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Metric spaces admitting only trivial weak contractions
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Richárd Balka (Budapest)

Abstract. If (X, d) is a metric space then a map f : X → X is defined to be a weak
contraction if d(f(x), f(y)) < d(x, y) for all x, y ∈ X, x 6= y. We determine the simplest
non-closed sets X ⊆ Rn in the sense of descriptive set-theoretic complexity such that every
weak contraction f : X → X is constant. In order to do so, we prove that there exists a
non-closed Fσ set F ⊆ R such that every weak contraction f : F → F is constant. Similarly,
there exists a non-closed Gδ set G ⊆ R such that every weak contraction f : G → G is
constant. These answer questions of M. Elekes.

We use measure-theoretic methods, first of all the concept of generalized Hausdorff
measure.

1. Introduction. We use the following descriptive set-theoretical nota-
tion.

Notation 1.1. The classes of open, closed, Fσ, and Gδ sets are denoted
by Σ0

1, Π0
1, Σ0

2, and Π0
2, respectively. The simultaneously Fσ and Gδ sets are

denoted by ∆0
2.

M. Elekes [E] introduced the definition below.

Definition 1.2. We say that the metric space X has the Banach Fixed
Point Property (BFPP) if every contraction f : X → X has a fixed point.

The Banach Fixed Point Theorem implies that every complete metric
space has the BFPP. E. Behrends [Be] pointed out that the converse impli-
cation does not hold. He presented the following example, which he referred
to as ‘folklore’.

Theorem 1.3. Let X = graph(sin(1/x)|(0,1]). Then X ⊆ R2 is a non-
closed simultaneously Fσ and Gδ set with the Banach Fixed Point Property.
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M. Elekes [E] described the simplest non-closed sets having the BFPP
in the sense of descriptive set-theoretic complexity. He proved the following
theorems.

Theorem 1.4 (M. Elekes). Every open subset of Rn with the Banach
Fixed Point Property is closed. Every simultaneously Fσ and Gδ subset of R
with the Banach Fixed Point Property is closed.

Theorem 1.5 (M. Elekes). There exist non-closed Fσ and non-closed
Gδ subsets of R with the Banach Fixed Point Property.

The above three theorems answer the question about the lowest possible
Borel classes of Rn having a non-closed element with the BFPP. In the
language of descriptive set theory, if n ≥ 2 then ∆0

2 is the best possible
class, since there are no Σ0

1 and Π0
1 examples. If n = 1 then Σ0

2 and Π0
2 are

possible, but ∆0
2 is not.

Note that if every weak contraction f : X → X is constant then X has
the BFPP. There are infinite complete metric spaces that admit only trivial
weak contractions, for example the metric spaces X = Z × {0}n−1 ⊆ Rn
clearly have this property (there is a non-degenerate connected compact
example in Rn for every n ≥ 2, see later). Therefore it is natural to ask the
following question.

Question 1.6 (M. Elekes). What are the lowest possible Borel classes
of Rn having a non-closed element X such that every weak contraction
f : X → X is constant?

The main goal of our paper is to answer Question 1.6.

On the one hand, Theorem 1.4 shows that there are no Σ0
1 and Π0

1 ex-
amples in the cases n ≥ 2.

On the other hand, T. Dobrowolski [D] pointed out a connection between
our question and the so called Cook continua, non-degenerate connected
compact topological spaces C such that every continuous map f : C → C
is either constant or the identity. They were named after H. Cook [C], who
first constructed such an object. Cook’s example cannot be embedded in R2,
only in R3. Later T. Maćkowiak [M, Cor. 32] has shown that there exists an
arc-like (snake-like) Cook continuum, and arc-like continua are embeddable
in the plane by [Bi, Thm. 4].

The next theorem is straightforward; it follows that the answer to Ques-
tion 1.6 is ∆0

2 if n ≥ 2.

Theorem 1.7 (Maćkowiak, Dobrowolski). Let X = C \ {c0}, where

C ⊆ R2 is a Cook continuum and c0 ∈ C is arbitrary. Then X ⊆ R2 is non-
closed, simultaneously Fσ and Gδ, and every weak contraction f : X → X
is constant.
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If n = 1 then Theorem 1.4 implies that there is no ∆0
2 example for

Question 1.6. In the positive direction M. Elekes obtained the following
partial result.

Theorem 1.8 (M. Elekes). There exists a non-closed Gδ set G ⊆ R such
that every contraction f : G→ G is constant.

