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Abstract. A (quadratic) Hubbard tree is an invariant tree connecting the critical
orbit within the Julia set of a postcritically finite (quadratic) polynomial. It is easy to
read off the kneading sequences from a quadratic Hubbard tree; the result in this paper
handles the converse direction.

Not every sequence on two symbols is realized as the kneading sequence of a real
or complex quadratic polynomial. Milnor and Thurston classified all real-admissible se-
quences, and we give a classification of all complex-admissible sequences in [BS]. In order
to do this, we show here that every periodic or preperiodic sequence is realized by a unique
abstract Hubbard tree. Real or complex admissibility of the sequence depends on whether
this abstract tree can be embedded into the real line or complex plane so that the dy-
namics preserves the embedded, and this can be studied in terms of branch points of the
abstract Hubbard tree.

1. Introduction. Many properties of complex dynamics, both of the
dynamical plane and the parameter space, can be described conveniently
with symbolic dynamics (see [D1, M] for general introductions). In fact,
one of the chief reasons why polynomial dynamics is far better understood
than rational dynamics is because we have much better tools available for
symbolic dynamics. Hubbard trees, external angles and kneading theory,
together with their recodings as internal addresses [LS, S1], are fundamental
concepts within this symbolic description.

• A Hubbard tree is a sketch of the essential topological features of a
polynomial Julia set from which many other topological or combina-
torial data can be reconstructed quite easily. They were introduced
by Douady and Hubbard in their Orsay Notes [DH1] in order to de-
scribe postcritically finite polynomials; this program was later carried
through in [P, BFH] using a fundamental theorem of Thurston [DH2].
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• External angles and external parameter angles help to organize Julia
sets and the space of quadratic polynomials respectively (see [S4]).
– In the dynamical space of a fixed polynomial f : z 7→ z2 + c1 (with
c1 in the Mandelbrot set M), the angle doubling map on the circle
S1 = R/Z of external angles factorizes over the dynamics on the
Julia set of f by identifying angles whose external rays land at the
same point.

– Similarly, every angle in S1 occurs as external parameter angle for
some quadratic polynomial, and it is usually easy to tell if differ-
ent angles correspond to the same polynomial, i.e., if their external
parameter rays land at the same c ∈ ∂M (1).

Thus dynamical and parameter external angles give rise to topolog-
ical models “from the outside” of Julia sets and the Mandelbrot set
respectively (see [S3, T]).
• The dynamics of a dendrite quadratic Julia set (or a Hubbard tree)

can be described by itineraries using symbols 0 and 1 for the parts
on either side of the critical point, and ∗ for the critical point itself.
The itinerary of the critical value c1 is called the kneading sequence.
Kneading sequences, especially in their human-readable form of inter-
nal addresses [LS, S1], allow one to construct a model of the Man-
delbrot set “from the inside”. They describe which polynomials are
topologically conjugate, and which external angles correspond to rays
that land together.

There are many algorithms known to turn one of these three concepts into an-
other. From a Hubbard tree one can directly read off the associated kneading
sequence and the external angle(s), provided the Hubbard tree comes (as is
traditionally the case) with an embedding into the plane (see [D2, BKS] and
Example 2.7). Similarly, every external angle easily specifies the associated
kneading sequence. It is much harder to find a Hubbard tree or an external
angle from the kneading sequence. This is what we do in the present paper.

Part of the difficulty of finding a Hubbard tree for a given kneading
sequence comes from the fact that some kneading sequences are not re-
alized by complex polynomials and thus by Hubbard trees embedded in
the plane. Other kneading sequences are realized by several such trees. It
turns out that both difficulties disappear when we turn attention to ab-
stract (non-embedded) Hubbard trees. Our main result is the following (see
Theorem 2.5):

Every periodic or preperiodic kneading sequence is realized by a unique
abstract Hubbard tree.

(1) We are only concerned with rational angles, so their external parameter rays land.
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This is a fundamental and long overdue step in a coherent description of
symbolic dynamics of quadratic polynomials. We will specify the precise
meanings of periodic kneading sequence, abstract Hubbard tree and unique-
ness in Definitions 2.4 and 2.2, and the discussions following them. All our
Hubbard trees are abstract non-embedded trees (even though we will usu-
ally omit the word “abstract” from now on); this distinguishes them from
traditional Hubbard trees that come with an embedding into the plane.

Figure 1 gives an example of an abstract Hubbard tree that is not as-
sociated to any quadratic polynomial. In [BS], we discuss branch points of
these abstract Hubbard trees and show how their properties are determined
explicitly in terms of the kneading sequence alone. (Branch points in param-
eter space, i.e., the Mandelbrot set, are closely related to branch points in
Hubbard trees; see [S2].) This allows us to specify an explicit admissibility
condition determining which kneading sequences are realized by complex
quadratic polynomials (the corresponding question for real polynomials has
been answered by Milnor and Thurston [MT] in the late 1970s).
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Fig. 1. The abstract Hubbard tree for ν = 10110∗. The three branch points form a period
3 orbit, but the third iterate permutes the arms in a non-cyclic way. As a result, this tree
is not the Hubbard tree of any quadratic Julia set.

Further extensions of the theory (as covered in [BKS]) include (i) ex-
plicit algorithms to convert kneading sequences into Hubbard trees and vice
versa, (ii) further algorithmic relations between various concepts of symbolic
dynamics, (iii) the construction of abstract Julia sets as limit of backward
iterates of the Hubbard tree, (iv) the construction of Hubbard dendrites,
when ν is non-(pre)periodic, as projective limit of a sequence of Hubbard
trees, (v) the construction of abstract Mandelbrot set as bifurcation dia-
gram of the space of Hubbard trees, (vi) an analysis of biaccessible points
both in Julia sets and Mandelbrot sets, and the corresponding “biacces-
sible” external angles, and (vii) the proof that the set of complex-admissible
kneading sequences has positive measure in the space of all sequences over
two symbols.

The paper is organized as follows. In Section 2 we give the definitions
of abstract Hubbard trees and symbolic dynamics, and we give a formal
statement of our Main Theorem 2.5. We also give basic properties of a
Hubbard tree including the existence of the α-fixed point. In Section 3,
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we introduce the triod argument which leads easily to the uniqueness of the
abstract Hubbard tree, up to some natural equivalence relation. In Section 4
we define the %-function, which gives precise information about the relative
positions of precritical points in the Hubbard tree. With regard to the proof
of the main theorem, it enables us to show, purely symbolically, that c1
is indeed an endpoint of T . This is easy to see once T is known to exist
(see Lemma 2.3), but as a priori knowledge, this is a crucial step in the
construction of T . In Section 5, we finally present the full construction of
the tree. We first select its marked points by (i) taking shifts of ν, and
(ii) applying triod operations on them. Gradually the neighbor-relations of
marked points and the dynamic properties of the tree will be verified.

2. Hubbard trees. In this section, we define Hubbard trees as abstract
trees with dynamics and show their most fundamental properties. Our trees
do not necessarily come with an embedding into the complex plane.

2.1. Definition. A tree T is a finite connected graph without loops. For
a point x ∈ T , the (global) arms of x are the connected components of T\{x}.
A local arm at x is an intersection of a global arm with a neighborhood of
x in T (where we use arc length along the tree as metric). The point x is
an endpoint of T if it has only one arm; it is a branch point if it has at least
three arms.

Between any two points x, y in a tree, there exists a unique closed arc
connecting x and y; we denote it by [x, y] and its interior by (x, y).

2.2. Definition. A Hubbard tree is a tree T equipped with a map
f : T → T and a distinguished point, the critical point, satisfying the fol-
lowing conditions:

(1) f : T → T is continuous and surjective;
(2) every point in T has at most two inverse images under f ;
(3) at every point other than the critical point, the map f is a local

homeomorphism onto its image;
(4) all endpoints of T are on the critical orbit;
(5) the critical point is periodic or preperiodic, but not fixed;
(6) (expansivity) if x and y with x 6= y are branch points or points on

the critical orbit, then there is an n ≥ 0 such that f◦n([x, y]) contains
the critical point.

We denote the critical point by c0 = 0 and its orbit by orbf (0) =
{0, c1, c2, . . . }. The critical value c1 is the image of the critical point. We use
the standing assumption that c1 6= 0 in order to avoid having to deal with
counterexamples when the entire tree is a single point. The branch points
and the points on the critical orbit (starting with c0) will be called marked
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points. Not all marked points need necessarily be endpoints or branch points
(some post-critical point ck could lie on the interior of arcs), but the set of
marked points is finite and forward invariant, because the number of arms
at any point can decrease under f only at the critical point.

Two Hubbard trees (T, f) and (T ′, f ′) are equivalent if there is a bijection
between their marked points which is respected by the dynamics, and if the
edges of the tree connect the same marked points. This is weaker than a
topological conjugation. In particular, we do not care about details of the
dynamics between marked points; there may be intervals of periodic points,
attracting periodic points, and so on. (This is related to an equivalence class
of branched covers in the sense of Thurston as in [DH2, HS].)

