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Abstract. We simplify the presentation of the method of elementary submodels and
we show that it can be used to simplify proofs of existing separable reduction theorems and
to obtain new ones. Given a nonseparable Banach space X and either a subset A ⊂ X or a
function f defined on X, we are able for certain properties to produce a separable subspace
of X which determines whether A or f has the property in question. Such results are proved
for properties of sets: of being dense, nowhere dense, meager, residual or porous, and for
properties of functions: of being continuous, semicontinuous or Fréchet differentiable. Our
method of creating separable subspaces enables us to combine results, so we easily get
separable reductions of properties such as being continuous on a dense subset, Fréchet
differentiable on a residual subset, etc. Finally, we show some applications of separable
reduction theorems and demonstrate that some results of Zaj́ıček, Lindenstrauss and Preiss
hold in the nonseparable setting as well.

1. Introduction. The method of elementary submodels is a set-theor-
etical method which can be used in various branches of mathematics. A. Dow
[2] illustrated the use of this method in topology, W. Kubís [5] used it in
functional analysis, namely to construct projections on Banach spaces. In
the present work we slightly simplify and specify the method of elementary
submodels from [5] and we study whether this method can be used to prove
separable reduction theorems which have not been proved by other (more
standard) methods.

In this way we prove the following two results. First, we show that poros-
ity is a separably determined property. Second, we extend the validity of
Zaj́ıček’s result [13, Proposition 3.3] from spaces with separable dual to
general Asplund spaces.

It seems that the main advantages of the concept of elementary submod-
els are the following:
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• any finite number of results may be combined,
• the results may be used for more than one space at a time (having two

spaces X and Y which are dependent on each other in some way, we
can use results for X and Y and combine them).

Thus, the real strength of this method is revealed when we prove enough
results to combine them together.

The structure of the paper is as follows: First we introduce elementary
submodels and prove some general results. Then we point out how this
method is connected with the question of separable subspaces. Next, we
collect properties of sets and functions which are separably determined.
Finally, we produce two extensions of the results in [13] and [8] using the
method of elementary submodels.

Below we recall the most relevant notions, definitions and notations.

We denote by ω the set of all natural numbers (including 0), by N the
set ω \{0}, by R+ the interval (0,∞), and Q+ stands for R+∩Q. Whenever
we say that a set is countable, we mean that it is either finite, or infinite
and countable. If f is a mapping then we denote by Rng f its range and by
Dom f its domain. By writing f : X → Y we mean that f is a mapping
with Dom f = X and Rng f ⊂ Y . By f�Z we denote the restriction of f to
the set Z. The closure (resp. interior) of a set A are denoted by A (resp.
Int(A)); the interior relative to a subspace Y is denoted by IntY (A).

If 〈X, ρ〉 is a metric space, we denote by B(x, r) the open ball {y ∈ X :
ρ(x, y) < r}. We shall consider normed linear spaces over the field of real
numbers (but many results hold for complex spaces as well). If X is a normed
linear space and A ⊂ X, we denote by convA the convex hull of A, by A

w

the weak closure of A, and by spanA the linear span of A. Moreover SX
is the unit sphere {x ∈ X : ‖x‖ = 1}, and X∗ stands for the (continuous)
dual space of X. We denote by C(K) the space of continuous functions on
a compact Hausdorff space K.

2. Elementary submodels. In this section we describe the method of
creating countable sets with certain properties using elementary submodels.
First, we define what elementary submodels are. Next, we show how countable
sets with certain properties can be created using those elementary submodels.
This method is based on the set-theoretical Theorem 2.2. This is a combination
of the Reflection Theorem and the Löwenheim–Skolem Theorem. We refer
the reader to Kunen’s book [6], where further details can be found.

The idea to use this method in functional analysis comes from Kubís’s
article [5]. Some of the following results are based on this article and slightly
modified to our situation (namely Lemma 2.6 and Propositions 2.10, 3.2, 3.6,
3.7).
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Let us first recall some definitions:
Let N be a fixed set and φ a formula in the language of ZFC. Then

the relativization of φ to N is the formula φN which is obtained from φ by
replacing each quantifier of the form “∀x” by “∀x ∈ N” and each “∃x” by
“∃x ∈ N”.

For example, if

φ := (∀x)(∀y)(∃z)(x ∈ z ∧ y ∈ z)
and N = {a, b}, then the relativization of φ to N is

φN = (∀x ∈ N)(∀y ∈ N)(∃z ∈ N)(x ∈ z ∧ y ∈ z).
It is clear that φ is satisfied, but φN is not.

If φ(x1, . . . , xn) is a formula with all free variables shown (i.e. a formula
whose free variables are exactly x1, . . . , xn) then φ is absolute for N if and
only if

(∀a1, . . . , an ∈ N)(φN (a1, . . . , an)↔ φ(a1, . . . , an)).

A list of formulas, φ1, . . . , φn, is said to be subformula closed if every
subformula of a formula in the list is also contained in the list.

Any formula of set theory can be written using the symbols ∈,=,∧,∨,¬,
→,↔,∃, ( , ), [ , ] and symbols for variables. Let us assume that a subformula
closed list of formulas φ1, . . . , φn is written in this way. Then it is not difficult
to show that the absoluteness of φ1, . . . , φn for N means that those formulas
do not create any new sets in N . This result is contained in the following
lemma (a proof can be found in [6, Lemma IV.7.3]):

Lemma 2.1. Let N be a set and φ1, . . . , φn a subformula closed list
of formulas (only containing ∈,=,∧,∨,¬,→,↔,∃, ( , ), [ , ] and symbols for
variables). Then the following are equivalent:

(i) φ1, . . . , φn are absolute for N .
(ii) Whenever φi is of the form (∃x)(φj(x, y1, . . . , yl)) (with all free vari-

ables shown), then

(∀y1, . . . yl ∈ N)[(∃x)(φj(x, y1, . . . , yl))→ (∃x ∈ N)(φj(x, y1, . . . , yl))].

The method of elementary submodels is mainly based on the following
set-theoretical theorem (a proof can be found in [6, Theorem IV.7.8]).

Theorem 2.2. Let φ1, . . . , φn be any formulas and X any set. Then
there exists a set M ⊃ X such that

(φ1, . . . , φn are absolute for M) ∧ (|M | ≤ max(ω, |X|)).
Since the set from the previous theorem will often be used, the following

definition is useful.

Definition 2.3. Let φ1, . . . , φn be any formulas and let X be any count-
able set. Let M ⊃ X be a countable set such that φ1, . . . , φn are abso-
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lute for M . Then we say that M is an elementary submodel for φ1, . . . , φn
containing X, and write M ≺ (φ1, . . . , φn; X). The relation between X,
φ1, . . . , φn and M is often called the elementarity of M .

Using Lemma 2.1 it is easy to see that the countable union of a monotone
sequence of elementary submodels is also an elementary submodel.

Lemma 2.4. Let ϕ1, . . . , ϕn be a subformula closed list of formulas and
let X be any countable set. Let {Mk}k∈ω be a sequence of sets satisfying

(i) Mi ⊂Mj , i ≤ j,
(ii) (∀k ∈ ω)[Mk ≺ (ϕ1, . . . , ϕn;X)].

Set M :=
⋃
k∈ωMk. Then also M ≺ (ϕ1, . . . , ϕn;X).

Let φ(x1, . . . , xn) be a formula with all free variables shown and let M
be some elementary submodel for φ. To use the absoluteness of φ for M
efficiently, we need to know that many sets are elements of M . The reason is
that for a1, . . . , an ∈M we have φ(a1, . . . , an) if and only if φM (a1, . . . , an).
Therefore, it is our first aim to force the elementary submodel M to contain
many different objects. Let us see a simple example how it can be achieved.

Example 2.5. Consider the following formulas:

ϕ1(x, a) := (∀z)(z ∈ x↔ (z ∈ a ∨ z = a)), ϕ2(a) := (∃x)(ϕ1(x, a)).

Then for any M ≺ (ϕ1, ϕ2; ∅) we have a ∪ {a} ∈M whenever a ∈M .

Proof. Fix an a ∈ M . Then ϕ2(a) is satisfied (the set of x satisfying
ϕ1(x, a) is a∪ {a}). By the absoluteness of ϕ2 for M there exists an x ∈M
satisfying ϕM1 (x, a). Fix such an x ∈ M . Then ϕM1 (x, a) holds. Therefore,
using the absoluteness of ϕ1, ϕ1(x, a) is satisfied as well. But the only pos-
sibility for ϕ1(x, a) to be satisfied is that x = a∪ {a}; hence a∪ {a} ∈M .

The preceding example can be generalized. Using the following lemma
we can force an elementary submodel M to contain all the required objects
created (uniquely) from elements of M .

Lemma 2.6. Let φ(y, x1, . . . , xn) be a formula with all free variables
shown and let X be a countable set. Let M be a fixed set satisfying M ≺
(φ, (∃y)(φ(y, x1, . . . , xn));X) and let a1, . . . , an ∈M be such that there exists
only one set u satisfying φ(u, a1, . . . , an). Then u ∈M .

Proof. By the absoluteness of the formula (∃y)(φ(y, x1, . . . , xn)), there
exists y0 ∈ M satisfying φM (y0, a1, . . . , an). By the absoluteness of φ, for
this y0 ∈M the formula φ(y0, a1, . . . , an) holds. But such a y0 is unique and
therefore u = y0 ∈M .

Let us see how one can force M to contain its finite subsets and natural
numbers.
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Proposition 2.7. Consider the following formulas:

ϕ1 := (∀z)(z ∈ x↔ z 6= z),

ϕ1E := (∃x)(ϕ1(x)),

ϕ2 := (∀z)(z ∈ x↔ (z ∈ u ∨ z = v)),

ϕ2E := (∃x)(ϕ2(x, u, v)).

Let X be a nonempty countable set. Then

(i) if M ≺ (ϕ1, ϕ1E ;X), then ∅ ∈M ;
(ii) if M ≺ (ϕ2, ϕ2E ;X), then u ∪ {v} ∈M for every u, v ∈M ;
(iii) if M ≺ (ϕ1, ϕ1E , ϕ2, ϕ2E ;X), then ω ⊂M ;
(iv) if M ≺ (ϕ1, ϕ1E , ϕ2, ϕ2E ;X), then s ∈M for every finite set s ⊂M .

