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Vector bundles over Dold manifolds

by

R. E. Stong (Charlottesville, VA)

Abstract. This paper determines the possible Stiefel–Whitney classes for vector
bundles over Dold manifolds.

1. Introduction. The Dold manifolds

P (m,n) =
Sm × CPn

−1× (conjugation)

were introduced by Dold [2] in order to find odd-dimensional generators for
the unoriented cobordism ring. They are finite-dimensional approximations
to the classifying space BO2 = P (∞,∞) for real 2-plane bundles.

The objective of this paper is to determine the possible Stiefel–Whitney
classes of the vector bundles over P (m,n). Knowing these classes is cru-
cial for cobordism calculations involving the Dold manifolds; particularly in
studying involutions for which some fixed component is a Dold manifold.

The mod 2 cohomology of the Dold manifold is given by

H∗(P (m,n);Z2) = Z2[c, d]/(cm+1 = dn+1 = 0),

where c ∈ H1(P (m,n);Z2) and d ∈ H2(P (m,n);Z2). The action of the
Steenrod algebra is completely determined by knowing that Sq1 d = cd.
Over P (m,n) one has a real line bundle ` with w(`) = 1 + c and a real
2-plane bundle η with w(η) = 1 + c+ d. Thus, there are vector bundles over
P (m,n) with Stiefel–Whitney classes of the form (1 + c)a(1 + c+ d)b.

The KO-theory of P (m,n) was determined by Fujii and Yasui [3] and
by Ucci. (Ucci’s paper [4] gives a very partial description and promises the
complete calculation, but as far as I know that has never appeared.) The
description of KO(P (m,n)) is quite complicated, and does not describe the
Stiefel–Whitney classes.

The main result of this paper is
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Proposition. There are vector bundles over P (m,n) with Stiefel–
Whitney classes

(1) 1 + c+ (d+ c2), for m = 2, n ≥ 1,
(2) (1 + c+ (d+ c2))2, for m = 4 or 5, n ≥ 2,
(3) (1 + c+ (d+ c2))2(1 + c+ d) + c6, for m = 6, n ≥ 1, and
(4) 1 + c2d3, for m = 2, n = 3.

The Stiefel–Whitney class of every vector bundle is a product of these classes
and the classes 1 + c and 1 + c+ d.

Notes. (1) The squares of each of these classes are of the form (1+c+d)b,
so at most a single factor of each of these is needed.

(2) For m = 2 and n = 3, there are two classes in the list. In all other
cases, there is only one exotic class.

2. The bundles. From the Wu formulae

Sqi wj =
i∑

t=0

(
j − i− 1 + t

t

)
wi−twj+t for i < j

for Steenrod operations on Stiefel–Whitney classes, it follows that for any
vector bundle ξ there is an s with

w(ξ) = 1 + w2s(ξ) + terms of larger dimension,

and that
Sqi w2s(ξ) = 0 for 0 < i < 2s−1.

If one has two vector bundles ξ, ξ′ with

w(ξ) = 1 + w2s(ξ) + . . . , w(ξ′) = 1 + w2s(ξ′) + . . . ,

then for the Whitney sum

w(ξ ⊕ ξ′) = w(ξ) · w(ξ′) = 1 + (w2s(ξ) + w2s(ξ′)) + . . .

Over P (m,n) one has vector bundles ` and η − ` with

w(`) = 1 + c, w(η − `) =
1 + c+ d

1 + c
= 1 + d+ cd+ c2d+ . . . ,

and for each s,

w(2s`) = 1 + c2
s

, w(2s−1(η − `)) = 1 + d2s−1
+ . . .

If ξ is a vector bundle over P (m,n) with w(ξ) not of the form
(1 + c)a(1 + c + d)b, then by adding copies of ` and η − ` to ξ, one may
suppose

w(ξ) = 1 + w2s(ξ) + higher terms,

with 2s ≥ 4 where w2s(ξ) is a nonzero sum of terms c2id2s−1−i with 0 < i
< 2s−1, 2i ≤ m, 2s−1 − i ≤ n. The fact that 2s ≥ 4 is immediate since one
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may cancel c and both c2 and d in dimensions 1 and 2. (Note that any vector
bundle with Stiefel–Whitney class of this form cannot have Stiefel–Whitney
class of the form (1 + c)a(1 + c+ d)b.)

