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Pure virtual braids homotopic to the identity braid

by

H. A. Dye (Lebanon, IL)

Abstract. Two virtual link diagrams are homotopic if one may be transformed into
the other by a sequence of virtual Reidemeister moves, classical Reidemeister moves, and
self crossing changes. We recall the pure virtual braid group. We then describe the set of
pure virtual braids that are homotopic to the identity braid.

1. Introduction. A virtual link diagram is a decorated immersion of
n copies of S1 with two types of crossings: classical and virtual. Classical
crossings are indicated by over/under markings and virtual crossings are
indicated by a solid encircled X. An example of a virtual link diagram is
shown in Figure 1.

Fig. 1. Kishino’s knot

Virtual link theory is a generalization of classical knot theory that was
introduced by Louis H. Kauffman in 1996 (see [9]). Two virtual link diagrams
are said to be equivalent if one may be transformed into the other by a
sequence of classical Reidemeister moves (shown in Figure 2) and virtual
Reidemeister moves (shown in Figure 3). Classical link diagrams contain no
virtual crossings and form a subset of the virtual link diagrams.

I. II. III.

Fig. 2. Classical Reidemeister moves

2000 Mathematics Subject Classification: Primary 57M27.
Key words and phrases: virtual braids, link homotopy, identity braid.

DOI: 10.4064/fm202-3-2 [225] c© Instytut Matematyczny PAN, 2009



226 H. A. Dye

I. II. III.

IV.

Fig. 3. Virtual Reidemeister moves

A representation of a virtual link diagram is a pair (F,L) where L is
a link diagram on a closed, two-dimensional surface F taken up to Dehn
twists and handle (S1× I) additions and cancellations. Reidemeister moves
can be performed on the surface.

Remark 1.1. Detailed descriptions of representations are given in [3]
or [9]. Abstract surfaces (punctured representations) are described in [7].

We recall the following theorems:

Theorem 1.1 (See [7] and [9]). Classes of representations are in one-
to-one correspondence with equivalence classes of virtual link diagrams.

Theorem 1.2 (Kuperberg [11]). Representations of virtual link dia-
grams have a unique representative embedding class in the minimal genus
surface that can support the diagram.

Recalling [4], two virtual link diagrams are defined to be homotopic if
one diagram may be transformed into the other by a sequence of virtual
Reidemeister moves, classical Reidemeister moves, and self crossing changes.
(By self crossing change, we mean changing the over/under markings at
a crossing between two segments of the same link component.)

In this paper, we focus on virtual braids (see [8] and [10]) and pure virtual
braids. A n-strand virtual braid diagram is a decorated immersion of n copies
of [0, 1] into the plane. Let {f1, . . . , fn} denote the n components. The sets
of endpoints {f1(i), . . . , fn(i)}, i ∈ {0, 1}, are contained in a line for each i.
We refer to the set of points where i = 0 as the upper endpoints and the
other set (i = 1) as the lower endpoints, as shown in Figure 4. Two virtual
braid diagrams are said to be virtually homotopic if one can be transformed
into the other by a sequence of Reidemeister moves, virtual Reidemeister
moves, and self crossing changes that leave the endpoints fixed. A virtual
braid is pure if the braid is equivalent to a braid with no self crossings, that
is, every crossing involves two distinct components. For a pure virtual braid,
the order of the set of upper endpoints is the same as the order of the set of
lower endpoints. We denote the set of n-strand pure virtual braids as VPn
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i = 1

i = 0

Fig. 4. Example of a braid diagram

and the set of n-strand pure classical braids as BPn. We will discuss the
group structure of VPn and BPn in the next section.

Two virtual braid diagrams are virtually homotopic if one diagram can
be transformed into the other by a sequence of Reidemeister moves, virtual
Reidemeister moves and self crossing changes. We will denote the set of
homotopic n-strand pure virtual braids as H(VPn) and the set of homotopic
n-strand pure classical braids as H(BPn) following the notation in [5].

A representation of an n-strand pure virtual braid is a pair (D, b) where
D is a once punctured, two-dimensional oriented surface with an immersed
braid b (where the boundary points of b are contained in the boundary
of D) modulo Reidemeister moves, Dehn twists, and handle cancellations
and additions.

Remark 1.2. We can view the surface D as I × I with m attached
handles (m ≥ 0). Theorems 1.1 and 1.2 apply to representations of pure
virtual braids. In a diagram of a representation with genus one, we will
draw only the handle as shown in Figure 5. Elements of VPn with genus one
representations have a natural correspondence with elements of BPn+2 and
BPn+1.