Proof. (i) and (ii) follow immediately from Lemma 2.6; (iii) follows from
(i) and (ii) by induction on n; (iv) follows from (i) and (ii) by induction on
the cardinality of s.

It would be laborious and pointless to use only the basic language of set
theory. For example, we often write x < y as a shortcut for the formula
ϕ(x, y,<) with all free variables shown. Therefore, in the following text we
use this extended language of set theory, as is customary. We shall also use
the following convention.

Convention. Whenever we say

• for any suitable elementary submodel M (the following holds...),

we mean that

• there exists a list of formulas φ1, . . . , φn and a countable set Y such
that for every M ≺ (φ1, . . . , φn;Y ) (the following holds...).

By using this terminology we hide the information about the formulas
φ1, . . . , φn and the set Y . This is, however, not important in applications.

Remark 2.8. Suppose have sentences T1(a), . . . , Tn(a). Assume that
whenever we fix an i ∈ {1, . . . , n}, then for any suitable elementary sub-
model Mi the sentence Ti(Mi) is satisfied. Then it is easy to verify that for
any suitable elementary submodel M the sentence

T1(M) ∧ · · · ∧ Tn(M)

is satisfied (it suffices to combine all the lists of formulas and all the sets
from the convention above). In other words, we are able to combine any
finite number of results we have proved using the method of elementary
submodels. This includes all the theorems starting with “For any suitable
elementary submodel M the following holds:”.

Let us give some more results about suitable elementary submodels.
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Proposition 2.9. For any suitable elementary submodel M the follow-
ing holds: Let f be a function such that f ∈M . Then

(i) Dom f ∈M ,
(ii) Rng f ∈M ,

(iii) (∀x ∈M ∩Dom f)(f(x) ∈M).

Proof. Fix an elementary submodel M for formulas marked (∗) in the
proof below and all their subformulas. Let f ∈ M be a function. Then
Dom f is the object uniquely defined by the following formula (the same for
all functions f ; f is a free variable in this formula):

(∗) (∃D)(∀x)[x ∈ D ↔ (∃y)(f(x) = y)].

By Lemma 2.6, Dom f ∈ M . Similarly, Rng f ∈ M as it is the object
uniquely defined by the formula

(∗) (∃R)(∀y)[y ∈ R↔ (∃x)(f(x) = y)].

For (iii) we use (i) and the absoluteness of the formula

(∗) (∀x ∈ Dom f)(∃y)(f(x) = y).

The proofs in the following text often begin in the same way. To avoid
unnecessary repetitions, by saying “Fix a (∗)-elementary submodel M [con-
taining A1, . . . , An]” we will understand the following:

“Consider the formulas ϕ1, ϕ1E , ϕ2, ϕ2E from Proposition 2.7 and all
the formulas marked (∗) in all the preceding proofs (and all their sub-
formulas). Add to them formulas marked (∗) in the proof below (and all
their subformulas). Denote by φ1, . . . , φn the resulting list of formulas. Fix
a countable set X containing the sets ω, Z, Q, Q+, R, R+ and all the
common operations and relations on real numbers, (+, −, ·, :, <). Fix an
elementary submodel M for formulas φ1, . . . , φn with X ∈ M [such that
A1, . . . , An ∈M ]”.

Thus, any (∗)-elementary submodel M is suitable for all the preceding
theorems, propositions and lemmas from this paper, making it possible to
use all these results for M .

Using this new agreement, let us prove another proposition.

Proposition 2.10. For any suitable elementary submodel M the follow-
ing holds:

(i) Let S be a finite set. Then

S ∈M ↔ S ⊂M.

(ii) Let S be a countable set. Then

S ∈M → S ⊂M.
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(iii) For every natural number n > 0 and for arbitrary sets a0, . . . , an,

a0, . . . , an ∈M ↔ 〈a0, . . . , an〉 ∈M.

(iv) If A,B ∈M , then A ∩B ∈M , B \A ∈M and A ∪B ∈M .

Proof. Fix a (∗)-elementary submodel M . To prove (ii), let S ∈M be a
countable set. If S = ∅, then S ⊂M . If S 6= ∅, then

(∗) (∃f)(f is a function from ω onto S).

Thus, by the absoluteness of the formula above, there exists f ∈M satisfying

(f is a function from ω onto S)M .

Fix one such f . Then, using the absoluteness of the formula “f is a function
from ω onto S”, f is a function from ω onto S. Because f is a function with
Rng f = S and Dom f = ω ⊂M , by Proposition 2.9, S ⊂M .

Let us prove that (i) holds. If S ∈ M is finite, then S ⊂ M by (ii). If
S ⊂M is finite, then S ∈M by Proposition 2.7.

(iii) follows easily from (i) by induction on n ∈ ω, n ≥ 1. It is enough to
realize that 〈a0, a1〉 = {a0, {a0, a1}} and 〈a0, . . . , an〉 = 〈〈a0, . . . , an−1〉, an〉.

Suppose we have sets A,B ∈M . Then, by Lemma 2.6 and the absolute-
ness of the formulas (and their subformulas)

(∃C)(∀x)(x ∈ C ↔ x ∈ A ∧ x ∈ B),(∗)
(∃D)(∀x)(x ∈ D ↔ x ∈ B ∧ x /∈ A),(∗)
(∃E)(∀x)(x ∈ E ↔ x ∈ A ∨ x ∈ B),(∗)

(iv) holds.

3. Elementary submodels in the context of normed linear spaces.
Now we are prepared for some more concrete results concerning mostly
metric spaces or normed linear spaces. Before we proceed, let us propose
the following agreements.

If 〈X, ρ〉 is a metric space (resp. 〈X,+, ·, ‖ · ‖〉 is a normed linear space)
and M an elementary submodel, then by saying M contains X (or by writing
X ∈M) we mean that 〈X, ρ〉 ∈M (resp. 〈X,+, ·, ‖ · ‖〉 ∈M). If A is a set,
then by saying that an elementary submodel M contains A we mean that
A ∈M .

If X is a topological space and M an elementary submodel, then we
denote by XM the set X ∩M .

Proposition 3.1. For any suitable elementary submodel M the follow-
ing holds: Let 〈X, ρ〉 be a metric space. If M contains X, then B(x, r) ∈M
whenever x ∈ X ∩M and r ∈ R+ ∩M .
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Proof. Fix a (∗)-elementary submodel M containing X. Let x ∈ X ∩M
and r ∈ R+∩M . Then B(x, r) is the object uniquely defined by the formula

(∗) (∃U)(∀z)(z ∈ U ↔ z ∈ X ∧ ρ(x, z) < r).

Thus, by Lemma 2.6, B(x, r) ∈M .

The idea of the following proposition comes from [5].

Proposition 3.2. For any suitable elementary submodel M the follow-
ing holds: Let X be a normed linear space. If M contains X and a set A ⊂ X,
then:

(i) span(A) ∩M is a closed separable linear subspace of X.
(ii) conv(A) ∩M is a convex set.

(iii) If A is convex, then A ∩M = A ∩Mw
.

In particular, XM is a separable subspace of X and XM = X ∩Mw
.

Proof. Fix a (∗)-elementary submodelM containingX and A. By Propo-
sition 2.10, Q ⊂M and 〈R,+,−, ·, :, <〉 ∈M .

The elementary submodel M contains the functions + : X × X → X
and · : R×X → X. Consequently (by Proposition 2.9), X ∩M is a Q-linear
subspace of X. Therefore (i) and (ii) hold. Assertion (iii) follows easily from
(ii) because for convex sets the weak and the norm closures coincide.

Given a Banach space X, a list of formulas φ1, . . . , φn and a countable
set Y , we are able to get a family of sets

M(X) := {XM : M ≺ (φ1, . . . , φn;Y )}.
By choosing φ1, . . . , φn and Y suitably, it is possible to forceM(X) to be a
family of closed separable subspaces of X having some specific properties.
One can easily join a finite number of arguments (lists of formulas) and get
another family of separable subspaces having the same properties as the
original family and perhaps even some more.

In [9] similar families of closed separable subspaces are used to get sep-
arable reduction theorems. Those families are called rich. This concept has
been originally introduced in [1] by Borwein and Moors. For further appli-
cations of this method, see for example [10], where more references can be
found.

Definition 3.3. Let X be a Banach space. A family R of separable
subspaces of X is called rich if

(i) for every increasing sequence Ri in R,
⋃
i∈ω Ri belongs to R, and

(ii) each separable subspace of X is contained in an element of R.

A connection between the notion of rich families and elementary sub-
models is described in the following lemma.
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Lemma 3.4. Let X be a Banach space. Then there exists a list of for-
mulas φ1, . . . , φn and a countable set Y such that for every countable set
Z and every list of formulas ϕ1, . . . , ϕk such that φ1, . . . , φn, ϕ1, . . . , ϕk is
subformula closed, the family

M := {M : M ≺ (φ1, . . . , φn, ϕ1, . . . , ϕk;Y ∪ Z)}

satisfies the following conditions:

(i) {XM : M ∈M} is a family of closed separable subspaces of X.
(ii) For every increasing sequence {Mi}i∈ω ⊂ M of elementary sub-

models, ⋃
i∈ω

Mi ∈M and
⋃
i∈ω

XMi = X⋃
i∈ωMi

.

(iii) For every separable subspace V of X there exists M ∈M such that
V ⊂ XM .

Proof. The existence of φ1, . . . , φn and Y such that {XM : M ∈ M} is
a family of closed separable subspaces follows from Proposition 3.2 above.
For (ii), fix an increasing sequence Mi of elementary submodels from the
assumption. Then (by Lemma 2.4) it is enough to show that

⋃
i∈ωXMi =

X⋃
i∈ωMi

. One inclusion follows from the fact that
⋃
i∈ωXMi⊂

⋃
i∈ωX∩Mi=

X⋃
i∈ωMi

. The opposite one holds, because
⋃
i∈ωX ∩Mi ⊂

⋃
i∈ωX ∩Mi =⋃

i∈ωXMi . Thus, X⋃
i∈ωMi

=
⋃
i∈ωX ∩Mi ⊂

⋃
i∈ωXMi . For (iii), take any

separable subspace V of X and a countable set D dense in V . Then taking
M ≺ (φ1, . . . , φn, ϕ1, . . . , ϕk;Y ∪ Z ∪D), we conclude that V ⊂ XM .

