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Iterations of the Frobenius—Perron operator
for parabolic random maps

by

Zbigniew S. Kowalski (Wroctaw)

Abstract. We describe totally dissipative parabolic extensions of the one-sided
Bernoulli shift. For the fractional linear case we obtain conservative and totally dissi-
pative families of extensions. Here, the property of conservativity seems to be extremely
unstable.

0. Introduction. Let o be the one-sided (p,q)-Bernoulli shift on the
space 2 = {0,1}N, N = {0,1,2,...}, with the (p,g)-measure y, on (2, B),
where B is the Borel product o-algebra and (p, ¢) is a probability vector. Let
us consider two transformations Ty, T3 of the interval [0, 1] onto itself such
that T; € C2[0,1], T! > 0, T,(0) = 0, Ty(1) = 1 for i = 0,1 and Ty > I,
T < I where I(z) = z for x € [0, 1]. Let .S; denote the inverse of T;, i = 0, 1.
We define the transformation

(1) T(w,z) = (0(w), Swo)(2))-

This transformation is a realization of the random map T'(x) = Sp(z) with
probability p and T'(z) = Si(x) with probability ¢, or a realization of the
random walk on the unit interval. Let A denote the Lebesgue measure on
[0,1]. It will cause no confusion to use the same letter for the Lebesgue
measure on R. Moreover, let us denote by P the restriction to L'(A) of the
Frobenius-Perron operator with respect to p, x A. By using two different
methods we investigate iterations of P. The first has been used for transfor-
mations 7" such that

(2) T‘l: (1_5i)x+€ig(x)7 iZO,l,
g € C?0,1], g(0) =0, g(1) =1, (1 —supg’)~! < ep,61 < (1 —infg’)~L.

We additionally assume that there exists exactly one point xg for which
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g (z9) = 1 and ¢'(z) < 1 for x < zp or ¢'(x) > 1 for © < xy. By the
modification of P to P, which relies on replacing A by the equivalent measure
with density h we show that PJ'(1) — 0, which yields the total dissipativity
of T for some parameters ;, i = 0,1, and p for g(x) = 22. We also observe
that (T, p, x A) for T' given by (2) is either conservative and ergodic, or
totally dissipative. The conservativity of different kinds of random maps
is studied in [D-K-S|. In the second method we apply the isomorphism of
fractional linear maps with translations of the real line R. By using the
results about conservativity of R-extensions, we obtain either conservative
and ergodic, or totally dissipative systems which have an equivalent o-finite
invariant measure. The conservative transformations appear to be isolated.
Moreover, by repeating the approximation argument from [K3| we extend
the area of dissipativity of T given by (2) for g(z) = z%. The observation
that fractional linear extensions are isomorphic to random walks on R allows
us to improve the description of their ergodic properties included in [K3|. We
finish our paper by completing the information about the example of [K2],
i.e. the transformation 7" given by Ty = %:c — %xQ, Ty =% and p € (0,1).

1. Total dissipativity. We start with a slightly more general situation,
i.e. o is the one-sided Markov shift on the space 2 = {0,...,s — 1}V, s >
2, with (II, p)-measure pz. Here j = (po,...,ps—1) is a probability vector,
and IT = (p;j)sxs is a stochastic matrix such that pII = p. Let {Si}f;é
be a family of positively and negatively nonsingular transformations of a
probability space (Y,C,m), i.e. m(B) = 0 = m(S; 1(B)) = m(S;(B)) =0
for i =0,...,s—1. This definition slightly differs from that of the two-sided
nonsingularity [A]. We introduce the transformation

T(wa .T) - (U(w)a Sw(O) (x»
Let us denote by C(T') the conservative part of 7" and by D(T") the dissipative
part. Moreover, let @« = {A;:9=0,...,s — 1} where 4; = {w : w(0) = i}.
THEOREM 1. If E C C(T), pz x m(E) >0 and T(E) C E then

s—1
E = UAiXEi for some E; € C.
i=0

Proof. Let E, = {w : (w,z) € E}. Suppose, on the contrary, that there
exist € > 0 and ¢ such that

