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Iterations of the Frobenius–Perron operator
for parabolic random maps

by

Zbigniew S. Kowalski (Wrocław)

Abstract. We describe totally dissipative parabolic extensions of the one-sided
Bernoulli shift. For the fractional linear case we obtain conservative and totally dissi-
pative families of extensions. Here, the property of conservativity seems to be extremely
unstable.

0. Introduction. Let σ be the one-sided (p, q)-Bernoulli shift on the
space Ω = {0, 1}N, N = {0, 1, 2, . . . }, with the (p, q)-measure µp on (Ω,B),
where B is the Borel product σ-algebra and (p, q) is a probability vector. Let
us consider two transformations T0, T1 of the interval [0, 1] onto itself such
that Ti ∈ C2[0, 1], T ′i > 0, Ti(0) = 0, Ti(1) = 1 for i = 0, 1 and T0 ≥ I,
T1 ≤ I where I(x) = x for x ∈ [0, 1]. Let Si denote the inverse of Ti, i = 0, 1.
We define the transformation

(1) T (ω, x) = (σ(ω), Sω(0)(x)).

This transformation is a realization of the random map T (x) = S0(x) with
probability p and T (x) = S1(x) with probability q, or a realization of the
random walk on the unit interval. Let Λ denote the Lebesgue measure on
[0, 1]. It will cause no confusion to use the same letter for the Lebesgue
measure on R. Moreover, let us denote by P the restriction to L1(Λ) of the
Frobenius–Perron operator with respect to µp × Λ. By using two different
methods we investigate iterations of P. The first has been used for transfor-
mations T such that

(2) Ti = (1− εi)x+ εig(x), i = 0, 1,

g ∈ C2[0, 1], g(0) = 0, g(1) = 1, (1 − sup g′)−1 < ε0, ε1 < (1 − inf g′)−1.
We additionally assume that there exists exactly one point x0 for which
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g′(x0) = 1 and g′(x) < 1 for x < x0 or g′(x) > 1 for x < x0. By the
modification of P to Ph which relies on replacing Λ by the equivalent measure
with density h we show that Pnh (1)→ 0, which yields the total dissipativity
of T for some parameters εi, i = 0, 1, and p for g(x) = x2. We also observe
that (T, µp × Λ) for T given by (2) is either conservative and ergodic, or
totally dissipative. The conservativity of different kinds of random maps
is studied in [D-K-S]. In the second method we apply the isomorphism of
fractional linear maps with translations of the real line R. By using the
results about conservativity of R-extensions, we obtain either conservative
and ergodic, or totally dissipative systems which have an equivalent σ-finite
invariant measure. The conservative transformations appear to be isolated.
Moreover, by repeating the approximation argument from [K3] we extend
the area of dissipativity of T given by (2) for g(x) = x2. The observation
that fractional linear extensions are isomorphic to random walks on R allows
us to improve the description of their ergodic properties included in [K3]. We
finish our paper by completing the information about the example of [K2],
i.e. the transformation T given by T0 = 3

2x−
1
2x

2, T1 = x2 and p ∈ (0, 1).

1. Total dissipativity. We start with a slightly more general situation,
i.e. σ is the one-sided Markov shift on the space Ω = {0, . . . , s − 1}N , s ≥
2, with (Π,~p)-measure µ~p. Here ~p = (p0, . . . , ps−1) is a probability vector,
and Π = (pij)s×s is a stochastic matrix such that ~pΠ = ~p. Let {Si}s−1

i=0
be a family of positively and negatively nonsingular transformations of a
probability space (Y, C,m), i.e. m(B) = 0 ⇒ m(S−1

i (B)) = m(Si(B)) = 0
for i = 0, . . . , s− 1. This definition slightly differs from that of the two-sided
nonsingularity [A]. We introduce the transformation

T (ω, x) = (σ(ω), Sω(0)(x)).

Let us denote by C(T ) the conservative part of T and by D(T ) the dissipative
part. Moreover, let α = {Ai : i = 0, . . . , s− 1} where Ai = {ω : ω(0) = i}.

Theorem 1. If E ⊂ C(T ), µ~p ×m(E) > 0 and T (E) ⊂ E then

E =
s−1⋃
i=0

Ai × Ei for some Ei ∈ C.