It is not known to the author whether those two approaches (rich families
and elementary submodels) to the separable reduction theorems are equiv-
alent in some way. It seems that the method using elementary submodels
is slightly stronger, as it is capable of working with more than one space
at a time (see Lemmas 3.6, 3.7 and 6.15), while the method of rich families
concerns one space.

In [5] a slightly different method of getting the elementary submodels M
is introduced. It is proved there that in the case of some classical Banach
spaces (namely `p(Γ ) and C(K)) it is possible to describe the subspace XM .
Slightly modifying the ideas from [5], the same results hold in our case as
well.

Definition 3.5. Let Γ be a set. Then we denote by supptΓ the function
which maps x ∈ RΓ to supptΓ (x) = {α ∈ Γ : x(α) 6= 0}.

Proposition 3.6. For any suitable elementary submodel M the follow-
ing holds: Let X = `p(Γ ), where 1 ≤ p <∞ and Γ is an arbitrary set. If M
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contains X, supptΓ and Γ , then

XM = {x ∈ X : supptΓ (x) ⊂M}.
Consequently, XM can be identified with `p(Γ ∩M).

Proof. Fix a (∗)-elementary submodel M containing X, supptΓ , Γ . De-
note by A the set on the right-hand side above. For every x ∈ X ∩M the set
supptΓ (x) is countable. Thus, by Propositions 2.9 and 2.10, supptΓ (x) ⊂M
and x ∈ A. We have proved that X ∩M ⊂ A. From the obvious fact that
A is a closed set we have XM ⊂ A. On the other hand, if x ∈ A then arbi-
trarily close to x we can find y ∈ A such that s = supptΓ (y) ⊂ M is finite
and y(α) ∈ Q for α ∈ s. Thus, using Proposition 2.10, we have s ∈ M and
y�s ∈ M (because y�s =

⋃
α∈s{〈α, y(α)〉}). Using the absoluteness of the

formula

(∗) (∃z ∈ X)(z�s = y�s ∧ z�Γ\s = 0),

we have y ∈M . Hence x ∈ X ∩M = XM .

Given a compact space K and an arbitrary elementary submodel M we
define the following equivalence relation ∼M on K:

x ∼M y ↔ (∀f ∈ C(K) ∩M))(f(x) = f(y)).

We shall write K/M instead of K/∼M and we shall denote by qM the
canonical quotient map. It is not hard to check that K/M is a compact
Hausdorff space.

Observe that we can identify the spaces {ϕ ◦ qM : ϕ ∈ C(K/M)} and
C(K/M). Indeed, define

F (ϕ) := ϕ ◦ qM , ϕ ∈ C(K/M).

It is obvious that F is an isometric mapping from C(K/M) onto {ϕ ◦ qM :
ϕ ∈ C(K/M)}.

Lemma 3.7. For any suitable elementary submodelM the following holds:
Let K be a compact space and X = C(K). Let · denote the pointwise product
of functions in C(K). If M contains X, · and K, then

XM = {ϕ ◦ qM : ϕ ∈ C(K/M)}.
Consequently, we can identify XM with C(K/M), where K/M is a metrizable
compact space.

Proof. Fix a (∗)-elementary submodel M containing X, · and K. Denote
by Y the set on the right-hand side above. For a given function f ∈ C(K)∩M
we define

ϕ([x]M ) := f(x), x ∈ K.
It is easy to verify that ϕ is a continuous function. Consequently, f ∈ Y and
XM ⊂ Y .
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For the proof of the reverse inclusion, let us identify XM with a subspace
of C(K/M). Then, by Propositions 3.2 and 2.9, XM is a closed subspace
closed under the operation ·. From the definition of ∼M it follows that XM

separates points in K/M . Using the absoluteness of the formula

(∗) (∀c ∈ R)(∃f ∈ X)(∀x ∈ K : f(x) = c),

M contains every constant rational function; thus, XM contains all the con-
stant functions. From the Stone–Weierstrass theorem, XM = C(K/M).

Since XM = C(K/M) is a separable space, K/M is metrizable.

4. Properties of sets. Let us consider the following situation. Let X
be a normed linear space. We would like to recognize whether a given set
A ⊂ X has a property (P ). For every separable subspace V0 ⊂ X we would
like to find a closed separable subspace V ⊃ V0 such that A has property
(P ) in X if and only if A ∩ V has property (P ) in the subspace V .

Using the method of elementary submodels, it is enough to show that
for any suitable elementary submodel M (dependent only on the space X
and perhaps also on the set A), the set A has property (P ) if and only if
A ∩XM has property (P ) in XM .

Let us prove some results for the properties of being dense and having
empty interior.

Proposition 4.1. For any suitable elementary submodel M the follow-
ing holds: Let 〈X, ρ〉 be a metric space and A,S ⊂ X. If M contains X, A
and S, then

IntS(A ∩ S) 6= ∅ ↔ IntS∩XM
(A ∩ S ∩XM ) 6= ∅,

A ∩ S is dense in S ↔ A ∩ S ∩XM is dense in S ∩XM .

Proof. Fix a (∗)-elementary submodel M containing X, A and S. By
Proposition 2.10, AC ∈ M whenever A ∈ M . Since A is dense in X if and
only if AC has empty interior in X, it is enough to prove the first equivalence.

If A ∩ S has nonempty interior in S, then there exists a ball in S which
is a subset of A ∩ S. Thus,

(∗) (∃x ∈ S)(∃r ∈ R+)(∀y ∈ S)(y ∈ B(x, r)→ y ∈ A).

In the preceding formula we use the abbreviation y ∈ B(x, r) for y ∈ X ∧
ρ(y, x) <R r. Free variables in the preceding formula are R+, X, ρ,<R, A, S.
Those are contained in M . This allows us to use the elementarity of M
(i.e. the absoluteness of the preceding formula for M). Thus, we find x ∈
S ∩M and r ∈ R+ ∩M such that ((∀y ∈ S)(y ∈ B(x, r) → y ∈ A))M . By
elementarity again, B(x, r)∩S is a subset of A∩S. Consequently, B(x, r)∩
S ∩XM ⊂ A ∩ S ∩XM . Since x ∈ B(x, r) ∩ S ∩XM , we have proved that
A ∩ S ∩XM contains a nonempty open set in S ∩XM .
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Conversely, assume that IntS∩XM
(A ∩ S ∩XM ) 6= ∅. Then

(∃x ∈ S ∩XM )(∃r ∈ R+)(B(x, r) ∩ S ∩XM ⊂ A ∩ S).

Take q ∈ (0, r/2) ∩Q+ and x0 ∈ X ∩M such that ρ(x, x0) < q. Then

B(x0, q) ∩ S ∩XM ⊂ B(x, r) ∩ S ∩XM ⊂ A ∩ S.
The statement B(x0, q) ∩ S ∩M ⊂ A ∩ S can be written in the following
way:

(∀y ∈ S ∩M)(ρ(y, x0) < q → y ∈ A ∩ S).

Therefore, using the absoluteness of

(∗) (∀y ∈ S)(ρ(y, x0) < q → y ∈ A ∩ S),

we can see that B(x0, q) ∩ S ⊂ A ∩ S. But the point x is in B(x0, q) ∩ S.
Consequently, IntS(A ∩ S) 6= ∅.

Another set property which is separably determined is that of being
nowhere dense.

Proposition 4.2. For any suitable elementary submodel M the follow-
ing holds: Let 〈X, ρ〉 be a metric space, G ⊂ X an open set and A ⊂ X. If
M contains X, A and G, then

A∩G is nowhere dense in G ↔ A∩G∩XM is nowhere dense in G∩XM .

Proof. Fix a (∗)-elementary submodel M containing X, A and G. By
Proposition 2.10, C ∩ B ∈ M whenever C,B ∈ M . It is well known that
E ⊂ G is nowhere dense in G if and only if it is nowhere dense in X (see [7,
p. 71]). Consequently, it is enough to prove the proposition for G = X.

It is well known that a set A is nowhere dense in a metric space X if and
only if the following formula holds:

(∀x ∈ X)(∀r ∈ R+)(∃y ∈ X)(∃s ∈ R+)(B(y, s) ⊂ B(x, r) \A).

It is easy to check that this is equivalent to

(4.1)(∗) (∀x ∈ X)(∀r ∈ Q+)(∃y ∈ X)(∃s ∈ Q+)(B(y, s) ⊂ B(x, r) \A).

All the free variables in the last formula are elements of M .
Let us prove the implication from right to left first. If A is not nowhere

dense in X, then

(∗) (∃x ∈ X)(∃r ∈ Q+)(∀y ∈ X)(∀s ∈ Q+)(B(y, s) * B(x, r) \A).

Using the elementarity of M , there exist x ∈ X ∩M and r ∈ Q+ such that

(4.2) (∀y ∈ X)(∀s ∈ Q+)(B(y, s) * B(x, r) \A).

Choose an arbitrary y ∈ XM , s ∈ Q+ and find y0 ∈ X ∩ M such that
ρ(y, y0) < s/2. Then B(y0, s/2) ⊂ B(y, s). From (4.2),

(∗) (∃z ∈ X)(z ∈ B(y0, s/2) \ (B(x, r) \A)).
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Using the elementarity of M , we may fix z ∈ X ∩M satisfying the formula
above. Thus, for given y ∈ XM and s ∈ Q+ we have found z ∈ X ∩M
satisfying

z ∈ B(y0, 1/2s) \ (B(x, r) \A) ⊂ B(y, s) \ (B(x, r) ∩XM \A).

Consequently,
B(y, s) ∩XM * (B(x, r) ∩XM ) \A.

The negation of (4.1)(∗) holds in XM ; thus, A ∩XM is not nowhere dense
in XM .