B={2:0<pz(E;NA;) < (1—e)uz(4)}

has positive measure m. Let (w,z) € EN A; x B, where w is a density point
for E, and T"(w,z) returns infinitely many times to £'N A; X B (because
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E C C(T)). By the choice of w, there exists ng such that for n > ny,
pi5(An(w) N Ez) > (1 = ¢/2)pp(An(w))
where w € A,(w) € ViLgo ‘a. Let n; satisfy ny > ng and T (w,z) €
ENA; x B. Then
T (A, (w) N Ep x {x}) = 0™ (Ap, (w) N Ey) x {55 (2)}
where S5 (x) = S,(n,—1) ©  ** © Sy(0) (). Hence
Egm N A D 0™ (Ap, (w) N Ey).
Therefore
pp(Egni iy N Ai) 2 Jom (w)pp(An, (W) N Ey)
> (1= ¢/2) Joms (@)ptp( Ay (@) = (1= €/2)p(4).
Here J, denotes the Jacobian of ¢. This contradicts our assumption. m
COROLLARY 1. C(T) = UiZy Ai x Bi and D(T) = JiZ; A; x Ci.
THEOREM 2. If T is given by (2) then (T, p, x A) is either conservative
and ergodic, or totally dissipative.

Proof. Let p, x A(C(T)) > 0. Hence by Corollary 1, C(T') = {2 x B.
Moreover, T'(2 x B) = {2 x B, which implies A(B = (SoB U S1B)) = 0
Therefore, T'({2 x B) C {2 x B with respect to the measure p, x A where
reo + (1 —r)er = 0. The measure p, x A is T-invariant and ergodic (for the
proof see [K1|). Thus, A(B) = 1. We apply similar arguments to get the
ergodicity of T. =

Let h : (0,1) — R* be a function from C'(0,1) and v, be a measure
on [0, 1] such that dvy,/dA = h. For our applications we use h(z) = =% or
h(z) = (1 —2)~% for &« > 1. Let T be the transformation given by (1) and
let P (P}, respectively) be the restriction to L'(A) (L'(vy) respectively) of
the Frobenius—Perron operator with respect to p1, x A (pp, X vp, respectively).
The following relation holds between these operators:

Pnf =h P(hf) for f € L' ().

We define
WR(T)(0) = lim b~ (@)h(Ti(x)),
hIW(T)(1) = lim Rl (2)W(Ti(x))  fori=0,1.

Here we assume the existence of the above limits. The explicit form of Py, is
Pif () = ph(To(x)h™" (2)Tg(x) f(To(x))
+ (1 = p)A(T1(2))h™ ()T (2) f (Ta(2)),

for x € [0, 1]. Our aim is to obtain some conditions for dissipativity of T.
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THEOREM 3. Let T be given by (1). If for all x € [0,1],
(&) = ph™ (@) W(To(2))To(x) + (1 = p)h~ (@) h(Ti(2))T{(z) < B < 1
then T is totally dissipative.

Proof. By assumption, P,(1) < 8. Therefore P/*(1) < 8. Let f € L'(A)
be such that 0 < f < h. Then
P*(f)=P" <h £> = hP} <‘£) < hP (1) < 5"h.

Therefore, the measure of {z : Y 7 | P"f < oo} is equal to one. This proves
the theorem. m

2. An application. Let us consider the transformations

(3) To(z) = (14 eo)z — eoz®, Ti(z) = (1 —e)z + ez’
for €g, €1 € [0,1]. For h(z) = 272 we determine p which satisfies
14+ ¢y — 2¢9x 1—e€1 4+ 2612
Vo) =pm———— 5 +(1-p)

(1+ ey — eox)? (1—e +ex)?

for every x € [0, 1]. For this purpose we compute

"(z) = -2 2#—21— 2#<O

Therefore, y(z) < v(0) for « € [0,1]. Hence for €1 # 1 we get

P 1-p 1+e€o
=v0) <1 & <1l & > .
=100 1+60+1—61 b 61+6061
The same reasoning applies to the case h(z) = (1 — x)~2. For ey # 1 we get
P 1—p 1 —eo
=v1) <1l & <l & < .
B =(1) 1_€0+1+61 D €1+€061

Therefore as a consequence of Theorem 3 we get

COROLLARY 2. If T is given by (3) then (T, u, x A) is totally dissipative
whenever

< 1—¢g S 1+ €
€1 or €1.
€1+ ¢€o ! p €1 + €0 !
We can improve on the above by using h(z) = 2z~ (%% or h(z) =

(1 — )=+ for o € (0,1).
EXAMPLE. For
hz) =271, p>077, =09, =07
we get y(x) < 1 for every = € [0, 1]. Similarly for
hz)=(1-2)"" p<04, =05 =1
we get y(z) < 1 for each x € [0, 1].
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3. Fractional linear maps and R-extensions. Let T be given by (1)

where
x

To=T, = ————— A 0,1

0 Ao )\OZC+1—)\0’ Oe(a)a
X

hh=T,=—— A 0.