Proof. Let Ex = {ω : (ω, x) ∈ E}. Suppose, on the contrary, that there
exist ε > 0 and i such that

B = {x : 0 < µ~p(Ex ∩Ai) ≤ (1− ε)µ~p(Ai)}

has positive measure m. Let (ω, x) ∈ E ∩Ai×B, where ω is a density point
for Ex and Tn(ω, x) returns infinitely many times to E ∩ Ai × B (because
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E ⊂ C(T )). By the choice of ω, there exists n0 such that for n ≥ n0,

µ~p(An(ω) ∩ Ex) ≥ (1− ε/2)µ~p(An(ω))

where ω ∈ An(ω) ∈
∨n
i=0 σ

−iα. Let n1 satisfy n1 > n0 and Tn1(ω, x) ∈
E ∩Ai ×B. Then

Tn1(An1(ω) ∩ Ex × {x}) = σn1(An1(ω) ∩ Ex)× {Sn1
ω (x)}

where Sn1
ω (x) = Sω(n1−1) ◦ · · · ◦ Sω(0)(x). Hence

ESn1
ω (x) ∩Ai ⊃ σ

n1(An1(ω) ∩ Ex).
Therefore

µ~p(ESn1
ω (x) ∩Ai) ≥ Jσn1 (ω)µ~p(An1(ω) ∩ Ex)

≥ (1− ε/2)Jσn1 (ω)µ~p(An1(ω)) = (1− ε/2)µ~p(Ai).

Here Jσ denotes the Jacobian of σ. This contradicts our assumption.

Corollary 1. C(T ) =
⋃s−1
i=0 Ai ×Bi and D(T ) =

⋃s−1
i=0 Ai × Ci.

Theorem 2. If T is given by (2) then (T, µp×Λ) is either conservative
and ergodic, or totally dissipative.

Proof. Let µp × Λ(C(T )) > 0. Hence by Corollary 1, C(T ) = Ω × B.
Moreover, T (Ω × B) = Ω × B, which implies Λ(B ÷ (S0B ∪ S1B)) = 0.
Therefore, T (Ω × B) ⊂ Ω × B with respect to the measure µr × Λ where
rε0 + (1− r)ε1 = 0. The measure µr × Λ is T -invariant and ergodic (for the
proof see [K1]). Thus, Λ(B) = 1. We apply similar arguments to get the
ergodicity of T.

Let h : (0, 1) → R+ be a function from C1(0, 1) and νh be a measure
on [0, 1] such that dνh/dΛ = h. For our applications we use h(x) = x−α or
h(x) = (1 − x)−α for α ≥ 1. Let T be the transformation given by (1) and
let P (Ph respectively) be the restriction to L1(Λ) (L1(νh) respectively) of
the Frobenius–Perron operator with respect to µp×Λ (µp×νh respectively).
The following relation holds between these operators:

Phf = h−1P(hf) for f ∈ L1(νh).
We define

h−1h(Ti)(0) = lim
x→0+

h−1(x)h(Ti(x)),

h−1h(Ti)(1) = lim
x→1−

h−1(x)h(Ti(x)) for i = 0, 1.

Here we assume the existence of the above limits. The explicit form of Ph is

Phf(x) = ph(T0(x))h−1(x)T ′0(x)f(T0(x))

+ (1− p)h(T1(x))h−1(x)T ′1(x)f(T1(x)),

for x ∈ [0, 1]. Our aim is to obtain some conditions for dissipativity of T.
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Theorem 3. Let T be given by (1). If for all x ∈ [0, 1],

γ(x) = ph−1(x)h(T0(x))T ′0(x) + (1− p)h−1(x)h(T1(x))T ′1(x) ≤ β < 1

then T is totally dissipative.

Proof. By assumption, Ph(1) ≤ β. Therefore Pnh (1) ≤ βn. Let f ∈ L1(Λ)
be such that 0 < f ≤ h. Then

Pn(f) = Pn
(
h
f

h

)
= hPnh

(
f

h

)
≤ hPnh (1) ≤ βnh.

Therefore, the measure of {x :
∑∞

n=0 P
nf <∞} is equal to one. This proves

the theorem.

2. An application. Let us consider the transformations

(3) T0(x) = (1 + ε0)x− ε0x2, T1(x) = (1− ε1)x+ ε1x
2,

for ε0, ε1 ∈ [0, 1]. For h(x) = x−2 we determine p which satisfies

γ(x) = p
1 + ε0 − 2ε0x

(1 + ε0 − ε0x)2
+ (1− p) 1− ε1 + 2ε1x

(1− ε1 + ε1x)2
< 1

for every x ∈ [0, 1]. For this purpose we compute

γ′(x) = −2pε20
x

(1 + ε0 − ε0x)3
− 2(1− p)ε21

x

(1− ε1 + ε1x)3
≤ 0.