For the proof of the converse, let A be nowhere dense in X. Choose any
x ∈ XM and r ∈ Q+. Pick x0 ∈ X ∩M satisfying ρ(x, x0) < r/2. Then
B(x0, r/2) ⊂ B(x, r). For the point x0 and the number r/2 choose y ∈ X
and s ∈ Q+ as in formula (4.1)(∗). Using the elementarity of M , we may
assume that y ∈ X ∩M . Consequently,

B(y, s) ⊂ B(x0, r/2) \A ⊂ B(x, r) \A.
Formula (4.1)(∗) is satisfied in XM ; thus, A∩XM is nowhere dense in XM .

It is natural to ask whether the property of being meager is separably
determined. One implication is easy:

Proposition 4.3. For any suitable elementary submodel M the follow-
ing holds: Let X be a metric space. If M contains X and a set A ⊂ X,
then

A is meager in X → A ∩XM is meager in XM .

Proof. Fix a (∗)-elementary submodel M containing X and A. Let
{Rn}n∈ω be a family of nowhere dense sets such that A ⊂

⋃
n∈ω Rn. Then

(∗) (∃ϕ)
(
ϕ is a function with Domϕ = ω, ϕ(n) is a nowhere dense

subset of X for every n ∈ ω, and A ⊂
⋃
n∈ω

ϕ(n)
)
.

Using the elementarity of M , we find ϕ ∈ M satisfying the formula above.
Consequently, by Proposition 2.9, ϕ(n) ∈M for every n ∈ ω.

By Proposition 4.2, the set ϕ(n)∩XM is nowhere dense in XM for every
n ∈ ω. Moreover, A∩XM ⊂

⋃
n∈ω(ϕ(n)∩XM ). Therefore, A∩XM is meager

in XM .

For the converse to the implication of the preceding proposition, we need
to add some assumptions. Let us first recall what it means to be somewhere
meager.

Definition 4.4. Let X be a metric space and A ⊂ X. If there are x ∈ X
and r > 0 such that B(x, r)∩A is meager in X, we say that A is somewhere
meager in X.
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We will need the following easy and well-known fact.

Lemma 4.5. Let X be a complete metric space and let A ⊂ X have the
Baire property. Then

X \A is not meager ↔ A is somewhere meager in X.

With the help of this lemma we can prove a converse to the implication
of Proposition 4.3. First, we need a result for the properties of having the
Baire property and being somewhere meager.

Proposition 4.6. For any suitable elementary submodel M the follow-
ing holds: Let X be a metric space. If M contains X and a set A ⊂ X,
then

A is somewhere meager in X → A ∩XM is somewhere meager in XM .

Proof. Fix a (∗)-elementary submodel M containing X and A, and as-
sume that A is somewhere meager. By Propositions 2.10 and 3.1, B(x, r)
∈ M whenever x ∈ X ∩M and r ∈ R+ ∩M , and C ∩ B ∈ M whenever
C,B ∈M .

Because A is somewhere meager, the following formula holds:

(∗) (∃x ∈ X)(∃r ∈ R+)(B(x, r) ∩A is meager in X).

Using the elementarity of M , we find x ∈ X ∩M and r ∈ R+ ∩M such
that B(x, r)∩A is meager in X. Since B(x, r)∩A ∈M , by Proposition 4.3,
B(x, r) ∩A ∩XM is meager in XM .

Proposition 4.7. For any suitable elementary submodel M the follow-
ing holds: Let X be a metric space. If M contains X and a set A ⊂ X,
then

A has the Baire property in X → A ∩XM has the Baire property in XM .

Proof. Fix a (∗)-elementary submodel M containing X and A and as-
sume that A has the Baire property. Then

(∗) (∃D)(∃P )(D is Gδ in X, P is meager in X, and A = D ∪ P ).

Using the elementarity of M , we find D,P ∈M satisfying the formula above.
By Proposition 4.3, P ∩XM is meager in XM . Consequently, A∩XM is the
union of the Gδ set D ∩XM and the meager set P ∩XM .

Finally, we prove a converse of Proposition 4.3 under additional assump-
tions.

Theorem 4.8. For any suitable elementary submodel M the following
holds: Let X be a complete metric space, G ⊂ X an open set and A ⊂ X a
set with the Baire property. If M contains X, G and A, then
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A ∩G is meager in G ↔ A ∩G ∩XM is meager in G ∩XM ,

A ∩G is residual in G ↔ A ∩G ∩XM is residual in G ∩XM .

Proof. Fix a (∗)-elementary submodel M containing X, A and G. By
Proposition 2.10, B ∩ C ∈ M and BC ∈ M whenever B,C ∈ M . It is well
known that a set D ⊂ G is meager in X if and only if it is meager in G (see
[7, p. 83]). Thus, it is sufficient to prove the first equivalence for G = X.

The implication from left to right follows from Proposition 4.3. For the
converse, assume that A is not meager in X. Then, by Lemma 4.5, AC is
somewhere meager in X. Thus, by Proposition 4.6, AC ∩XM is somewhere
meager in XM . Hence, by Propositions 4.7 and 4.5, A ∩XM is not meager
in XM .

Let us find out whether the property of sets of being porous is separably
determined. We use the following definition from [11].

Definition 4.9. Let X be a metric space, A ⊂ X, x ∈ X and R > 0.
Then we define γ(x,R,A) as the supremum of all r ≥ 0 for which there
exists z ∈ X such that B(z, r) ⊂ B(x,R) \A.

Further, we define the upper porosity of A at x in X as

pX(A, x) := 2 lim sup
R→0+

γ(x,R,A)

R
,

and the lower porosity of A at x in X as

p
X

(A, x) := 2 lim inf
R→0+

γ(x,R,A)

R
.

When it is clear which space X we mean, we often say upper (resp. lower)
porosity of A at x and write p(A, x) (resp. p(A, x)).

We say thatA is upper porous (resp. lower porous, c-upper porous, c-lower
porous) at x if p(A, x) > 0 (resp. p(A, x) > 0, p(A, x) ≥ c, p(A, x) ≥ c).

We say thatA is upper porous (resp. lower porous, c-upper porous, c-lower
porous) if A is upper porous (resp. lower porous, c-upper porous, c-lower
porous) at each y ∈ A. We say that A is σ-upper porous (resp. σ-lower
porous) if it is a countable union of upper porous (resp. lower porous) sets.

Definition 4.10. Let 〈X, ρ〉 be a metric space and A ⊂ X. Then
d(x,A) := inf{ρ(x, a) : a ∈ A} for x ∈ X .

The following lemma is probably well known, but I have not found any
reference.

Lemma 4.11. Let 〈X, ρ〉 be a metric space, A ⊂ X and x ∈ A. Set

p1(A, x) := lim sup
R→0+

sup
u∈B(x,R)

d(u,A)

R
, p2(A, x) := lim inf

R→0+
sup

u∈B(x,R)

d(u,A)

R
.

Then p1(A, x) ≤ p(A, x) ≤ 2p1(A, x) and p2(A, x) ≤ p(A, x) ≤ 2p2(A, x).
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Proof. To show p(A, x) ≤ 2p1(A, x) and p(A, x) ≤ 2p2(A, x), it is suffi-
cient to prove that γ(x,R,A) ≤ supu∈B(x,R) d(u,A) for every R > 0. Choose
R > 0, r ≥ 0 and z ∈ X satisfying B(z, r) ⊂ B(x,R) \ A. We would like to
find u ∈ B(x,R) such that r ≤ d(u,A). But it is easy to check that u = z
satisfies those conditions.

Now we will prove that p(A, x) ≥ p1(A, x) and p(A, x) ≥ p2(A, x). Take
any R > 0 and u ∈ B(x,R) and notice that then d(u,A) ≤ γ(x, 2R,A).

Indeed, put r = d(u,A) and z = u. Then for every y ∈ B(z, r) we have

ρ(u, y) = ρ(z, y) < r = d(u,A),

so y /∈ A. Moreover (using the fact that r = d(u,A) < R, since x ∈ A and
so u ∈ B(x,R)),

ρ(y, x) ≤ ρ(y, z) + ρ(z, x) < r +R < 2R.

Thus, B(z, r) ⊂ B(x, 2R) \A and d(u,A) ≤ γ(x, 2R,A).
As an immediate consequence we get

2 lim sup
R→0+

γ(x, 2R,A)

2R
≥ p1(A, x), 2 lim inf

R→0+

γ(x, 2R,A)

2R
≥ p2(A, x).

Now it is easy to check that also p(A, x) ≥ p1(A, x) and p(A, x) ≥ p2(A, x).

The following two propositions show that the first implication about
porous sets holds.

Proposition 4.12. For any suitable elementary submodel M the follow-
ing holds: Let 〈X, ρ〉 be a metric space. If M contains X and a set A ⊂ X,
then

A is not upper porous in X → A ∩XM is not upper porous in XM .

Proof. Fix a (∗)-elementary submodel M containing X and A. The set
A is upper porous in X if and only if the following formula holds:

(∀x ∈ A)(∃m ∈ Q+)(∀R0 > 0)(∃R ∈ (0, R0))(γ(x,R,A) > Rm).

This formula is equivalent to

(∀x ∈ A)(∃m ∈ Q+)(∀R0 > 0)(∃R ∈ (0, R0))(∃r > Rm)(∃z ∈ X)

(B(z, r) ⊂ B(x,R) \A).

Notice that this last formula is equivalent to one where we take only
rational numbers R0, R and r. Indeed, it is obvious that we may consider
only rational numbers R0. Take any x ∈ A choose m ∈ Q+ as in the formula
above, and pick R0 ∈ Q+. Then

(∃R ∈ (0, R0))(∃r > Rm)(∃z ∈ X)(B(z, r) ⊂ B(x,R) \A).

Fix R ∈ (0, R0), r > Rm and z ∈ X as in the formula above. If we take
a rational number Rq ∈ (R,min{R0, r/m}), then B(z, r) ⊂ B(x,Rq) \ A.
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Thus, R may be without loss of generality considered to be rational. Having
now the rational R ∈ (0, R0), real r > Rm and z ∈ X such that B(z, r) ⊂
B(x,R) \ A, take a rational rq ∈ (Rm, r). Then B(z, rq) ⊂ B(x,R) \ A.
Consequently, r may be without loss of generality considered to be rational.