S B VI D VARG

REMARK 1. T has an equivalent invariant o-finite measure for every
pe(0,1).

Proof. It is easy to see that the measure p, x v where dv/dA=1/z(1 — z)
is T-invariant. m

Let us observe that the system ({2 x [0,1], up x v, T), where T and v are
considered above, is isomorphic to (£2 x R, p, x A,T") where

T(w,u) = (0(w),u + ay@))-

Here ap = In(1 — X\g) and a; = In(1 — A;). The isomorphism is given by the

map
u

QxRB(w,u)H< >e(2><[0,1].

W, ——
1+ e
Now we are in a position to use Corollary 8.15 of [A].

THEOREM 4. T is conservative if and only if
~ In(1—Ay)
In(1=35)

For other p, T is totally dissipative.

The second observation relies on the representation of T as a random
walk on R. Namely, (£2 x R, y1,, x A,T') is isomorphic to (RN, 1, 0) via the
map

D(w,u) = (U, U + Gy, U + (o) + (1 - - -) € RY.
Here o is the one-sided shift and p is determined by the “jump probability”

P = pdani-ne)y + (1 = P)ogma—x)}
and A.
THEOREM 5. (£2 x [0,1], p x v, T) is

(1) ergodic if and only if iﬁg:i;; is wrrational

(ii) not exact.

Proof. By results of [D-L| the random walk (R, 1, o) is ergodic if and
only if the set

{nln(1 — Xo) + mIn(l — ;) : m,n € Z}
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is dense in R. But the above is equivalent to

In(1— A1)
In(1— )\p) £Q.

Moreover, (RY, u, o) is exact if and only if

1
{nln<1 _;(1)) 'n € Z}

is dense in R. But this is impossible. =

The isomorphism of T and T carries new information about iterations
of T. Namely,

T"(w,u) = (6"(w),u+ (n — Sp(w))ao + Sp(w)ai)

where

Therefore,
u+ (n— Sp(w))ag + Sp(w)ay — oo

and simultaneously

Loxjop(T"(w,2)) — 0 for ae. w

when ( )
In(1— X
p < v
In 1—,\(1))
Moreover,

u+ (n — Sp(w))ag + Sp(w)a; — —oc
and at the same time
Loxp)(T"(w,2)) =0 for ac. w
if
In(1—X\p)

In(1=52)

Here b € (0,1). We will apply the last observations to parabolic extensions
T given by (3). It is easy to see that

sgn(To(x) — Ty (x)) = sgn(egAox — 9o + €0 — Ao)
and
sgn(Ty(x) — Ty, (x)) = sgn(—e1 iz + €11 — €1 — A1)
for x € (0,1). Therefore, we get
So(x) = Ty (z) & e < Ao, Si(z) 2Ty (x) & —a <X\
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and .
-1 0
So(x) < T)\o (ac) S N < I 607
Sl(.%') < TA_I(.%') S N < = s € < 1.
1 1—¢
Therefore, for e; < 1 and
In(1—e¢
p>1(kqﬂ
n(1+60)
_(In(1 = \p) ( €0 ] < €1 }}
=minq —————: (Ao, A1) € {0, X [ —o0, —
{ ln(}j\é) (R0, M) 1+ € 1—¢
we obtain

lim 1oy pq(T"(w, 7)) =0 for ae. w.

n—oo

Similarly, for

In(1+e€) o {ln(l—)\l)

ln(l"'i) - ln(l_)‘l)

: ()\0,)\1) S [60,1] X [—61,0]}
1—eo 1-Xo

we have
lim 1oy (1" (w,7)) =0 for ae w.
n—oo

As a consequence we get

THEOREM 6. If T is given by (3) then (T, pu, x A) is totally dissipative
and the set of product measures in My, is conv{fi, X 0oy, ftp X 0711} whenever

In(1+ €1) In(1 —€)
— or p>—r ",
(1) In(175)

Here M, denotes the set of T-invariant probability measures m such that
m|B x {[0,1]} = pp.

Proof. Let us assume the first inequality holds. Then
o0

{@.2) 3 Loxon(T"(w,2)) < oo}
n=1

has measure one. Therefore, by the Halmos recurrence theorem [A], [0,b] C
Dr for every 0 < b < 1. Hence D7 = [0, 1]. Moreover,

x 1
AI(z) =\ Pr1dA = || P"1- 15,04 dAdp,
0 20

1
§ VLo (T (w, 1)) dAdp, — 0,
Q0
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Thus by Theorem 3 of [K3| we get the desired conclusion. The proof for the
second inequality is similar. m

4. The example. Let us consider the example from [K2]:

3 1 1
To(x):§m—§:c2, Ti(z) = 22, ie. €=3,

and T given as in (1).

