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Convergence of pinching deformations and
matings of geometrically finite polynomials

by

Peter Häıssinsky (Marseille) and Lei Tan (Cergy-Pontoise)

Abstract. We give a thorough study of Cui’s control of distortion technique in the
analysis of convergence of simple pinching deformations, and extend his result from ge-
ometrically finite rational maps to some subset of geometrically infinite maps. We then
combine this with mating techniques for pairs of polynomials to establish existence and
continuity results for matings of polynomials with parabolic points. Consequently, if two
hyperbolic quadratic polynomials tend to their respective root polynomials radially, and
do not belong to conjugate limbs of the Mandelbrot set, then their mating exists and
deforms continuously to the mating of the two root polynomials.

1. INTRODUCTION

Throughout the paper, d ≥ 2 will denote a fixed integer; the critical set
of a polynomial f of degree d is defined as C(f) = {c : f ′(c) = 0}, and the
postcritical set is

Post(f) =
⋃

c∈C(f)

⋃

n≥1

fn(c) ·

A rational map f of degree d is said to be geometrically finite (resp.
postcritically finite) if its postcritical set has a finite accumulation set (resp.
is a finite set). We will say that f is subhyperbolic (resp. hyperbolic) if it is
geometrically finite with no parabolic points (resp. with no parabolic points
and no critical points on the Julia set). The notion of weakly hyperbolic ratio-
nal maps generalizes geometrically finite maps to some maps with an infinite
postcritical accumulation set. The precise definition will be given later.

Our first task in this paper is to generalize an important result in [4] of
Cui from geometrically finite maps to weakly hyperbolic maps:
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Theorem A. Let f0 be a weakly hyperbolic rational map with attract-
ing points. Let (γi) be a collection of f0-periodic cycles of star-like graphs
linking a repelling central vertex to attracting vertices. Then there is a con-
tinuous path (ft)t∈[0,1) of qc-deformations of f0, called simple pinching
deformations, converging uniformly to a limit rational map f1, shrinking
progressively each graph γi to a parabolic point for f1. All the connected
components of the preimages of these graphs are also shrunk , and these are
the only changes in the limit.

Detailed definitions and a more precise statement of Theorem A will be
given in Section 2.1.

This result is actually more subtle than it appears to be. Although it
is fairly easy to imagine the existence of a parabolic map with the right
combinatorics, there might be many such maps, especially in the presence
of several critical points in the basin. It is then quite surprising that the
pinching path accumulates to a single parabolic map.

This theorem, combined with other techniques, creates many interesting
existence and continuity results. Cui’s original work has used this to obtain
a topological characterization of geometrically finite rational maps, which
generalizes Thurston’s theorem on postcritically finite rational maps. See [4]
and [27] for further details.

Here we combine it with the technique of matings of polynomials, and
thus answer affirmatively a question raised by Milnor: Can the mating of
two hyperbolic quadratic polynomials be deformed continuously to a mating
of two parabolic polynomials?

A marked mating is, roughly speaking, a 4-tuple (f, g, q, R) with f and
g two degree d monic polynomials having connected and locally connected
filled Julia set Kf and Kg, with R : C → C a rational map, and with q
a homeomorphism from Kf t Kg/(γf (t) ∼ γg(−t)) to C conjugating the
quotient dynamics induced by f and g to the dynamics of R, where γf :
R/Z→ ∂Kf (resp. γg) is the Carathéodory semiconjugacy. We establish:

Theorem B. Let (f0, g0, q0, R0) be a marked mating of geometrically
finite polynomials with connected Julia sets and attracting points. Given a
simple pinching path (ft)t∈[0,1) of f0 and a simple pinching path (gt)t∈[0,1)

of g0, there is a simple pinching path (Rt)t∈[0,1) of R0 together with a con-
tinuous path of maps qt such that

1. (ft, gt, qt, Rt) is a geometric mating for every t ∈ [0, 1) and depends
continuously on t.

2. The three pinching paths (ft), (gt) and (Rt) converge to f1, g1 and R1

respectively.
3. The maps qt converge uniformly to a map q1.
4. The quadruple (f1, g1, q1, R1) is a marked mating with parabolic points.
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Schematically, the following diagram is well defined and commutative:

(f0, g0)
pinch //

mate
��

(f1, g1)

mate
��

R0
pinch // R1

We will give a more precise definition of marked matings in Section 3,
especially we will make all qt defined on the same space in order to talk
about their continuity in t.