Fig. 5. Surfaces for genus one representations

Classical homotopy has been studied by Milnor [12], Goldsmith [5], and
more recently Habegger and Lin [6]. Significant differences exist between the
classical case and the virtual case. Strikingly, not all virtual knot diagrams
are homotopic to the unknot. (This topic has been explored in [4] where
Milnor’s link groups and µ-invariants are applied to virtual link diagrams.)
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The difference in the case of braids is illustrated by the fact that every
classical braid with a fixed ordering on the endpoints can be homotoped
into a braid with no self crossings. This is not true in the virtual case, as
shown in Figure 6. In this paper, we determine which pure virtual braids
are homotopic to the identity braid.

Fig. 6. Braids not homotopic to a pure braid

2. Pure braids. The structure of the n-strand pure virtual braid group
is described in [2]. VPn is generated by the set {λik, λki | i, k ∈ {1, . . . , n}}.
These generators are illustrated in Figure 7.

λ

λ λ

λij

ji

ij

ji

−1

−1

i j i

i j

j

i j

Fig. 7. Generators of the pure virtual braid group

The relations in VPn are given in equations (1) and (2) below (cf. [2]).
First,

(1) λjkλin = λinλjk for distinct i, j, k, n.

Let s(ij) = 1 if i < j and −1 otherwise. Then

(2) λ
s(ki)
ki λ

s(kj)
kj λ

s(ij)
ij = λ

s(ij)
ij λ

s(ij)
kj λ

s(ki)
ki .
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Remark 2.1. The naming convention for the generators differs slightly
from that given in [2]. In this paper, the two indices indicate the strands
involved. The classical crossing is in the upper tier of crossings. The first
index number indicates the over crossing strand while the second indicates
the under crossing strand.

The n-strand pure virtual braids have a group structure where multipli-
cation is performed by concatenating braids as shown in Figure 8.

a

b

ab

Fig. 8. Braid multiplication

The n-strand pure classical braids, denoted BPn, form a subgroup of
VPn. The generators of BPn are denoted as σij with 1 ≤ i < j ≤ n. Each
σij can be expressed as a product of the virtual generators:

σij = (λi,i+1λi,i+2 . . . λi,j−1)(λijλ
−1
ji )(λ−1

i,j−1 . . . λ
−1
i,i+2λ

−1
i,i−1).

Recall the commutator of two elements:

[x, y] = xyx−1y−1.

Let Fi denote the subgroup of BPn generated by {σi,i+1, σi,i+2, . . . , σin}.
The set of n-strand pure classical braids homotopic to the identity is the
smallest normal subgroup generated by the commutators

(3) [σij , gσijg
−1] where g ∈ Fi.

From [2], we can describe VPn as a semidirect product and give a normal
form for pure virtual braids. Let Vn denote the set of generators {λ±1

in , λ
±1
ni |

i ∈ 1, . . . , n− 1}. Then V ∗n denotes the smallest normal subgroup generated
by Vn in VP. The subgroup V ∗n is normal in VPn, and VPn is the semidirect
product V ∗n o VPn−1. That is, if wn ∈ V ∗n then

wn =
k∏

j=1

gjajg
−1
j where aj ∈ Vn, gj ∈ VPn−1.

Based on the normal form, we define the length of wn to be k. The braid
wn has minimal homotopic length if every strand contains at least one real
crossing and the braid does not contain a subsequence such that its deletion
produces a braid which homotopic to wn but not virtually equivalent.
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Remark 2.2. If a braid has a strand with only virtual crossings then this
braid is equivalent to a conjugate of a braid with only classical crossings on
this strand. However, the minimal length of the braid (based on the normal
form) increases as shown in Figure 9.

All virtual crossings Detour move Undercrossing strand

Fig. 9. Converting to a braid with minimal homotopic length

The following theorem describes a normal form for elements of VPn.

Theorem 2.1 (see [2]). Let b be an element of VPn.Then b = w2w3 . . . wn

where wj ∈ V ∗j .

Remark 2.3. There is a reduced form for gj when describing elements
of V ∗n based on the relations given earlier.

This result parallels Artin’s theorem [1] about the normal form of pure
classical braids. In the next section, we describe the set of pure virtual
braids that are homotopic to the identity braid. We incorporate Gold-
smith’s methodology from the classical case [5] and representations of virtual
braids [3].