2.3. Lemma (Basic properties of the Hubbard tree). The critical value
c1 is an endpoint , and the critical point 0 divides the tree into at most two
parts. Each branch point is periodic or preperiodic, it never maps onto the
critical point , and the number of arms is constant along the periodic part
of its orbit. Any arc which does not contain the critical point in its interior
maps homeomorphically onto its image.

Proof. Suppose that c1 has at least two arms. The points c2, c3, . . . also
have at least two arms as long as f is a local homeomorphism near this
orbit. If this is no longer the case at some point, then the orbit has reached
the critical point, and the next image is c1 again. In any case, all points on
the critical orbit have at least two arms. This contradicts the assumption
that all endpoints of a Hubbard tree are on the critical orbit. Hence c1 has
exactly one arm, and 0 has at most two arms (or its image would not be an
endpoint).

Since near every non-critical point, the dynamics is a local homeomor-
phism onto the image, every branch point maps onto a branch point with
at least as many arms. Since the critical point has at most two arms, it
can never be the image of a branch point. The tree and thus the number of
branch points is finite, so every branch point is preperiodic or periodic and
its entire orbit consists of branch points; the number of arms is constant
along the periodic part of the orbit.

Let γ be an arc within the tree. Since f cannot be constant on γ and
there is no loop in the tree, the subtree f(γ) has at least two endpoints. If
an endpoint of f(γ) is not the image of an endpoint of γ, then it must be
the image of the critical point since f is a local homeomorphism elsewhere,
and the critical point 0 must be in the interior of γ.

We have seen that T \ {0} consists of at most two components. Let us
denote them by T0 and T1 so that c1 ∈ T1 (with c1 6= 0 by definition);
T0 may be empty.
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2.4. Definition. The itinerary of a point z ∈ T on a Hubbard tree is
the infinite sequence e(z) = e1(z)e2(z)e3(z) . . . with

ei(z) =


0 if f◦(i−1)(z) ∈ T0,
∗ if f◦(i−1)(z) = 0,
1 if f◦(i−1)(z) ∈ T1.

The itinerary e(c1) =: ν = ν1ν2ν3 . . . of c1 is called the kneading sequence.

If ei(z) = ∗, then ei+j(z) = νj for every j ≥ 1. In particular, if there is n
minimal such that νn = ∗, then ν = ν1 . . . νn−1∗. Such kneading sequences
are called ∗-periodic.

We can now state our main theorem precisely.

2.5. Theorem (Existence and uniqueness of Hubbard trees). Every
∗-periodic or preperiodic kneading sequence is realized by a unique (up to
equivalence) abstract Hubbard tree.

It is sometimes useful to extend a Hubbard tree to include a finite set of
(pre)periodic orbits. Such an extended Hubbard tree (T̂ , f̂ ) satisfies Defini-
tion 2.2, except that f̂ : T̂ → T̂ need not be surjective and part (4) must be
replaced by: all endpoints in T̂ are (pre)periodic. Branch points and points
on the critical orbit are still marked, but also the additional points with
itineraries in V̂ should now be marked.

2.6. Corollary (Existence and uniqueness of extended Hubbard trees).
Given a ∗-periodic or preperiodic kneading sequence ν and a set V̂ ⊂ {0, 1}N∗

\ {0ν, 1ν} such that V̂ ∪ {∗ν, ν, σ(ν), σ◦2(ν), . . . } is shift-invariant , there is
an extended Hubbard tree (T̂ , f̂ ) such that

• for every v ∈ V̂ , there is p ∈ T̂ with itinerary e(p) = v;
• T̂ is minimal in the sense that every endpoint belongs to the critical

orbit , or is a point with itinerary in V̂ ;
• T̂ is unique up to equivalence.

2.7. Example (Extending Hubbard trees to compute external angles).
By extending a Hubbard tree with the β-fixed point and its preimage −β
(with itineraries e(β) = 0 and e(−β) = 10 respectively), one can reconstruct
the external angle of the ray landing at some point in x ∈ T . The nth co-
ordinate in the binary expansion of the external angle of x is 0 if f◦n(x)
is above the spine [β,−β], and 1 if f◦n(x) is below the spine. In Figure 2
we illustrate how this works for the critical value of the Hubbard tree with
kneading sequence ν = 1101. Since several points on the orbit of the crit-
ical value belong to the spine, c1 has multiple (here three) external angles
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Fig. 2. A Hubbard tree for ν = 1101 (in bold lines) and its extension. The third image of
the critical value is the fixed point α, which in this case has three external approaches, so
c1 has three external angles.

corresponding to its different external approaches. These angles are

(i): 0.1101011011011011011 . . . (binary) =
47
56
,

(ii): 0.1100110110110110110 . . . (binary) =
45
56
,

(iii): 0.1011101101101101101 . . . (binary) =
41
56
.

Note that this algorithm depends on the fact that T can be properly embed-
ded into the plane. In fact, for ν = 1101, there is also another embedding,
the mirror image of Figure 2, and the corresponding external angles for c1
are 15

56 , 11
56 and 9

56 .

Throughout, we will write N∗ = {1, 2, 3, . . . } and use the following no-
tation for our symbol spaces:

Σ := {ν ∈ {0, 1}N∗ : the first entry in ν is 1},
Σ∗ := Σ ∪ {all ∗-periodic sequences},
Σ∗∗ := {ν ∈ Σ : ν is non-periodic} ∪ {all ∗-periodic sequences}.

Obviously, e ◦ f(z) = σ ◦ e(z) where σ denotes the left shift. The expan-
sivity condition of Definition 2.2 means that no two marked points have the
same itinerary.

2.8. Lemma (Same itinerary on connected subtree). Suppose that z and
z′ are two points on a Hubbard tree such that ei(z) = ei(z′) for all i < n (for
some n ≤ ∞). Then all w ∈ [z, z′] have ei(w) = ei(z) = ei(z′) for i < n.

Proof. We can assume that z 6= z′. Since 0 is the only point whose
itinerary starts with ∗, we see that z and z′ lie in the same component of
T \ {0}. Therefore [z, z′] is mapped homeomorphically onto f([z, z′]) by f .
Since e2(z) = e2(z′), the arc f([z, z′]) is contained in a single component
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of T \ {0}. By induction, f◦i([z, z′]) is contained in a single component of
T \ {0} for each i < n. The claim follows.

2.9. Lemma (Fixed point on Hubbard tree). There is a unique fixed
point in T1; it lies in (0, c1).

Proof. Since c1 is an endpoint, the intersection [0, c1] ∩ f([0, c1]) is a
non-degenerate arc [c1, x], i.e., x 6= c1. If x = 0, then f maps [0, c1] over
itself in an orientation reversing way, so there is a fixed point on [0, c1].

We may thus assume that x ∈ (0, c1). If f([0, c1]) ⊂ [0, c1], then as above
we have a fixed point in (c1, x). Otherwise f([0, c1]) branches off from [0, c1]
at x. Let y = f(x). Then y cannot be on (0, x) because the path f([0, c1])
starts at c1 and branches off at x before reaching (0, x). If y ∈ [x, c1], then
f maps [x, c1] over [y, c2], and f has a fixed point in [x, y].

The last possibility is that y ∈ (x, c2], and we show this does not occur.
Let T ′ be the connected component of T \{x} containing y. Then f(T ′) 63 x,
because one of the two inverse images of x is on [0, x], and the other is
separated from x by the critical point. Since x maps into T ′ and no point
in T ′ maps onto x, all of T ′ maps strictly into itself under f . But this
violates the expansivity condition: T ′ has an endpoint x′ other than x, and
the forward orbits of x and the endpoint are never separated by 0.

Now we have a fixed point in T1; call it α. Suppose that it is not unique.
Since f maps T1 homeomorphically onto its image, f must fix a component
G of T1\{α}. This is not the component with 0 as boundary point, because α
separates 0 from c1 = f(0). Let z be an endpoint of this fixed component G.
Then α and z both are marked points with the same itinerary 1, and this
contradicts the expansivity condition.

Remark. The unique fixed point in T1 is usually called α. The com-
ponent T0 can contain more fixed points, but by Lemma 2.8, they are all
contained in a connected subtree of constant itinerary 0. If there is an end-
point with itinerary 0, it is called β; it exists on the Hubbard tree if and
only if the kneading sequence terminates in an infinite string of symbols 0.

A point z ∈ T is (pre)periodic if f◦l(z) = f◦(l+m)(z) for some l ≥ 0,
m ≥ 1. We take l and m minimal with this property. Then m is the (exact)
period of z, and l the preperiod.

2.10. Lemma (Preperiod and period). The exact preperiod and period
of any marked (pre)periodic point are equal to the exact preperiod and period
of its itinerary.

Proof. Suppose z is periodic with period m and let m′ be the period
of e(z) (under the shift). Obviously, m′ divides m. If m′ 6= m, then z and
f◦m

′
(z) are different marked points with the same itinerary. This contradicts

expansivity. The same argument works in the preperiodic case.
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2.11. Lemma (Periodic points and itineraries). If a Hubbard tree con-
tains a point with periodic itinerary τ , then it contains a periodic point p
with itinerary τ such that the exact periods of p and τ coincide.

