Iterations of the Frobenius-Perron operator for parabolic random maps

by

Zbigniew S. Kowalski (Wrocław)

Abstract. We describe totally dissipative parabolic extensions of the one-sided Bernoulli shift. For the fractional linear case we obtain conservative and totally dissipative families of extensions. Here, the property of conservativity seems to be extremely unstable.

0. Introduction. Let σ be the one-sided (p,q)-Bernoulli shift on the space $\Omega = \{0,1\}^{\mathbb{N}}$, $\mathbb{N} = \{0,1,2,\ldots\}$, with the (p,q)-measure μ_p on (Ω,\mathcal{B}) , where \mathcal{B} is the Borel product σ -algebra and (p,q) is a probability vector. Let us consider two transformations T_0 , T_1 of the interval [0,1] onto itself such that $T_i \in C^2[0,1]$, $T_i' > 0$, $T_i(0) = 0$, $T_i(1) = 1$ for i = 0,1 and $T_0 \geq I$, $T_1 \leq I$ where I(x) = x for $x \in [0,1]$. Let S_i denote the inverse of T_i , i = 0,1. We define the transformation

(1)
$$T(\omega, x) = (\sigma(\omega), S_{\omega(0)}(x)).$$

This transformation is a realization of the random map $T(x) = S_0(x)$ with probability p and $T(x) = S_1(x)$ with probability q, or a realization of the random walk on the unit interval. Let Λ denote the Lebesgue measure on [0,1]. It will cause no confusion to use the same letter for the Lebesgue measure on \mathbb{R} . Moreover, let us denote by P the restriction to $L^1(\Lambda)$ of the Frobenius–Perron operator with respect to $\mu_p \times \Lambda$. By using two different methods we investigate iterations of P. The first has been used for transformations T such that

(2)
$$T_i = (1 - \varepsilon_i)x + \varepsilon_i g(x), \quad i = 0, 1,$$

 $g \in C^2[0,1], g(0) = 0, g(1) = 1, (1 - \sup g')^{-1} < \varepsilon_0, \varepsilon_1 < (1 - \inf g')^{-1}.$ We additionally assume that there exists exactly one point x_0 for which

²⁰⁰⁰ Mathematics Subject Classification: Primary 37A40.

Key words and phrases: Bernoulli shift, parabolic extension, conservative, totally dissipative, Frobenius–Perron operator.

 $g'(x_0) = 1$ and g'(x) < 1 for $x < x_0$ or g'(x) > 1 for $x < x_0$. By the modification of P to P_h which relies on replacing Λ by the equivalent measure with density h we show that $P_h^n(1) \to 0$, which yields the total dissipativity of T for some parameters ε_i , i=0,1, and p for $g(x)=x^2$. We also observe that $(T, \mu_p \times \Lambda)$ for T given by (2) is either conservative and ergodic, or totally dissipative. The conservativity of different kinds of random maps is studied in [D-K-S]. In the second method we apply the isomorphism of fractional linear maps with translations of the real line \mathbb{R} . By using the results about conservativity of \mathbb{R} -extensions, we obtain either conservative and ergodic, or totally dissipative systems which have an equivalent σ -finite invariant measure. The conservative transformations appear to be isolated. Moreover, by repeating the approximation argument from [K3] we extend the area of dissipativity of T given by (2) for $g(x) = x^2$. The observation that fractional linear extensions are isomorphic to random walks on \mathbb{R} allows us to improve the description of their ergodic properties included in [K3]. We finish our paper by completing the information about the example of [K2], i.e. the transformation T given by $T_0 = \frac{3}{2}x - \frac{1}{2}x^2$, $T_1 = x^2$ and $p \in (0,1)$.