Therefore, γ(x) ≤ γ(0) for x ∈ [0, 1]. Hence for ε1 6= 1 we get

β = γ(0) < 1 ⇔ p

1 + ε0
+

1− p
1− ε1

< 1 ⇔ p >
1 + ε0
ε1 + ε0

ε1.

The same reasoning applies to the case h(x) = (1− x)−2. For ε0 6= 1 we get

β = γ(1) < 1 ⇔ p

1− ε0
+

1− p
1 + ε1

< 1 ⇔ p <
1− ε0
ε1 + ε0

ε1.

Therefore as a consequence of Theorem 3 we get

Corollary 2. If T is given by (3) then (T, µp×Λ) is totally dissipative
whenever

p <
1− ε0
ε1 + ε0

ε1 or p >
1 + ε0
ε1 + ε0

ε1.

We can improve on the above by using h(x) = x−(1+α) or h(x) =
(1− x)−(1+α) for α ∈ (0, 1).

Example. For

h(x) = x−1.4, p ≥ 0.77, ε0 = 0.9, ε1 = 0.7

we get γ(x) < 1 for every x ∈ [0, 1]. Similarly for

h(x) = (1− x)−1.4, p ≤ 0.4, ε0 = 0.5, ε1 = 1

we get γ(x) < 1 for each x ∈ [0, 1].
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3. Fractional linear maps and R-extensions. Let T be given by (1)
where

T0 = Tλ0 =
x

λ0x+ 1− λ0
, λ0 ∈ (0, 1),

T1 = Tλ1 =
x

λ1x+ 1− λ1
, λ1 < 0.

Remark 1. T has an equivalent invariant σ-finite measure for every
p ∈ (0, 1).

Proof. It is easy to see that the measure µp×ν where dν/dΛ=1/x(1− x)
is T -invariant.

Let us observe that the system (Ω × [0, 1], µp × ν, T ), where T and ν are
considered above, is isomorphic to (Ω × R, µp × Λ, T̂ ) where

T̂ (ω, u) = (σ(ω), u+ aω(0)).

Here a0 = ln(1− λ0) and a1 = ln(1− λ1). The isomorphism is given by the
map

Ω × R 3 (ω, u) 7→
(
ω,

eu

1 + eu

)
∈ Ω × [0, 1].

Now we are in a position to use Corollary 8.15 of [A].

Theorem 4. T is conservative if and only if

p =
ln(1− λ1)
ln
(

1−λ1
1−λ0

) .
For other p, T is totally dissipative.

The second observation relies on the representation of T̂ as a random
walk on R. Namely, (Ω × R, µp × Λ, T̂ ) is isomorphic to (RN , µ, σ) via the
map

Φ(ω, u) = (u, u+ aω(0), u+ aω(0) + aω(1), . . .) ∈ RN .

Here σ is the one-sided shift and µ is determined by the “jump probability”

P = pδ{ln(1−λ0)} + (1− p)δ{ln(1−λ1)}

and Λ.

Theorem 5. (Ω × [0, 1], µp × ν, T ) is

(i) ergodic if and only if ln(1−λ1)
ln(1−λ0) is irrational ,

(ii) not exact.

Proof. By results of [D-L] the random walk (RN , µ, σ) is ergodic if and
only if the set

{n ln(1− λ0) +m ln(1− λ1) : m,n ∈ Z}
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is dense in R. But the above is equivalent to
ln(1− λ1)
ln(1− λ0)

/∈ Q.

Moreover, (RN , µ, σ) is exact if and only if{
n ln

(
1− λ1

1− λ0

)
: n ∈ Z

}
is dense in R. But this is impossible.

The isomorphism of T and T̂ carries new information about iterations
of T. Namely,

T̂n(ω, u) = (σn(ω), u+ (n− Sn(ω))a0 + Sn(ω)a1)

where

Sn(ω) =
n−1∑
k=0

ω(k).