Proof. Let T ′ ⊂ T be the set of all points with itinerary τ . By Lemma 2.8,
T ′ is connected, so it is a connected subtree (possibly not closed).

Let n be the period of τ . Then f◦n maps T ′ homeomorphically onto
its image in T ′. Since marked points in T have different itineraries, T ′ can
contain at most one branch point of T . If it contains one, then it must be
fixed by f◦n, so its exact period is n. Otherwise, either T ′ is a single point
(and we are done), or T ′ is homeomorphic to an interval. If f◦n sends T ′ to
itself reversing the orientation, we get a unique fixed point in the interior
of T ′, and we are done again.

Now suppose that f◦n preserves the orientation of T ′. If f◦n : T ′ → T ′ is
not surjective, then for at least one endpoint, say x, f◦n(x) is in the interior
of T ′. If x is a branch point or an endpoint of T , then it is marked and we
are done. Otherwise, x has a neighborhood in T which is homeomorphic to
an open interval, but only a one-sided neighborhood has itinerary τ . This
implies that x maps to the critical point after finitely many iterations. Again
T ′ contains a marked point, which must be fixed by f◦n.

The last case is that f◦n maps T ′ homeomorphically onto itself, preserv-
ing the orientation and fixing both endpoints. Then the claim is satisfied by
any endpoint of T ′ which does not hit the critical point on its forward orbit.
If both endpoints do, say after k and m iterations with k and m minimal
and k < m, then f◦(k+1)(T ′) and f◦(m+1)(T ′) are both intervals with c1 as
endpoints and not containing branch points of T , and m − k < n. Hence
f◦(m−k) must map T ′ onto itself reversing the orientation, so it fixes some
point in T ′ which must have an itinerary with period dividing n. This is a
contradiction.

3. Triods and uniqueness of Hubbard trees. In this section we
introduce triods and their iteration in order to determine which marked
points are branched and/or adjacent to each other. By analyzing the triods
in T , the uniqueness of Hubbard trees, up to equivalence, follows as well.

3.1. Definition. A triod is a connected compact set homeomorphic to
a subset of the letter Y. It is degenerate if it is homeomorphic to an arc or
a point.

For a sequence ν ∈ Σ∗, let ∗ν be the symbol ∗ followed by ν and define
S(ν) := {∗ν, ν, σ(ν), σ◦2(ν), . . . } (the orbit of ∗ν under the shift). Then
σ(S(ν)) ⊂ S(ν). Note that 0ν ∈ S(ν) or 1ν ∈ S(ν) would imply that ν
was periodic but not ∗-periodic; thus S(ν)∩{0ν, 1ν} = ∅ for ∗-periodic and
preperiodic ν.
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3.2. Definition. Any triple of pairwise different sequences s, t, u ∈
S(ν) ∪ {0, 1}N∗ is called a formal triod [s, t, u].

3.3. Definition. If {s, t, u} ∩ {0ν, 1ν} = ∅, then we define the formal
triod map as follows:

(1) ϕ[s, t, u] :=



[σ(s), σ(t), σ(u)] if s1 = t1 = u1 ∈ {0, 1};
stop if {s1, t1, u1} = {0, 1, ∗};
[σ(s), σ(t), ν] if s1 = t1 6= u1;
[σ(s), ν, σ(u)] if s1 = u1 6= t1;
[ν, σ(t), σ(u)] if t1 = u1 6= s1.

By construction, the only sequence which starts with ∗ is ∗ν, so at most
one of s, t, u can start with ∗. If one of them does, then the other two
sequences either have first entries which are different from each other (and
we are in line 2), or the other two first entries are equal and we are in lines
3–5. Therefore, the list covers all possible cases.

In all cases other than the stop case, ϕ[s, t, u] returns three sequences
in S(ν) ∪ {0, 1}N∗ . These form another formal triod, i.e., all three image
sequences are different: in line 1, this is clear; in the other lines, this follows
because s, t, u are all different from 0ν and 1ν by assumption.

To use φ more freely in the rest of this paper, it helps to specify what is
meant by majority and minority votes and chopping of arms of triods.

3.4. Definition. The majority vote of three sequences s, t, u is the sym-
bol that occurs most frequently among their first symbols {s1, t1, u1}. If two
of these symbols are equal (called a two-to-one majority) then the value of
the third symbol is the minority vote.

Given a triod [s, t, u] with two-to-one majority vote, the chopped off
version is the triod in which the sequence of the minority vote is replaced
by ∗ν.

Thus, in the last three lines of formula (1), we say that u, t, s (respec-
tively) are chopped off from the triod and replaced by ∗ν. The image φ[s, t, u]
is the shift of this chopped triod. If one of s, t or u equals ∗ν, then this se-
quence is chopped off and replaced by itself, so formally the outcome is the
same as it would be in line 1, but we record the chopping.

3.5. Proposition (Uniqueness of Hubbard trees). Any two Hubbard
trees with the same ∗-periodic or preperiodic kneading sequence are equiva-
lent.

Proof. Given three marked points x, y, z on a Hubbard tree, we denote
the triod that they form by [x, y, z], i.e., [x, y, z] = [x, y] ∪ [y, z] ∪ [z, x]. For
any two Hubbard trees T and T ′ with the same kneading sequence, we prove
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that any pair of triods [ck, cl, cm] and [c′k, c
′
l, c
′
m] are both non-degenerate or

both degenerate in the same way.
We decide whether a triod is degenerate by iterating it. Assume that ck,

cl and cm are pairwise different.

(1) If the triod [ck, cl, cm] does not contain 0 in its interior, then it maps
homeomorphically onto its image; we take the image.

(2) If 0 belongs to the interior of [ck, cl, cm] and 0 /∈ {ck, cl, cm}, then we
take the component of [ck, cl, cm] \ {0} containing two of the three
points ck, cl, cm, and take the closure of its image as the new triod
(we chop off the arc from 0 to the isolated endpoint of the triod and
map only the rest).

(3) If 0 belongs to the interior of [ck, cl, cm], and 0 is equal to one of the
three points, say 0 = ck, then the algorithm terminates. The triod is
degenerate, and ck is an interior point of [ck, cl, cm].

We iterate this procedure. Since the critical orbit is finite, the algorithm
either terminates or eventually reaches a loop. If the algorithm never ter-
minates, then at least two endpoints must be chopped off during the it-
eration of the triod. Otherwise, at least two endpoints must have identi-
cal itineraries (if ν is ∗-periodic, then we must exclude the case that the
triod iteration involves a triod with endpoint 0ν or 1ν; but this is clear).
If each of the three points of the triod is chopped off at some step, the
triod must be non-degenerate. If exactly one endpoint of the triod is never
chopped off, then the triod is degenerate with the latter endpoint in the
middle.

The key observation is that the type of the triod can be read off from
the itineraries of its endpoints in terms of the formal triod map. The triod
[ck, cl, cm] is represented by the triple (σ◦(k−1)(ν), σ◦(l−1)(ν), σ◦(m−1)(ν)),
and the image triod has endpoints ϕ[σ◦(k−1)(ν), σ◦(l−1)(ν), σ◦(m−1)(ν)]:

(1) If the first entries of σ◦(k−1)(ν), σ◦(l−1)(ν) and σ◦(m−1)(ν) are the
same, where ∗ counts as 0 (resp. 1) if the other two first entries
are 0 (resp. 1), then the shifted triple represents the image triod
[ck+1, cl+1, cm+1].

(2) If the first entries of σ◦(k−1)(ν), σ◦(l−1)(ν), σ◦(m−1)(ν) are 0 (say
twice) and 1 (say once), then we take the shift of the sequences
starting with 0 and replace the remaining sequence by ν. This rep-
resents the chopping off of one arm of the triod.

(3) If the first entries of σ◦(k−1)(ν), σ◦(l−1)(ν), σ◦(m−1)(ν) are {0, ∗, 1},
then we do not define ϕ[σ◦(k−1)(ν), σ◦(l−1)(ν), σ◦(m−1)(ν)]: the iter-
ation terminates, the triod is degenerate and the sequence starting
with ∗ represents an interior point of the triod.
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The kneading sequence fully describes the behavior of ϕ and thus determines
which points on the critical orbit are between which others on the tree, and
which are endpoints.

For any non-degenerate triod, the iteration of ϕ also encodes the itinerary
of the interior branch point: this itinerary is constructed by majority vote
from the first entries of the sequences of the triple at every step. The branch
points have itineraries different from 0ν and 1ν because they are marked
points, and their images are different from the critical value. Therefore, the
argument above can also be applied to triods whose endpoints are arbi-
trary marked points (branch points or points on the critical orbit), and this
implies that any two Hubbard trees with the same kneading sequence are
equivalent.

An independent proof of the same result is given in [BS]: there we prove
that all endpoints and all branch points can be read off explicitly from the
kneading sequence, and that corresponding points are connected by edges;
and this exactly amounts to uniqueness of the Hubbard tree.