The proof of Theorem 1.8 is based on the following theorem, interesting
in its own right.

Theorem 1.9 (M. Elekes). For the generic compact set K ⊆ R (in the
sense of Baire category) for any contraction f : K → R the set f(K) does
not contain a non-empty relatively open subset of K.

In order to answer Question 1.6 it is enough to show that there are non-
closed Σ0

2 and Π0
2 subsets of R that admit only trivial weak contractions.

Therefore we prove the following theorems.

Theorem 6.1 (Main Theorem, Fσ case). There exists a non-closed Fσ
set F ⊆ R such that every weak contraction f : F → F is constant.

Theorem 6.2 (Main Theorem, Gδ case). There exists a non-closed Gδ
set G ⊆ R such that every weak contraction f : G→ G is constant.

The heart of the proof is the following theorem, a partial measure-
theoretic analogue of Theorem 1.9. For a gauge function h let us denote
by Hh the h-Hausdorff measure.

Theorem 5.1 (simplified version). There exists a compact set K ⊆ R
and a continuous gauge function h such that 0 < Hh(K) <∞, and for every
weak contraction f : K → R we have Hh(K ∩ f(K)) = 0.

Based on the present paper, A. Máthé and the author show in [BM] the
following more general theorem. If X is a Polish space, then the generic com-
pact set K ⊆ X is either finite or there is a continuous gauge function h such
that 0 < Hh(K) < ∞, and for every weak contraction f : K → X we have
Hh(K∩f(K)) = 0. If X is perfect, then the generic compact set K ⊆ X is in-
finite, so the first case does not occur. This is the measure-theoretic analogue
of Theorem 1.9, which also answers a question of C. Cabrelli, U. B. Darji,
and U. M. Molter. This is the reason why we will work in Polish spaces
instead of R.

The structure of the paper is as follows. In the Preliminaries section
we introduce some notation and definitions. In Section 3 we define bal-
anced compact sets in a Polish space X, and we prove their existence if
X is uncountable. In Section 4 we show that every balanced compact set
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K ⊆ X has a continuous gauge function h such that 0 < Hh(K) < ∞.
In Section 5 we show that Hh(K ∩ f(K)) = 0 for every weak contrac-
tion f : K → X, which completes the proof of Theorem 5.1. In Section 6
we prove our Main Theorems, making use of Theorem 5.1 and of ideas
from [E].

2. Preliminaries. Let (X, d) be a metric space, and let A,B ⊆ X be
arbitrary sets. We denote by intA and diamA the interior and the diameter
of A, respectively. We use the convention diam ∅ = 0. The distance of the
sets A and B is dist(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}.

The function h : [0,∞)→ [0,∞) is defined to be a gauge function if it is
non-decreasing, right-continuous, and h(x) = 0 iff x = 0.

For all A ⊆ X and δ > 0 consider

Hhδ (A) = inf
{ ∞∑
i=1

h(diamAi) : A ⊆
∞⋃
i=1

Ai, ∀i diamAi ≤ δ
}
,

Hh(A) = lim
δ→0+

Hhδ (A).

We callHh the h-Hausdorff measure. For more information on these concepts
see [R].

A metric space X is perfect if it has no isolated points. A metric space
X is Polish if it is complete and separable.

Given two metric spaces (X, dX) and (Y, dY ), a function f : X → Y is
called Lipschitz if there is a constant C ∈ R such that dY (f(x1), f(x2))
≤ C · dX(x1, x2) for all x1, x2 ∈ X. The smallest such constant C is the
Lipschitz constant of f and denoted by Lip(f). If Lip(f) ≤ 1 then f is
a 1-Lipschitz map; if Lip(f) < 1 then f is a contraction. We say that f
is a weak contraction if dY (f(x1), f(x2)) < dX(x1, x2) for all x1, x2 ∈ X,
x1 6= x2.

We write λ for the Lebesgue measure of R, and 2N+1 for the odd positive
integers.

3. The definition and existence of balanced compact sets

Definition 3.1. If an (n ∈ N+) are positive integers then set, for all
n ∈ N+,

In =

n∏
k=1

{1, . . . , ak} and I =

∞⋃
n=1

In.