3. Genus and homotopy. We prove that the set of n-strand pure
braids homotopic to the identity braid is a normal subgroup of VPn. We
will denote this subgroup as I(VPn). To describe it, we will first prove a
sequence of lemmas about minimal genus and V ∗n . We then apply this result
to a braid in normal form in the next section.

Lemma 3.1. Let w ∈ VP2. Then a minimal genus representation of w
has genus less than or equal to one.

Proof. The braid w contains two strands. Immerse the second strand in
a surface with one handle so that the second strand follows the longitude of
the handle as shown in Figure 10.

Corollary 3.2. The elements of VP2 can be viewed as elements of BP3

and there are non-classical elements of VP2 homotopic to the identity braid.

Proof. If w is an element of VP2 then w has a genus one representation.
This representation can be viewed as an element of BP3. There are non-
trivial braids in BP3 that are homotopic to the identity braid. These braids
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Fig. 10. A representation of an element of VP2

in BP3 correspond to representations of non-trivial elements of VP2, which
are then homotopic to the identity braid.

We apply the following lemma in the cases where n ≥ 3.

Lemma 3.3. Let h be a handle in a minimal genus representation of a
pure virtual braid. Let {s1, . . . , sk} be the collection of strands such that the
removal of si admits a cancellation curve. Then k ≤ 2.

Proof. Let [m] denote the meridian and [l] the longitude of handle h.
Suppose that removing strand s1 from the representation admits a cancel-
lation curve α1 on handle h. Then the strand s1 intersects the cancellation
curve α1 transversely. By hypothesis, removing strand s2 admits a cancel-
lation curve α2 on h. Note that s2 intersects α2 transversely.

Suppose that α2 is homotopic to α1; then s1 also intersects both α1 and
α2 transversely. As a result, α2 cannot be a cancellation curve after the
removal of s2.

We observe that α1 and α2 are not homotopic but both pass through
handle h. Assume without loss of generality that α1 = [m] and α2 = [l]
(implying that s1 parallels the longitude and s2 parallels the meridian in
the handle). Let s3 be a third strand in the braid whose removal admits a
canceling curve α3 for h. The curve α3 is homotopic to neither curve. But if
α3 passes through h then α3 is homotopic to a curve that wraps around the
meridian a times and the longitude b times. Hence, α3 intersects at least one
of the pair, α1 or α2. But then at least one of the pair, s1 or s2, intersects
α3 transversely. Hence, α3 cannot be a cancellation curve.

Lemma 3.3 can be applied to show that certain elements of V ∗n with
n ≥ 4 have representations with minimal genus less than or equal to one.
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Lemma 3.4. Let n ≥ 4. If w is a non-classical element of V ∗n with
minimal homotopic length then the minimal genus of a representation of w
is one.

Proof. Let w be an element of V ∗n that is homotopic to the identity such
that every strand contains at least one real crossing. Suppose that a minimal
genus surface for w has m handles. If strand sn is removed then each handle
admits a canceling curve since removing sn results in the identity braid. If
strand si is removed then m−1 handles admit a canceling curve. As a result,
if some handle admits only two canceling curves then all other curves admit
three or more canceling curves since n ≥ 4. Now, by Lemma 3.3 there is
at most one handle and the representation has genus less than or equal to
one.

The remaining case occurs when n = 3. We will need the following
lemma about linking number. Recall that the sign of a classical crossing, c,
is determined by its relative orientation as shown in Figure 11.

+1 −1

Fig. 11. Sign of a classical crossing

Let V be the collection of crossings where strand a passes over strand b.
Then

Link(a, b) =
∑
c∈V

sgn(c).

Proposition 3.5. Let braid b ∈ VPn be homotopic to the n-strand iden-
tity braid. If b contains n copies of the generator λij , then b contains n copies
of the generator λ−1

ij .

Proof. For the generator λij , Link(i, j) = −1 and Link(j, i) = 1. Linking
number is a homotopy invariant and in the identity braid Link(i, j) = 0.
Hence the generator λij is paired with the generator λ−1

ij .

Let λp(ij) represent either λij or λji. We use this notation in the following
lemma.

Lemma 3.6. If w is a braid in V ∗3 with minimal homotopic length that
is homotopic to the identity then the minimal genus of a representation of
w is less than or equal to one.

Proof. Let w be a braid in V ∗3 with minimal homotopic length that is ho-
motopic to the identity braid. Suppose that a minimal genus representation
of w is a surface with m handles. Consider the representation of w. Since
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w is in normal form, the removal of the 3rd strand from the representation
result in the 2-strand identity braid and m canceling curves on the surface.

