On divisibility in definable groups

by

Margarita Otero (Madrid)

Abstract. Let \mathcal{M} be an o-minimal expansion of a real closed field. It is known that a definably connected abelian group is divisible. We show that a definably compact definably connected group is divisible.

Let \mathcal{M} be an o-minimal expansion of a real closed field. A group is said to be *definable* if both the set and the graph of the group operation are definable in \mathcal{M} . By results of Pillay in [10], a definable group can be equipped with a definable manifold topology making the group a topological group. Since topological groups are regular spaces, we can suppose that the manifold topology is induced by that of the ambient space (see Theorem 10.1.8 in [6]). In that setting, a definably compact group is a closed and bounded definable group. A definable group is *definably connected* provided it has no definable subgroups of finite index. A definably connected group which is abelian is also divisible, by Strebonski's Theorem on the finiteness of torsion subgroups (see, e.g., the proof of Theorem 2.1 in [9]).

In this note, using the available literature on both definable groups and topological groups, we prove the following.

THEOREM 1. Let G be a definably compact definably connected definable group. Then G is divisible.

In proving divisibility of the groups we are concerned with, the continuous definable maps $p_k: G \to G: a \mapsto a^k$ for k > 0 will play an important role (in both the Abelian definable case and the classical topological case).

First, we consider the o-minimal cohomology with coefficients in \mathbb{Q} , as defined in Section 3 of [9]. Recall that if X is a definable set then $H^*(X; \mathbb{Q})$ is a finite-dimensional \mathbb{Q} -vector space such that $H^m(X; \mathbb{Q}) = 0$ for $m > \dim X$, and moreover $H^0(X; \mathbb{Q}) \cong \mathbb{Q}$ provided X is also definably connected. For an element $x \in H^m(X; \mathbb{Q})$, we say x has degree m and write deg x = m. In [9],

Key words and phrases: o-minimality, definable group, divisibility.

²⁰⁰⁰ Mathematics Subject Classification: Primary 03C64.

it is observed that $H^*(X; \mathbb{Q}) \cong \operatorname{Hom}_{\mathbb{Z}}(H_*(X), \mathbb{Q})$, where $H_*(X)$ is the ominimal homology with coefficients in \mathbb{Z} . It will be more convenient for our purposes to take o-minimal homology with coefficients in \mathbb{Q} . In this case, we also get $H^*(X; \mathbb{Q}) \cong \operatorname{Hom}_{\mathbb{Q}}(H_*(X; \mathbb{Q}), \mathbb{Q})$, because $H^*(X; \mathbb{Q}) \cong H_*(X) \otimes \mathbb{Q}$ and $\operatorname{Hom}_{\mathbb{Q}}(H_*(X) \otimes \mathbb{Q}, \mathbb{Q}) \cong \operatorname{Hom}_{\mathbb{Z}}(H_*(X), \mathbb{Q})$.

Notice that $H^*(X; \mathbb{Q})$ is a \mathbb{Q} -algebra with product defined as follows: let $d: X \to X \times X : x \mapsto (x, x)$ be the diagonal map, identify $H^*(X \times X; \mathbb{Q})$ with $H^*(X; \mathbb{Q}) \otimes H^*(X; \mathbb{Q})$ via the o-minimal Künneth formula for cohomology, and let $x \cdot y := d^*(x \otimes y)$ (see [9] for details).

Moreover, we have the following result.

LEMMA 2. Let G be a nontrivial definably connected definably compact definable group. Then there is a unique integer r > 0 and elements y_1, \ldots, y_r in the o-minimal Q-cohomology algebra of G such that

- (i) deg y_i is odd (i = 1, ..., r),
- (ii) $H^*(G; \mathbb{Q})$ is freely generated, as a \mathbb{Q} -vector space, by $1 \ (\in H^0(G; \mathbb{Q}))$ and the monomials $y_{i(1)} \cdot \ldots \cdot y_{i(l)}$ with $1 \le i(1) < \cdots < i(l) \le r$.

Proof. By Corollary 3.6 in [9], there is a unique $r \ge 0$ and y_1, \ldots, y_r satisfying the requirements. Now, since G is definably connected, by Theorem 5.2 in [3], the top o-minimal homology group $H_n(G)$ is nontrivial, where $n = \dim G > 0$. Therefore, r > 0.

We write len x = l if x is a monomial of length l, i.e., $x = y_{i(1)} \cdots y_{i(l)}$ with $1 \leq i(1) < \cdots < i(l) \leq r$ (with the notation of the above lemma). In the following, we are going to consider the maps p_k , k > 0, mentioned above. The computations in [4], for such maps, apply to our o-minimal context and yield the following.

LEMMA 3. Let G be a definably connected definable group. For each k > 0, consider the definable continuous map $p_k \colon G \to G \colon a \mapsto a^k$ for $a \in G$. Then the map $p_k^* \colon H^*(G; \mathbb{Q}) \to H^*(G; \mathbb{Q})$ sends each monomial x to $k^{\operatorname{len} x} x$.

Proof. See Lemma 5.2 in [9]. \blacksquare

Let X be a definable set of dimension n and let $f: X \to X$ be a continuous definable map. The *Lefschetz number* of f is defined as follows:

$$L(f) = \sum_{m=0}^{n} (-1)^m \operatorname{trace}(f_* \colon H_m(X; \mathbb{Q}) \to H_m(X; \mathbb{Q})).$$

(See [5] for the semialgebraic case, and compare with the definition of the Lefschetz number as an intersection number in the o-minimal differentiable case given in [2].)

