fk−1(W ).
(3) We begin by showing that f k−1h′t(v) 6= v for any v ∈ bd fk−1(P ) \

zk−1. Let v ∈ bd(fk−1(P )). Then v = fk−1(z) for some z ∈ bdP . Suppose
that fk−1h′t(v) = v. Then fk−1h′t(v) = fk−1(z). Suppose that z /∈ P0. Since
the restriction of fk−1 to P \ P0 is injective, we have h′t(v) = z. Thus
z = h′t(v) = h′tf

k−1(z) = ht(z), contrary to Lemma 5.1(3).
Now we prove that assumptions (a) and (b) are satisfied.
Let U ′ = intP . By Lemma 5.1(5), hs(P0) ⊂ U ′, hence h′s(zk−1) =

hs(P0)⊂U ′ and so (a) is satisfied. On the other hand, the equality f k−1(clU ′)
= fk−1(P ) = A proves (b).

Proof of Claim 2. We will show that h̃k3(z) 6= z for all z ∈ fk−1(P ).

Suppose otherwise. Thus z ∈ Fix(h̃k3) ∩ fk−1(P ) implies h̃3(z) ∈ Fix(h̃k3).
Then the point y = h̃3(z) belongs to P ⊂ W . In fact, since z = h̃k−1

3 (y) =
fk−1(y), z ∈ fk−1(P ) and fk−1 is injective on W+ ∪W−, it follows that
y ∈ P . Now h̃k3(y) = h′3(fk−1(y)) = h3(y). On the other hand, Lemma 5.1(6)
implies h3(y) 6= y. This contradicts z ∈ Fix(h̃k3).

The above, Lemma 4.4 and the equality h̃3 = f imply

Fix(h̃k3) = {x ∈ Fix(h̃k3); the orbit of x is disjoint from f k−1P}
= {x ∈ Fix(h̃k0); the orbit of x is disjoint from f k−1P}
= Fix(fk) \ {x0, . . . , xk−1; y0, . . . , yk−1}.
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