This theorem is to be compared with the examples constructed by
Epstein [8] showing that there are paths of marked matings (ft, gt, qt, Rt)
where ft and gt converge but Rt accumulates to a large set of limit parabolic
maps. In these examples the multipliers of the corresponding attracting cy-
cles tend to 1 along a horocycle, whereas pinching produces multipliers that
converge to 1 radially, in the sense of McMullen (see [17]).

Applying these results to the quadratic polynomials fc : z 7→ z2 + c,
c ∈ C, we get:

Corollary C. Two geometrically finite maps fc and fc′ are matable if
and only if c̄ and c′ do not belong to the same limb of the Mandelbrot set.

Combining Theorem B with techniques of perturbations of parabolics,
we can actually obtain a more general parabolic↔attracting-closing-lemma
which we state as Theorems D and E: to each geometrically finite polynomial
with connected Julia set can be associated a postcritically finite polynomial
T (f) of the same degree with a homeomorphic Julia set and with conjugate
dynamics on their Julia sets (see details below).

Theorem D. Two geometrically finite polynomials f and g with con-
nected Julia sets and parabolic points are matable if and only if T (f) and
T (g) are matable.

The following theorem gives more information:

Theorem E. Let f and g be two matable geometrically finite polyno-
mials with connected Julia sets and parabolic points. Then there exist sub-
hyperbolic perturbations (ft)t∈[0,1) and (gt)t∈[0,1) which converge to f and g
respectively as t tends to 1 such that Jft ≈ Jf , Jgt ≈ Jg, and their matings
exist and converge to a mating of f and g.

In §2 we restate and prove Theorem A. For this we provide a thorough
study of Cui’s control of distortion technique. This technique is an impor-
tant innovation to complex dynamics and will surely find wide applicability.
The global structure of our proof is somewhat different from Cui’s original
one, and our definition of pinching is somewhat more general. We also use a
different argument reducing the study around parabolic points to the anal-
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ysis of a simple model system. In §3 we recall basic definitions and results
about matings of polynomials and then apply Theorem A to study matings
of geometrically finite polynomials. The paper also contains two appendices
which may be of independent interest.

Background on complex dynamics can be found in [3, 19] and on quasi-
conformal maps in [1]. We also assume that the reader is familiar with basic
quasiconformal surgeries as those explained in [3].

Acknowledgements. This work grew out from a question raised by
John Milnor to Tan Lei about the radial continuity of matings at root
quadratic polynomials. We are grateful to him for having induced our
project. We would also like to thank Cui Guizhen for enlightening expla-
nations on his work, and Kevin Pilgrim and the anonymous referee for their
valuable comments which have enabled us to improve the exposition.

2. PINCHING DEFORMATION OF RATIONAL MAPS—THEOREM A

2.1. Definition and the pinching theorem. Let f be a rational
map. Denote by Jf the Julia set and by F the Fatou set. A simple pinching
combinatorics is a finite collection of γi satisfying:

• Each γi is a repelling star-like closed graph in the following sense:

– the central vertex βi is a repelling periodic point, and is not in the
ω-limit of recurrent critical points;

– every edge κ links βi to an attracting periodic point α, and there are
no other edges between these two vertices; further, for q the period
of α, we have f q(κ) = κ and (f q, B′) is conformally conjugate to the
translation by 1 on a horizontal strip (where B ′ is a neighborhood
of κ r {α, βi}); for simplicity, we also require that κ intersects the
boundary of any linearizable disk around α at only one point (ex-
amples of such (κ,B′) are suitable straight lines and strips in the
log-linearizing coordinates of α);

– γi r {βi} ⊂ F and is disjoint from the orbits of the critical points.

• The γi’s are mutually disjoint.
• f : γi → γj is a homeomorphism.

(The simplest example of a simple pinching combinatorics is the segment
[0, 1/2] for f(z) = z2 + z/2.)

This collection of γi can be decomposed into nc cycles. Set R̂ =
⋃
i γi, let

{R̂i}1≤i≤nc be the set of cycles and R =
⋃
n f
−n(R̂). The definition above

guarantees that each R-component R is again star-like, with a unique Julia
point β(R) (the word “simple” refers precisely to this fact). We make a (by
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no means canonical) choice of three distinct points a, b, c such that no two
belong to the same component of R.