Note that the matrix of $f^* \colon H^m(X; \mathbb{Q}) \to H^m(X; \mathbb{Q})$ is the transpose of the matrix of $f_* \colon H_m(X; \mathbb{Q}) \to H_m(X; \mathbb{Q})$ $(f^* = \operatorname{Hom}_{\mathbb{Q}}(f_*))$. Hence, we also get $L(f) = \sum_{m=0}^n (-1)^m \operatorname{trace}(f^* \colon H^m(X; \mathbb{Q}) \to H^m(X; \mathbb{Q}))$.

The next step is to make use of the definable version of the Lefschetz fixed point theorem (see Theorem 1.1 in [8], and Proposition 2 in [5] for the semialgebraic case).

THEOREM 4. Let X be a closed and bounded definably connected set. If $f: X \to X$ is a continuous definable map and $L(f) \neq 0$, then f has a fixed point.

COROLLARY 5. Let G be a definably compact definable group. If $f: G \to G$ is a continuous definable map and $L(f) \neq 0$, then there is an element $b \in G$ such that f(b) = b.

Finally, we shall follow Brown [4] to compute $L(p_k)$ for each $k \ge 2$, and prove Theorem 1.

LEMMA 6. Let G be a definably connected definably compact definable group. Then, for each $k \ge 2$, $L(p_k) = (1-k)^r$, where r is as in Lemma 2.

Proof. Let $\{1, x_1, \ldots, x_s\}$ be a basis of the Q-vector space $H^*(G; \mathbb{Q})$, where the x_i 's are monomials. By Lemma 3, $p_k^*(x_i) = k^{\operatorname{len} x_i} x_i$ $(i = 1, \ldots, s)$ and $p_k^*(1) = 1$. Then the matrix of $p_k^* \colon H^m(G; \mathbb{Q}) \to H^m(G; \mathbb{Q})$ is either 0 (if $H^m(G; \mathbb{Q}) = 0$) or a diagonal matrix with entry $k^{\operatorname{len} x_i}$ corresponding to each x_i in $H^m(G; \mathbb{Q})$. Therefore, $L(p_k) = \sum_{i=1}^s (-1)^{\operatorname{deg} x_i} k^{\operatorname{len} x_i} + 1$. On the other hand, the x_i 's are monomials (products of the y_j 's of Lemma 2) and the y_j 's are of odd degree, so that deg $x_i \equiv \operatorname{len} x_i \pmod{2}$, and hence $L(p_k) = \sum_{i=1}^s (-1)^{\operatorname{len} x_i} k^{\operatorname{len} x_i} + 1$. Since there are $\binom{r}{l}$ monomials of length l, we get $L(p_k) = \sum_{l=1}^r \binom{r}{l} (-1)^l k^l + 1 = (1-k)^r$.

Proof of Theorem 1. Fix $a \in G$ and $k (\geq 2)$. We shall prove the existence of an element $b \in G$ such that $b^k = a$. Let $f: G \to G: c \mapsto c^{k+1}a^{-1}$ for $c \in G$. Since G is definably connected, there is a definable path $\gamma: [0, 1] \to G$ such that $\gamma(0) = a^{-1}$ and $\gamma(1) = e$, where e is the neutral element of G. Let

$$F: [0,1] \times G \to G: (t,c) \mapsto F(t,c): = c^{k+1}\gamma(t),$$

Clearly, F is a definable homotopy between the maps F(0, -) = f and $F(1, -) = p_{k+1}$. Hence, the induced cohomology morphisms f^* and $(p_{k+1})^*$ (both from $H^*(G; \mathbb{Q})$ to $H^*(G; \mathbb{Q})$)) coincide. Therefore, $L(f) = L(p_{k+1})$, and by Lemma 6, $L(p_{k+1}) = (-k)^r \neq 0$). By Corollary 5, there is an element b in G such that $b^{k+1}a^{-1} = b$, as required.

After this note was written, two alternative proofs of Theorem 1 have been given in [7] and [1], both papers making reference to a preprint version of this note. Acknowledgements. This research was partially supported by GEOR MTM2005-02568 and Grupos UCM 910444.

References

- A. Berarducci, Zero-groups and maximal tori, in: Logic Colloquium 2004, Lecture Notes in Logic 29, Cambridge Univ. Press, 2008, 33–46.
- [2] A. Berarducci and M. Otero, Intersection theory for o-minimal manifolds, Ann. Pure Appl. Logic 107 (2001), 87–119.
- [3] —, —, Transfer methods for o-minimal topology, J. Symbolic Logic 68 (2003), 785– 794.
- [4] R. Brown, The Lefschetz Fixed Point Theorem, Scott and Foresman, 1971.
- [5] G. Brumfiel, A Hopf fixed point theorem for semi-algebraic maps, in: Real Algebraic Geometry (Rennes, 1991), Lecture Notes in Math. 1524, Springer, 1992, 163–169.
- [6] L. van den Dries, *Tame Topology and o-Minimal Structures*, London Math. Soc. Lecture Note Ser. 248, Cambridge Univ. Press, 1998.
- [7] M. Edmundo, A remark on divisibility of definable groups, Math. Logic Quart. 51 (2005), 639–641.
- [8] —, A fixed point theorem in o-minimal structures, Ann. Inst. Fourier (Grenoble) 57 (2007), 1441–1450.
- [9] M. Edmundo and M. Otero, *Definably compact abelian groups*, J. Math. Logic 4 (2004), 163–180.
- [10] A. Pillay, On groups and fields definable in o-minimal structures, J. Pure Appl. Algebra 53 (1988), 239–255.

Departamento de Matemáticas Universidad Autónoma de Madrid 28049 Madrid, Spain E-mail: margarita.otero@uam.es

> Received 6 October 2008; in revised form 10 December 2008