1. Total dissipativity. We start with a slightly more general situation, i.e. σ is the one-sided Markov shift on the space $\Omega = \{0, \ldots, s-1\}^N$, $s \geq 2$, with (Π, \vec{p}) -measure $\mu_{\vec{p}}$. Here $\vec{p} = (p_0, \ldots, p_{s-1})$ is a probability vector, and $\Pi = (p_{ij})_{s \times s}$ is a stochastic matrix such that $\vec{p}\Pi = \vec{p}$. Let $\{S_i\}_{i=0}^{s-1}$ be a family of positively and negatively nonsingular transformations of a probability space (Y, \mathcal{C}, m) , i.e. $m(B) = 0 \Rightarrow m(S_i^{-1}(B)) = m(S_i(B)) = 0$ for $i = 0, \ldots, s-1$. This definition slightly differs from that of the two-sided nonsingularity [A]. We introduce the transformation

$$T(\omega, x) = (\sigma(\omega), S_{\omega(0)}(x)).$$

Let us denote by C(T) the conservative part of T and by D(T) the dissipative part. Moreover, let $\alpha = \{A_i : i = 0, ..., s - 1\}$ where $A_i = \{\omega : \omega(0) = i\}$.

THEOREM 1. If $E \subset \mathcal{C}(T)$, $\mu_{\vec{p}} \times m(E) > 0$ and $T(E) \subset E$ then

$$E = \bigcup_{i=0}^{s-1} A_i \times E_i \quad \text{for some } E_i \in \mathcal{C}.$$

Proof. Let $E_x = \{\omega : (\omega, x) \in E\}$. Suppose, on the contrary, that there exist $\epsilon > 0$ and i such that

$$B = \{x : 0 < \mu_{\vec{p}}(E_x \cap A_i) \le (1 - \epsilon)\mu_{\vec{p}}(A_i)\}$$

has positive measure m. Let $(\omega, x) \in E \cap A_i \times B$, where ω is a density point for E_x and $T^n(\omega, x)$ returns infinitely many times to $E \cap A_i \times B$ (because

 $E \subset \mathcal{C}(T)$). By the choice of ω , there exists n_0 such that for $n \geq n_0$,

$$\mu_{\vec{p}}(A_n(\omega) \cap E_x) \ge (1 - \epsilon/2)\mu_{\vec{p}}(A_n(\omega))$$

where $\omega \in A_n(\omega) \in \bigvee_{i=0}^n \sigma^{-i}\alpha$. Let n_1 satisfy $n_1 > n_0$ and $T^{n_1}(\omega, x) \in E \cap A_i \times B$. Then

$$T^{n_1}(A_{n_1}(\omega) \cap E_x \times \{x\}) = \sigma^{n_1}(A_{n_1}(\omega) \cap E_x) \times \{S^{n_1}_{\omega}(x)\}$$

where $S_{\omega}^{n_1}(x) = S_{\omega(n_1-1)} \circ \cdots \circ S_{\omega(0)}(x)$. Hence

$$E_{S^{n_1}_{\omega}(x)} \cap A_i \supset \sigma^{n_1}(A_{n_1}(\omega) \cap E_x).$$

Therefore

$$\mu_{\vec{p}}(E_{S_{\omega}^{n_{1}}(x)} \cap A_{i}) \geq J_{\sigma^{n_{1}}}(\omega)\mu_{\vec{p}}(A_{n_{1}}(\omega) \cap E_{x})$$

$$\geq (1 - \epsilon/2)J_{\sigma^{n_{1}}}(\omega)\mu_{\vec{p}}(A_{n_{1}}(\omega)) = (1 - \epsilon/2)\mu_{\vec{p}}(A_{i}).$$

Here J_{σ} denotes the Jacobian of σ . This contradicts our assumption.

COROLLARY 1.
$$C(T) = \bigcup_{i=0}^{s-1} A_i \times B_i \text{ and } D(T) = \bigcup_{i=0}^{s-1} A_i \times C_i.$$

THEOREM 2. If T is given by (2) then $(T, \mu_p \times \Lambda)$ is either conservative and ergodic, or totally dissipative.

