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On hereditarily normal topological groups
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Raushan Z. Buzyakova (Greensboro, NC)

Abstract. We investigate hereditarily normal topological groups and their subspaces.
We prove that every compact subspace of a hereditarily normal topological group is metriz-
able. To prove this statement we first show that a hereditarily normal topological group
with a non-trivial convergent sequence has Gδ-diagonal. This implies, in particular, that
every countably compact subspace of a hereditarily normal topological group with a non-
trivial convergent sequence is metrizable. Another corollary is that under the Proper
Forcing Axiom, every countably compact subspace of a hereditarily normal topological
group is metrizable.

1. Introduction. It is a known fact that a hereditarily normal com-
pact topological group is metrizable. This fact follows from the theorem of
R. Engelking [5] that every compact topological group contains a subspace
homeomorphic to {0, 1}τ , where τ is the weight of the group. It is also a
corollary to deep work of other mathematicians. For a proof of this theorem
and historical development around it we refer to [1, Theorem 4.2.1] and [9].

In this paper we show that not only compact hereditarily normal topo-
logical groups are metrizable, but any compact subset of any hereditarily
normal topological group is metrizable as well (Theorem 2.9). Thus, in the
class of compact spaces, only metrizable ones can be embedded into hered-
itarily normal topological groups.

After it was established that every compact hereditarily normal topo-
logical group is metrizable it was natural to wonder if compactness could
be relaxed to countable compactness. The example of Hajnal and Juhász
in [6] closed this door in ZFC. More precisely, assuming the Continuum
Hypothesis, Hajnal and Juhász constructed a hereditarily normal hereditar-
ily separable countably compact topological group which is not compact,
hence not metrizable. The example has many additional features and one
of them is that it lacks non-trivial convergent sequences. In [3, Theorem 3],
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T. Eisworth showed that this feature is not an accessory but a necessity.
Eisworth’s result is a corollary to one of our main theorems. Namely, we
prove that every hereditarily normal topological group with a non-trivial
convergent sequence has a Gδ-diagonal (Theorem 2.3). This result and the
theorem of Chaber [2] imply that every countably compact subset of a hered-
itarily normal topological group with a non-trivial convergent sequence is
metrizable. In [8], Nyikos, Soukup, and Veličković proved that under the
Proper Forcing Axiom, every countably compact hereditarily normal space
is sequentially compact. This result and our Theorem 2.3 imply that under
the Proper Forcing Axiom, every countably compact subset of a hereditar-
ily normal topological group is metrizable. This, in its turn, implies another
earlier result of Eisworth [3, Corollary 10] that under PFA, every countably
compact hereditarily normal topological group is metrizable. We would like
to mention that this work was inspired by the well-known necessity con-
dition of Katětov for hereditary normality of the product of two spaces
[7, Theorem 1].

In notation and terminology we will follow [4]. We reserve the symbol ?
for the binary group operation of a group G, and the letter e for the neutral
element of G. Following a group theory convention, we will omit the group
binary operation symbol in standard situations. In particular, for elements
a, b ∈ G we will write ab instead of a ? b. However, in a few places in this
paper, the use of the symbol ? will be necessary for the sake of clarity and
in some cases to stress the relation of Katětov’s argument to our work.

A space X has a Gδ-diagonal if the diagonal {〈x, x〉 : x ∈ X} is the
intersection of a countable family of its open neighborhoods in X × X.
A non-trivial convergent sequence is a space homeomorphic to the subspace
of the reals {0} ∪ {1/n : n = 1, 2, . . .}. Since we will often switch from a
given space to its subspaces and vice versa we agree that when dealing with
a space X, its subspace Y , and subsets S ⊂ X and P ⊂ Y , we denote by S̄
the closure of S in X and by clY (P ) the closure of P in Y . All spaces are
assumed to be T1.

2. Results. For our argument we will need the following extract from
Katětov’s proof of his theorem in [7]. For convenience, we also give a sketch
of Katětov’s proof with some notational changes that fit our goal.