We have seen that A is not upper porous in X if and only if the following
formula holds:

(4.3)(∗)
(∃x ∈ A)(∀m ∈ Q+)(∃R0 ∈ Q+)(∀R ∈ (0, R0) ∩Q+)(∀r ∈ (Rm,∞) ∩Q+)

(∀z ∈ X)(B(z, r) * B(x,R) \A).

Thus, when A is not upper porous in X we can choose x ∈ A as in (4.3).
Using the elementarity of M , we may assume that x ∈M . Now, fix m ∈ Q+

and pick R0 ∈ Q+ as in (4.3). Fix R ∈ (0, R0) ∩ Q+, r ∈ (Rm,∞) ∩ Q+

and z ∈ XM . Then take r′ ∈ (Rm, r) ∩ Q and z0 ∈ X ∩ M such that
ρ(z, z0) < r − r′. Thus, B(z0, r

′) ⊂ B(z, r). Then

(∗) (∃y ∈ X)(y ∈ B(z0, r
′) \ (B(x,R) \A)).

For r′ and z0 we can find (using the elementarity of M) a point y ∈M such
that

y ∈ B(z0, r
′) \ (B(x,R) \A) ⊂ B(z, r) \ (B(x,R) \A).

Consequently, (4.3) is satisfied in XM so A ∩ XM is not upper porous
in XM .

Proposition 4.13. For any suitable elementary submodel M the fol-
lowing holds: Let X be a metric space. If M contains X and a set A ⊂ X,
then

A is not lower porous in X → A ∩XM is not lower porous in XM .

Proof. Fix a (∗)-elementary submodel M containing X and A. If A is
not lower porous, then as in the proof of Proposition 4.12,

(4.4)(∗)
(∃x ∈ A)(∀m ∈ Q+)(∀R0 ∈ Q+)(∃R ∈ (0, R0))(∀r ∈ (Rm,∞) ∩Q+)

(∀z ∈ X)(B(z, r) * B(x,R) \A).

Using the elementarity of M , choose x ∈ A ∩M as in the formula above.
Then fix m,R0 ∈ Q+ and find R ∈ (0, R0) such that

(∀r ∈ (Rm,∞) ∩Q+)(∀z ∈ X)(B(z, r) * B(x,R) \A).

Using the elementarity of M we may assume that R ∈ M . Now choose
any r ∈ (Rm,∞) ∩ Q+ and z ∈ XM . Then find r′ ∈ (Rm, r) ∩ Q and
z0 ∈ B(z, r − r′) ∩M . Thus, B(z0, r

′) ⊂ B(z, r). Then

(∗) (∃y ∈ X)(y ∈ B(z0, r
′) \ (B(x,R) \A)).
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For r′ and z0 we can find (using the elementarity of M) a point y ∈M such
that y ∈ B(z0, r

′) \ (B(x,R) \A). Consequently,

XM ∩B(z, r) * B(x,R) \A.
Thus, (4.4) is satisfied in XM and so A ∩XM is not lower porous in XM .

To see that the converse holds we will follow the ideas of [9, p. 42]. The
following result is proved there for a rich family of subspaces (in the case
where X is a Banach space). We give the proof for spaces constructed from
elementary submodels (which holds even in the case of metric spaces).

Lemma 4.14. For any suitable elementary submodel M the following
holds: Let 〈X, ρ〉 be a metric space and f : X → R a function. If M contains
X and f , then for every R > 0 and x ∈ XM ,

sup
u∈B(x,R)

f(u) = sup
u∈B(x,R)∩XM

f(u).

Proof. Fix a (∗)-elementary submodelM containingXand f . Fix x∈XM

and R > 0. To verify that supu∈B(x,R) f(u) ≤ supu∈B(x,R)∩XM
f(u) (the

other inequality is obvious), take any S∈Q+ satisfying S<supu∈B(x,R) f(u).
Then there exists u ∈ B(x,R) such that S < f(u). Now, find Rq, ε ∈ Q+

such that Rq < R and ρ(u, x) < Rq − ε. Pick some x0 ∈ B(x, ε/2) ∩M .
Then u ∈ B(x0, Rq − ε/2) and by the absoluteness of the formula

(∗) (∃u ∈ X)(ρ(u, x0) < Rq − ε/2 ∧ S < f(u)),

there exists u ∈ B(x0, Rq − ε/2) ∩M ⊂ B(x,R) ∩M such that S < f(u).
Consequently, S < supu∈B(x,R)∩XM

f(u).

Proposition 4.15. For any suitable elementary submodel M the follow-
ing holds: Let X be a metric space. If M contains X, A ⊂ X and d(·, A),
then for every x ∈ A ∩XM ,

A is lower porous at x → A ∩XM is lower porous at x in XM ,

A is upper porous at x → A ∩XM is upper porous at x in XM .

Proof. Fix a (∗)-elementary submodel M containing X, A and d(·, A),
and fix some x ∈ A ∩ XM such that A is c-upper porous at x for some
rational c > 0. Thus, by Lemmas 4.11 and 4.14,

c ≤ pX(A, x) ≤ 2 lim sup
R→0+

sup
u∈B(x,R)

d(u,A)

R
= 2 lim sup

R→0+
sup

u∈B(x,R)∩XM

d(u,A)

R

≤ 2 lim sup
R→0+

sup
u∈B(x,R)∩XM

d(u,A ∩XM )

R
≤ 2pXM

(A ∩XM , x).

Consequently, A∩XM is c/2-upper porous at x in XM . The result for lower
porosity follows similarly.
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Corollary 4.16. For any suitable elementary submodel M the follow-
ing holds: Let X be a metric space. If M contains X, A ⊂ X and d(·, A),
then

A is lower porous in X ↔ A ∩XM is lower porous in XM ,

A is upper porous in X ↔ A ∩XM is upper porous in XM ,

A is σ-lower porous in X → A ∩XM is σ-lower porous in XM ,

A is σ-upper porous in X → A ∩XM is σ-upper porous in XM .

Proof. Fix a (∗)-elementary submodel M containing X, A and d(·, A).
Then the porosity results follow from Propositions 4.12, 4.13 and 4.15. The
σ-porosity results are then obtained as in the proof of Proposition 4.3 using
the absoluteness of the following two formulas:

(∗) (∃ϕ)
(
ϕ is a function with Domϕ = ω, ϕ(n) is a lower porous

subset of X for every n ∈ ω, and A ⊂
⋃
n∈ω

ϕ(n)
)
.

(∗) (∃ϕ)
(
ϕ is a function with Domϕ = ω, ϕ(n) is an upper porous

subset of X for every n ∈ ω, and A ⊂
⋃
n∈ω

ϕ(n)
)
.

The author does not know whether the converse implications of the pre-
ceding result about σ-porosity hold as well.

5. Properties of functions. Suppose X is a normed linear space and
f a function defined on X. The aim of this section is to study the properties
(P ) of f which are “separably determined”. To be more concrete, we want
to find a closed separable subspace XM such that for every x ∈ XM ,

f has property (P ) at x ↔ f�XM
has property (P ) at x.

Using the method of elementary submodels it is possible to combine the
results about functions with those about sets.

The first property we are interested in is continuity.

Definition 5.1. Let 〈X, ρ〉 and 〈Y, σ〉 be metric spaces, G ⊂ X an open
subset and f : G→ Y a function. Then we denote by C(f) the set of points
where f is continuous.

Theorem 5.2. For any suitable elementary submodel M the following
holds: Let 〈X, ρ〉 and 〈Y, σ〉 be metric spaces, G ⊂ X an open subset and
f : G→ Y a function. If M contains X, f and Y , then C(f) ∈M and for
every x ∈ XM ∩G,

f is continuous at x ↔ f�XM
is continuous at x.
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Proof. Fix a (∗)-elementary submodel M containing X, Y and f . Then
G ∈M , since G = Dom f . Now, C(f) is uniquely defined by the formula

(∗) (∃C)(∀z)(z ∈ C ↔ z ∈ G ∧ f is continuous at z);

hence C(f) ∈ M . Let us prove the desired equivalence. The left-to-right
implication holds for every subspace of X. Conversely, suppose that f is not
continuous at x ∈ XM ∩G. Then we can find k ∈ N such that

(5.1) (∀n ∈ N)(∃y, z ∈ G)[y, z ∈ B(x, 1/n) ∧ σ(f(y), f(z)) > 1/k].

Fix n ∈ N and x0 ∈ B(x, 1/2n)∩M . As B(x0, 1/2n) is an open set contain-
ing x, there exists l ∈ N such that B(x, 1/l) ⊂ B(x0, 1/2n). By (5.1), there
are y, z ∈ G satisfying

y, z ∈ B(x, 1/l) ∧ σ(f(y), f(z)) > 1/k.

Consequently,

(∗) (∃y, z ∈ G)(y, z ∈ B(x0, 1/2n) ∧ σ(f(y), f(z)) > 1/k).

All the free variables in this formula are in M , so by the elementarity of M
and the fact that B(x0, 1/2n) ⊂ B(x, 1/n), there are y, z ∈ G∩M such that

(5.2) y, z ∈ B(x, 1/n) ∧ σ(f(y), f(z)) > 1/k.

We have just shown that for each n ∈ N we can find y, z ∈ G ∩ M
satisfying (5.2). Consequently, f�XM

is not continuous at x.

Having proved that property (P ) of f (continuity in this case) is separa-
bly determined, for the set A := {x : f has property (P ) at x} the following
holds:

A ∩XM = {x : f�XM
has property (P ) at x}.

If A ∈ M , we can combine results about set properties and function prop-
erties. In particular, if A ∈ M , by Proposition 4.1 there exists a closed
separable subspace XM such that

{x : f has property (P ) at x} is dense in X

↔ {x : f�XM
has property (P ) at x} is dense in XM .

Thus, an immediate consequence of the preceding theorem and results
about separably determined set properties is the following.