Proof. Let $\mu_p \times \Lambda(\mathcal{C}(T)) > 0$. Hence by Corollary 1, $\mathcal{C}(T) = \Omega \times B$. Moreover, $T(\Omega \times B) = \Omega \times B$, which implies $\Lambda(B \div (S_0B \cup S_1B)) = 0$. Therefore, $T(\Omega \times B) \subset \Omega \times B$ with respect to the measure $\mu_r \times \Lambda$ where $r\epsilon_0 + (1-r)\epsilon_1 = 0$. The measure $\mu_r \times \Lambda$ is T-invariant and ergodic (for the proof see [K1]). Thus, $\Lambda(B) = 1$. We apply similar arguments to get the ergodicity of T.

Let $h:(0,1)\to\mathbb{R}^+$ be a function from $C^1(0,1)$ and ν_h be a measure on [0,1] such that $d\nu_h/d\Lambda=h$. For our applications we use $h(x)=x^{-\alpha}$ or $h(x)=(1-x)^{-\alpha}$ for $\alpha\geq 1$. Let T be the transformation given by (1) and let \mathcal{P} (\mathcal{P}_h respectively) be the restriction to $L^1(\Lambda)$ ($L^1(\nu_h)$ respectively) of the Frobenius–Perron operator with respect to $\mu_p\times\Lambda$ ($\mu_p\times\nu_h$ respectively). The following relation holds between these operators:

$$\mathcal{P}_h f = h^{-1} \mathcal{P}(hf) \quad \text{ for } f \in L^1(\nu_h).$$

We define

$$h^{-1}h(T_i)(0) = \lim_{x \to 0^+} h^{-1}(x)h(T_i(x)),$$

$$h^{-1}h(T_i)(1) = \lim_{x \to 1^-} h^{-1}(x)h(T_i(x)) \quad \text{for } i = 0, 1.$$

Here we assume the existence of the above limits. The explicit form of \mathcal{P}_h is

$$\mathcal{P}_h f(x) = ph(T_0(x))h^{-1}(x)T_0'(x)f(T_0(x)) + (1-p)h(T_1(x))h^{-1}(x)T_1'(x)f(T_1(x)),$$

for $x \in [0,1]$. Our aim is to obtain some conditions for dissipativity of T.

THEOREM 3. Let T be given by (1). If for all $x \in [0, 1]$,

$$\gamma(x) = ph^{-1}(x)h(T_0(x))T_0'(x) + (1-p)h^{-1}(x)h(T_1(x))T_1'(x) \le \beta < 1$$

then T is totally dissipative.

Proof. By assumption, $P_h(1) \leq \beta$. Therefore $P_h^n(1) \leq \beta^n$. Let $f \in L^1(\Lambda)$ be such that $0 < f \leq h$. Then

$$P^n(f) = P^n\left(h\frac{f}{h}\right) = hP_h^n\left(\frac{f}{h}\right) \le hP_h^n(1) \le \beta^n h.$$

Therefore, the measure of $\{x: \sum_{n=0}^{\infty} P^n f < \infty\}$ is equal to one. This proves the theorem. \blacksquare

2. An application. Let us consider the transformations

(3)
$$T_0(x) = (1 + \epsilon_0)x - \epsilon_0 x^2, \quad T_1(x) = (1 - \epsilon_1)x + \epsilon_1 x^2,$$

for $\epsilon_0, \epsilon_1 \in [0, 1]$. For $h(x) = x^{-2}$ we determine p which satisfies

$$\gamma(x) = p \frac{1 + \epsilon_0 - 2\epsilon_0 x}{(1 + \epsilon_0 - \epsilon_0 x)^2} + (1 - p) \frac{1 - \epsilon_1 + 2\epsilon_1 x}{(1 - \epsilon_1 + \epsilon_1 x)^2} < 1$$

for every $x \in [0, 1]$. For this purpose we compute

$$\gamma'(x) = -2p\epsilon_0^2 \frac{x}{(1+\epsilon_0 - \epsilon_0 x)^3} - 2(1-p)\epsilon_1^2 \frac{x}{(1-\epsilon_1 + \epsilon_1 x)^3} \le 0.$$