Theorem 2.1 (Katětov [7, extract from Theorem 1]). Let T be a topo-
logical space and let t ∈ T have uncountable pseudocharacter in T . Also let
S be a separable topological space and let s ∈ S be a limit point of S. Then
A = [S × {t}] \ {〈s, t〉} and B = [{s} × T ] \ {〈s, t〉} are closed and disjoint
sets in Z = [S×T ] \ {〈s, t〉} that cannot be separated by open neighborhoods
in Z.
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Proof. (Follows Katětov’s argument.) Closedness and disjointness are
clear. Let U be a neighborhood of A in Z. We need to show that clZ(U)
meets B. Fix a countable set D ⊂ S which is dense in S. For each x ∈ D\{s},
fix a neighborhood Ux of t in T such that {x} × Ux ⊂ U . Since t has
uncountable pseudocharacter, we conclude that there exists y ∈

⋂
{Ux : x ∈

D \ {s}} distinct from t. This means that [D \ {s}] × {y} is in U . Since D
is dense in S, we conclude that 〈s, y〉 ∈ clZ(U) ∩B.

Lemma 2.2 (Folklore). Folklore Let G be a topological group. If the di-
agonal {〈g, g〉 : g ∈ G} has uncountable pseudocharacter in G×G, then the
neutral element e of G has uncountable pseudocharacter in G.

Proof. The conclusion follows from the fact that ?−1(e) = {〈g, g−1〉 : g ∈
G} and the set on the right has the same pseudocharacter in G × G−1 as
the diagonal {〈g, g〉 : g ∈ G} in G×G.

Theorem 2.3. A hereditarily normal topological group with a non-trivial
convergent sequence has Gδ-diagonal.

Proof. Let G be a topological group with a non-trivial convergent se-
quence. Assume that the diagonal {〈g, g〉 : g ∈ G} is not a Gδ-set in G×G.
We need to show that G is not hereditarily normal. By Lemma 2.2, the
pseudocharacter of the neutral element e is uncountable. Let {en : n ∈ ω}
be a sequence that converges to e such that en 6= e for every n ∈ ω. Such
a sequence exists due to homogeneity of G and the theorem’s hypothesis.
For every n ∈ ω, select an open neighborhood Un of e whose closure does
not meet {en, e−1n }. Put T =

⋂
n∈ω Un. Since the pseudocharacter of e is

uncountable, we conclude that e is a limit point for the closed set T . Since
T is a Gδ-set in G and {e} is not, we conclude that e has uncountable pseu-
docharacter in T . Put S = {e} ∪ {en : n ∈ ω}. The following three sets are
the key objects for the remainder of our argument:

Z = (S×T )\{〈e, e〉}, A = {〈en, e〉 : n ∈ ω}, B = {〈e, y〉 : y ∈ T \{e}}.
Since e has uncountable pseudocharacter in T , by Katětov’s theorem (The-
orem 2.1), A and B are closed and disjoint subsets of Z that cannot be
separated by open sets in Z. To finish the proof, it suffices to show that
?(A) = {en : n ∈ ω} and ?(B) = T \ {e} are closed and disjoint subsets of
?(Z) = ST \ {e}.

Let us first prove that {en : n ∈ ω} is closed in ST \ {e}. For this
observe that e is the only limit point of {en : n ∈ ω} that does not belong
to {en : n ∈ ω}. Since e does not belong to ST \ {e} either, we conclude
that {en : n ∈ ω} is closed in ST \ {e}. The proof that T \ {e} is closed in
ST \ {e} is analogous.

Now let us show that {en : n ∈ ω} and T \{e} are disjoint. For this recall
that T =

⋂
n∈ω Un, where Un misses {en} for each n.
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Chaber proved in [2] that a countably compact space with Gδ-diagonal is
metrizable. Chaber’s result and Theorem 2.3 imply the following statements.

Corollary 2.4. Every countably compact subspace of a hereditarily
normal topological group that contains a non-trivial convergent sequence is
metrizable.

Corollary 2.5 ([3, Corollary 10]). Every countably compact hereditar-
ily normal topological group that contains a non-trivial convergent sequence
is metrizable.