We say that a map Φ : 2N + 1 → I is an index function according to the
sequence 〈an〉 if it is surjective and Φ(n) ∈

⋃n
k=1 Ik for every odd n.
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Definition 3.2. Let X be a Polish space. A compact set K ⊆ X is
balanced if it is of the form

(3.1) K =

∞⋂
n=1

( a1⋃
i1=1

· · ·
an⋃
in=1

Ci1...in

)
,

where an are positive integers and Ci1...in ⊆ X are non-empty closed sets
with the following properties. There are positive reals bn and an index func-
tion Φ : 2N+ 1→ I according to the sequence 〈an〉 such that for all n ∈ N+

and (i1, . . . , in), (j1, . . . , jn) ∈ In,

(i) a1 ≥ 2 and an+1 ≥ na1 · · · an,
(ii) Ci1...in+1 ⊆ Ci1...in ,
(iii) diamCi1...in ≤ bn,
(iv) dist(Ci1...in , Cj1...jn) > 2bn if (i1, . . . , in) 6= (j1, . . . , jn),
(v) if n is odd, Ci1...in ⊆ CΦ(n) and Cj1...jn * CΦ(n), then for all s, t ∈
{1, . . . , an+1}, s 6= t, we have

dist(Ci1...ins, Ci1...int) > diam
( an+1⋃
jn+1=1

Cj1...jnjn+1

)
.

Remark 3.3. The only reason why the domain of Φ is 2N + 1 instead
of N+ is that we refer to this construction in [BM], where this is impor-
tant.

Remark 3.4. In a countable Polish space X there is no balanced com-
pact set K ⊆ X, since every balanced compact set has cardinality 2ℵ0 .

Theorem 3.5. If X is an uncountable Polish space, then there exists a
balanced compact set K ⊆ X.

Proof. Every uncountable Polish space contains a non-empty perfect
subset (see [K, (6.4) Thm.]), so we may assume by shrinking that X is
also perfect. Fix positive integers an according to (i) and an index function
Φ according to 〈an〉. We need to construct non-empty closed sets Ci1...in and
positive reals bn that satisfy (ii)–(v); then the set

K =
∞⋂
n=1

( a1⋃
i1=1

· · ·
an⋃
in=1

Ci1...in

)
will be a balanced compact set.

Let n ∈ N and assume that bk and Ci1...ik with intCi1...ik 6= ∅ are already
defined for all k ≤ n and (i1, . . . , ik) ∈ Ik, where we use the convention
I0 = {∅}, C∅ = X, and b0 =∞. It is enough to construct bn+1 and Ci1...in+1

such that intCi1...in+1 6= ∅ for all (i1, . . . , in+1) ∈ In+1.
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We define distinct points xi1...in+1 ∈ intCi1...in for all (i1, . . . , in+1)
∈ In+1. First assume that n is even. AsX is perfect and intCi1...in 6= ∅, we can
fix distinct points xi1...in+1 ∈ intCi1...in for all (i1, . . . , in+1) ∈ In+1. Now as-
sume that n is odd. First consider those (i1, . . . , in) for which Ci1...in ⊆ CΦ(n),
then fix distinct points xi1...in+1 ∈ intCi1...in for all in+1 ∈ {1, . . . , an+1}. Let
δ be the minimum distance between the points xi1...in+1 we have defined so
far. Now consider those (i1, . . . , in) for which Ci1...in * CΦ(n). For each of
them, fix distinct points xi1...in+1 ∈ intCi1...in for all in+1 ∈ {1, . . . , an+1}
such that

diam
( an+1⋃
in+1=1

{xi1...in+1}
)
≤ δ

2
.

For (i1, . . . , in+1) ∈ In+1 consider the non-empty closed sets

Ci1...in+1 = B(xi1...in+1 , bn+1/2),

where bn+1 > 0 is sufficiently small. Then the sets Ci1...in+1 satisfy (ii)–(v),
and clearly intCi1...in+1 6= ∅ for all (i1, . . . , in+1) ∈ In+1.

Fact 3.6. If K ⊆ R is a balanced compact set, then K has zero Lebesgue
measure.

Proof. For all n ∈ N+ and (i1, . . . , in) ∈ In let Ii1...in ⊆ R be compact
intervals such that Ci1...in ⊆ Ii1...in and diam Ii1...in = diamCi1...in . Set I∗n =⋃a1
i1=1 · · ·

⋃an
in=1 Ii1...in . Properties (iii) and (iv) imply that λ(I∗n+1) ≤ λ(I∗n)/2

for all n ∈ N+, thus K ⊆
⋂∞
n=1 I

∗
n has zero Lebesgue measure.

4. Balanced compact sets admit exact continuous gauge func-
tions. The main goal of this section is to prove Theorem 4.2.