3.6. Corollary (Uniqueness of extended Hubbard trees). Any ex-
tended Hubbard tree is unique up to equivalence.

Proof. This proof is the same as the proof of Proposition 3.5, as long as
we include the points with itinerary in V̂ . Since V̂ 63 0ν, 1ν, triods can be
iterated under ϕ without collapsing their endpoints.

4. The %-function and its properties. Next we introduce the %-
function on N∗, which depends on ν. It is a useful tool in revealing the
properties of precritical and periodic points of T (see [BS]), but in this
paper % will be used to derive some fundamental facts about sequences in
Σ∗. In particular, we show symbolically that c1 is always an endpoint of T .

4.1. Definition. For a sequence ν ∈ Σ∗, define

%ν : N∗ → N∗ ∪ {∞}, %ν(n) = inf{k > n : νk 6= νk−n}.

We usually write % for %ν . For k ≥ 1, we call

orb%(k) := k → %(k)→ %◦2(k)→ %◦3(k)→ · · ·

the %-orbit of k. The case k = 1 is the most important one; we call

orb%(1) = 1→ %(1)→ %◦2(1)→ %◦3(1)→ · · ·

the internal address of ν. For real unimodal maps, the numbers %◦k(1) are
known as the cutting times of the map. If %◦k+1(1) = ∞, the we say that
the internal address is finite: 1→ %(1)→ · · · → %◦k(1); as a result, the orbit
orb% is a finite or infinite sequence that never contains ∞.
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Remark. The use of the %-function is explained by its relation to the
closest precritical points on the Hubbard tree. Let ζ1 := 0 be the closest
precritical point of Step 1, because it takes one iterate to map to the critical
value. Given closest precritical point ζk of Step k, the next closest precritical
point is ζl ∈ (ζk, c1] such that f◦l(ζl) = c1, and l is the minimal number
with this property. It is not hard to verify (see [BKS]) that orb%(1) finds the
sequence of closest precritical points in [0, c1] while orb%(%(k)− k) finds the
sequence of closest precritical points between the critical value c1 and the
postcritical point ck.

The following technical lemma on the behavior of %-orbits for arbitrary
kneading sequences establishes a combinatorial result which will imply that
the critical value is an endpoint of the Hubbard tree. The lemma can be
interpreted by saying that within the Hubbard tree, the arcs from c1 to the
critical point and to any other postcritical point ck intersect, so c1 is an
endpoint of the tree (2).

4.2. Lemma (Critical value is an endpoint (combinatorial version)). Let
ν ∈ Σ∗ be arbitrary. Then for each k ∈ N∗ such that %(k) − k < ∞, there
exists an i with %◦i(%(k)− k) ≤ %(k) such that %◦i(%(k)− k) ∈ orb%(1).

Proof. If ν is ∗-periodic, say of period N , then m := %(k) − k is either
infinite or at most N (depending on whether or not k is divisible by N).
In the finite case, N ∈ orb%(m) ∩ orb%(1) inevitably. Therefore we only
need to consider ν ∈ Σ. We argue by induction on m, using the induction
hypothesis IH[m]:

IH[m] For every ν ∈ Σ and corresponding %-function for which there
exists a k such that %(k)− k = m, the orbits orb%(1) and orb%(m)
intersect at the latest at %(k).

Remark. IH[m] does not imply that orb%(1) ∩ orb%(m) contains %(k),
not even if k is minimal such that %(k)− k = m. For example, if

ν = 1011001101101 . . .

with m = 6 and k = 7, then m ∈ orb%(1), but %(m) > k > m.
The induction hypothesis is trivially true for m = 1. So assume that

IH[m′] holds for all m′ < m. Take ν ∈ Σ arbitrary and k minimal such that
%(k) − k = m. If no such k exists, then IH[m] is true for this ν by default.
Let m0 ∈ orb%(m) be maximal such that m0 ≤ %(k); thus %(m0) > %(k). We
distinguish two cases:

(2) By the same token, the number of arms of c1 in the Julia set is the number of
disjoint %-orbits in N∗.
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Case I: m0 < %(k). If m0 ≤ k, then %(m0) > %(k) implies m0 < k and

ν1 . . . νk−m0+1 . . . ν%(k)−m0
= νm0+1 . . . νk+1 . . . ν%(k),

hence %(k −m0) − (k −m0) = %(k) − k = m, contradicting the minimality
of k. Therefore k < m0 < %(k). Since %(m0) > %(k) and

νk+1 . . . νm0+1 . . . ν%(k) = ν1 . . . νm0−k+1 . . . ν
′
m

(where ν ′m is the opposite symbol of νm), we have %(m0− k) = m. Consider
ν̃ := ν1 . . . νm0−1ν

′
m0
νm0+1 . . . (with arbitrary continuation) with associated

function %̃. Then %̃(k) = m0.

(i) If m0 = m, then the fact that %(m0−k) = m implies %̃(m0−k) > m0,
so %̃(k) /∈ orb%̃(m0 − k).

(ii) If m0 > m, then %̃(k) = m0 /∈ orb%̃(m), and %̃(m0−k) = %(m0−k) =
m < m0 again implies %̃(k) /∈ orb%̃(m0 − k).

So in both cases %̃(k) /∈ orb%̃(m0 − k). Now %̃(k) − k = m0 − k <
%(k) − k = m, so by the induction hypothesis IH[m0 − k], orb%̃(1) and
orb%̃(m0 − k) meet at or before %̃(k); since %̃(k) /∈ orb%̃(m0 − k), they meet
before %̃(k) = m0.

As a result, also orb%(1) and orb%(m0 − k) meet before m0 < %(k), and
since %(m0 − k) = m, it follows that orb%(1) and orb%(m) meet before %(k).

Case II: m0 = %(k). In this case %(k) ∈ orb%(m). Let n0 ∈ orb%(1) be
maximal such that n0 ≤ %(k), hence %(n0) > %(k). If n0 = %(k) then there
is nothing to prove, so assume that n0 < %(k) < %(n0). As in Case I (by
minimality of k), we only need to consider the case that k < n0 < %(k) <
%(n0). Since νk+1 . . . ν%(k) = ν1 . . . ν

′
m, we have %(n0 − k) = m (similarly to

the above). Set ν̃ := ν1 . . . ν
′
n0
. . . with associated function %̃. Then %̃(k) =

n0 < %(k) and, by IH[n0 − k], orb%̃(1) and orb%̃(n0 − k) meet at the latest
at %̃(k) = n0.

(i) If m < n0, then %̃(n0−k) = %(n0−k) = m, so orb%̃(1) and orb%̃(m)
meet at the latest at n0. But n0 /∈ orb%̃(1), so in fact orb%̃(1) and
orb%̃(m) meet before n0. But then orb%(1) and orb%(m) also meet
before n0 < %(k).

(ii) If m = n0, then orb%(1) and orb%(m) obviously meet at n0 < %(k).
(iii) The case m > n0 is impossible: We have %(k) − k = m > n0 > k,

so %(k) > 2k. Since %(n0) > %(k) = m + k > n0 + k, we find
that νk+1 . . . νn0+1 . . . ν%(k)−1 = ν1 . . . νn0−k+1 . . . ν%(k)−k−1, hence
%(n0 − k) ≥ %(k) − k > n0. For the sequence ν̃ this means
that %̃(n0 − k) = n0, while n0 /∈ orb%̃(1). Therefore orb%̃(1) and
orb%̃(n0 − k) do not meet at or before n0; since %̃(k)− k = n0 − k,
this contradicts IH[n0 − k].
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This completes Case II and proves that orb%(1) and orb%(m) intersect at
the latest at %(k), where k is be minimal with the property that %(k)−k = m.
For an arbitrary k with %(k)− k = m, let k′ be minimal with this property.
Then the two orbits meet at the latest at %(k′) = m + k′ ≤ m + k = %(k),
so the statement holds for arbitrary k. This proves IH[m].

To prove the lemma for ν ∈ Σ and arbitrary k, set m := %(k) − k.
Then orb%(m) and orb%(1) meet at the latest at %(k). This proves the first
statement.

Now for the second statement, assume that k′ is the largest multiple of k
less than %(k), so %(k′) = %(k). Since k failing the admissibility means that
k ∈ orb%(%(k′)− k′) but k /∈ orb%(1), the second statement is an immediate
consequence.

The following combinatorial lemma will be used to locate the images of
certain closest precritical points in Hubbard trees.

4.3. Lemma (Combinatorics of %-orbits). Let ν ∈ Σ (not containing
a ∗) and let m belong to the internal address of ν.

(1) If s is such that s < m < %(s), then orb%(%(m− s)− (m− s)) 3 m.
(2) If %(m) > 2m, then for every s ∈ {1, . . . ,m}, either m or 2m belongs

to orb%(s).
(3) If %(m) =∞, then m is the exact period of ν.

Proof. Let ν = ν1ν2 . . . be the kneading sequence. Using Lemma 4.2 we
prove two claims.

Claim 1. If k ≥ 1 and l ∈ orb%(k)∩orb%(1)\{k}, then l ∈ orb%(%(k)−k).