Corollary 5.3. For any suitable elementary submodel M the following
holds: Let X and Y be metric spaces, G ⊂ X an open subset and f : G→ Y
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a function. Suppose that X is complete. If M contains X, Y and f , then

C(f) is dense in G ↔ C(f�XM
) is dense in G ∩XM ,

C(f) is nowhere dense in G ↔ C(f�XM
) is nowhere dense in G ∩XM ,

C(f) is meager in G ↔ C(f�XM
) is meager in G ∩XM ,

C(f) is residual G ↔ C(f�XM
) is residual in G ∩XM ,

C(f)C is upper porous in X ↔ C(f�XM
)C is upper porous in XM ,

C(f)C is lower porous in X ↔ C(f�XM
)C is lower porous in XM .

Proof. Fix a (∗)-elementary submodel M containing X, Y and f . Then
G ∈ M , because G = Dom f . It is well known that C(f) is a Gδ set [7,
pp. 207–208]. From the preceding theorem, C(f) ∩XM = C(f�XM

). There-
fore, the result is an immediate consequence of Propositions 4.1, 4.2, 4.12,
4.13 and Theorems 4.8, 5.2.

The next property we examine is lower (or upper) semicontinuity. Let
us recall the definition in metric spaces.

Definition 5.4. Let X be a metric space, G ⊂ X an open subset,
f : G→ [−∞,∞] a function and x ∈ G. If for every sequence {xn}n∈ω ⊂ G,

xn → x implies lim inf
n→∞

f(xn) ≥ f(x),

then we say that f is lower semicontinuous (lsc) at x.
If −f is lsc at x, we say that f is upper semicontinuous (usc) at x.

The following lemma will be used to prove that the lower (and upper)
semicontinuity is a separably determined property.

Lemma 5.5. Let X be a metric space, G ⊂ X an open subset, f : G →
[−∞,∞] a function and x ∈ G. Then f is lsc at x if and only if for every
c ∈ Q ∩ (−∞, f(x)) there exists n ∈ N such that f [B(x, 1/n) ∩G] ⊂ (c,∞].

Proof. We may assume that f(x) > −∞ (if f(x) = −∞, then the con-
clusion is obvious).

“⇒” Suppose there exists c ∈ Q ∩ (−∞, f(x)) and {xn}n∈ω ⊂ G such
that xn ∈ B(x, 1/n), but f(xn) ≤ c. Then xn → x, but lim infn→∞ f(xn) ≤
c < f(x). Thus, f is not lsc at x.

“⇐” First, assume that f(x) <∞. Fix ε > 0, c ∈ Q∩(f(x)−ε, f(x)) and
a sequence {xn}n∈ω ⊂ G with xn → x. Then there exists k ∈ N such that
f [B(x, 1/k) ∩ G] ⊂ (c,∞]. Next, there exists n0 such that xn ∈ B(x, 1/k)
for every n ≥ n0. Consequently, f(xn) > c > f(x) − ε for every n ≥ n0;
hence, lim infn→∞ f(xn) ≥ f(x)−ε. As ε could be arbitrarily small, we have
lim infn→∞ f(xn) ≥ f(x).

In the case that f(x) =∞, we fix K ∈ N, c ∈ Q∩ (K,∞) and a sequence
{xn}n∈ω⊂G with xn→x. As above it follows that lim infn→∞ f(xn) ≥ K.
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Proposition 5.6. For any suitable elementary submodel M the follow-
ing holds: Let X be a metric space, G ⊂ X an open subset and f : G →
[−∞,∞] a function. If M contains X and f , then for every x ∈ XM ∩G,

f is lsc at x ↔ f�XM
is lsc at x.

Proof. Immediately from the definition it is obvious that the left-to-right
implication holds for any subspace of X. Fix a (∗)-elementary submodel M
containing Xand f and assume that f is not lsc at x ∈ XM ∩ G. Then,
by Lemma 5.5, there exists c ∈ Q ∩ (−∞, f(x)) such that for every n ∈ N
there exists y ∈ B(x, 1/n) ∩ G such that f(y) ≤ c. Choose any n ∈ N
and x0 ∈ B(x, 1/2n) ∩M . Then B(x0, 1/2n) ⊂ B(x, 1/n) is an open set
containing x, so there exists l ∈ N such that B(x, 1/l) ⊂ B(x0, 1/2n). For
such an l ∈ N there exists y ∈ B(x, 1/l)∩G such that f(y) ≤ c. Consequently,

(∗) (∃y ∈ B(x0, 1/2n) ∩G)(f(y) ≤ c).

Using the elementarity of M , we find y ∈ B(x0, 1/2n)∩G∩M ⊂ B(x, 1/n)∩
G ∩M such that f(y) ≤ c. For any n ∈ N we have found y ∈ B(x, 1/n) ∩
G ∩XM such that f(y) ≤ c. By Lemma 5.5, f�XM

is not lsc at x.

Corollary 5.7. For any suitable elementary submodel M the following
holds: Let X be a metric space, G ⊂ X an open subset and f : G→ [−∞,∞]
a function. Let − denote the operation which maps every function h : G→
[−∞,∞] to −h. If M contains X, f and −, then for every x ∈ XM ∩G,

f is usc at x ↔ f�XM
is usc at x.

Proof. Fix a (∗)-elementary submodel M containing X, f and −. Then
−f ∈M , thus it is enough to use the preceding proposition.

The last function property examined in this article is Fréchet differen-
tiability. We use the following definition.

Definition 5.8. Let X and Y be normed linear spaces, G ⊂ X an open
subset, f : G→ Y a function and x ∈ G.

(i) If there exists a continuous linear operator A : X → Y such that

lim
u→x

f(u)− f(x)−A(u− x)

‖u− x‖
= 0,

then we say that f is Fréchet differentiable at x. We denote by D(f) the set
of points at which f is Fréchet differentiable.

(ii) For c, ε, δ > 0 we define D(f, c, ε, δ) as the set of all x ∈ G satisfying∥∥∥∥f(y + tv)− f(y)

t
− f(y)− f(y − hv)

h

∥∥∥∥ ≤ ε
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whenever

v ∈ X, ‖v‖ = 1, t > 0, h > 0, y ∈ B(x, δ), y − hv ∈ B(x, δ),

y + tv ∈ B(x, δ) and min(t, h) > c‖y − x‖.

The following relationship between sets D(f, c, ε, δ) and Fréchet differ-
entiability is shown in [12].

Lemma 5.9. Let X be a normed linear space, G ⊂ X an open subset
and Y a Banach space. Let f : G → Y be a function. Then f is Fréchet
differentiable at a point x ∈ G if and only if f is continuous at x and
x ∈

⋂
n∈N

⋃
k∈ND(f, 1/n, 1/n, 1/k).

Using this lemma, it is shown in [12] that the property of being Fréchet
differentiable is separably determined. Let us prove a similar result using
the method of elementary submodels.

Theorem 5.10. For any suitable elementary submodel M the following
holds: Let X be a normed linear space, G ⊂ X an open subset and Y a
Banach space. Let f : G → Y be a function. If M contains X, f and Y ,
then D(f) ∈M and for every x ∈ XM ∩G,

f is Fréchet differentiable at x ↔ f�XM
is Fréchet differentiable at x.

Proof. Fix a (∗)-elementary submodel M containing X, Y and f . Now,
D(f) is the object uniquely defined by the formula

(∗) (∃D)(∀z)(z ∈ D ↔ z ∈ D ∧ f is Fréchet differentiable at z),

hence D(f) ∈M . Fix x ∈ XM ∩G. Then, by Theorem 5.2, f is continuous
at x if and only if f�XM

is continuous at x. Thus, using Lemma 5.9, it is
sufficient to check that

x ∈
⋂
n∈N

⋃
k∈N

D(f, 1/n, 1/n, 1/k) ↔ x ∈
⋂
n∈N

⋃
k∈N

D(f�XM
, 1/n, 1/n, 1/k).

The left-to-right implication is obvious (it holds for every subspace of X).
Conversely, assume that x /∈

⋂
n∈N

⋃
k∈ND(f, 1/n, 1/n, 1/k). Fix n ∈ N

satisfying x /∈
⋃
k∈ND(f, 1/n, 1/n, 1/k). Then for every k ∈ N,

(∗) (∃v ∈ X, ‖v‖ = 1)(∃t, h > 0)(∃y ∈ X) y ∈ B(x, 1/k), y − hv ∈ B(x, 1/k), y + tv ∈ B(x, 1/k),

min(t, h)>
1

n
(‖y−x‖+0),

∥∥∥∥f(y+tv)−f(y)

t
− f(y)−f(y−hv)

h

∥∥∥∥> 1

n

 .

Pick some v, t, h and y as in the formula above and find η ∈ Q+ such that
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‖y − x‖ < 1

k
− 2η, ‖y − hv − x‖ < 1

k
− 2η,

‖y + tv − x‖ < 1

k
− 2η, min(t, h) >

1

n
(‖y − x‖+ 2η).

Further, take x0 ∈ B(x, η) ∩M . Then

‖y − x0‖ ≤ ‖y − x‖+ ‖x− x0‖ <
1

k
− η, ‖y − hv − x0‖ <

1

k
− η,

‖y + tv − x0‖ <
1

k
− η, 1

n
(‖y − x0‖+ η) ≤ 1

n
(‖y − x‖+ 2η) < min(t, h).

Using the elementarity of M we get the existence of v ∈ X∩M with ‖v‖ = 1,
t, h ∈ R+ ∩M and y ∈ X ∩M such that:

y ∈ B(x0, 1/k − η) ⊂ B(x, 1/k), y − hv ∈ B(x0, 1/k − η) ⊂ B(x, 1/k),

y + tv ∈ B(x0, 1/k − η) ⊂ B(x, 1/k),

min(t, h) >
1

n
(‖y − x0‖+ η) >

1

n
‖y − x‖,∥∥∥∥f(y + kv)− f(y)

k
− f(y)− f(y − hv)

h

∥∥∥∥ > 1

n
.

Consequently, x /∈
⋂
n∈N

⋃
k∈ND(f�XM

, 1/n, 1/n, 1/k).

We would like to combine this result with Theorem 4.8, stating that
being a residual subset is a separably determined property for sets with
the Baire property in complete metric spaces. The following result comes
from [12].

Theorem 5.11. Let X be a normed linear space, G ⊂ X an open subset
and Y a Banach space. Let f : G→ Y be a function. Then D(f) is an Fσδ
set.

Using this result we immediately get the following corollary (obviously,
even more is true, as in the case of continuity).