Assume that X is a Polish space and K ⊆ X is a fixed balanced com-
pact set. Let an, bn, Ci1...in , Φ witness that K is balanced according to
Definition 3.2.

Definition 4.1. Let Ki1...in = K ∩ Ci1...in for all (i1, . . . , in) ∈ In and
n ∈ N+. These sets are called the nth level elementary pieces of K. For a
set A ⊆ K we define the nth level elementary pieces of A to be the nth level
elementary pieces of K that intersect A.

Theorem 4.2. There exists a continuous gauge function h with Hh(K)
= 1. Moreover,

Hh(Ki1...in) =
1

a1 · · · an
for all n ∈ N+ and (i1, . . . , in) ∈ In.
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Proof. Consider h : [0,∞)→ [0,∞),

(4.1) h(x) =


1 if x ≥ 2b1,

1

a1 · · · an
if 2bn+1 ≤ x ≤ bn for all n ∈ N+,

linear if bn ≤ x ≤ 2bn for all n ∈ N+,

0 if x = 0.

As an ≥ 2 for all n ∈ N+, properties (ii)–(iv) imply that 2bn+1 < bn for all
n ∈ N+. Thus bn < b1/2

n−1 → 0 as n→∞. Consequently, h is well-defined.
Clearly, h is non-decreasing, continuous, and h(x) = 0 iff x = 0. Therefore
h is a continuous gauge function.

It is enough to prove that Hh(K) = 1, because applying the same argu-
ment for Ki1...in yields the more general statement. Then

K ⊆
a1⋃
i1=1

· · ·
an⋃
in=1

Ci1...in and diamCi1...in ≤ bn

imply

Hhbn(K) ≤
a1∑
i1=1

· · ·
an∑
in=1

h(diamCi1...in) ≤ a1 · · · anh(bn) = 1.

Since bn → 0 as n→∞, we obtain Hh(K) = limn→∞Hhbn(K) ≤ 1.

For the opposite inequality assume that K ⊆
⋃∞
j=1 Uj ; it is enough to

prove that
∑∞

j=1 h(diamUj) ≥ 1. By the continuity of h we may assume
that the Uj ’s are non-empty open, and the compactness of K implies that

there is a finite subcover, K ⊆
⋃k
j=1 Uj . Fix m ∈ N such that 2bm <

min1≤j≤k diamUj . For all j ∈ {1, . . . , k} consider

sj = #{(i1, . . . , im) ∈ Im : Uj ∩Ki1...im 6= ∅}.

Since K ⊆
⋃k
j=1 Uj , we have

(4.2)
k∑
j=1

sj ≥ a1 · · · am.

Now we show that for all j ∈ {1, . . . , k},

(4.3) h(diamUj) ≥
sj

a1 · · · am
.

Fix j ∈ {1, . . . , k}. If diamUj ≥ 2b1 then h(diamUj) = 1 and sj ≤ a1 · · · am
imply (4.3). Thus we may assume that there is an 1 ≤ n < m such that
2bn+1 ≤ diamUj ≤ 2bn. On the one hand, (iv) implies that Uj can intersect
at most one nth level elementary piece of K, that is, sj ≤ an+1 · · · am.
On the other hand, the definition of h implies h(diamUj) ≥ 1/(a1 · · · an).
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Therefore (4.3) holds. Finally, (4.3) and (4.2) yield

k∑
j=1

h(diamUj) ≥
k∑
j=1

sj
a1 · · · am

≥ 1,

and the proof is complete.

Remark 4.3. Note that property (v) and the notion of an index function
Φ are not needed for the proof of Theorem 4.2. We used only the natural
condition an ≥ 2 (n ∈ N+) instead of property (i).

Fact 4.4. Let K ⊆ R be a balanced compact set, and let h be the gauge
function for K according to (4.1). Then λ is absolutely continuous for Hh.

Proof. Let I be a compact interval such that
⋃a1
i1=1Ci1 ⊆ I, and as-

sume diam I = c. Set g(x) = x/c. First we prove that h(x) ≥ g(x) for
all x ∈ [0, b1]. Let n ∈ N+. On the one hand, the definition of h implies
h(bn) = 1/(a1 · · · an). On the other hand, (iv) yields 2bn(#In−1) ≤ diam I,
so

bn ≤
diam I

2(#In − 1)
≤ c

a1 · · · an
.