THEOREM 7. M), = conv{j, X dgoy, tp X g1}, pip X A} for p=2/3. The
set of product measures in My is conv{p, X gy, ftp X 0g13} for p € (0,1/2].
Moreover, (T, p, x A) is totally dissipative for p < 1/2.

€1 =1,

REMARK 2. We only need to prove the case p = 1/2. The other conclu-
sions result from Theorem 6 and Theorem 3 of [K3| respectively.

We will need the considerations below. Define the operator A on D as
follows:

1 1
AF (z) = 3 F(Ty(x)) + 3 F(Ti(z)) for FeD.
Let vr denote the measure determined by F.

Fact ([K2]). The measure jiyjo X v is T-invariant if and only if AF
=F.

LEMMA 1.

2n k
k=0
1 E(n/2) n . 1 E(n/2)+s n
< = 22 —n L Z
k=0 k=E(n/2)

2n k
E(n/2)+s
1 1 n 1 28
< 4 -
Sota X <k>+2x ’
k=E(n/2)
where E(x) denotes the integer part of 2. By the existence of lim,,_, ., A™I

(see Lemma 3 of [K2]) we get

11 5
lim A"I(z) < f—i—imQ

n—00 2

Therefore lim,, . A"I(z) <1/2 for x € [0,1). =

for any s > 1.



Iterations of the Frobenius—Perron operator 249

LEMMA 2. Let w(zx) be a polynomial such that 0 < w(z) < § for x €
[0,1], w(0) =0 and 6 < 1. Then limsup,,_, ., A"w(x) < 1/2 for x € [0,1).

Proof. We first observe that

1
lim sup A" IV/F(z) < 5 forx € 0,1) and k =1,2,....

n—oo

Let

n

do(x) = 2% 3 <Z> 22"

k=0
By the proof of Lemma 1 we see that A"I'*(z) < d,(z'/*) and naturally

lim sup A" IV/*(z) < 1 + lxzs/k fors=1,2,....
Therefore lim sup,,_, o, A"TY/* < 1/2 for x € [0,1). Let w(z) be a polynomial
satisfying our assumptions. Then w(z) < 2'/2 for z € [0, €] and for some
e > 0. If we take k such that €'/F > § then w(x) < z/* for 2 € [0, 1]. Hence
A < ATV and as a result

1
lim sup A"w(z) < limsup AI'*(z) < = forz €[0,1). m
n—oo n—oo 2
LEMMA 3. LetT be given by (2) and let j1, x v, be a T-invariant measure.
If vp & conv{dqgy, 071y} then vr has the dense support property (equivalently
F s 1-1).

Proof. Let Ty = (1 + €p)x — €og(x) and T1(x) = (1 — €1)z + €1g9(x) for
€0, €1 > 0. Then
To(x) = (1+€)x —eli(x) for e =e€p/e;.
Let (a,b) be a nonempty interval of maximal length such that F|(a,b) =
const. By assumptions we have (a,b) # (0,1) and Ty(b) — Tp(a) < b — q,
T1(b) — Ti(a) < b — a. Here we use the fact that F'|(Tp(a),Tp(b)) = const
and F|(T1(a),T1(b)) = const by Lemma 1 of [K2]. In particular,

To(b) = To(a) <b—a < (1+e€b—€T1(b) — (1+e€)a+eTi(a) <b—a
-~ Tl(b) — Tl(a) > b—a.
Therefore, T1(b) — T1(a) = b—a and by induction T7"(b) — 17" (a) = b — a for
n=1,2,.... Hence a = b. =
Proof of Theorem 7. Suppose, contrary to our claim, that there exists a
product measure in M /5 outside conv{ py, X g0} Hp X 5{1}}. We may assume
(by ergodic decomposition [Ki|) that there exists a distribution G such that

pp X Vg is ergodic and vg ¢ conv{dgy,dq13 }- Since vg has the dense support
property (by Lemma 3) we see that G is continuous and increasing. Therefore
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for every € > 0 there exists a polynomial w, such that
we(0) =0, 0<w(r)<1l—€ for z€][0,1] and |G — we| < 3e.
Thus we obtain
JA"G = A = |G — A%w] < 3¢
and G < 1/2 for z € [0,1) by Lemma 2. This contradicts our assumption. m
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