Therefore,
u+ (n− Sn(ω))a0 + Sn(ω)a1 →∞

and simultaneously

1Ω×[0,b](T
n(ω, x))→ 0 for a.e. ω

when

p <
ln(1− λ1)
ln
(

1−λ1
1−λ0

) .
Moreover,

u+ (n− Sn(ω))a0 + Sn(ω)a1 → −∞
and at the same time

1Ω×[b,1](T
n(ω, x))→ 0 for a.e. ω

if
ln(1− λ1)
ln
(

1−λ1
1−λ0

) < p.

Here b ∈ (0, 1). We will apply the last observations to parabolic extensions
T given by (3). It is easy to see that

sgn(T0(x)− Tλ0(x)) = sgn(ε0λ0x− ε0λ0 + ε0 − λ0)

and
sgn(T1(x)− Tλ1(x)) = sgn(−ε1λ1x+ ε1λ1 − ε1 − λ1)

for x ∈ (0, 1). Therefore, we get

S0(x) ≥ T−1
λ0

(x) ⇔ ε0 ≤ λ0, S1(x) ≥ T−1
λ1

(x) ⇔ −ε1 ≤ λ1
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and
S0(x) ≤ T−1

λ0
(x) ⇔ λ0 ≤

ε0
1 + ε0

,

S1(x) ≤ T−1
λ1

(x) ⇔ λ1 ≤ −
ε1

1− ε1
, ε1 < 1.

Therefore, for ε1 < 1 and

p >
ln(1− ε1)
ln
(

1−ε1
1+ε0

)
= min

{
ln(1− λ1)
ln
(

1−λ1
1−λ0

) : (λ0, λ1) ∈
(

0,
ε0

1 + ε0

]
×
(
−∞,− ε1

1− ε1

]}
we obtain

lim
n→∞

1Ω×[b,1](T
n(ω, x)) = 0 for a.e. ω.

Similarly, for

p <
ln(1 + ε1)
ln
(

1+ε1
1−ε0

) = max
{

ln(1− λ1)
ln
(

1−λ1
1−λ0

) : (λ0, λ1) ∈ [ε0, 1]× [−ε1, 0]
}

we have
lim
n→∞

1Ω×[0,b](T
n(ω, x)) = 0 for a.e. ω.

As a consequence we get

Theorem 6. If T is given by (3) then (T, µp × Λ) is totally dissipative
and the set of product measures in Mp is conv{µp×δ{0}, µp×δ{1}} whenever

p <
ln(1 + ε1)
ln
(

1+ε1
1−ε0

) or p >
ln(1− ε1)
ln
(

1−ε1
1+ε0

) .
HereMp denotes the set of T -invariant probability measures m such that

m|B × {[0, 1]} = µp.

Proof. Let us assume the first inequality holds. Then{
(ω, x) :

∞∑
n=1

1Ω×[0,b](T
n(ω, x)) <∞

}
has measure one. Therefore, by the Halmos recurrence theorem [A], [0, b] ⊂
DT for every 0 < b < 1. Hence DT = [0, 1]. Moreover,

AnI(x) =
x�

0

Pn1 dΛ =
�

Ω

1�

0

Pn1 · 1Ω×[0,x] dΛdµp

=
�

Ω

1�

0

1Ω×[0,x](T
n(ω, t)) dΛdµp → 0.



248 Z. S. Kowalski

Thus by Theorem 3 of [K3] we get the desired conclusion. The proof for the
second inequality is similar.

4. The example. Let us consider the example from [K2]:

T0(x) =
3
2
x− 1

2
x2, T1(x) = x2, i.e. ε0 =

1
2
, ε1 = 1,

and T given as in (1).

Theorem 7. Mp = conv{µp × δ{0}, µp × δ{1}, µp × Λ} for p = 2/3. The
set of product measures in Mp is conv{µp × δ{0}, µp × δ{1}} for p ∈ (0, 1/2].
Moreover , (T, µp × Λ) is totally dissipative for p < 1/2.

Remark 2. We only need to prove the case p = 1/2. The other conclu-
sions result from Theorem 6 and Theorem 3 of [K3] respectively.

We will need the considerations below. Define the operator A on D as
follows:

AF (x) =
1
2
F (T0(x)) +

1
2
F (T1(x)) for F ∈ D.

Let νF denote the measure determined by F.

Fact ([K2]). The measure µ1/2 × νF is T -invariant if and only if AF
= F.

Lemma 1.
lim
n→∞

AnI(x) ≤ 1
2

for x ∈ [0, 1).