Therefore, $\gamma(x) \leq \gamma(0)$ for $x \in [0,1]$. Hence for $\epsilon_1 \neq 1$ we get

$$\beta = \gamma(0) < 1 \Leftrightarrow \frac{p}{1+\epsilon_0} + \frac{1-p}{1-\epsilon_1} < 1 \Leftrightarrow p > \frac{1+\epsilon_0}{\epsilon_1+\epsilon_0} \epsilon_1.$$

The same reasoning applies to the case $h(x) = (1-x)^{-2}$. For $\epsilon_0 \neq 1$ we get

$$\beta = \gamma(1) < 1 \iff \frac{p}{1 - \epsilon_0} + \frac{1 - p}{1 + \epsilon_1} < 1 \iff p < \frac{1 - \epsilon_0}{\epsilon_1 + \epsilon_0} \epsilon_1.$$

Therefore as a consequence of Theorem 3 we get

COROLLARY 2. If T is given by (3) then $(T, \mu_p \times \Lambda)$ is totally dissipative whenever

$$p < \frac{1 - \epsilon_0}{\epsilon_1 + \epsilon_0} \epsilon_1 \quad or \quad p > \frac{1 + \epsilon_0}{\epsilon_1 + \epsilon_0} \epsilon_1.$$

We can improve on the above by using $h(x) = x^{-(1+\alpha)}$ or $h(x) = (1-x)^{-(1+\alpha)}$ for $\alpha \in (0,1)$.

EXAMPLE. For

$$h(x) = x^{-1.4}, \quad p \ge 0.77, \quad \epsilon_0 = 0.9, \quad \epsilon_1 = 0.7$$

we get $\gamma(x) < 1$ for every $x \in [0, 1]$. Similarly for

$$h(x) = (1-x)^{-1.4}, \quad p \le 0.4, \quad \epsilon_0 = 0.5, \quad \epsilon_1 = 1$$

we get $\gamma(x) < 1$ for each $x \in [0, 1]$.

3. Fractional linear maps and \mathbb{R}-extensions. Let T be given by (1) where

$$T_0 = T_{\lambda_0} = \frac{x}{\lambda_0 x + 1 - \lambda_0}, \quad \lambda_0 \in (0, 1),$$

 $T_1 = T_{\lambda_1} = \frac{x}{\lambda_1 x + 1 - \lambda_1}, \quad \lambda_1 < 0.$

Remark 1. T has an equivalent invariant σ -finite measure for every $p \in (0,1)$.

Proof. It is easy to see that the measure $\mu_p \times \nu$ where $d\nu/d\Lambda = 1/x(1-x)$ is T-invariant. \blacksquare

Let us observe that the system $(\Omega \times [0,1], \mu_p \times \nu, T)$, where T and ν are considered above, is isomorphic to $(\Omega \times \mathbb{R}, \mu_p \times \Lambda, \hat{T})$ where

$$\hat{T}(\omega, u) = (\sigma(\omega), u + a_{\omega(0)}).$$

Here $a_0 = \ln(1 - \lambda_0)$ and $a_1 = \ln(1 - \lambda_1)$. The isomorphism is given by the map

$$\Omega \times \mathbb{R} \ni (\omega, u) \mapsto \left(\omega, \frac{e^u}{1 + e^u}\right) \in \Omega \times [0, 1].$$

Now we are in a position to use Corollary 8.15 of [A].

Theorem 4. T is conservative if and only if

$$p = \frac{\ln(1 - \lambda_1)}{\ln(\frac{1 - \lambda_1}{1 - \lambda_0})}.$$

For other p, T is totally dissipative.

The second observation relies on the representation of \hat{T} as a random walk on \mathbb{R} . Namely, $(\Omega \times \mathbb{R}, \mu_p \times \Lambda, \hat{T})$ is isomorphic to $(\mathbb{R}^N, \mu, \sigma)$ via the map

$$\Phi(\omega, u) = (u, u + a_{\omega(0)}, u + a_{\omega(0)} + a_{\omega(1)}, \ldots) \in \mathbb{R}^{N}.$$

Here σ is the one-sided shift and μ is determined by the "jump probability"

$$P = p\delta_{\{\ln(1-\lambda_0)\}} + (1-p)\delta_{\{\ln(1-\lambda_1)\}}$$

and Λ .