Definition of weak hyperbolicity. We say that f is weakly hyperbolic
if there are constants r > 0 and δ < ∞ such that, for all z ∈ Jf r
{preparabolic points}, there is a subsequence of iterates (fnk)k such that

deg(fnk : Wk(z)→ D(fnk(z), r)) ≤ δ,
where Wk(z) is the connected component of f−nk(D(fnk(z), r)) contain-
ing z. A simple uniform continuity argument implies that this definition is
invariant under topological conjugacies.

Let us remark that if f is hyperbolic, then f is also weakly hyperbolic,
and we can choose δ = 1 and r = 1

2dist(Jf ,Post(f)). It can be shown that
geometrically finite rational maps are weakly hyperbolic.

The following is a restatement of Theorem A, in a more precise form:

Theorem 2.1. Assume that f is a weakly hyperbolic rational map. Let
(γi) be a simple pinching combinatorics for f . Then there is a convergent
continuous path ft of Kt-qc-deformations of f (with Kt → ∞), shrinking
progressively each γi to a parabolic point , and making no other changes.

More precisely , there is a continuous path of complex structures σt, with
σ0 the standard complex structure, such that for ht the integrating map of
σt fixing a, b, c, and for ft = ht ◦ f ◦ h−1

t , we have

(I) ht ⇒ H.
(II) The nontrivial fibers of H coincide with the R-components.

(III) ft ⇒ F .
(IV) F ◦H = H ◦ f and H|Jf : Jf → JF is a homeomorphism.

Let us note that h0 is the identity since it integrates the standard complex
structure and it fixes three points.

Throughout the paper the sign ⇒ will mean uniform convergence.
This theorem is a generalization of a work of Cui [4] who proved the same

result for geometrically finite maps. Our proof uses a fundamental idea of
Cui (see the Key Lemma below), and follows essentially the same lines as
his original proof, but with a different presentation, and a somewhat more
general definition of the pinching deformation.

Definition of σt. We will use different colors to design regions with spe-
cial properties. Roughly speaking, the red set is the set to be pinched. The
yellow set surrounds the red one and contains the support of σt. The green
(resp. blue) set is a neighborhood of the yellow acting as a protecting neigh-
borhood, in the sense that on greenryellow and on bluergreen we are sure
that there are no deformations. Note that some regions have several color-
ings.
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Although these notions look very complicated, pinching is fundamen-
tally a very simple operation to create parabolic points. But to guarantee
the convergence, and that the limit has no other accidental changes in the
dynamics, we need more precise information about where the deformation
occurs and where not. The yellow set is assigned to locate the support of de-
formations. But we do not know how big its complement is, especially when
we get close to a Julia point. The two consecutive protecting neighborhoods,
green and blue, are assigned to guarantee some definite, undeformed space
around the yellow set. In most cases the green neighborhood is enough.
One appreciates best its importance in the Key Lemma below. The second
neighborhood, blue, is however fundamental in the analysis around parabolic
points, and in the proof that the limit dynamics is again weakly hyperbolic.
For instance it will enable us to get bounds in the green set of the distortion
of p-valent maps.

Here is a detailed description. We will first define appropriate quasicon-
formal deformations on some model strips and then implement them into
the dynamical plane. In the model, we have cut the star along the red curve
so it is doubled (cf. §1 in [12] for a similar construction).

Our model spaces will be closed horizontal strips on upper or lower half-
planes.

Choose a collection of numbers 0 < Lb < Lg < Ly < Lr (the indices
b, g, y, r are colors, blue, green, yellow and red respectively), and then an
increasing C1-function τ : [0, 1[→ [Lr,∞[. Let M ⊂ R2 be the closed subset
bounded by

([0, 1]× {Lb}) ∪ ({0} × [Lb, Lr]) ∪ ({1} × [Lb,∞[) ∪ {(t, τ(t)) : t ∈ [0, 1[}.
Choose vt(y) so that vt(y) = y for Lb ≤ y ≤ Ly and that (t, y) 7→ (t, vt(y))
is a C1-diffeomorphism from [0, 1]× [Lb, Lr]r {(1, Lr)} onto M .

We also make the following technical assumption: For any L′ < Lr,
there is t(L′) ∈ ]0, 1[ with t(L′) → 1 as L′ → Lr such that for any (s, y) ∈
]t(L′), 1]× [Lb, L

′], we have vs(y) = vt(L′)(y). This assumption will be used
only once in the proof of Lemma 2.8.

Now on the straight strip {x+ iy : Lb ≤ y ≤ Lr}, and for every t ∈ [0, 1],
set

P̃t(x+ iy) = x+ i · vt(y).