If one writes

w2s(ξ) =
∑

αic
2id2s−1−i (0 < i < 2s−1, 2i ≤ m, 2s−1 − i ≤ n),

then

0 = Sq1 w2s(ξ) =
∑

αic
2i(2s−1 − i)cd2s−1−i =

∑
iαic

2i+1d2s−1−i.

First, suppose m is odd . In this case, 2i ≤ m implies 2i + 1 ≤ m so
Sq1 w2s(ξ) = 0 forces all nonzero terms in w2s(ξ) to have i even. Thus
w2s(ξ) =

∑
α2jc

4jd2s−1−2j . If n is odd, then w2s(ξ) 6= 0 implies w2s(ξ) 6= 0
in P (m,n−1), since the powers of d occurring are even, so one may suppose
n is even.

For m ≡ 1, 3, or 7 mod 8, Fujii and Yasui [3, Theorem 5] show that
KO(P (m,n)) with n even is generated by ` and the tensor powers of η.
Now, for tensor powers one has

w(`⊗ `) = 1, w(`⊗ η) = (1 + c)2 + c(1 + c) + d = 1 + c+ d,

and writing (1 + c+ d) = (1 + x)(1 + y) with the splitting principle,

w(η ⊗ η) = ((1 + x)2 + c(1 + x) + d)((1 + y)2 + c(1 + y) + d)

= (1 + c+ (d+ cx+ x2))(1 + c+ (d+ cy + y2))

= (1 + c)2 + (1 + c)(d+ cx+ x2 + d+ cy + y2)

+ {d2 + d(cx+ x2 + cy + y2) + xy(c+ x)(c+ y)}
= 1 + c2 + (1 + c)(c(x+ y) + (x+ y)2)

+ {d2 + d(c(x+ y) + (x+ y)2) + xy(c2 + c(x+ y) + xy)}
= 1 + c2 + (1 + c)(c2 + c2) + {d2 + d(c2 + c2) + d(c2 + c2 + d)}
= 1 + c2

= (1 + c)2,

and the tensor powers contribute no additional Stiefel–Whitney classes.
Thus, every vector bundle has class of the form (1 + c)a(1 + c + d)b, for
m ≡ 1, 3, 7 mod 8.

For m ≡ 5 mod 8, Fujii and Yasui [3, Theorem 5] show that the re-
striction homomorphism KO(P (m,n)) ← KO(P (m,n′)) is always epic for
n ≤ n′. Hence, a nonstandard bundle must occur for all n′ ≥ n. If w2s(ξ) 6= 0,
restricting to P (m− 2, n) must send w2s(ξ) to zero (for m− 2 ≡ 3 mod 8),
and so one has

w2s(ξ) = cm−1d2s−1−(m−1)/2.
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Letting m = 8u+ 5 gives

w2s = c8u+4d2s−1−(4u+2),

and
Sqw2s(ξ) = c8u+4d2s−1−(4u+2)(1 + c+ d)2s−1−(4u+2)

= c8u+4d2s−1−(4u+2)(1 + d)2s−1−(4u+2),

since c8u+4 annihilates c2. Now 2s−1 − (4u+ 2) > 0, so 2s−1 > 2, so 2s−1 is
divisible by 4, so

Sq4 w2s(ξ) = c8u+4d2s−1−4u 6= 0.

(Note: n is large.) Since Sqi w2s(ξ) = 0 for 0 < i < 2s−1, one must have
2s−1 ≤ 4, forcing 2s−1 = 4, and as 2s−1 is greater than 4u + 2, one must
have u = 0. Thus, if a bundle with exotic Stiefel–Whitney class occurs for
m ≡ 5 mod 8, one has m = 5, 2s = 8, and w8(ξ) = c4d2 (and n ≥ 2, clearly).

Now suppose m is even. The restriction of ξ to P (m − 1, n) must be
standard or m = 6, 2s = 8, so

w2s(ξ) =
{
cmd2s−1−m/2

αc6d+ c4d2 if m = 6, 2s = 8.

For m = 6, 2s = 8, 0 = Sq2 w8(ξ) = αc6d2 + c4(c2d2) = (α + 1)c6d2, which
forces α = 1.

Now suppose w2s(ξ) = cmd2s−1−m/2, 2s−1 − m/2 > 0, so 2s > m and
n ≥ 2s−1 −m/2.