Theorem 5. $(\Omega \times [0,1], \mu_p \times \nu, T)$ is

- (i) ergodic if and only if $\frac{\ln(1-\lambda_1)}{\ln(1-\lambda_0)}$ is irrational,
- (ii) not exact.

Proof. By results of [D-L] the random walk $(\mathbb{R}^N, \mu, \sigma)$ is ergodic if and only if the set

$$\{n\ln(1-\lambda_0)+m\ln(1-\lambda_1):m,n\in\mathbb{Z}\}$$

is dense in \mathbb{R} . But the above is equivalent to

$$\frac{\ln(1-\lambda_1)}{\ln(1-\lambda_0)} \notin \mathbb{Q}.$$

Moreover, $(\mathbb{R}^N, \mu, \sigma)$ is exact if and only if

$$\left\{ n \ln \left(\frac{1 - \lambda_1}{1 - \lambda_0} \right) : n \in \mathbb{Z} \right\}$$

is dense in \mathbb{R} . But this is impossible. \blacksquare

The isomorphism of T and \hat{T} carries new information about iterations of T. Namely,

$$\hat{T}^n(\omega, u) = (\sigma^n(\omega), u + (n - S_n(\omega))a_0 + S_n(\omega)a_1)$$

where

$$S_n(\omega) = \sum_{k=0}^{n-1} \omega(k).$$

Therefore,

$$u + (n - S_n(\omega))a_0 + S_n(\omega)a_1 \to \infty$$

and simultaneously

$$1_{\Omega \times [0,b]}(T^n(\omega,x)) \to 0$$
 for a.e. ω

when

$$p < \frac{\ln(1-\lambda_1)}{\ln(\frac{1-\lambda_1}{1-\lambda_0})}.$$

Moreover,

$$u + (n - S_n(\omega))a_0 + S_n(\omega)a_1 \to -\infty$$

and at the same time

$$1_{\Omega \times [b,1]}(T^n(\omega,x)) \to 0$$
 for a.e. ω

if

$$\frac{\ln(1-\lambda_1)}{\ln(\frac{1-\lambda_1}{1-\lambda_0})} < p.$$

Here $b \in (0,1)$. We will apply the last observations to parabolic extensions T given by (3). It is easy to see that

$$\operatorname{sgn}(T_0(x) - T_{\lambda_0}(x)) = \operatorname{sgn}(\epsilon_0 \lambda_0 x - \epsilon_0 \lambda_0 + \epsilon_0 - \lambda_0)$$

and

$$\operatorname{sgn}(T_1(x) - T_{\lambda_1}(x)) = \operatorname{sgn}(-\epsilon_1 \lambda_1 x + \epsilon_1 \lambda_1 - \epsilon_1 - \lambda_1)$$

for $x \in (0,1)$. Therefore, we get

$$S_0(x) \ge T_{\lambda_0}^{-1}(x) \Leftrightarrow \epsilon_0 \le \lambda_0, \quad S_1(x) \ge T_{\lambda_1}^{-1}(x) \Leftrightarrow -\epsilon_1 \le \lambda_1$$

and

$$S_0(x) \le T_{\lambda_0}^{-1}(x) \iff \lambda_0 \le \frac{\epsilon_0}{1 + \epsilon_0},$$

$$S_1(x) \le T_{\lambda_1}^{-1}(x) \iff \lambda_1 \le -\frac{\epsilon_1}{1 - \epsilon_1}, \quad \epsilon_1 < 1.$$