In [8], Nyikos, Soukup, and Veličković proved that under the Proper
Forcing Axiom, every countably compact hereditarily normal space is se-
quentially compact. This theorem and Corollary 2.4 imply the following
statement.

Corollary 2.6. Assume the Proper Forcing Axiom. Then every count-
ably compact subspace of a hereditarily normal topological group is metriz-
able.

Next we shall prove that every compact subset of a hereditarily normal
topological group is metrizable. We start with the following lemma.

Lemma 2.7. Let G be a hereditarily normal topological group and let S
and T be its compact subspaces. Suppose that S is separable, s is a limit
point of S, and t ∈ T has uncountable character in T . Then there exists a
compactum C ⊂ T such that t has uncountable character in C and sC ⊂ St.

Proof. Let us show that C = {g ∈ T : sg ∈ St} is as desired. Since S and
T are compact, we conclude that C is compact. Clearly t ∈ C. It is left to
show that t has uncountable character in C. We assume the contrary. Then
there exists a countable family {Un : n ∈ ω} of neighborhoods of t in T
such that F =

⋂
{Un : n ∈ ω} misses C \ {t}. Since χ(t, T ) is uncountable,

χ(t, F ) is uncountable as well. To reach a contradiction it suffices to find
g ∈ F \ {t} such that sg ∈ St.

For this put A = [S × {t}] \ {〈s, t〉} and B = [{s} × F ] \ {〈s, t〉}. By
Katětov’s theorem (Theorem 2.1), the sets A and B are closed and disjoint
subsets of Z = [S × F ] \ {〈s, t〉} that cannot be separated by disjoint open
neighborhoods in Z. Put Z1 = Z \ ?−1(st). Clearly Z1 is open in Z and
contains both A and B. Therefore A and B cannot be separated by open
neighborhoods in Z1 either. Since G is hereditarily normal, the closures of
?(A) = St \ {st} and ?(B) = sF \ {st} in ?(Z1) ⊂ G \ {st} must meet. Since
St is compact and st 6∈ G \ {st}, we conclude that St \ {st} is closed in
G \ {st}. The proof that sF \ {st} is closed in G \ {st} is analogous. Since
St \ {st} and sF \ {st} are closed in G \ {st}, we conclude that they meet.
Therefore, we can find g ∈ F \ {t} such that sg ∈ St.
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We are now ready to prove our main result. For reference we will first
formulate an often-used corollary from the following well-known result of
Shapirovskĭı [10, Theorem 2], in which a π-base at x ∈ X is a collection U
of non-void open subsets of X such that every open neighborhood of x in X
contains an element of U .

Theorem 2.8 (Shapirovskĭı, [10, Corollary to Theorem 2]). Any hered-
itarily normal compact space has a point with countable π-base.

Theorem 2.9. Every compact subset of a hereditarily normal topological
group is metrizable.

Proof. Let G be a hereditarily normal topological group and let X be its
compact subset. We may assume that X is infinite. By virtue of Theorem
2.3 it suffices to find a non-trivial convergent sequence in G. Assume that
no such sequences exist in G.

Claim 1. If Z is an infinite compact subspace of G then its derived set
Z ′ has no isolated points.

If Z ′ has an isolated point p then p is the limit of a convergent sequence
from Z \ Z ′. Since no such sequences exist, the claim is proved.

Claim 2. There exist separable compact subsets A and B of G such that
A ∩B = {e} and e is a limit point for both A and B.

Let Z be an infinite separable compact subset of X. By Claim 1, the
derived set Z ′ is an infinite compactum without isolated points. By Shapirov-
skĭı’s theorem there exists an element in Z ′ that has a countable π-base in Z ′.
By homogeneity of G, we can find such Z with an additional requirement
that the neutral element e is in Z ′ and has a countable π-base in Z ′. Fix a
collection {Pn : n ∈ ω} of subsets of Z ′ that form a π-base at e in Z ′. Put

Fn = PnP
−1
n .