The removal of the first strand results in the braid x, a 2-strand braid
that is homotopic to the identity, and as a result, m− 1 canceling curves on
the surface. Similarly, the removal of the 2nd strand results in the braid y,
a 2-strand braid homotopic to the identity and m − 1 canceling curves on
the surface.

Applying Lemma 3.3, we observe that the representation of w contained
at most two handles. Note that if x is classical, then x is the identity braid
and the representation of w has genus less than or equal to one. As a result,
we will assume that both x and y are non-classical for the remainder of the
proof.

Let x̂ denote the subsequence of w consisting of conjugates of λ±1
p(13). The

removal of the second strand from x̂ results in a 2-strand braid homotopic
to the identity, while the removal of the 1st and 3rd strands results in the
identity braid. Hence, a minimal genus representation of x̂ has genus one.
(Note that if the genus is zero, then x̂ is a classical braid, which contradicts
our assumption that x is a non-classical braid.) Let ŷ denote the subsequence
of w consisting of conjugates of λ±1

p(23). Following the argument given for x̂,
a minimal genus representation of ŷ also has genus one.

Now, w = x1y1x2y2 . . . xnyn where x̂ = x1x2 . . . xn and ŷ = y1y2 . . . yn.
Because minimal genus representations of x̂ and ŷ have genus one, we may
assume that (after isotopy) minimal genus representations of each subbraid
xi and yi occur on a tube (possibly) with handles as shown in Figure 12.

Fig. 12. Minimal genus surface
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However, a representation of w has at most genus two. If handles occur
in a representation of some xi (or yi) then all the handles are canceled in a
representation of x̂ (or ŷ). Without loss of generality, assume that the tube
representation of some xi contains at least one handle. (The handles can be
selected so that a handle either contains strands 1 and 3 or strands 1 and 2.)
Suppose that this handle contains strands 1 and 3; then the subbraid xi+1

must have a corresponding handle involving these strands.
In the braid w, the braid yi occurs between xi and xi+1. As a result,

the handle in xi cancels with a handle occurring in either yi−1 or yi. But ŷ
contains no virtual or classical crossings between 1 and 3. Hence, the handles
cannot be canceled in w and the minimal genus of w is three, a contradiction.

Suppose that the handles in xi that cannot be removed in w contain
strands 1 and 2. That is, g−1

i does not cancel with gi+1. Now, the deletion of
either strand 1 or strand 2 admits a canceling curve for each of these handles,
but not the tube. The deletion of strand 3 admits a canceling curve for every
handle. Again by applying Lemma 3.3, we observe that the representation
of w has genus one.

We have proved the following theorem:

Theorem 3.7. Let wn be a minimal length, non-trivial element of V ∗n
such that every strand contains a real crossing. If wn is homotopic to the
identity braid then a minimal genus representation of wn has genus less than
or equal to one.

Remark 3.1. If a braid contains a strand with only virtual crossings
then some representation contains a handle with this strand immersed along
the longitude.

Lemma 3.8. Let b = w2w3 . . . wn be an element of VPn (where wj ∈
V ∗j ). Then b is homotopic to the n-strand identity braid if and only if each
wi is homotopic to the identity braid.

Proof. If each wi is an element of I(VPn) then b = w1w2 . . . wn is an
element of I(VPn). Let w be an element of I(VPn). Then there is a ho-
motopy sequence {p0, p1, . . . , pm}, with w = p0 and pm equivalent to the
identity braid, that transforms w into the identity. Remove strand n from
each diagram and replace it with the identity strand. This reduces w to the
braid bn−1 where bn−1 = w1 . . . wn−1. This preserves the homotopy sequence
so that bn−1 is homotopic to the identity strand. Removing strands, we ob-
serve that bi = w1 . . . wi is homotopic to the identity braid. Hence, each wi

is homotopic to the identity braid.

4. Braids homotopic to the identity braid. We show that the set of
braids homotopic to the identity braid forms a normal subgroup of VPn. Let
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x be an element of VPn with x = (λi−1,iλi−2,i . . . λ1i)(λ−1
ni )(λ−1

n−1,i . . . λ
−1
i+1,i).

Let ga and gb denote classical braids generated by the set

{σ1i, σ2i . . . σi−1,iσi,i+1 . . . σin}.

Proposition 4.1. If an element of VPn has the form

[σij , gaxgbσijg
−1
b x−1g−1

a ]

(as shown below in Figure 17 where ga and gb are denoted as A and B) then
the braid is homotopic to the identity braid.