Assume by contradiction that l /∈ orb%(%(k) − k). Consider ν̃ = ν1 . . . νl
and let %̃ be the corresponding %-function. Note that %(k) = %̃(k) because
l ≥ %(k). We have l = max orb%̃(1), but l /∈ orb%̃(%(k)− k). This contradicts
Lemma 4.2.

Claim 2. If k < m < %(k) and m′ ∈ orb%(1) is such that %(m′) = m,
then m′ ∈ orb%(m− k).

Consider ν̃ = ν1 . . . νm′ . Then m′ = max orb%̃(1) and %̃(k) = m (this
follows directly from %(k) > m and %(m′) = m). Therefore Lemma 4.2
implies that m′ ∈ orb%̃(m− k), and Claim 2 is proved.

To prove (1), let m′ be as in Claim 2. We have m′ ∈ orb%(m− s). Hence
m = %(m′) ≥ %(m− s). By Claim 1, m ∈ orb%(%(m− s)− (m− s)).

Now we prove (2). If m ∈ orb%(s), there is nothing to prove. Hence we
may assume without loss of generality that s < m < %(s).
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Assume first that %(s) <∞. Assertion (1) implies %(m−s)−(m−s) ≤ m,
hence %(m− s) ≤ 2m− s < %(m)− s. If %(s) ≥ %(m), then

ν1 . . . νm−sνm−s+1 . . . ν%(m)−s−1 = νs+1 . . . νmνm+1 . . . ν%(m)−1

= νs+1 . . . νmν1 . . . ν%(m)−m−1,

hence %(m−s) ≥ %(m)−s, a contradiction. Hence %(m) > %(s) and, similarly
to the above,

νs+1 . . . νmν1 . . . ν%(s)−m = νs+1 . . . νmνm+1 . . . ν%(s)

= ν1 . . . νm−sνm−s+1 . . . ν
′
%(s)−s,

where ν ′j denotes the opposite symbol of νj . Therefore %(m− s) = %(s)− s.
Assertion (1) yields m ∈ orb%(%(m− s)− (m− s)) = orb%(%(s)−m). (Note
that this implies %(s) ≤ 2m.) Since ν = ν1 . . . νmν1 . . . νm . . . , we then have
2m ∈ orb%(%(s)) as claimed (we simply start m entries later).

If %(s) = ∞, we first change the entry νk for some k > 2m. Then still
%(m) > 2m and %(s) = k > 2m, and we can use the above argument.

For (3), consider ν̃ = ν1 . . . νmν1 . . . νmν
′
1 . . . with %-function %̃. Then

%̃(m) = 2m+ 1 > 2m. If s < m is the exact period of ν, then %(s) =∞ and
%̃(s) = 2m + 1. Hence both m and 2m /∈ orb%̃(s), contradicting the second
assertion.

The following lemma is rather trivial, but helpful to refer to in longer
arguments.

4.4. Lemma (Translation property of %). If %(m) > km for k ≥ 2, then
%(km) = %(m).

Proof. Let ν be a kneading sequence associated to %. Then %(m) > km
says that the first m entries in ν repeat at least k times, and %(m) finds the
first position where this pattern is broken. By definition, %(km) does the
same, omitting the first k periods.

4.5. Lemma (ν is always an endpoint). Fix a sequence ν ∈ Σ∗. If the
triod [σ◦k(ν), σ◦l(ν), ν] (with k, l ≥ 1) can be iterated infinitely often, then
the sequence ν will be chopped off eventually. If the stop case is reached , the
initial ∗ does not occur in the last sequence. Hence ν cannot be an interior
point of such a triod.

Proof. Suppose the triod can be iterated infinitely often but ν is never
chopped off. By the definition of the %-function, σ◦k(ν) differs from ν at
entry %(k), so one of the two is chopped off at Step %(k) − k. If the third
sequence is chopped off, then we are done, so we may assume that it is the
first sequence which is chopped off. Therefore,

ϕ◦(%(k)−k)([σ◦k(ν), σ◦l(ν), ν]) = [ν, ··, σ◦(%(k)−k)(ν)].
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(The second entry depends on whether or not σ◦l(ν) has been chopped off in
the meantime.) The next time that the first and third sequences differ is at
iterate %(%(k)− k), and again we may assume the first sequence is chopped
off, yielding

ϕ◦%(%(k)−k)([σ◦k(ν), σ◦l(ν), ν]) = [ν, ··, σ◦%(%(k)−k)(ν)],

and in general the first sequence is chopped off at steps in orb%(%(k)− k).
In a similar way, the second sequence is chopped off at iteration steps in

orb%(%(l)− l). By Lemma 4.2, there is an iteration step s ∈ orb%(%(k)− k)∩
orb%(%(l)− l). Take s minimal with this property. At this step, the first and
second sequences both differ from the third, so in this step the sequence ν
must be chopped off (or the stop case is reached, but this is excluded by
hypothesis). This settles the first claim.

For the second claim, the stop case can be reached only if ν is ∗-periodic,
say of period n. We can assume by Lemma 4.4 that 1 ≤ k < l < n. By
Lemma 4.2, orb%(%(k) − k) and orb%(%(l) − l) intersect orb%(1) at an entry
s ≤ max{%(k), %(l)}, and since ν is ∗-periodic, max{%(k), %(l)} ≤ n. The
above argument implies that ν is chopped off at some iterate s′ ≤ s. If
s′ = n, then %(k) = n or %(l) = n. If %(l) ≥ n, then the stop case is reached
after n − l iterates of ϕ, and the ∗ is in the second sequence. If %(k) ≥ n,
then the stop case is reached after n − k iterates of ϕ, and the ∗ is in
the first sequence. Finally, if s < n, then the triod after s iterates will be
ϕ◦s([σ◦k(ν), σ◦l(ν), ν]) = [σ◦k

′
(ν), σ◦l

′
(ν), ν] for some k′, l′ ≤ n, and we can

repeat the argument.

5. Existence of Hubbard trees. In this section we prove the exis-
tence of Hubbard trees for ∗-periodic and preperiodic kneading sequences.
Starting with the set {?ν, ν, σ(ν), . . .} we use the triod map to find the
branch points and therefore all marked points (represented by itineraries)
of the tree. Further triod arguments then determine how to connect marked
points by edges, and allow for verifying the properties of the dynamics on
the tree.

Fix a ∗-periodic or preperiodic sequence ν and set

S(ν) = {∗ν, ν, σ(ν), σ◦2(ν), . . . }.
Clearly, σ(S(ν)) ⊂ S(ν) and S(ν) ∩ {0ν, 1ν} = ∅.

In order to introduce the other marked points of the Hubbard tree, we
need to analyze the behavior of the triod map of Definition 3.2 in more
detail.

Branch points b(s, t, u). Fix a ∗-periodic or preperiodic ν. Take s, t, u ∈
S(ν) ∪ {0, 1}N∗ and consider the triod [s, t, u]. If each of these sequences
is chopped off infinitely often under iteration of ϕ, then [s, t, u] is called
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a branched triod, and it has a “branch point” called b(s, t, u), that is, the
sequence which is defined by majority vote of the three sequences in each
iteration step. More precisely, the nth entry of this sequence is defined by
majority vote among the first entries in ϕ◦(n−1)(s, t, u). Clearly, b(s, t, u) ∈
{0, 1}N∗ . If s, t, u are (pre)periodic, then b(s, t, u) is necessarily (pre)periodic
too. Moreover, b(s, t, u) differs from all sequences s, t, and u: otherwise, if say
b(s, t, u) = s, then because of the majority construction, the first sequence
in the triod [s, t, u] always coincides with at least one other sequence, so it
is never chopped off, contrary to our assumption.

Types of triods. Based on equation (1) in Definition 3.3, we can distin-
guish five types of triods:

(1) The triod can be iterated indefinitely so that all three sequences are
chopped off infinitely often (this implies all three sequences remain
distinct under iteration and the stop case is never reached); in this
case we call the triod branched. The sequence b(s, t, u) ∈ {0, 1}N∗

obtained by majority vote is the branch point of the triod.
(2) The triod can either be iterated indefinitely and precisely two se-

quences are chopped off infinitely often whereas the remaining se-
quence is never chopped off, or the iteration reaches the stop case
so that the sequence that lands on ∗ at the stop case has never been
chopped off before; in this case we call the triod flat. The sequence
which reaches the ∗ in the stop case or which is never chopped off
is called the middle point of the flat triod.

(3) Not all three sequences remain distinct during the iteration, i.e., two
or three sequences become identical at some iterate of ϕ; in this
case we say that ϕ has collapsing sequences. Note that collapsing
sequences means that one of these sequences must have been equal
to 0ν or 1ν the iterate before collapsing. Note also that if ϕ can
be iterated indefinitely, but only one sequence ever gets chopped off
infinitely often, then the remaining sequences must collapse.

(4) The iteration of ϕ reaches the stop case so that the ∗ is in a sequence
that had been chopped off before.

(5) The iteration of ϕ can be carried on forever without collapsing, and
some sequence is chopped off at least once, but not infinitely often.

For us, the most important cases are the first two because we will show in
Lemma 5.1 that (3)–(5) do not occur when s, t, u are distinct and forward
shifts of the kneading sequence ν.