For m ≡ 0 mod 4, 2s−1 − m/2 is even and one may restrict to
P
(
m, 2s−1 − m/2

)
with w2s(ξ) 6= 0. For m ≡ 0 mod 8, Fujii and Yasui

[3] show that KO(P (m,n)) with n even has generators ` and the tensor
powers of η, so every bundle has class of the form (1 + c)a(1 + c+ d)b. For
m ≡ 4 mod 8, the restriction KO(P (m,n)) ← KO(P (m,n′)) with n and
n′ even and n′ ≥ n is epic, so the exotic bundle would exist for all n. For
m = 8u+4, w2s = c8u+4d2s−1−4u−2 and 2s−1 > 4u+2 implies 2s−1 ≥ 4 and
2s−1 is divisible by 4. Taking n large, we get

Sq4 w2s(ξ) = Sq4(c8u+4d2s−1−4u−2) = c8u+4d2s−1−4u 6= 0,

from which 2s−1 ≤ 4. Thus 2s−1 = 4 and 4 ≥ 2s−1 > 4u + 2 forces u = 0.
Thus, if a bundle with exotic Stiefel–Whitney class occurs for m ≡ 0 mod 4,
one has m = 4, 2s = 8, and w8(ξ) = c4d2 (and n ≥ 2, clearly).

For m ≡ 6 mod 8, the restriction KO(P (m,n)) ← KO(P (m,n′)) is
epic for all n′ ≥ n. Let m = 8u + 6, n > 2s−1 − 4u − 3. Then w2s(ξ) =
c8u+6d2s−1−4u−3 gives

Sq2 w2s(ξ) = c8u+6d2s−1−4u−2 6= 0,
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which is a contradiction unless 2s≤4 and 2≥2s−1>4u+3. Thus, the bundle
cannot extend to P (m, 2s−1 − 4u − 2) to have w2s(ξ) = c8u+6d2s−1−4u−3.
Thus, m = 6, n = 1, and 2s = 8 with w8(ξ) = c6d, extending to m = 6,
n = 2 to have w8(ξ) = c6d+ c4d2.

For m ≡ 2 mod 8, let m = 8u + 2 and w2s(ξ) = c8u+2d2s−1−4u−1 with
2s−1 > 4u+ 1. If n > 2s−1 − 4u− 1, then

Sq2 w2s(ξ) = c8u+2d2s−1−4u 6= 0,

and so 2s ≤ 4, giving 2 ≥ 2s−1 > 4u + 1, so u = 0 and m = 2. For
m = 2, 2s = 4 and w4(ξ) = c2d one finds by Fujii and Yasui [3] that
KO(P (2, 1)) ← KO(P (2, 2)) is epic (2r + 1 = 1 implies r even) and
then KO(P (2, 2)) ← KO(P (2, 2r)) is epic for all r ≥ 1. Hence, there
would be bundles for all n ≥ 1. For 2s ≥ 8, w2s(ξ) = c8u+2d2s−1−4u−1 in
KO(P (8u+2, 2s−1−4u−1)) has 2r+1 = 2s−1−4u−1 ≡ 3 mod 4 so r is odd.
By Fujii and Yasui [3] there is a stable bundle %′ in KO(P (8u+ 2, 2r + 1))
for which 2%′ is in the image of KO(P (8u+ 2, 2r + 2)), but %′ is not.

Thus one has

Fact. If ξ is a vector bundle over P (m,n) with w(ξ) = 1 + w2s(ξ)+
higher terms and not of the form (1 + c)a(1 + c+ d)b, then:

(1) w4(ξ) = c2d in P (2, n) with n ≥ 1,
(2) w2s(ξ) = c8u+2d2s−1−4u−1 in P (8u+ 2, 2s−1 − 4u− 1); 2s ≥ 8,
(3) w8(ξ) = c4d2 in P (4, n) or P (5, n) with n ≥ 2, or

(4) w8(ξ) =
{
c6d in P (6, 1),
c6d+ c4d2 in P (6, n) with n ≥ 2.

Now P (2, 1) and P (6, 1) have dimension 4 and 8 so admit degree one
maps to S4 and S8. For k = 4 and 8, there is a vector bundle % over Sk with
wk(%) 6= 0. Pulling the bundle % back, one obtains vector bundles with

w(ξ) = 1 + c2d in P (2, 1) and w(ξ) = 1 + c6d in P (6, 1).

Using the epimorphisms in KO-theory as indicated above, the bundles for
the cases (1) and (4) exist for all n values. Restricting the bundles for P (6, n),
n ≥ 2, to P (4, n) and P (5, n) gives the bundles of case (3) for all n.