Proof. We show sample homotopy sequences for elements of VP2 and
VP3 in Figures 13 and 14.

Fig. 13. A homotopy sequence in VP2

Remark 4.1. This braid can be expressed as the product of an element
of V ∗n and VPn−1.

Proposition 4.2. If w is an element of V ∗n that is homotopic to the
identity with minimal homotopic length then some representation of w cor-
responds to an element of BPn+1 of the form [σij , gσijg

−1].

Proof. Let w be a braid in V ∗n with minimal homotopic length that is
homotopic to the identity. By Theorem 3.7, the braid w has a representa-
tion with minimal genus one, a torus. View the torus as the complement
of two linked curves to obtain an element of BPn+2. After removing strand
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Fig. 14. A homotopy sequence in VP3

n + 2, we obtain a classical braid in BPn+1 that is homotopic to the iden-
tity. The braid w, as an element of BPn+1, can be written in the classical
normal form, b1b2 . . . bn+1, where bi is an element of the group generated by
{σi,i+1, σi,i+2, . . . , σi,n+1}. In BPn+1, a braid homotopic to the identity has
the form [σij , gσijg

−1].
In a representation of w the longitude of the torus corresponds to strand

n+ 1. As a result, consider the first bi that includes strand n+ 1.
Now, σi,n+1 either holds the place of σij or is a term in g from equa-

tion (3). Let x denote the element of VPn shown in Figure 15.

Fig. 15. Braid x in VPn Fig. 16. Braid bx in BPn+1

In VPn,
x = (λi−1,iλi−2,i . . . λ1i)(λ−1

ni λ
−1
n−1,i . . . λ

−1
i+1,i).

From a representation of x, we obtain x̂, the element of BPn+1 shown in
Figure 16. In BPn+1,

x̂ = (σ−1
i,i+1σ

−1
i,i+2 . . . σ

−1
i,n )σ−1

i,n+1(σin . . . σi,i+1).

If σi,n+1 corresponds to σij then the homotopy sequence requires a crossing
change on strand n+ 1. Hence g must contain the term σin+1 and the braid
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bi has the form
[σij , qax̂qbσijq

−1
b x̂−1q−1

a ]

where qa and qb are classical braids in the group generated by {σi,i+1 . . . σin}.
This corresponds to the braid shown in Figure 17. In terms of VPn this is a
braid of the form

(4) [σij , Gaλ
−1
ni GbσijG

−1
b λniG

−1
a ].

A

B

B

A

A

B

B

A

A

B

B

A

A

B

B

A

−1

−1

−1

−1

−1

−1

−1

−1

Fig. 17. A representation of w

(Note that Ga and Gb are the images of qa and qb with the appropriate part
of x̂ in VPn.) Let

λ = λni,(5)

z = G−1
a σijGa,(6)

y = GbσijGb.(7)

Then the braid in equation (4) can be rewritten as

Ga(zλ−1yλz−1λ−1y−1λ)G−1
a .

This can be rewritten in normal form for VPn:

Ga(zyz−1y−1)(yzy−1λ−1yz−1y−1)(yzλz−1y−1)(yλ−1y−1)λG−1
a .

The braid zyz−1y−1 is an element of VPn−1 and homotopic to the identity.
Then yzy−1 is homotopic to the braid z. Canceling terms, we obtain the
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braid

(8) Gazλ
−1yλz−1λ−1y−1λG−1

a .

Using equations (5)–(7) to rewrite, we obtain

(9) σijGaλ
−1GbσijG

−1
b λG−1

a σijGaλ
−1GbσijG

−1
b λG−1

a .

This is the same form as the original braid.

Remark 4.2. Note that in this form, strand i underpasses all i−1 previ-
ous strands. Any weaving on these strands can be described by multiplying
w by the braid bk with k ≤ i. Note that if the original braid w over crosses
the i − 1 previous strands, then bk with k < i involves crossings on strand
n + 1. This contradicts the fact that bi is the first strand to have crossings
involving strand n+ 1.

We have proved the following theorem:

Theorem 4.3. The set of pure virtual braids homotopic to the identity
is the smallest normal subgroup generated by elements of the form

[σij , gaxgbσijg
−1
b x−1g−1

a ]

where x = (λi−1,iλi−2,i . . . λ1i)(λ−1
ni λ

−1
n−1,i . . . λ

−1
i+1,i) or x is the identity braid

and ga, gb are classical braids generated by the set {σ1i, σ2i, . . . σi−1,i,
σi,i+1 . . . σin}.
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