Subclaim. {Fn : n ∈ ω} is a network at e consisting of compact sets,
and e is a limit point for every Fn.

The set Fn is compact because Pn is a closed subset of Z ′, which is
compact. Thus, Fn is the image of a compactum under the continuous map ?.
To show that Fn’s form a network, fix any neighborhood U at e. One can
find an open neighborhood V of e such that V V −1 ⊂ U . Then there exists
an element Pn of our π-base such that Pn ⊂ V . We then have e ∈ Fn =

PnP
−1
n ⊂ VnV −1n ⊂ U .

Finally, to show that e is a limit point for Fn, recall that Pn is a non-void
open set of Z ′ and Z ′ has no isolated points. Pick any p ∈ Pn. Then Pnp

−1

contains e and is a subset of Fn. Clearly e is a limit point for Pnp
−1. The

proof of the Subclaim is complete.
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We are now ready to construct the desired sets A and B. For this we
consider two cases.

Case 1: F0 ∩ · · · ∩ Fn 6= {e} for all n ∈ ω. Then for each n ∈ ω, we can
pick xn ∈ F0 ∩ · · · ∩ Fn distinct from e. Clearly, xn → e, which contradicts
our assumption that G has no non-trivial convergent sequences.

Case 2: Negation of Case 1. Then there exists the smallest n such that
e is not a limit point for F0 ∩ · · · ∩Fn+1. Hence there exists a neighborhood
U of e such that U ∩ F0 ∩ · · · ∩ Fn+1 = {e}. Put C = U ∩ F0 ∩ · · · ∩
Fn and D = U ∩ Fn+1. We have C ∩ D = {e}. By the property of n
and Subclaim, e is a limit point for both C and D. To finish the proof
of existence of sets with the desired properties it suffices to place C and D
in separable compact subsets of G whose only common element is e. For this
recall that F0, . . . , Fn+1⊂ZZ−1 and Z is a separable compactum. Further,
(ZZ−1) \ {e} is normal. Therefore, there exist open neighborhoods V and
W of C and D, respectively, in ZZ−1 whose closures in ZZ−1 have only one
point in common, namely, e. Put A = V and B = W . Since Z is separable,
A and B are separable. The rest of the desired properties are obvious. This
completes Case 2 and proves the claim.

Let A and B be as in Claim 2. Recall that our assumption is that G does
not have any non-trivial convergent sequence. Therefore, the fact that e is
a limit point of the compact sets A and B implies that e has uncountable
character both in A and in B.

We will finish our argument by two consecutive applications of Lemma
2.7 as follows: Put S = A, T = A, and s = t = e. The sets S and T together
with the points s and t satisfy the hypothesis of Lemma 2.7. Therefore, there
exists a compact set A1 ⊂ A such that:

(1) t = e has uncountable character in A1.
(2) sA1 ⊂ St.

Note that (2) implies

(3) A1 ⊂ A.

Next, for our second application of Lemma 2.7 we put S = B, T = A1,
and s = t = e. By (1) and the properties of B listed in Claim 2, these sets
and points satisfy the hypothesis of Lemma 2.7. Therefore, there exists a
compact set A2 such that:

(4) A2 ⊂ A1.
(5) t = e has uncountable character in A2.
(6) sA2 ⊂ St.

Note that (6) implies
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(7) A2 ⊂ B.

By (5), there exists a ∈ A2 distinct from e. By (7), a ∈ B. By (3) and (4),
a ∈ A. Therefore, a ∈ A ∩ B and is distinct from e, which contradicts the
fact that A ∩B = {e}. This contradiction completes the proof.

Observe that the first paragraph of the proof of Theorem 2.9 suggests
rephrasing the theorem in a way that is more descriptive of the internal
structure (with regard to convergence) of hereditarily normal topological
groups.

Theorem 2.10. Let G be a hereditarily normal topological group. Then
either G has a non-trivial convergent sequence and a Gδ-diagonal, or G has
no non-trivial convergent sequences and every compact subset of G is finite.
In either case, every compact subset of G is metrizable.
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