Proof. Since T1(T0(x)) ≤ I(x) for x ∈ [0, 1] we have

AnI(x) ≤ 1
2n

n∑
k=0

(
n

k

)
x22k−n

≤ 1
2n

E(n/2)∑
k=0

(
n

k

)
x22k−n

+
1
2n

E(n/2)+s∑
k=E(n/2)

(
n

k

)

+
[

1
2n

n∑
k=E(n/2)+s+1

(
n

k

)]
x2s

≤ 1
2

+
1
2n

E(n/2)+s∑
k=E(n/2)

(
n

k

)
+

1
2
x2s

,

where E(x) denotes the integer part of x. By the existence of limn→∞AnI
(see Lemma 3 of [K2]) we get

lim
n→∞

AnI(x) ≤ 1
2

+
1
2
x2s

for any s ≥ 1.

Therefore limn→∞AnI(x) ≤ 1/2 for x ∈ [0, 1).



Iterations of the Frobenius–Perron operator 249

Lemma 2. Let ω(x) be a polynomial such that 0 ≤ ω(x) ≤ δ for x ∈
[0, 1], ω(0) = 0 and δ < 1. Then lim supn→∞Anω(x) ≤ 1/2 for x ∈ [0, 1).

Proof. We first observe that

lim sup
n→∞

AnI1/k(x) ≤ 1
2

for x ∈ [0, 1) and k = 1, 2, . . . .

Let

dn(x) =
1
2n

n∑
k=0

(
n

k

)
x22k−n

.

By the proof of Lemma 1 we see that AnI1/k(x) ≤ dn(x1/k) and naturally

lim sup
n→∞

AnI1/k(x) ≤ 1
2

+
1
2
x2s/k for s = 1, 2, . . . .

Therefore lim supn→∞AnI1/k ≤ 1/2 for x ∈ [0, 1). Let ω(x) be a polynomial
satisfying our assumptions. Then ω(x) ≤ x1/2 for x ∈ [0, ε] and for some
ε > 0. If we take k such that ε1/k > δ then ω(x) ≤ x1/k for x ∈ [0, 1]. Hence
Anω ≤ AnI1/k and as a result

lim sup
n→∞

Anω(x) ≤ lim sup
n→∞

AI1/k(x) ≤ 1
2

for x ∈ [0, 1).

Lemma 3. Let T be given by (2) and let µp×νp be a T -invariant measure.
If νp /∈ conv{δ{0}, δ{1}} then νF has the dense support property (equivalently
F is 1-1).

Proof. Let T0 = (1 + ε0)x − ε0g(x) and T1(x) = (1 − ε1)x + ε1g(x) for
ε0, ε1 > 0. Then

T0(x) = (1 + ε)x− εT1(x) for ε = ε0/ε1.

Let (a, b) be a nonempty interval of maximal length such that F |(a, b) =
const. By assumptions we have (a, b) 6= (0, 1) and T0(b) − T0(a) ≤ b − a,
T1(b) − T1(a) ≤ b − a. Here we use the fact that F |(T0(a), T0(b)) = const
and F |(T1(a), T1(b)) = const by Lemma 1 of [K2]. In particular,

T0(b)− T0(a) ≤ b− a ⇔ (1 + ε)b− εT1(b)− (1 + ε)a+ εT1(a) ≤ b− a
⇔ T1(b)− T1(a) ≥ b− a.

Therefore, T1(b)−T1(a) = b− a and by induction Tn1 (b)−Tn1 (a) = b− a for
n = 1, 2, . . . . Hence a = b.

Proof of Theorem 7. Suppose, contrary to our claim, that there exists a
product measure inM1/2 outside conv{µp×δ{0}, µp×δ{1}}.We may assume
(by ergodic decomposition [Ki]) that there exists a distribution G such that
µp×νG is ergodic and νG /∈ conv{δ{0}, δ{1}}. Since νG has the dense support
property (by Lemma 3) we see that G is continuous and increasing. Therefore
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for every ε > 0 there exists a polynomial ωε such that
ωε(0) = 0, 0 ≤ ωε(x) ≤ 1− ε for x ∈ [0, 1] and ‖G− ωε‖ ≤ 3ε.

Thus we obtain
‖AnG−Anωε‖ = ‖G−Anωε‖ ≤ 3ε

and G ≤ 1/2 for x ∈ [0, 1) by Lemma 2. This contradicts our assumption.
Acknowledgments. Research supported by grant MENII 1P03A021 29,
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