This map has the following properties (cf. Fig. 1) :

1. It commutes with translation by 1 (and by any other real number).
2. It is the identity on the substrip {Lb ≤ y ≤ Ly}.
3. The coefficient of the Beltrami form

∂P̃t/∂z̄

∂P̃t/∂z

∣∣∣∣∣
x+iy

=
1− ∂

∂yvt(y)

1 + ∂
∂yvt(y)
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Lb

L′

Lr

Lg

t(L′)

id

id

Lr

Ly

Lg

Lb

L′

t(L′)

id

id

Ly

Fig. 1. The diffeomorphism (t, y) 7→ (t, vt(y))

is continuous on (t, x+ iy) ∈ [0, 1]×{Lb ≤ y ≤ Lr}, its norm is locally
uniformly bounded away from 1 if (t, y) 6= (1, Lr) and tends to 1 as
(t, y)→ (1, Lr).

4. The map Pt(z) = −1/P̃t(−1/z) is continuous in (t, z). For t < 1, Pt is
injective.

Let us now define appropriate domains in the dynamical space which will
support our deformation. Choose one edge in each edge orbit of R̂. Let κ be
one such edge, of period q, and let B′ be its invariant strip neighborhood
(for f q). Let B′l denote the component of B′rκ with κ as the left boundary
(following the direction of the dynamics) and letB ′r be the other component.

By assumption, there are 0 < Lb < Lr such that (f q, B′l) is conjugate via
a conformal map ψ to (z 7→z + 1, {Lb< Im z<Lr}) and ψ(κ)={Im z=Lr}.
Define as above a deformation P̃t on the model strip {Lb < Im z < Lr}, and

for t ∈ [0, 1[, set σ′t = (P̃t ◦ ψ)∗(σ0) to be the pulled back complex structure
on B′l.
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For the other half neighborhood B′r of κ, use a complex conjugate model
dynamics (z 7→ z + 1, {−L′r < Im z < −L′b < 0}) and complex conjugate
deformations (so that κ always corresponds to the red boundary line). Note
that the left and right model strips are not necessarily symmetric and we
do not require symmetric deformations. We will use nevertheless the same
letters for convenience.

We may then define Y (κ) (resp. G′(κ), B′(κ)), the yellow (resp. green,
blue) strip neighborhood, to be {α} ∪ ψ({|Im z| ≥ Ly}) (resp. ψ({|Im z|
> Lg}), ψ({|Im z| > Lb}) = B′). The green neighborhood G(κ) will be of
the form G′(κ)∪∆′α with ∆′α a suitable neighborhood of the attracting end
α, and the blue neighborhood B(κ) will be of the form B ′(κ) ∪ ∆α ∪ ∆β,
where ∆α and ∆β are suitable neighborhoods of the attracting end α and

of the center β, such that G(κ) ⊂ B(κ).
Set σt =

⋃
n(fn)∗(σ′t). It is an f -invariant complex structure, and is

conformal outside the grand orbit Y of
⋃
κ Y (κ).

Definition of a simple pinching deformation. A simple pinching defor-
mation supported by the simple pinching combinatorics R̂ is given by the
family of f -invariant complex structures σt. We say that the deformation is
convergent if the conclusions of Theorem 2.1 are satisfied for some homeo-
morphisms ht integrating σt and maps ft = ht ◦ f ◦ h−1

t .

Scheme of the proof. We will prove first that (ht) is equicontinuous at
every point z0 (which would imply uniform equicontinuity). To do this,
we will distinguish essentially three cases: z0 /∈ Jf ∪ R, z0 ∈ Jf r (R ∪
{preparabolics}), and z0 ∈ R ∪ {preparabolics}. While the equicontinuity
in the first case is more or less automatic, in the last two cases it depends
on estimates under deformation of the moduli of many annuli, that we will
control thanks to a clever argument of Cui.

Once we know that (ht) is an equicontinuous family, we will study the
fiber structure of any limit map and show that it satisfies the conclusions
of the theorem. This will enable us to prove that (ft) is equicontinuous
and that any limit map is again weakly hyperbolic. This will in turn imply
that two limits of (ft) have to be topologically conjugate, with a conjugacy
that is conformal off the Julia sets. We can then use a rigidity result of
Häıssinsky to conclude that this conjugacy is in fact the identity. This shows
the convergence of the pinching deformation.