Also, P (2, 3) has dimension 8, and pulling back the bundle % from S8

gives a bundle with

w(ξ) = 1 + c2d3 in P (2, 3),

which is an example for case (2). All other possibilities in case (2) have
2s ≥ 16, for 2s = 8 > 8u+ 2 forces u = 0.

3. The classes. From the previous calculations one knows that for cer-
tain P (m,n) there is a vector bundle ξ over P (m,n) for which w(ξ) =
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1+w2s(ξ)+higher terms, with w2s(ξ) being known. One wants to know the
complete class w(ξ) for some such bundle.

For case (2), P (8u + 2, 2s−1 − 4u − 1) with 2s ≥ 8, it is clear that
w(ξ) = 1 + w2s(ξ) since the dimension of the manifold is 2s, and all higher
terms must be zero.

The main tool is the Wu formula

Sqi wj =
i∑

t=0

(
j − i− 1 + t

t

)
wi−twj+t for i < j

=
(
j − 1
i

)
wi+j + decomposable terms,

and in particular,

Sqi w2t =
(

2t − 1
i

)
w2t+i + decomposables = w2t+i + decomposables.

First, consider m = 2. Let ξ be a bundle over P (2, n) with n large having
w(ξ) = 1 + c2d+ higher terms. Then

Sq(c2d) = c2(1 + c)2d(1 + c+ d) = c2d(1 + d)

gives
w(ξ) = 1 + c2d+ c2d2 + terms of dimension ≥ 8.

Inductively, suppose one has found ξ with

w(ξ) = 1+c2d+c2d2 +. . .+c2dr+. . .+c2d2t−2 +terms of dimension ≥ 2t+1,

with t ≥ 2. One then has w2t+1(ξ) = αc2d2t−1 + βd2t and if β 6= 0 one may
add to ξ a bundle with class

(
1 + c+ d

1 + c

)2t

= 1 + d2t + . . .

to obtain a bundle with β = 0, so may suppose β = 0.
Letting ξ′ be the restriction of ξ to P (1, n), one has wi(ξ′) = 0 for

0 < i ≤ 2t+1 so wi(ξ′) = 0 for i < 2t+2. Thus on P (2, n) every class wi(ξ)
is divisible by c2 for 0 < i < 2t+2, and every product of two such classes is
zero (i.e., decomposables are zero).

Then

Sq(w2t+1(ξ)) = w2t+1(ξ) + w2t+1+1(ξ) + . . .+ w2t+2−1(ξ) + w2
2t+2(ξ)

is

Sq(αc2d2t−1) = αc2d2t−1(1 + c+ d)2t−1

= αc2d2t−1(1 + d)2t−1 = α{c2d2t−1 +c2d2t+ . . .+c2d2t+1−2}.
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Then

Sq4(w2t+1−2(ξ)) =
(

2t+1 − 3
4

)
w2t+1+2 = w2t+1+2

is
Sq4(c2d2t−2) = c2d2t ,

giving α = 1. This completes the induction.
Hence, there is a ξ over P (2, n) with

w(ξ) = 1 + c2d+ c2d2 + . . .+ c2dr + . . . = 1 +
c2d

1 + d
= 1 +

c2d

1 + c+ d
.

Then

w(ξ) · (1 + c)2(1 + c+ d) =
(

1 +
c2d

1 + c+ d

)
(1 + c2)(1 + c+ d)

=
(

1 + c2 +
c2d

1 + c+ d

)
(1 + c+ d)

=
(

1 +
c2

1 + c+ d

)
(1 + c+ d)

= 1 + c+ (d+ c2),

giving a bundle with Stiefel–Whitney class 1 + c+ (d+ c2), as in the propo-
sition.

Comment. There is a 2-plane bundle over P (2,∞) with w(ξ) = 1 +
c + (d + c2). For two 2-plane bundles ξ1 and ξ2 over the space X with the
same first Stiefel–Whitney class, i.e., with w(ξi) = 1 + x + w2(ξi), there
is a tensor product which is again a 2-plane bundle with w(ξ1 ⊗ ξ2) =
1 + x+ (w2(ξ1) + w2(ξ2)). This bundle can be obtained by a map

S∞ × CP∞ × CP∞
−1× (conj)× (conj)

→ S∞ × CP∞
−1× (conj)

,

where conj = conjugation and the map from CP∞ × CP∞ to CP∞ sends
([zi], [wj ]) to the point with homogeneous coordinates [ziwj ], or equivalently
from a homomorphism from

{(g1, g2) ∈ O2 ×O2 | det g1 = det g2} → O2.