Note that all five cases are mutually distinct and cover all possibilities: if
two or three sequences collapse, then the stop case cannot be reached and at
most one sequence can be chopped off infinitely often, and we are exactly in
case (3). Otherwise, there is no collapsing. If we can iterate forever without
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collapsing, then either some sequence is chopped off finitely many times and
we are exactly in case (5); or every sequence is chopped off either infinitely
many times or not at all, and the number of chopped sequences must be 2
or 3, so we are in cases (2) or (1). The last possibility is that the stop case
is reached; depending on whether the sequence landing on ∗ had or had not
been chopped off before, we are in case (4) or (2).

5.1. Lemma (If all three sequences are chopped off). Let ν ∈ Σ∗ be
∗-periodic or preperiodic. If [σ◦k(ν), σ◦l(ν), σ◦m(ν)] is such that each of the
three sequences is chopped off at least once, then each sequence is chopped
off infinitely often, and the triod can be iterated forever without reaching the
stop case.

Proof. First note that σ◦s(ν) 6= 0ν, 1ν for all s. Therefore the triod can
be iterated until the stop case is reached, if ever.

Suppose the first chopping off occurs after s iterations, and it is the third
sequence that is chopped off. The resulting triod is [σ◦(k+s)(ν), σ◦(l+s)(ν), ν].
By Lemma 4.5, the stop case is never reached with the ∗ at the third
position.

By assumption, there are iteration times when the first and second se-
quences are chopped off, and it follows similarly that the stop case can
never be reached with the ∗ at any position. The triod can thus be iter-
ated infinitely often. Lemma 4.5 again implies that the third sequence will
be chopped off, and repeating this argument, we see that indeed all three
sequences will be chopped off infinitely often.

The structure of triods in S(ν). Every triod in S(ν) is either flat or
branched: no triod can collapse, and it follows from Lemma 4.5 that every
sequence which gets chopped off once will never be the center of a flat triod
when the stop case is reached. Therefore if a triod cannot be iterated forever
then it reaches the stop case and is flat. If a triod can be iterated forever,
then at least two sequences get chopped off infinitely often, and if all three
sequences get chopped off at least once, then by Lemma 5.1 the triod is
branched.

5.2. Lemma (Branch points of branched triods). Fix a ∗-periodic or
preperiodic ν. Suppose that s, t, u ∈ S(ν)∪{0, 1}N∗ are such that [s, t, u] is a
branched triod ; set v := b(s, t, u). If σ◦k(w) /∈ {0ν, 1ν} for all w ∈ {s, t, u, v}
and all k ≥ 0, then [s, t, v], [s, u, v] and [t, u, v] are flat with v in the middle.

Proof. By assumption, the triod map can be iterated forever on [s, t, u].
If the iteration stops for [s, t, v] after finitely many steps, then either the
iteration reaches one of the sequences 0ν and 1ν (which is excluded by
hypothesis), or the stop case in (1) is reached; but since v ∈ {0, 1}N∗ is
constructed by majority vote among the sequences s, t, u, this can never
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occur. The majority vote also ensures that v can never be chopped off along
the iteration, so [s, t, v] is flat with v in the middle. The reasoning for the
other two sequences [s, u, v] and [t, u, v] is the same.

Marked points of the tree. Set

V := S(ν) ∪
⋃

[s,t,u]

{b(s, t, u)},

where the union runs over all branched triods [s, t, u] with endpoints in S(ν),
so their branch points b(s, t, u) are well-defined. The set V is σ-invariant
because S(ν) is and σ(b(s, t, u)) equals b(ϕ[s, t, u]).

The triod map can be iterated. Observe that triods with endpoints in V
can be branched or flat (types (1) and (2)). In order for ϕ to be well-defined,
we need to ensure that types (3)–(5) do not occur. In addition, we want to
know that for s, t, u ∈ V , the triod map can only result in elements of V .
This is the contents of the following lemma.

5.3. Lemma (V is closed under taking triods). For each triple of differ-
ent sequences s, t, u ∈ V , b(s, t, v) ∈ V . In particular , no triod [s, t, u] is of
type (3)–(5).

Proof. Take s, t, u ∈ V arbitrary but distinct. Let us first show that
V ∩ {0ν, 1ν} = ∅, so [s, t, u] is not of type (3). To see this, suppose that
0ν ∈ V (the case 1ν ∈ V is analogous). Since 0ν /∈ S(ν), this implies that
0ν = b(s, t, u) for a branched triod [s, t, u] with s, t, u ∈ S(ν). We may
suppose that s1 = t1 = 0 and u1 ∈ {0, ∗, 1}. If u1 = 0, then ϕ[s, t, u] =
[σ(s), σ(t), σ(u)] is a triod with endpoints in S(ν) and σ(b(s, t, u)) = ν in the
middle. This contradicts ν being an endpoint (Lemma 4.5). Ifu1 ∈ {∗, 1}, then
ϕ[s, t, u] = [σ(s), σ(t), ν] is a triod with middle point ν. This contradicts ν
being an endpoint (Lemma 4.5) once more. As a result, every triod in V can be
iterated forever without sequences collapsing, unless the stop case is reached.

The next step is to find s′, t′, u′ ∈ S(ν) such that b(s′, t′, u′) = b(s, t, u),
showing that b(s, t, u) ∈ V . As s, t, u are taken distinct, at least two of them
are chopped off under iteration of ϕ. Assume that s is chopped off first and
t second. If s ∈ S(ν), then put s′ = s; otherwise, s = b(s1, s2, s3) for some
s1, s2, s3 ∈ S(ν). We iterate the ϕ-map on [s, t, u], and keep track of what
happens to [s1, s2, s3].

• As long as [s, t, u] has unanimous vote (i.e., s1 = t1 = u1), we refrain
from making a selection from s1, s2, s3 and take ϕ[s1, s2, s3] for the
next iterate.
• If s has minority vote (i.e., s1 6= t1 = u1), then select s′ = sk for

any k = 1, 2, 3 such that sk shares vote with s. We have ϕ[s, t, u] =
ϕ[s′, t, u].
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We iterate this algorithm until s has reached minority vote, which by the
choice of s must happen eventually. It follows that b(s, t, u) = b(s′, t, u).

Now we repeat the argument with [s′, t, u]. If t ∈ S(ν) then let t′ = t;
otherwise t = b(t1, t2, t3) for some t1, t2, t3 ∈ S(ν).

• As long as [s′, t, u] has unanimous vote, we refrain from making a
selection among t1, t2, t3 and take ϕ[t1, t2, t3] for the next iterate.
• If t has two-to-one majority vote (i.e., s′i 6= ti = ui), disqualify the tk (if

any) with tki = s′i from being selected. As both tk and s′will be replaced
by ν by the action of ϕ, it follows that tk and s′ will take the same
vote ever after, so no other tk

′
can later share minority vote with s′.

• If t has minority vote eventually, then select t′ = tk
′

for an undis-
qualified k′ ∈ {1, 2, 3} such that t and tk

′
share vote. We have

ϕ[s′, t′, u] = ϕ[s′, t, u].

We iterate this algorithm until t has reached minority vote, which by the
choice of t must happen eventually. It follows that b(s, t, u) = b(s′, t′, u).

Finally, we turn to u. If u ∈ S(ν) then take u′ = u. Otherwise u =
b(u1, u2, u3) for some u1, u2, u3 ∈ S(ν). If u is never chopped off, then
[s′, t′, u] is flat with u in the middle, and no new branch point is created. If
u is chopped off eventually, then we follow an algorithm as before.

• As long as [s′, t′, u] has unanimous vote we refrain from making a
selection among u1, u2, u3 and take ϕ[u1, u2, u3] for the next iterate.
• If s′ has minority vote, disqualify the uk (if any) voting with s′ from

being selected. As both uk and s′ will be replaced by ν by the action
of ϕ, it follows that uk and s′ will take the same vote ever after, so
no other uk

′
can later share minority vote with s′.

• If t′ has minority vote, disqualify the uk
′

(if any) voting with t′ from
being selected. Note that k 6= k′ because uk shares vote with s′. As
both uk

′
and t′ will be replaced by ν by the action of ϕ, it follows

that tk
′

and t′ will take the same vote ever after.
• If u has minority vote eventually, let u′ be the remaining undisqual-

ified uk
′′

which shares vote with u.

In this way we obtain s′, t′, u′ ∈ S(ν) such that b(s, t, u) = b(s′, t′, u′).
Since [s, t, u] behaves as [s′, t′, u′] under ϕ and whenever s, t or u is

chopped off, this sequence is replaced by ν just as s′, t′ or u′ is replaced by ν,
it follows from Lemma 5.1 that if all three sequences s, t, u are chopped off
once, they will be chopped off infinitely often. If one sequence, say s, is never
chopped off, and another sequence, say t, is chopped off a finite number of
times only, some iterate ϕ◦k[s, t, u] takes the form [σ◦k, ν, ũ] for some ũ ∈ V .
In this triod, σ◦k and ν are never chopped off, so they are equal. But this
contradicts 0ν, 1ν /∈ V . This proves that [s, t, u] is not of type (5).
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Finally, to prove that [s, t, u] is not of type (4), assume by contradiction
that the first sequence is chopped off, and later on reaches the stop case
with the ∗ in that sequence. Since [s′, t′, u′] has the same behavior under ϕ,
it would reach the stop case with the ∗ in the first sequence as well. This
contradicts Lemma 4.5.