Therefore, for $\epsilon_1 < 1$ and

$$p > \frac{\ln(1 - \epsilon_1)}{\ln(\frac{1 - \epsilon_1}{1 + \epsilon_0})}$$

$$= \min \left\{ \frac{\ln(1 - \lambda_1)}{\ln(\frac{1 - \lambda_1}{1 - \lambda_0})} : (\lambda_0, \lambda_1) \in \left(0, \frac{\epsilon_0}{1 + \epsilon_0}\right] \times \left(-\infty, -\frac{\epsilon_1}{1 - \epsilon_1}\right] \right\}$$

we obtain

$$\lim_{n \to \infty} 1_{\Omega \times [b,1]}(T^n(\omega, x)) = 0 \quad \text{ for a.e. } \omega.$$

Similarly, for

$$p < \frac{\ln(1+\epsilon_1)}{\ln\left(\frac{1+\epsilon_1}{1-\epsilon_0}\right)} = \max\left\{\frac{\ln(1-\lambda_1)}{\ln\left(\frac{1-\lambda_1}{1-\lambda_0}\right)} : (\lambda_0, \lambda_1) \in [\epsilon_0, 1] \times [-\epsilon_1, 0]\right\}$$

we have

$$\lim_{n \to \infty} 1_{\Omega \times [0,b]}(T^n(\omega, x)) = 0 \quad \text{for a.e. } \omega.$$

As a consequence we get

THEOREM 6. If T is given by (3) then $(T, \mu_p \times \Lambda)$ is totally dissipative and the set of product measures in M_p is $\operatorname{conv}\{\mu_p \times \delta_{\{0\}}, \mu_p \times \delta_{\{1\}}\}$ whenever

$$p < \frac{\ln(1+\epsilon_1)}{\ln\left(\frac{1+\epsilon_1}{1-\epsilon_0}\right)} \quad or \quad p > \frac{\ln(1-\epsilon_1)}{\ln\left(\frac{1-\epsilon_1}{1+\epsilon_0}\right)}.$$

Here M_p denotes the set of T-invariant probability measures m such that $m|\mathcal{B} \times \{[0,1]\} = \mu_p$.

Proof. Let us assume the first inequality holds. Then

$$\left\{(\omega,x): \sum_{n=1}^{\infty} 1_{\varOmega\times[0,b]}(T^n(\omega,x)) < \infty\right\}$$

has measure one. Therefore, by the Halmos recurrence theorem [A], $[0, b] \subset \mathcal{D}_T$ for every 0 < b < 1. Hence $\mathcal{D}_T = [0, 1]$. Moreover,

$$A^{n}I(x) = \int_{0}^{x} P^{n}1 d\Lambda = \int_{\Omega} \int_{0}^{1} P^{n}1 \cdot 1_{\Omega \times [0,x]} d\Lambda d\mu_{p}$$
$$= \int_{\Omega} \int_{0}^{1} 1_{\Omega \times [0,x]} (T^{n}(\omega,t)) d\Lambda d\mu_{p} \to 0.$$

Thus by Theorem 3 of [K3] we get the desired conclusion. The proof for the second inequality is similar. \blacksquare

4. The example. Let us consider the example from [K2]:

$$T_0(x) = \frac{3}{2}x - \frac{1}{2}x^2$$
, $T_1(x) = x^2$, i.e. $\epsilon_0 = \frac{1}{2}$, $\epsilon_1 = 1$,

and T given as in (1).

Theorem 7. $M_p = \text{conv}\{\mu_p \times \delta_{\{0\}}, \mu_p \times \delta_{\{1\}}, \mu_p \times \Lambda\} \text{ for } p = 2/3.$ The set of product measures in M_p is $\text{conv}\{\mu_p \times \delta_{\{0\}}, \mu_p \times \delta_{\{1\}}\} \text{ for } p \in (0, 1/2].$ Moreover, $(T, \mu_p \times \Lambda)$ is totally dissipative for p < 1/2.

Remark 2. We only need to prove the case p=1/2. The other conclusions result from Theorem 6 and Theorem 3 of [K3] respectively.

We will need the considerations below. Define the operator $\mathcal A$ on $\mathcal D$ as follows:

$$\mathcal{A}F(x) = \frac{1}{2}F(T_0(x)) + \frac{1}{2}F(T_1(x)) \quad \text{for } F \in \mathcal{D}.$$

Let ν_F denote the measure determined by F.