The tensor product of the tangent bundle of RP 2 pulled back to P (2, n) has
w(τ) = (1 + c)3 = 1 + c + c2 and the bundle η has w(η) = 1 + c + d, so
w(τ ⊗ η) = 1 + c+ (d+ c2).

For m = 4 or 5 the argument is almost identical with the argument for
m = 2. If ξ is a bundle over P (m,n) with n large having w(ξ) = 1 + c4d2 +
higher terms, then

w(ξ) = 1 + c4d2 + c4d4 + terms of dimension ≥ 16.
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Inductively, suppose one has found ξ with

w(ξ) = 1+c4d2+c4d4+. . .+c4d2+. . .+c4d2t−4+terms of dimension ≥ 2t+1

and t ≥ 3. One then has w2t+1(ξ) = αc4d2t−2 + βc2d2t−1 + γd2t , and by
adding a bundle with class

(
1 + c+ d

1 + c

)2t

= 1 + d2t + . . .

may suppose γ = 0.
If ξ′ is the restriction of ξ to P (3, n) one has w(ξ′) = 1 + βc2d2t−1 + . . .

and hence β = 0, for there is no bundle over P (3, n) having this form with
β 6= 0. Then wi(ξ′) = 0 for 0 < i < 2t+2 and every class wi(ξ) is divisible
by c4 for 0 < i < 2t+2. The product of any two such classes is then zero.

Beyond this point, the argument is identical with the case m = 2, and
one obtains a bundle ξ with w(ξ) = (1 + c+ (d+ c2))2.

Now consider m = 6 and let ξ be a bundle over P (6, n) with n large
having w(ξ) = 1 + (c6d + c4d2) + higher terms. If ξ′ is the restriction of
ξ to P (5, n), then w(ξ′) = 1 + c4d2 + . . . , and multiplying by a power of
((1 + c+ d)(1 + c)), one may suppose that w(ξ′) = 1 + c4d2 + c4d4 + . . .+
c4d2r + . . .

Thus

w(ξ) = 1 + (c6d+ c4d2) + c4d4 + c4d6 + . . .+ terms divisible by c6,

and all decomposable classes are zero.
Now

Sq(w8(ξ)) = Sq(c6d+ c4d2) = c6d(1 + c+ d) + c4(1 + c)4d2(1 + c+ d)2

= c6d(1 + d) + c4d2(1 + c2 + d2) = (c6d+ c4d2) + c4d4,

and

w(ξ) = 1 + (c6d+ c4d2) + c4d4 + (αc6d5 + c4d6) + higher terms.

Inductively, one assumes

w(ξ) = 1 +
∑

c6d4i+1 +
∑

c4d2j + (αc6d2t−3 + c4d2t−2) + higher terms

‖
w2t+1(ξ)

where the initial sums are the terms of dimension less than 2t+1, and t ≥ 3.
Then w2t+1−2(ξ) = c4d2t−4 and

w2t+1+2(ξ) =
(

2t+1 − 3
4

)
w2t+1+2(ξ) = Sq4(w2t+1−2(ξ))

= Sq4(c4d2t−4) = c4 Sq4 d2t−4 = c4(c4d2t−4) = 0,
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with

w2t+1+2(ξ) = Sq2(w2t+1(ξ)) = Sq2(αc6d2t−3 + c4d2t−2)

= αc6 Sq2 d2t−3 + c4 Sq2 d2t−2 = αc6d2t−2 + c4(c2d2t−2)

= (α+ 1)c6d2t−2,

so α = 1.
Then

Sq(w2t+1(ξ)) = Sq(c6d2t−3 + c4d2t−2)

= c6d2t−3(1 + d)2t−3 + c4(1 + c)4d2t−2(1 + c+ d)2t−2

= c6d2t−3(1+d)(1+d)2t−4 +c4d2t−2(1+c2 +d2)(1 + d)2t−4

= {c6d2t−3 + c6d2t−2 + c4d2t−2 +c6d2t−2 +c4d2t}(1+d)2t−4

= c6d2t−4+1(1 + d)2t−4 + c4d2t−2(1 + d)2t−4,

completing the induction up to the next power of 2.
Thus

w(ξ) = 1 +
c6d

(1 + d)4 +
c4d2

(1 + d)2 .

