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On divisibility in definable groups
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Abstract. LetM be an o-minimal expansion of a real closed field. It is known that a
definably connected abelian group is divisible. We show that a definably compact definably
connected group is divisible.

Let M be an o-minimal expansion of a real closed field. A group is
said to be definable if both the set and the graph of the group operation
are definable in M. By results of Pillay in [10], a definable group can be
equipped with a definable manifold topology making the group a topological
group. Since topological groups are regular spaces, we can suppose that the
manifold topology is induced by that of the ambient space (see Theorem
10.1.8 in [6]). In that setting, a definably compact group is a closed and
bounded definable group. A definable group is definably connected provided
it has no definable subgroups of finite index. A definably connected group
which is abelian is also divisible, by Strebonski’s Theorem on the finiteness
of torsion subgroups (see, e.g., the proof of Theorem 2.1 in [9]).

In this note, using the available literature on both definable groups and
topological groups, we prove the following.

Theorem 1. Let G be a definably compact definably connected definable
group. Then G is divisible.

In proving divisibility of the groups we are concerned with, the contin-
uous definable maps pk : G → G : a 7→ ak for k > 0 will play an important
role (in both the Abelian definable case and the classical topological case).

First, we consider the o-minimal cohomology with coefficients in Q, as
defined in Section 3 of [9]. Recall that if X is a definable set then H∗(X; Q) is
a finite-dimensional Q-vector space such that Hm(X; Q) = 0 for m > dimX,
and moreover H0(X; Q) ∼= Q provided X is also definably connected. For an
element x ∈ Hm(X; Q), we say x has degree m and write deg x = m. In [9],
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it is observed that H∗(X; Q) ∼= HomZ(H∗(X),Q), where H∗(X) is the o-
minimal homology with coefficients in Z. It will be more convenient for our
purposes to take o-minimal homology with coefficients in Q. In this case, we
also get H∗(X; Q) ∼= HomQ(H∗(X; Q),Q), because H∗(X; Q) ∼= H∗(X)⊗Q
and HomQ(H∗(X)⊗Q,Q) ∼= HomZ(H∗(X),Q).

Notice that H∗(X; Q) is a Q-algebra with product defined as follows: let
d : X → X × X : x 7→ (x, x) be the diagonal map, identify H∗(X ×X; Q)
with H∗(X; Q) ⊗ H∗(X; Q) via the o-minimal Künneth formula for coho-
mology, and let x · y := d∗(x⊗ y) (see [9] for details).

Moreover, we have the following result.

Lemma 2. Let G be a nontrivial definably connected definably compact
definable group. Then there is a unique integer r > 0 and elements y1, . . . , yr

in the o-minimal Q-cohomology algebra of G such that

(i) deg yi is odd (i = 1, . . . , r),
(ii) H∗(G; Q) is freely generated , as a Q-vector space, by 1 (∈ H0(G; Q))

and the monomials yi(1) · . . . · yi(l) with 1 ≤ i(1) < · · · < i(l) ≤ r.

Proof. By Corollary 3.6 in [9], there is a unique r ≥ 0 and y1, . . . , yr sat-
isfying the requirements. Now, since G is definably connected, by Theorem
5.2 in [3], the top o-minimal homology group Hn(G) is nontrivial, where
n = dimG > 0. Therefore, r > 0.

We write lenx = l if x is a monomial of length l, i.e., x = yi(1) · . . . · yi(l)

with 1 ≤ i(1) < · · · < i(l) ≤ r (with the notation of the above lemma). In
the following, we are going to consider the maps pk, k > 0, mentioned above.
The computations in [4], for such maps, apply to our o-minimal context and
yield the following.

Lemma 3. Let G be a definably connected definable group. For each
k > 0, consider the definable continuous map pk : G → G : a 7→ ak for
a ∈ G. Then the map p∗k : H∗(G; Q)→ H∗(G; Q) sends each monomial x to
klen xx.

Proof. See Lemma 5.2 in [9].

Let X be a definable set of dimension n and let f : X → X be a contin-
uous definable map. The Lefschetz number of f is defined as follows:

L(f) =
n∑

m=0

(−1)m trace(f∗ : Hm(X; Q)→ Hm(X; Q)).

(See [5] for the semialgebraic case, and compare with the definition of the
Lefschetz number as an intersection number in the o-minimal differentiable
case given in [2].)
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Note that the matrix of f∗ : Hm(X; Q)→ Hm(X; Q) is the transpose of
the matrix of f∗ : Hm(X; Q)→ Hm(X; Q) (f∗ = HomQ(f∗)). Hence, we also
get L(f) =

∑n
m=0(−1)m trace(f∗ : Hm(X; Q)→ Hm(X; Q)).

The next step is to make use of the definable version of the Lefschetz
fixed point theorem (see Theorem 1.1 in [8], and Proposition 2 in [5] for the
semialgebraic case).

Theorem 4. Let X be a closed and bounded definably connected set. If
f : X → X is a continuous definable map and L(f) 6= 0, then f has a fixed
point.

Corollary 5. Let G be a definably compact definable group. If f :
G → G is a continuous definable map and L(f) 6= 0, then there is an
element b ∈ G such that f(b) = b.

Finally, we shall follow Brown [4] to compute L(pk) for each k ≥ 2, and
prove Theorem 1.

Lemma 6. Let G be a definably connected definably compact definable
group. Then, for each k ≥ 2, L(pk) = (1− k)r, where r is as in Lemma 2.

Proof. Let {1, x1, . . . , xs} be a basis of the Q-vector space H∗(G; Q),
where the xi’s are monomials. By Lemma 3, p∗k(xi) = klen xixi (i = 1, . . . , s)
and p∗k(1) = 1. Then the matrix of p∗k : Hm(G; Q) → Hm(G; Q) is either
0 (if Hm(G; Q) = 0) or a diagonal matrix with entry klen xi corresponding
to each xi in Hm(G; Q). Therefore, L(pk) =

∑s
i=1(−1)deg xiklen xi + 1. On

the other hand, the xi’s are monomials (products of the yj ’s of Lemma 2)
and the yj ’s are of odd degree, so that deg xi ≡ lenxi (mod 2), and hence
L(pk) =

∑s
i=1(−1)len xiklen xi + 1. Since there are

(
r
l

)
monomials of length l,

we get L(pk) =
∑r

l=1

(
r
l

)
(−1)lkl + 1 = (1− k)r.

Proof of Theorem 1. Fix a ∈ G and k (≥ 2). We shall prove the existence
of an element b ∈ G such that bk = a. Let f : G → G : c 7→ ck+1a−1 for
c ∈ G. Since G is definably connected, there is a definable path γ : [0, 1]→ G
such that γ(0) = a−1 and γ(1) = e, where e is the neutral element of G. Let

F : [0, 1]×G→ G : (t, c) 7→ F (t, c) : = ck+1γ(t).

Clearly, F is a definable homotopy between the maps F (0,−) = f and
F (1,−) = pk+1. Hence, the induced cohomology morphisms f∗ and (pk+1)∗

(both from H∗(G; Q) to H∗(G; Q))) coincide. Therefore, L(f) = L(pk+1),
and by Lemma 6, L(pk+1) = (−k)r (6= 0). By Corollary 5, there is an element
b in G such that bk+1a−1 = b, as required.

After this note was written, two alternative proofs of Theorem 1 have
been given in [7] and [1], both papers making reference to a preprint version
of this note.
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