Notation. In this last introductory section, we define families of sets
associated to R (see Fig. 2). We use the assumption that the repelling ends
are disjoint from the ω-limit set of recurrent critical points to show that
these sets have bounded geometry (Lemma 2.2).

For each cycle R̂i, 1 ≤ i ≤ nc, of R̂, we choose a connected component
γi with center βi. We also pick an attracting point αi,j for each attracting



Pinching deformations and matings 151

G′ = first protecting strip of Y r {α}

∆α

G = G′ ∪∆′α (open and bounded by the dotted curve)

G∗= G ∪ {β} (neither open nor closed)

B′ = second protecting strip of Y r {α}
B = B′ ∪∆α ∪∆β (bounded by the dashed curve)

Y = closed shaded stripr{β} (contains the support of σt)

Y ∗= Y ∪ {β}

∆β

−Lr

−Lg
−Lb

∆′α

α

β

κ

G

B

Y

ψ

Lb

Lg

Lr

Fig. 2. Deformation strip and protecting neighborhoods

cycle attached to βi. If βi is ki-periodic then each αi,j is kici-periodic for
some ci ≥ 1. We will first define suitable linearizable disks for each of these
points. Let us recall that when f is a holomorphic germ which fixes a point
α such that |f ′(α)| 6∈ {0, 1}, then there is a linearizing coordinate, that is, a
univalent map ξ defined from a neighborhood of α onto a neighborhood N
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of 0 such that ξ ◦ f(z) = f ′(α) · ξ(z). The preimage of any disk centered at
the origin contained in N is by definition a linearizable disk for α.

Let us start with an attracting cycle. We let C = {αi,j , . . . , f ciki(αi,j)}
and C′ = f−1(C). For each α ∈ C ′, there is a minimal iterate ` = `(α) ≥ 0
such that f `(α) = αi,j . There is also a neighborhood N = N(α) of α
such that f `|N is univalent and f `(N) is contained in a linearizable disk
for αi,j . For α ∈ C ′ r C, we may also assume that N(α) is disjoint from
the postcritical set of f . We let ∆αi,j be a linearizable disk contained in⋂
α∈C′r{αij} f

`(α)(N(α)). For any preimage α 6= αi,j of αi,j (including those

in C), we let ` be the minimal iterate such that f `(α) = αi,j as above, and we
define ∆α to be the connected component of f−`(∆αi,j ) which contains α.

Since βi is disjoint from the ω-limit set of any recurrent critical point,
it follows from R. Mañé’s theorem [14, 23] that there are a linearizable disk
∆′βi and an integer p > 0 such that, for any iterate n ≥ 0 and any connected

component W of f−n(∆′βi), the degree of fn|W is at most p. We choose ∆′βi
to be such a disk centered at βi of a certain radius r′βi .

Definition of Y∗, G, G∗. Recall that Y is the grand orbit of
⋃
κ Y (κ). It is

fully invariant, contains the support of σt and RrJf . Set Y∗ = Y∪R. Each
component of Y∗ is star-like, and consists of finitely many Y-components
together with a common boundary point. We define G (for green) to be an
open neighborhood of Y with the property that on GrY, σt is conformal, and
f(G) ⊂ G. For each attracting point αi,j , we let κi,j be the edge in R̂ which
joins αi,j to the center βi. Let Gi,j = G′(κi,j)∪ 1

2∆αi,j . For any preimage κ 6=
κi,j of κi,j , let n be the first iterate such that fn(κ) = κi,j . We define G(κ)
to be the connected component of f−n(Gi,j) which contains κ. Similarly, we
define G∗ = G∪R, which is also the union of G with the grand orbits of all the
centers of the stars γi. Each G∗-component is again star-like. It is important
for what follows that G is open, whereas G∗ is neither open nor closed.

Definition of B. We define B (for blue) as the collection of the following
sets. We set

B(γi) =
(⋃

κ

(B′(κ) ∪∆ακ)
)
∪∆βi ,

where ∆βi is a disk centered at βi of radius rβi/2 ≤ r′βi/6, where κ ranges
over the edges attached to βi, and ακ is the attracting point attached to κ.
The constant rβi depends on f , and will be defined in Section 2.4 below in
which we prove that any limit of (ft) is weakly hyperbolic. The collection B
is defined as follows: for any connected component R ofR, there is a minimal
iterate such that fn(R) = γ; we let B(R) be the connected component of
f−n(B(γ)) which contains R. Note that deg fn|B(R) ≤ p by construction.
Without loss of generality, we may assume that p = δ.
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We use G (resp. Y , R, G∗, Y ∗) to denote a (general) G (resp. Y, R,
G∗, Y∗)-component. Each point β ∈ R ∩ Jf is the center of a unique R, Y ∗

and G∗, with R ⊂ Y ∗ ⊂ G∗, and they are compactly contained in a unique
element B of B. For each G, denote by β(G) the unique Julia point on ∂G
(it is a preimage of the central vertex βi of some γi).