FACT ([K2]). The measure $\mu_{1/2} \times \nu_F$ is T-invariant if and only if $\mathcal{A}F = F$.

Lemma 1.

$$\lim_{n \to \infty} \mathcal{A}^n I(x) \le \frac{1}{2} \quad \text{for } x \in [0, 1).$$

Proof. Since $T_1(T_0(x)) \leq I(x)$ for $x \in [0,1]$ we have

$$\mathcal{A}^{n}I(x) \leq \frac{1}{2^{n}} \sum_{k=0}^{n} \binom{n}{k} x^{2^{2k-n}}$$

$$\leq \frac{1}{2^{n}} \sum_{k=0}^{E(n/2)} \binom{n}{k} x^{2^{2k-n}} + \frac{1}{2^{n}} \sum_{k=E(n/2)}^{E(n/2)+s} \binom{n}{k}$$

$$+ \left[\frac{1}{2^{n}} \sum_{k=E(n/2)+s+1}^{n} \binom{n}{k} \right] x^{2^{s}}$$

$$\leq \frac{1}{2} + \frac{1}{2^{n}} \sum_{k=E(n/2)+s}^{E(n/2)+s} \binom{n}{k} + \frac{1}{2} x^{2^{s}},$$

where E(x) denotes the integer part of x. By the existence of $\lim_{n\to\infty} \mathcal{A}^n I$ (see Lemma 3 of [K2]) we get

$$\lim_{n \to \infty} \mathcal{A}^n I(x) \le \frac{1}{2} + \frac{1}{2} x^{2^s} \quad \text{for any } s \ge 1.$$

Therefore $\lim_{n\to\infty} \mathcal{A}^n I(x) \leq 1/2$ for $x\in[0,1)$.

LEMMA 2. Let $\omega(x)$ be a polynomial such that $0 \le \omega(x) \le \delta$ for $x \in [0,1]$, $\omega(0) = 0$ and $\delta < 1$. Then $\limsup_{n \to \infty} \mathcal{A}^n \omega(x) \le 1/2$ for $x \in [0,1)$.

Proof. We first observe that

$$\limsup_{n \to \infty} \mathcal{A}^n I^{1/k}(x) \le \frac{1}{2} \quad \text{for } x \in [0, 1) \text{ and } k = 1, 2, \dots$$

Let

$$d_n(x) = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} x^{2^{2k-n}}.$$

By the proof of Lemma 1 we see that $\mathcal{A}^n I^{1/k}(x) \leq d_n(x^{1/k})$ and naturally

$$\limsup_{n \to \infty} \mathcal{A}^n I^{1/k}(x) \le \frac{1}{2} + \frac{1}{2} x^{2^s/k} \quad \text{for } s = 1, 2, \dots.$$

Therefore $\limsup_{n\to\infty} \mathcal{A}^n I^{1/k} \leq 1/2$ for $x\in[0,1)$. Let $\omega(x)$ be a polynomial satisfying our assumptions. Then $\omega(x)\leq x^{1/2}$ for $x\in[0,\epsilon]$ and for some $\epsilon>0$. If we take k such that $\epsilon^{1/k}>\delta$ then $\omega(x)\leq x^{1/k}$ for $x\in[0,1]$. Hence $\mathcal{A}^n\omega<\mathcal{A}^n I^{1/k}$ and as a result

$$\limsup_{n \to \infty} \mathcal{A}^n \omega(x) \le \limsup_{n \to \infty} \mathcal{A} I^{1/k}(x) \le \frac{1}{2} \quad \text{ for } x \in [0, 1). \blacksquare$$

LEMMA 3. Let T be given by (2) and let $\mu_p \times \nu_p$ be a T-invariant measure. If $\nu_p \notin \text{conv}\{\delta_{\{0\}}, \delta_{\{1\}}\}\$ then ν_F has the dense support property (equivalently F is 1-1).