Corollary 5.12. For any suitable elementary submodel M the follow-
ing holds: Let X, Y be Banach spaces, G ⊂ X an open subset and f : G→ Y
a function. If M contains X, Y and f , then

D(f) is dense in G ↔ D(f�XM
) is dense in G ∩XM ,

D(f) is residual in G ↔ D(f�XM
) is residual in G ∩XM .

6. Applications. In this last section we give two applications of the
theorems proved above. Both extend the validity of already known theo-
rems to the nonseparable setting. In the first case we take up the result
proved in [13, Proposition 3.3] for spaces with separable dual. The method
of elementary submodels will allow us to prove that the same theorem holds
in general Asplund spaces. The second application will extend the result
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proved in [8, Theorem 4.8] for C(K) spaces with K countable compact and
for subspaces of c0 to the case of C(K) spaces with K a general scattered
compact space and to subspaces of c0(Γ ) with Γ possibly uncountable.

Separable reductions of the results mentioned above have already been
examined using the method of rich families (for the concept of rich families
see Section 3). In the first case Zaj́ıček [13, Theorem 5.2] only achieved to
prove a weaker variant of the theorem in Asplund spaces. In the second
case, the separable reduction to subspaces of c0(Γ ) easily follows using the
work of J. Lindenstrauss, D. Preiss and J. Tǐser [9, Corollary 5.6.2] and
the result of Zaj́ıček [13, Theorem 4.7]. The extension to C(K) spaces with
K scattered compact can be achieved using the result of Górak [4, proof
of Theorem 2.1] and the above mentioned results by Lindenstrauss, Preiss,
Tǐser and Zaj́ıček.

Remark 6.1. Various combinations of the above proved theorems may
be considered to be applications as well. For example, by Corollary 5.12 the
following holds: Let X,Y be Banach spaces, f : X → Y a function. Then for
every separable subspace V ⊂ X there exists a closed separable subspace
W ⊂ X with V ⊂ W such that f is Fréchet differentiable on a residual set
if and only if f�W is Fréchet differentiable on a residual set in W .

Let us now discuss the first application.
L. Zaj́ıček proved in [13] a result included as Theorem 6.5 below. This

theorem was proved for spaces with separable dual. We will use the method
of elementary submodels to get the same result for Asplund spaces.

In the following, unless stated otherwise, X will be a Banach space. The
equality X = X1 ⊕ · · · ⊕ Xn means that X is the direct sum of nontrivial
closed linear subspaces X1, . . . , Xn and the corresponding projections Pi :
X → Xi are continuous.

Recall that X is an Asplund space if each continuous convex real-valued
function on X is Fréchet differentiable at each point of X except on a first
category set; it is known that X is an Asplund space if and only if Y ∗ is
separable for every separable subspace Y ⊂ X.

We will need the following well-known fact (see [13]).

Lemma 6.2. Let X be a Banach space, 0 6= u ∈ X, and suppose X =
W ⊕span{u}. Then the mapping w ∈W 7→ w+Ru ∈ X/span{u} is a linear
homeomorphism.

The following definition is used in the theorem from [13].

Definition 6.3. Let f be a real-valued function defined on an open
subset G of a Banach space X.

(i) We say that f is generically Fréchet differentiable on G if the set
D(f) of points where f is Fréchet differentiable is residual in G.
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(ii) We say that f is strictly differentiable at a ∈ G if there exists
x∗ ∈ X∗ such that

lim
(x,y)→(a,a), x 6=y

f(y)− f(x)− x∗(y − x)

‖y − x‖
= 0.

(iii) We say that f is essentially smooth (esm for short) on the line L =
a+ Rv (where a ∈ X, 0 6= v ∈ X) if the function φ(t) := f(a+ tv)
is strictly differentiable at a.e. point of its domain. (Obviously, the
definition is correct: it does not depend on the choice of a or v.)

(iv) We say that a line L is parallel to v (where 0 6= v ∈ X) if there
exists a ∈ X such that L = a+ Rv.

(v) We say that f is essentially smooth on a generic line parallel to
0 6= v ∈ X if f is essentially smooth on all lines parallel to v, except
for a first category set of lines in the factor space X/span{v}.

Remark 6.4. Let X be a normed linear space, G ⊂ X an open subset,
f : G → R function, Y a subspace of X and a, v ∈ Y , v 6= 0. Consider the
line L = a+Rv. Then it follows immediately from the definition above that
L ⊂ Y and that f is essentially smooth on L if and only if f�Y is.

The theorem proved in [13, Proposition 3.3] reads as follows.

Theorem 6.5. Let X = X1⊕· · ·⊕Xn be a Banach space with separable
dual X∗. Let G ⊂ X be an open set and f : G → R a locally Lipschitz
function. Suppose that, for each 1 ≤ i ≤ n, there exists a dense set Di ⊂ SXi

such that, for each v ∈ Di, f is essentially smooth on a generic line parallel
to v. Then f is generically Fréchet differentiable on G.

Using the concept of rich families, it is proved in [13, Theorem 5.2] that
this result holds under slightly stronger assumptions even in the case of
nonseparable Asplund spaces. Using the method of elementary submodels
we will prove that the conclusion of Theorem 6.5 holds in exactly the same
form in nonseparable Asplund spaces.

Let us start with the following lemma.

Lemma 6.6. For any suitable elementary submodelM the following holds:
Let X be a normed linear space and X = X1⊕· · ·⊕Xn. Let P1, . . . , Pn be the
corresponding projections onto X1, . . . , Xn. If M contains X and P1, . . . , Pn,
then

XM = P1(XM )⊕ · · · ⊕ Pn(XM ).

Proof. Fix a (∗)-elementary submodel M containing X and P1, . . . , Pn.
Then, by Proposition 2.9, Pi(X∩M) ⊂ X∩M for each i ∈ {1, . . . , n}. From
the continuity of the projections P1, . . . , Pn it follows that Pi(XM ) ⊂ XM

for each i ∈ {1, . . . , n}. Consequently, XM = P1(XM )⊕ · · · ⊕ Pn(XM ).



Separable reduction theorems 217

Theorem 6.7. Let X = X1⊕ · · ·⊕Xn be an Asplund space. Let G ⊂ X
be an open set and f : G → R a locally Lipschitz function. Suppose that,
for each 1 ≤ i ≤ n, there exists a dense set Di ⊂ SXi such that, for each
v ∈ Di, f is essentially smooth on a generic line parallel to v. Then f is
generically Fréchet differentiable on G.

Proof. Let P1, . . . , Pn be the continuous projections onto the subspaces
X1, . . . , Xn. By Corollary 5.12, Propositions 4.1, 2.10, 3.2 and Lemma 6.6,
there exist formulas ϕ1, . . . , ϕl and a countable set Y such that for the set

Z := {X, f, P1, . . . , Pn, D1, . . . , Dn, SX1 , . . . , SXn , Y }
and for every elementary submodel M ≺ (ϕ1, . . . , ϕl;Z) it is true that:

(P1) Every countable set S ∈M is a subset of M .
(P2) XM = P1(XM )⊕ · · · ⊕ Pn(XM ).
(P3) Whenever sets A,S ⊂ X are in M , then

A ∩ S is dense in S ↔ A ∩ S ∩XM is dense in S ∩XM .

(P4) D(f) is residual in G↔ D(f�XM
) is residual in G ∩XM .

(P5) XM is a separable subspace of X.

Without loss of generality we may assume that the list ϕ1, . . . , ϕl is
subformula closed. Notice that for every subspace N of X satisfying N =
P1(N)⊕ · · · ⊕ Pn(N) we have SXi ∩N = SPi(N). Indeed,

SXi ∩N = SX ∩Xi ∩N = SX ∩Xi ∩ Pi(N) = SX ∩ Pi(N) = SPi(N).

Let us define inductively a sequence {Mk}k∈ω of elementary submodels:

• For k = 0 choose any elementary submodel M0 ≺ (ϕ1, . . . , ϕn;Z).
• Whenever Mk is defined, we pick for every i ∈ {1, . . . , n} a countable

subset Ck,i of Di ∩ XMk
dense in SPi(XMk

) = SXi ∩ XMk
. Then, for

every v ∈ Ck,i, it follows from the assumptions and Lemma 6.2 that
the set {a ∈ G : f is esm on the line a+Rv} is residual. Consequently,
there exists a Gδ dense subset Gk,v such that f is esm on each line
parallel to v, intersecting Gk,v. Now we let Mk+1 be an elementary
submodel for the formulas ϕ1, . . . , ϕl containing {Z,Ck,1, . . . , Ck,n,Mk,
{Gk,v}v∈⋃n

i=1 Ck,i
}.

Finally, we define M :=
⋃
k∈ωMk. Then, by Lemma 2.4, M≺(ϕ1, . . . , ϕn;Z).

Therefore, (P1)–(P5) hold for M .

We need to verify that for the space XM and the function f�XM
the con-

ditions of Theorem 6.5 are satisfied. Then, by (P4), f is generically Fréchet
differentiable on G.

Since X is an Asplund space, (XM )∗ is separable. Obviously, f�XM
is

locally Lipschitz. By (P2), XM = P1(XM )⊕· · ·⊕Pn(XM ). For i ∈ {1, . . . , n}
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we define Ci :=
⋃
k∈ω Ck,i. Let us verify that this set is dense in SPi(XM ) =

SXi ∩XM .

Fix ε > 0 and y ∈ SXi ∩ XM = SXi ∩
⋃
k∈ω(X ∩Mk). Then find some

y0 ∈ B(y, ε/3) ∩
⋃
k∈ω(X ∩Mk) and take k ∈ ω such that y0 ∈ X ∩Mk.

Then y0/‖y0‖ ∈ XMk
∩ SXi . Furthermore,∥∥∥∥ y0

‖y0‖
− y
∥∥∥∥ ≤ ∥∥∥∥ y0

‖y0‖
− y0

∥∥∥∥+ ‖y0 − y‖ =
∣∣1− ‖y0‖∣∣+ ‖y0 − y‖

=
∣∣‖y‖ − ‖y0‖∣∣+ ‖y0 − y‖ ≤ 2‖y0 − y‖ < 2ε/3.