Marked points along arcs. For sequences s, t ∈ V , set

E(s, t) := {u ∈ V : the triod [s, t, u] is flat with u in the middle} ∪ {s, t}.

We call s and t adjacent if E(s, t) = {s, t}. If u, u′ ∈ E(s, t)\{s} are different
sequences, then at least one of u and u′ must be chopped off from the triod
[s, u, u′] under iteration of ϕ. We write u � u′ if u′ is chopped off, and u′ � u
otherwise. If [s, u, u′] reaches the stop case with u in the middle, then we
write u � u′ as well. (It follows from Lemma 5.5(1) below that the sequence
u or u′ which is not chopped off is indeed the middle point of the flat triod
[s, u, u′].) By convention we take s � u for all u ∈ E(s, t) \ {s}.

5.4. Lemma (� is transitive and linear). The order � is transitive and
linear on E(s, t).

Proof. For unity of exposition, we will say that u is chopped off from
[s, u, u′] by ϕ also if [s, t, u] reaches the stop case with another sequence
than u in the middle. As, in this proof, we will not iterate ϕ further once the
order of sequences in [s, t, u] has been established, this abuse of terminology
is inconsequential.

Suppose that u, u′, u′′ ∈ E(s, t) \ {s} with u � u′ and u′ � u′′, say
u′′ is chopped off from [s, u′, u′′] at iterate l and u′ is chopped off from
[s, u, u′] at iterate k. Iterate ϕ on the triod [s, u, u′′]; as long as the second or
third sequence is not chopped off from [s, u, u′′], the chopping off of the first
sequence happens at exactly the same times as for [s, u, u′] and [s, u′, u′′].
So let us wait until one of u and u′′ is chopped off. Assume by contradiction
that u is chopped off first; by the choice of k, this can only happen at an
iterate ≥ k. Since ui = u′i for i < k, our assumption implies that also
u′i = u′′i . By definition of k, the first entries of the first and second sequence
of ϕ◦k([s, u, u′]) agree, but the first entry of the third sequence (namely u′k)
is different. Since u′ is the middle point of [s, u′, u′′], we have u′k = u′′k. But
this means that u′′ is chopped off from [s, u, u′′] at this iterate, and we have
a contradiction.

This shows that u � u′′; hence the order � is indeed transitive. Hence the
set E(s, t) is linearly ordered by �, with maximal sequence s and minimal
sequence t.

Note that E(t, s) is the same set of marked points, but the ordering goes
in the other direction.
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5.5. Lemma (Properties of �).

(1) If u, u′ ∈ E(s, t) are such that s � u � u′, then [s, u, u′] is a flat triod
with u as middle point.

(2) If s, t, u, v are such that u ∈ E(s, v) and t ∈ E(s, u), then t ∈ E(s, v)
and t � u in the E(s, v)-order.

(3) If s, t, u are different sequences in V and E(s, u) and E(t, u) intersect
only in u, then u is the middle point of the flat triod [s, t, u].

(4) For all v ∈ V , there exists s ∈ S(ν) such that v ∈ E(s, ∗ν).

Proof. In this proof, we will iterate triods [u, u′, u′′] with sequences in
V \S(ν). We have seen in Lemma 5.3 that such a triod is not of type (3)–(5).
We always have u, u′, u′′ ∈ E(s, t) for some s, t ∈ S(ν), say u � u′ � u′′ in
the E(s, t)-order. Therefore iterating ϕ on [u, u′, u′′] mimics iterating ϕ on
[s, u′, t], and once u and u′′ are chopped off, the two triods become identical.
Therefore [u, u′, u′′] is flat.

(1) Let k be the first iterate that u′ is chopped off from [s, u, u′]. At this
iterate, ϕ◦k([s, u, u′]) = ϕ◦k([s, u, t]), and because u is the middle point of
[s, u, t], u will never be chopped off, neither from [s, u, t] nor from [s, u, u′].

(2) Let l be the first time that u is chopped off from the triod [s, t, u].
The most work goes in proving that t ∈ E(s, v). Suppose by contradiction
that at some iterate k, the second sequence of [s, t, v] is chopped off under
iteration of ϕ. There are three cases:

• k > l. Then ϕ◦l([s, t, u]) = ϕ◦l([s, t, v]), and since t is the middle
point of [s, t, u], it will not be chopped off at all.
• k = l. Then the first and second sequences of ϕ◦k−1([s, t, u])

start with the same symbol, the first and second sequences of
ϕ◦k−1([s, t, v]) start with different symbols. Yet for both triods, these
first symbols are the same, so we have a contradiction.
• k < l. Then the first and third sequences of ϕ◦k−1([s, t, v]) start

with the same symbol, but the first symbol of the second sequence is
different. Also, the first symbols of the second and third sequences
of ϕ◦k−1([s, t, u]) are the same. This implies that the first symbols
of the first and third sequences of ϕ◦k−1([s, u, v]) agree, but disagree
from the first symbol of the second sequence. But this implies that
u is chopped off from [s, u, v], contradicting our assumption.

This shows that t is never chopped off from [s, t, v], hence t ∈ E(s, v). Since
t is the middle point of [s, t, u], u will be chopped off before t is, so t � u in
the E(s, v)-order.

(3) We iterate the triod [s, t, u]. If the triod is branched, then by Lem-
ma 5.2, the branch point v = b(s, t, u) belongs to E(s, u)∩E(t, u). If [s, t, u] is
flat, with s in the middle, then s ∈ E(s, u)∩E(t, u). If [s, t, u] is flat, with t in
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the middle, then t ∈ E(s, u)∩E(t, u). So in all three cases, E(s, u)∩E(t, u)
contains more than one point. The remaining possibility is that u is the
middle point of [s, t, u].

(4) This is trivial if v ∈ S(ν), so assume that v = b(s, t, u) ∈ V \ S(ν)
for some s, t, u ∈ S(ν). By Lemma 5.2, v ∈ E(s, t) ∩ E(t, u) ∩ E(u, s). If
∗ν equals one of s, t, u, any other sequence of s, t, u satisfies the assertion.
So we can assume that s, t, u have a common first entry. If t ∈ E(s, ∗ν),
then by (2) applied to the quadruple s, v, t, ∗ν, also v ∈ E(s, ∗ν) and we are
done. Similarly, if s ∈ E(t, ∗ν), then v ∈ E(t, ∗ν) and again we are done.
The remaining case is that [s, t, ∗ν] is a branched triod, say v′ = b(s, t, ∗ν).
If v = v′, then we are done again. If v � v′ in the E(s, t)-order, then
v ∈ E(s, ∗ν) by (2) applied to the quadruple s, v, v′, ∗ν. Similarly, if v′ � v,
then v ∈ E(t, ∗ν). This proves (4).

Edges of the tree. For any s ∈ V , let E(∗ν, s) =: {s0, s1, . . . , sk−1, sk}
be as above, in decreasing E(∗ν, s)-order, with s0 = ∗ν and sk = s. Then
attach edges [si, si+1] to the tree, for i = 0, 1, . . . , k − 1. Take the union of
such edges for all s ∈ V , omitting repetitions (so that every pair of marked
points in V is joined by at most one edge).

5.6. Proposition (The union of edges is a tree). The union T of edges
is a tree, and every endpoint of T belongs to S(ν).

Proof. Since V is finite, T is finite. By construction, each s ∈ S(ν) is
connected to ∗ν, and hence T connects all s ∈ S(ν). If v ∈ V \S(ν), then by
Lemma 5.5(4), v ∈ E(s, ∗ν) for some s ∈ S(ν). Therefore T is connected.

Let us prove that T contains no loops. Since we constructed T by at-
taching strings of edges E(∗ν, s), T can only have a loop if the following
occurs:

There are s, s′ ∈ S(ν) such that t ∈ E(∗ν, s) ∩ E(∗ν, s′), but there is
u ∈ E(∗ν, s) \ E(∗ν, s′) such that ∗ν � u � t in the E(∗ν, s)-order.

We show that the above cannot happen. Indeed, by Lemma 5.5(1), u is the
middle point in the flat triod [∗ν, u, t]. Therefore u ∈ E(∗ν, t). Next apply
Lemma 5.5(2) to the quadruple ∗ν, u, t, s′ to conclude that u ∈ E(∗ν, s′);
but this contradicts u ∈ E(∗ν, s) \ E(∗ν, s′). Hence T contains no loop.

Finally, each v ∈ V \ S(ν) is obtained as a branch point of a branched
triod, and therefore cannot be an endpoint. Hence all the endpoints of T
belong to S(ν).