Proof. Let $T_0 = (1 + \epsilon_0)x - \epsilon_0 g(x)$ and $T_1(x) = (1 - \epsilon_1)x + \epsilon_1 g(x)$ for $\epsilon_0, \epsilon_1 > 0$. Then

$$T_0(x) = (1 + \epsilon)x - \epsilon T_1(x)$$
 for $\epsilon = \epsilon_0/\epsilon_1$.

Let (a,b) be a nonempty interval of maximal length such that F|(a,b) = const. By assumptions we have $(a,b) \neq (0,1)$ and $T_0(b) - T_0(a) \leq b - a$, $T_1(b) - T_1(a) \leq b - a$. Here we use the fact that $F|(T_0(a), T_0(b)) =$ const and $F|(T_1(a), T_1(b)) =$ const by Lemma 1 of [K2]. In particular,

$$T_0(b) - T_0(a) \le b - a \iff (1 + \epsilon)b - \epsilon T_1(b) - (1 + \epsilon)a + \epsilon T_1(a) \le b - a$$
$$\Leftrightarrow T_1(b) - T_1(a) \ge b - a.$$

Therefore, $T_1(b) - T_1(a) = b - a$ and by induction $T_1^n(b) - T_1^n(a) = b - a$ for $n = 1, 2, \ldots$ Hence a = b.

Proof of Theorem 7. Suppose, contrary to our claim, that there exists a product measure in $M_{1/2}$ outside $\operatorname{conv}\{\mu_p \times \delta_{\{0\}}, \mu_p \times \delta_{\{1\}}\}$. We may assume (by ergodic decomposition [Ki]) that there exists a distribution G such that $\mu_p \times \nu_G$ is ergodic and $\nu_G \notin \operatorname{conv}\{\delta_{\{0\}}, \delta_{\{1\}}\}$. Since ν_G has the dense support property (by Lemma 3) we see that G is continuous and increasing. Therefore

for every $\epsilon > 0$ there exists a polynomial ω_{ϵ} such that

$$\omega_{\epsilon}(0) = 0$$
, $0 \le \omega_{\epsilon}(x) \le 1 - \epsilon$ for $x \in [0, 1]$ and $||G - \omega_{\epsilon}|| \le 3\epsilon$.

Thus we obtain

$$\|\mathcal{A}^n G - \mathcal{A}^n \omega_{\epsilon}\| = \|G - \mathcal{A}^n \omega_{\epsilon}\| \le 3\epsilon$$

and $G \leq 1/2$ for $x \in [0,1)$ by Lemma 2. This contradicts our assumption.

 $\bf Acknowledgments.$ Research supported by grant MENII 1 P03A 021 29, Poland.

References

- [A] J. Aaronson, An Introduction to Infinite Ergodic Theory, Math. Surveys Monogr. 50, Amer. Math. Soc., 1997, p. 284.
- [D-K-S] M. Denker, Y. Kifer and M. Stadlbauer, Conservativity of random Markov fibred systems, Ergodic Theory Dynam. Systems 28 (2008), 67–86.
- [D-L] Y. Derriennic et M. Lin, Sur la tribu asymptotique des marches aléatoires sur les groupes, Publ. Sém. Math., Univ. Rennes I, Rennes, 1983.
- [Ki] Y. Kifer, Ergodic Theory of Random Transformations, Progr. Probab. Statist. 10, Birkhäuser, 1986, p. 210.
- [K1] Z. S. Kowalski, Stationary perturbations based on Bernoulli processes, Studia Math. 97 (1990), 53–57.
- [K2] —, Invariant measures for smooth extensions of Bernoulli shifts, Bull. Polish Acad. Sci. 51 (2003), 261–267.
- [K3] —, Smooth extensions of Bernoulli shifts, ibid. 53 (2005), 157–168.

Institute of Mathematics and Computer Science

Wrocław University of Technology

Wybrzeże St. Wyspiańskiego 27

50-370 Wrocław, Poland

E-mail: kowalski@pwr.wroc.pl

Received 4 September 2007; in revised form 10 December 2008