Thus h(bn) ≥ bn/c = g(bn). As h is concave and g is linear on [bn+1, bn] for
all n ∈ N+, we have h(x) ≥ g(x) for all x ∈ [0, b1].

Finally, h|[0,b1] ≥ g|[0,b1] implies that for all A ⊆ R we have Hh(A) ≥
Hg(A) = λ(A)/c, so λ is absolutely continuous for Hh.

5. The proof of Theorem 5.1. The goal of this section is to prove
the following theorem.

Theorem 5.1. Let X be a Polish space, and let K ⊆ X be a bal-
anced compact set. Then there exists a continuous gauge function h such
that 0 < Hh(K) <∞, and for every weak contraction f : K → X we have
Hh(K ∩ f(K)) = 0.

Proof. Let an, bn, Ci1...in , Φ witness that K is balanced as in Defini-
tion 3.2. Let h be the continuous gauge function for K according to (4.1).
Theorem 4.2 implies Hh(K) = 1. Let f : K → X be a weak contraction. It
is enough to prove that Hh(K ∩ f(K)) = 0. For all n ∈ N+ let

An =

a1⋃
i1=1

· · ·
an⋃
in=1

(Ki1...in ∩ f(K \Ki1...in)).

First we prove

(5.1) K ∩ f(K) ⊆ Fix(f) ∪
∞⋃
n=1

An,
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where Fix(f) = {x ∈ K : f(x) = x}. Assume that y ∈ K ∩ f(K) and
y /∈ Fix(f); we need to prove that y ∈

⋃∞
n=1An. There is an x ∈ K such that

f(x) = y and x 6= y. Then diamKi1...in ≤ bn and bn → 0 imply that there
are n ∈ N+ and (i1, . . . , in) ∈ In such that y ∈ Ki1...in and x ∈ K \Ki1...in ,
so y ∈ An. Thus y ∈

⋃∞
n=1An, hence (5.1) holds.

As f is a weak contraction, Fix(f) has at most one element. There-
fore (5.1) implies that it is enough to prove that Hh(

⋃∞
n=1An) = 0. Prop-

erty (ii) easily yields An ⊆ An+1 for all n ∈ N+, so it is enough to prove that

(5.2) lim
n→∞

Hh(An) = 0.

Fix n ∈ N+ and (i1, . . . , in) ∈ In. The definition of Φ implies that there is
an odd m ≥ n such that Φ(m) = (i1, . . . , in). Let ∆m be the set of mth level
elementary pieces of K \Ki1...in . Pick E ∈ ∆m. As f is a weak contraction,
diam f(E) ≤ diamE. Therefore (v) together with (iii) and (iv) implies that
f(E) can intersect at most one (m + 1)st level elementary piece of Ki1...in .
Thus f(

⋃
∆m) = f(K \ Ki1...in) can intersect at most #∆m ≤ a1 · · · am

many (m+ 1)st level elementary pieces of Ki1...in . Theorem 4.2 shows that
every (m+1)st level elementary piece of K has Hh measure 1/(a1 · · · am+1),
and m ≥ n implies am+1 ≥ an+1. Therefore

(5.3) Hh(Ki1...in ∩ f(K \Ki1...in)) ≤ a1 · · · am
a1 · · · am+1

=
1

am+1
≤ 1

an+1
.

Finally, (5.3), the definition of An, the subadditivity of Hh, and property (i)
yield

Hh(An) ≤ a1 · · · an
an+1

≤ 1

n
.

Thus (5.2) follows, and the proof is complete.

6. The proof of our Main Theorems. Let us recall that the main
goal of our paper is to answer the following question.

Question 1.6. What are the lowest possible Borel classes of Rn having
a non-closed element X such that every weak contraction f : X → X is
constant?

If n ≥ 2 then the answer is ∆0
2, and there is no non-closed ∆0

2 example
in R (see the Introduction). If n = 1 then the following theorems show that
Σ0
2 and Π0

2 are the lowest possible Borel classes satisfying Question 1.6.

Theorem 6.1 (Main Theorem, Fσ case). There exists a non-closed Fσ
set F ⊆ R such that every weak contraction f : F → F is constant.

Proof. By Theorem 3.5 there exists a balanced compact set K ⊆ R. Let
an be the positive integers and let h be the continuous gauge function for
K as in Definition 3.2 and (4.1), respectively. Set Q = {qn : n ∈ N+}. Pick
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z0 ∈ K arbitrarily and for all n ∈ N+ let K∗n be the nth level elementary
piece of K containing z0 (see Definition 4.1). Consider

(6.1) F0 =

∞⋃
n=1

(K∗n + qn).