Since Ck,i is dense in SXi ∩ XMk
, there exists ck,i ∈ Ck,i ⊂ Ci such that

‖ck,i − y0/‖y0‖ ‖ < ε/3. Consequently,

‖ck,i − y‖ ≤
∥∥∥∥ck,i − y0

‖y0‖

∥∥∥∥+

∥∥∥∥ y0
‖y0‖

− y
∥∥∥∥ < ε.

Notice that, by (P1), Ci ⊂ M for every i ∈ {1, . . . , n}. It remains to
show that for every i ∈ {1, . . . , n} and v ∈ Ci the set

Rv := {a ∈ G ∩XM : f�XM
is esm on the line a+ Rv}

is residual in XM .
Fix v ∈ Ci and find k ∈ ω such that v ∈ Ck,i. Then Rv ⊃ Gk,v ∩XM . As

Gk,v ∈ M , using (P3), Gk,v ∩ XM is a dense Gδ set in XM . Consequently,
Rv is residual in XM .

The second application extends [8, Theorem 4.8], recalled here as The-
orem 6.11 below. This theorem was proved for C(K) spaces where K is a
countable compact space, and for subspaces of c0. We will use the method
of elementary submodels to get the same result for C(K) spaces where K
is a scattered compact space, and for subspaces of c0(Γ ) for Γ possibly
uncountable.

Recall that a set A ⊂ T (where T is an arbitrary topological space)
is called scattered if every nonempty subset of A has an isolated point.
It is well known that a continuous image of a scattered compact space is
scattered and that a metrizable scattered compact space is countable (see
[3, Lemmas 14.20 and 14.21]). Using those two well-known facts we easily
get the following.

Lemma 6.8. Let K, L be compact spaces, with K scattered and L metriz-
able, and let f : K → L be a continuous mapping onto L. Then L is a
countable set.

Recall that a Banach space Y is said to have the Radon–Nikodým prop-
erty (RNP) if every Lipschitz function f : R → Y is differentiable almost
everywhere (or equivalently every such f has a point of differentiability;
see [8]).
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The result of J. Lindenstrauss and D. Preiss uses the notion of Γ -null
sets. Therefore, let us give some basic notations. For further information
about this notion see [9, Chapter 5].

Let X be a Banach space and let T := [0, 1]N be endowed with the
product topology and product Lebesgue measure L N. We denote by Γ (X)
the space of continuous mappings

γ : T → X

having continuous partial derivatives Djγ (we consider one-sided derivatives
at points where the jth coordinate is 0 or 1). We equip Γ (X) with the
topology generated by the seminorms

‖γ‖∞ = sup
t∈T
‖γ(t)‖ and ‖γ‖k = sup

t∈T
‖Dkγ(t)‖, k ≥ 1.

Equivalently, this topology may be defined by the seminorms

‖γ‖≤k = max{‖γ‖∞, ‖γ‖1, . . . , ‖γ‖k}.
The space Γ (X) with this topology is a Fréchet space; in particular it is a
Polish space whenever X is separable.

We also define Γn(X) = C1([0, 1]n, X) and consider the norm ‖ · ‖≤n
on this space. Notice that Γn(X) is a subspace of Γ (X) in the sense that
functions depending on the first n coordinates only are naturally identified
with functions from Γn(X).

A Borel subset A ⊂ X is called Γ -null if the set {γ ∈ Γ (X) : L Nγ−1(A)
= 0} is residual in Γ (X).

The following two lemmas come from [9, Lemmas 5.3.2 and 5.4.1].

Lemma 6.9. Whenever (Xn) is an increasing sequence of subspaces of
X whose union is dense in X, then

⋃∞
n=1 Γn(Xn) is dense in Γ (X).

Lemma 6.10. Let A be a Borel subset of a Banach space X. Then the
set {γ ∈ Γ (X) : L Nγ−1(A) = 0} is Borel.

The result from [8, Theorem 4.8] is as follows.

Theorem 6.11. The following spaces have the property that every Lip-
schitz mapping of them into a space with the RNP is Fréchet differentiable
everywhere except on a Γ -null set: C(K) for countable compact K and sub-
spaces of c0.

Let us first focus on the set property of being Γ -null. To see that it is
separably determined, we give the following lemmas.

Lemma 6.12. Let X be a finite-dimensional Banach space and let
{x1, . . . , xn} be a basis of X. Then for every k ∈ ω,

Γk(X) =
{ n∑
i=1

γixi : γi ∈ Γk(R)
}
.
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Proof. For every k ∈ ω, γ ∈ Γk(X) and t ∈ [0, 1]k there are unique
numbers γ1(t), . . . , γn(t) such that γ(t) =

∑n
i=1 γi(t)xi. It is easy to verify

that for every i ∈ {1, . . . , n} the mapping γi is an element of Γk(R) and
that Djγ(t) =

∑n
i=1Djγi(t)xi whenever j ∈ {1, . . . , k} and t ∈ [0, 1]k. Thus,

Γk(X) = {
∑n

i=1γixi : γi ∈ Γk(R)}.
Lemma 6.13. Let X be a separable Banach space with a countable dense

set D. Then

Γ (X) = {
∑n

i=1γixi : γi ∈ Γn(R), xi ∈ D, n ∈ N}.
Proof. Let N be either the dimension of X if it is finite, or N = N if X is

infinite-dimensional. Then take a countable linearly dense set {xn}n∈N ⊂ D
which is linearly independent. Denote by Xn the subspace span{xi : i ≤ n}.
Then, by the preceding lemma and Lemma 6.9, the set {

∑n
i=1γixi : γi ∈

Γn(R), n ∈ N} is dense in Γ (X).

Remark 6.14. The preceding lemma holds even in the case when X is
nonseparable (with uncountable set D := X). This is because the range of
every γ ∈ Γ (X) is separable. Thus, considering that γ ∈ Γ (span{Rng γ}),
we may use the result for separable spaces.

Lemma 6.15. For any suitable elementary submodel M the following
holds: Let X be a Banach space. If M contains X and {Γn(X)}∞n=1, then

Γ (X) ∩M = Γ (XM ).

Proof. Fix a (∗)-elementary submodel M containing X, {Γn(R)}∞n=1 and
{Γn(X)}∞n=1 (it is not necessary to mention the set {Γn(R)}∞n=1 in the as-
sumptions of the lemma as it does not depend on the space X—see Con-
vention on page 195). Then, by Proposition 2.9, Γ (X) ∩ M ⊂ Γ (XM );
consequently, Γ (X) ∩M ⊂ Γ (XM ).

For the other inclusion, denote, for every n ∈ N,

An :=
{ n∑
i=1

γixi : γi ∈ Γn(R), xi ∈ X ∩M
}
.

Using the preceding lemma, it is sufficient to show that for every n ∈ N,
An ⊂ Γ (X) ∩M . Fix n ∈ N. Using the absoluteness of the formula (for
every n ∈ N the formula is the same—what does change is the free variable
Γn(R) in it)

(∗) (∃D)(D is countable and dense in Γn(R)),

we may find a countable set D ∈M such that D is dense in Γn(R). Moreover,
whenever γ0 ∈ Γ (R)∩M and x0 ∈ X∩M , then γ0x0 is the function uniquely
defined by the formula

(∗) (∃f ∈ Γn(X))(∀t ∈ [0, 1]n)(f(t) = γ0(t)x0);
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consequently, γ0x0 ∈M . As the space Γ (X)∩M is Q-linear, it follows that
{
∑n

i=1 γixi : γi ∈ D,xi ∈ X ∩M} ⊂ Γ (X) ∩M . It is easy to verify that this

subset of Γ (X) ∩M is dense in An.

Remark 6.16. The preceding lemma is of independent interest. Observe
that combining it with the results from the previous sections one finds that,
for every suitable elementary submodel and for every set A ⊂ Γ (X) con-
tained in M , the set A is dense (resp. nowhere dense) in Γ (X) if and only if
A∩Γ (XM ) is dense (resp. nowhere dense) in Γ (XM ). When A has the Baire
property, then the same equivalence holds for the residuality of A. This re-
sult gives us separable subspaces with properties that were not achieved in
[9] using the method of rich families (see [9, Lemma 5.6.1]).

Corollary 6.17. For any suitable elementary submodel M the follow-
ing holds: Let X be a Banach space. If M contains X, {Γn(X)}∞n=1 and a
Borel set A, then

A is Γ -null in X ↔ A ∩XM is Γ -null in XM .

Proof. Fix a (∗)-elementary submodel M containing X, {Γn(X)}∞n=1

and a Borel set A. Then, in view of Lemmas 6.10 and 6.15, the set
{γ ∈ Γ (X) : L Nγ−1(A) = 0} is residual in Γ (X) if and only if {γ ∈ Γ (XM ) :
L Nγ−1(A ∩XM ) = 0} is residual in Γ (XM ).

Using the preceding results, we can give the promised extension of The-
orem 6.11.

Theorem 6.18. The following spaces have the property that every Lip-
schitz function on them into a space with the RNP is Fréchet differentiable
everywhere except on a Γ -null set: C(K) for K scattered compact and sub-
spaces of c0(Γ ), where Γ is an arbitrary set.

Proof. Suppose we have a space X as in the assumptions (either X =
C(K) for K scattered compact, or X ⊂ c0(Γ )), a Banach space Y with RNP
and a Lipschitz function f : X → Y . Using the preceding corollary and
Theorem 5.10, choose an elementary submodel M satisfying:

• XM is a separable subspace of X.
• f is Fréchet differentiable everywhere except on a Γ -null set in X

if and only if f�XM
is Fréchet differentiable everywhere except on a

Γ -null set in XM .

If X = C(K), then (using Lemma 3.7) choose M such that in addition
XM = C(K/M), where K/M is metrizable compact and a continuous image
ofK. By Lemma 6.8,K/M is a countable compact space. Hence, by Theorem
6.11, f�XM

is Fréchet differentiable everywhere except on a Γ -null set in XM .
Therefore, f is Fréchet differentiable everywhere except on a Γ -null set.
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If X = c0(Γ ), then XM is a separable subspace of X, so XM is a subspace
of c0. Then, by the same arguments as above, f is Fréchet differentiable
everywhere except on a Γ -null set.
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