5.7. Lemma (Components of the tree). There are at most two edges
in T with ∗ν as endpoint , and T \ {∗ν} consists of at most two trees: the
sequences starting with 0 form one tree, and the sequences starting with 1
form the other.
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Proof. If ∗ν has the endpoint of at least three edges, then there are
s, t, u ∈ S(ν) such that E(∗ν, s), E(∗ν, t) and E(∗ν, u) are pairwise disjoint,
except for the common endpoint ∗ν. At least two, say s and t, share the
first symbol. Therefore ϕ[s, t, u] = [σ(s), σ(t), σ(u)] or [σ(s), σ(t), ν]. Fur-
thermore, σ(E(∗ν, s)) = E(ν, σ(s)) is disjoint from σ(E(∗ν, t)) = E(ν, σ(t)),
except for the common endpoint ν. Lemma 5.5(4) states that ν is the middle
point of [σ(s), σ(t), ν], but this contradicts Lemma 4.5. Therefore ∗ν has at
most two arms, and T \ {∗ν} consists of at most two components, each of
which is connected and contains no loops.

For the last statement, recall that E(∗ν, s)\{∗ν, s} contains all sequences
in v ∈ V that are the middle point of a flat triod [∗ν, v, s]. Applying ϕ
to it does not result in the stop case, so s and v share the first symbol.
Therefore the components of T \ {∗ν} are

⋃
s∈S(ν), s1=0E(∗ν, s} \ {∗ν} and⋃

s∈S(ν), s1=1E(∗ν, s} \ {∗ν}, and all the sequences in one component have
the same first symbol.

Dynamics of the tree. In order to define a map f : T → T , set f(s) :=
σ(s) for s ∈ V . For any edge [s, t] between marked points s, t ∈ V , define
the map f |[s,t] : [s, t] → [f(s), f(t)] ⊂ T to be an orientation preserving
homeomorphism. Since T is a tree, the map f |[s,t] is unique up to homotopy.

5.8. Lemma (Dynamics locally injective). For every connected subtree
T ′ ⊂ T such that ∗ν does not disconnect T ′, the restriction of f to T ′ is
injective.

Proof. Since T and T ′ are connected trees, the fact that f(x) = f(y)
for x, y ∈ T ′ would imply that f was not locally injective at every point in
[x, y] ⊂ T ′. It therefore suffices to prove that f is locally injective for every
x ∈ T ′ \ {∗ν}.

By construction, f is locally injective at every interior point of every
edge. It thus suffices to show that f is locally injective at every marked
point s 6= ∗ν. If this were not the case, then there would be marked points
t, u ∈ T ′ such that [s, t] and [s, u] were disjoint except for the common
endpoint s, while [f(s), f(t)] and [f(s), f(u)] had more points in common
than f(s). But Lemma 5.5(3) implies that the triod [s, t, u] is flat with s in
the middle, and [f(s), f(t), f(u)] = ϕ[s, t, u] is flat with f(s) in the middle,
so f(s) ∈ [f(t), f(u)]. This is a contradiction.

We are now ready to prove our main theorem.

Proof of Theorem 2.5. We start with the existence proof. Set c0 := ∗ν
(the critical point) and ck := σ◦k(∗ν) (the critical orbit). Construct a tree
T with dynamics as in Proposition 5.6. We check the six properties of a
Hubbard tree:
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(1) The map f is clearly continuous on T , and it is surjective on S(ν) \
{∗ν}. If ν = 1k∗ for some k, then f permutes (and hence is surjective on)
S(ν), whereas if ν = 1k0 . . . , then ∗ν is obviously the middle point of the
triod (ν, ∗ν, σ◦k(ν)), and hence not an endpoint. By Proposition 5.6, this
means that f is surjective on the set of endpoints of T , hence surjective
onto all of T .

(2) In T \ {c0}, any two marked points whose itineraries start with the
same entry are in the same connected component by construction of T .
Therefore, T \ {c0} consists of at most two connected components, and f is
injective on each of them by Lemma 5.8. Therefore, each point in T has at
most two preimages.

(3) It follows from Lemma 5.8 that f is locally injective at every s ∈
T \ {c0}. It is continuous by definition, hence a local homeomorphism ev-
erywhere except at the critical point.

(4) It has been shown in Proposition 5.6 that every endpoint of T is in
S(ν), i.e., on the critical orbit.

(5) The critical point is obviously periodic or preperiodic because ν is.
Before proving the last condition, it is worth while to interpret the se-

quences in V as itineraries. By Lemma 5.7, T \ {c0} consists of at most two
connected components such that two sequences s, t ∈ V \ {∗ν} are in the
same component if and only if their initial entries coincide. Therefore, every
marked point s ∈ V (which is a sequence in {0, 1, ∗}) encodes the itinerary
of its own dynamics with respect to the usual partition of T induced by
removing ∗ν.

(6) Expansivity is now trivial: marked points are in V , and these are
distinguished by their itineraries. If the itineraries of s and t first differ in
the kth position, then the arc [f◦k(s), f◦k(t)] contains the critical point ∗ν.

Uniqueness has already been proved in Proposition 3.5.

Proof of Corollary 2.6. The uniqueness is proven in Corollary 3.6. For
the existence, we start by building the Hubbard tree (T, f) for ν, and then
add points from V̂ and arcs where necessary in an inductive procedure. We
describe this procedure in detail, using points on the tree and their symbolic
itinerary interchangeably.

For w ∈ V̂ , we iterate the triod map ϕ on [w, s, t] for all marked points
s, t ∈ V , to decide how to attach w to the tree. Recall that marked points
s, t ∈ V are adjacent if the arc E(s, t) = {s, t}. There are three possibilities:

(a) There are adjacent s, t ∈ T such that [w, s, t] is flat with w in the
middle. Put w as a new marked point on the arc [s, t].

(b) We can find s ∈ V such that for all t ∈ V adjacent to s, the triod
[w, s, t] is flat with s in the middle. In this case, attach an arc [w, s]



Existence of quadratic Hubbard trees 277

to s. (The points w and s are adjacent, as long as we do not have to
add new marked points on the open arc (w, s) later in the process.)

(c) If neither (a) nor (b) holds, then there is at least one pair of adjacent
marked points s, t ∈ V such that [w, s, t] is a branched triod. Let
b := b(w, s, t). Note that Lemma 4.5 is no longer true for V ∪ V̂ , and
it can indeed happen that b = b1b2 . . . bk0ν or b1b2 . . . bk1ν for some
(possibly empty) word b1b2 . . . bk ∈ {0, 1}k. In this case, recode b to
b1b2 . . . bk∗ν and attach an arc [w, b1b2 . . . bk∗ν] to b1b2 . . . bk∗ν. Put
b on the arc [s, t] and attach an arc [w, b] to b. (The points w and b
are adjacent, as long as we do not have to add a new marked point
on the open arc (w, b) later in the process.)

Choose the next w′ ∈ V̂ and repeat the whole process with the tree with
dynamics and marked points created so far. After all of V̂ is treated, we
check that the resulting graph is indeed a proper extended Hubbard tree.

(i) (T̂ , f̂) is closed under taking triods, i.e., for any choice of marked
points s, t, u ∈ T̂ , the branch point b(s, t, u) already exists in T̂ . This is
the same proof as in Lemma 5.3, but without the burden to verify that
the sequences 0ν and 1ν do not appear among the marked points. This is
because in the construction of extended Hubbard trees, we replace 0ν and
1ν with ∗ν as under case (c) above. Note also that if b = b(s, t, u) for some
s, t, u ∈ V ∪ V̂ , then σ(b) = b(ϕ[s, t, u]), and the three sequences of ϕ[s, t, u]
belong to V ∪ V̂ as well. Therefore the set of marked points is σ-invariant.

(ii) T̂ has no loops. This is immediate because T has no loops, and only
arcs are attached to T in the process of creating T̂ . As each of these attached
arcs has a point in V̂ as endpoint, each endpoint of T̂ belongs to V ∪ V̂ .

(iii) We define the dynamics of f̂ on the (σ-invariant set of) marked
points by σ. This shows that f̂ is at most two-to-one on the marked points,
and (since 0ν, 1ν and ∗ν are identified in case (c)) also that f̂ is expansive.
An arc [s, t] between two adjacent marked points will be mapped homeomor-
phically onto the arc [σ(s), σ(t)], precisely as explained above Lemma 5.8.
Lemma 5.8 itself then shows that f̂ is locally injective, and in fact that every
point in T̂ has at most two preimages. This verifies all the conditions of an
extended Hubbard tree.

Remark. Note that if ν is ∗-periodic, then c0 can get any number of
arms. For example, if ν = 10∗, then T = [c1, c2] is an arc and when V̂ =
{σ◦i(w) : i ≥ 0} for

w = 110110110 . . . 110︸ ︷︷ ︸
110 repeated n times

0∗ν,

then in the extended tree (T̂ , f̂), the critical point c0 has n + 2 arms and
c1 and c2 both have n+ 1 arms; see Figure 3.
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Fig. 3. The extended Hubbard tree for ν = 10∗ and bV = {σ◦i(w) : i ≥ 0} with w =
(110)n0∗ν for n = 5. The Hubbard tree is in bold lines.
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