Now

w(ξ) · (1 + c)4 = 1 + c4 +
c6d

(1 + d)4 +
c4d2

(1 + d)2 = 1 +
c4

(1 + d)2 +
c6d

(1 + d)4 ,

and

w(ξ)(1 + c)4(1 + c+ d)2 = (1 + c+ d)2

+
c4

(1 + d)2 {(1 + d)2 + c2}+
c6d(1 + d)2

(1 + d)4

= (1 + c+ d)2 + c4 +
c6

(1 + d)2 +
c6d

(1 + d)2

= (1 + c+ (d+ c2))2 +
c6

1 + d
,

and

w(ξ)(1 + c)4(1 + c+ d)3 = (1 + c+ (d+ c2))(1 + c+ d) + c6,

giving the existence of a bundle with class (1 + c+ (d+ c2))2(1 + c+d) + c6,
as in the proposition.

Comment. The classes of the unusual bundles over P (4, n) and P (5, n)
or P (6, n) look like the classes of 4-plane or 6-plane bundles. It would be
interesting to know if these are the classes of such bundles.
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4. The nonbundles. To complete the proof of the Proposition, one
needs to show that there can be no bundle over P (8u + 2, 2s−1 − 4u − 1)
with 2s ≥ 16 for which w(ξ) = 1 + c8u+2d2s−1−4u−1.

Letting m = 8u + 2 and n = 2s−1 − 4u − 1 with 2s ≥ 16, Fujii and
Yasui [3] show that the homomorphism

KO(P (m,n))← KO(P (m,n+ 1))⊕KO(P (m,n)/P (m,n− 1))

is epic. From our calculations every vector bundle over P (m,n + 1) has
Stiefel–Whitney class of the form

{
(1 + c)a(1 + c+ d)b if u > 0,
(1 + c)a(1 + c+ d)b(1 + c+ (d+ c2))ε if u = 0; ε = 0 or 1.

To complete the proof, it then suffices to show

Fact. For every vector bundle % over P (m,n)/P (m,n − 1) one has
w(%) = 1.

The space P (m,n)/P (m,n − 1) can be described in several ways. On
P (m,n) = Sm × CPn/(−1 × conjugation) one has the involution induced
by 1× T where

T ([z0, z1, . . . , zn]) = [−z0, z1, . . . , zn].

This involution fixes RPm = Sm×CP 0/(−1×conjugation) and P (m,n−1),
and P (m,n)/P (m,n − 1) = T (ν) is the Thom space of the normal bundle
of RPm in P (m,n). The normal bundle of CP 0 in CPn is Cn with
the involution conjugation, so the normal bundle of RPm in P (m,n) is
(Sm×Cn)/(−1× conjugation) and ν = n`+n where ` is the nontrivial line
bundle over RPm. Thus T (ν) = T (n` + n) = ΣnT (n`) is the n-fold sus-
pension of the Thom space of n` over RPm. On RPm+n, one has the linear
involution which is −1 in m+ 1 variables that fixes RPm, with normal bun-
dle n`, and RPn−1, with normal bundle m`, and RPm+n/RPn−1 = T (n`)
is the Thom space of the normal bundle of RPm in RPm+n. Thus

P (m,n)
P (m,n− 1)

= ΣnT (n`) = Σn

(
RPm+n

RPn−1

)
.

Now, Atiyah and Hirzebruch [1] show that every vector bundle over a
9-fold suspension has trivial Stiefel–Whitney class; i.e., w(%) = 1 for n ≥ 9.

Since n = 2s−1 − 4u− 1 > 0 is congruent to 3 mod 4, one is reduced to
considering n = 3 and n = 7.

For the inclusion

Σn

(
RPm−1+n

RPn−1

)
→ Σn

(
RPm+n

RPn−1

)
,
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with m = 8u+ 2 and n = 2r + 1, with r odd, Fujii and Yasui [3] give

K̃O
(
Σn

(
RPm−1+n

RPn−1

))
← K̃O

(
Σn

(
RPm+n

RPn−1

))

‖ ‖
0 Z

from which it follows that every bundle over Σn(RPm+n/RPn−1) actually
comes from

Σn

(
RPm+n

RPm+n−1

)
= Σn(Sm+n) = Sm+2n = S2s .

Since every bundle over S2s with 2s ≥ 16 has trivial Stiefel–Whitney class
(again [1]), one obtains w(%) = 1 as was asserted.
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