Clearly, F0 is an Fσ set, thus Hh measurable. The countable subadditivity
and translation invariance of Hh, and Theorem 4.2, imply

Hh(F0) ≤
∞∑
n=1

Hh(K∗n + qn) =
∞∑
n=1

Hh(K∗n)

=
∞∑
n=1

1

a1 · · · an
≤
∞∑
n=1

1

2n
= 1.

As F0 is an Hh-measurable set with finite measure, there is a Gδ set G0 ⊆ R
such that

(6.2) F0 ⊆ G0 and Hh(G0 \ F0) = 0

(see [R, Thm. 27] for the proof). Set F = R \ G0. Clearly, F is an Fσ
set. First we prove that F is non-closed. Fact 3.6 yields λ(K) = 0, so the
translation invariance and countable subadditivity of the Lebesgue measure
imply λ(F0) = 0. Fact 4.4 and (6.2) imply λ(G0 \F0) = 0. Hence λ(G0) = 0.
Therefore G0 6= ∅, hence that G0 is not open, so F = R \G0 is non-closed.
As F is of full Lebesgue measure, it is dense in R.

Assume to the contrary that there exists a non-constant weak contrac-
tion f : F → F . As F is dense in R, f has a unique 1-Lipschitz extension
f̂ : R→ R. First we prove that f̂ is a weak contraction. Assume to the con-
trary that there are a, b ∈ R, a < b such that |f̂(b) − f̂(a)| = |b − a|. Since

f̂ is 1-Lipschitz, for all x, y ∈ [a, b] we have

(6.3) |f̂(x)− f̂(y)| = |x− y|.

Since F is dense in R, there are x0, y0 ∈ F ∩[a, b], x0 6= y0. Applying (6.3) for

x0, y0 contradicts f being a weak contraction. Thus f̂ is a weak contraction.

As f is non-constant, I = f̂(R) is a non-degenerate interval. Then

f̂(F ) = f(F ) ⊆ F and the definition of F implies F0 ∩ I ⊆ I \F ⊆ f̂(R \F )

= f̂(G0), so

(6.4) F0 ∩ I ⊆ F0 ∩ f̂(G0).

Property (iii) and bn → 0 yield diamK∗n → 0 as n → ∞. Thus z0 ∈ K∗n
implies that there exists an n ∈ N+ such that K∗n + qn ⊆ I, and Theorem
4.2 implies Hh(K∗n) > 0. Therefore, by translation invariance,

(6.5) Hh(F0 ∩ I) ≥ Hh(K∗n + qn) = Hh(K∗n) > 0.
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Theorem 5.1 implies that for all p, q ∈ Q we haveHh((K+p)∩f̂(K+q)) = 0,

as f̂(K + q) is a weak contractive image of K + p. Therefore F0 ⊆ K + Q
and the countable subadditivity of Hh yield

Hh(F0 ∩ f̂(F0)) ≤ Hh((K + Q) ∩ f̂(K + Q))(6.6)

≤
∑
p,q∈Q

Hh((K + p) ∩ f̂(K + q)) = 0.

As f̂ is a weak contraction and (6.2) holds, we obtain

(6.7) Hh(f̂(G0 \ F0)) ≤ Hh(G0 \ F0) = 0.

Finally, (6.5), (6.4), the subadditivity of Hh, (6.6), and (6.7) imply

0 < Hh(F0 ∩ I) ≤ Hh(F0 ∩ f̂(G0))

≤ Hh(F0 ∩ f̂(F0)) +Hh(f̂(G0 \ F0)) = 0.

This is a contradiction, so the proof is complete.

Theorem 6.2 (Main Theorem, Gδ case). There exists a non-closed Gδ
set G ⊆ R such that every weak contraction f : G→ G is constant.

Proof. Let G = R\F0 (for the definition of F0, see (6.1)). Clearly, G is a
Gδ set. Since λ(F0) = 0, G is of full Lebesgue measure, thus it is non-closed
and dense in R.

Assume to the contrary that f : G→ G is a non-constant weak contrac-
tion. Now the argument can be completed by replacing F and G0 in the
proof of Theorem 6.1 by G and F0, respectively. Notice that F0 remains
unchanged, e.g. G0 \F0 becomes F0 \F0 = ∅. The reason of this asymmetry
is that we do not consider Gδ hulls as in (6.2), which makes things a little
easier.
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