Normalization. The point a = ∞ is a critical point which belongs to
a periodic Fatou component of f , which always exists since f has an at-
tracting point. Its first return into the same Fatou component is b = 0. The
point c = 1 is another point outside G∗. Note that a, b, c /∈ G∗. This normal-
ization has the advantage that we will be able to work with the Euclidean
metric as well as with the spherical one, because then Jf ∪ B ⊂ C. If K is
a 1-neighborhood of Jf ∪ B in the Euclidean metric, then both metrics are
equivalent on K, i.e., there is a constant cs > 1 such that, for all x, y ∈ K,
|x− y|/cs < d(x, y) < cs|x− y|.

Lemma 2.2. (1) For each component γ of R, there is a B-component
B(γ) containing γ and an iterate n(γ) such that fn(γ)(γ) is the pe-
riodic star chosen above and such that the degree of fn(γ)|B(γ) is at
most δ.

(2) The diameter of any sequence of distinct stars G∗k of G∗ tends to 0.

Proof. The first statement follows from the construction of B. Set Bk =
B(G∗k). There are (minimal) iterates nk ≥ 0 such that fnk(Bk) = B(γ), with
nk →∞ as k →∞. Since deg fn|Bk ≤ δ for all k, the lemma is a consequence
of the so-called shrinking lemma (see p. 86 of [13] for a proof).

2.2. Equicontinuity of (ht) and fiber structure of limit maps. In
this section we prove:

Proposition 2.3. In the setting of Theorem 2.1, the maps (ht) are
equicontinuous. Furthermore, for any limit map H of (ht), the nontrivial
fibers of H are exactly the R-components.

For this we need

Lemma 2.4. The family (ht) is uniformly equicontinuous if and only if
it is pointwise equicontinuous, i.e., for any z0 ∈ C and any ε > 0, there exist
η > 0 and t0 < 1 such that for any t ∈ [t0, 1) and any y with d(y, z0) ≤ η,
we have d(ht(y), ht(z0)) ≤ ε (where d denotes the spherical metric).

The proof is the same as for the statement that a pointwise continuous
map on a compact set is uniformly continuous.

Now the proof of Proposition 2.3 is decomposed into 4 steps.

Step 1. Equicontinuity of (ht) at any z0 /∈ Jf ∪ R. This follows from

the local uniform quasiconformality due to the construction of P̃t.
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For the remaining cases the only information we have on the family
(ht) is on its Beltrami forms, and therefore how conformal invariants are
modified after the application of ht. So the equicontinuity will be proved by
using the following lemma which enables us to translate conformal invariants
estimates into metric estimates.

Lemma 2.5 (equicontinuity criterion at a point). Let A = {h : D→ C}
be a family of continuous injective maps such that

⋃
h∈A h(D) avoids at least

2 points in C.

(1) Let (Un)n≥0 be a nested sequence of disk-like neighborhoods of the
origin in the unit disk D such that A′n = D r Un is an annulus. If
there exists a sequence ηn ↗∞ such that

∀h ∈ A, ∀n ≥ 0, modh(A′n) ≥ ηn,
then A is equicontinuous at the origin.

(2) Let An ⊂ D be a nested sequence of annuli (i.e. for all n, An+1

is contained in the component of C r An containing 0). If there is
M > 0 such that

∀h ∈ A, ∀n ≥ 0, modh(An) ≥M,

then A is equicontinuous at the origin.

The proof of (1) relies on the fact that if an annulus A′ in C has modulus
at least C, then one of the complementary components of A′ has spherical
diameter at most D, where D depends only on C. Refer for example to
Theorem 2.4 of [16] or to [23, appendices A and B]. Part (2) follows by
applying the Grötzsch inequality.

Lemma 2.6 (control of moduli of deformed annuli). Let A ⊂ C be a
bounded annulus such that ∂A∩G = ∅ (recall that G is open). Then there is
m > 0 (depending on A but not on t) such that modht(A) ≥ m for all t.

We postpone the proof of this lemma to §2.3.

Lemma 2.7 (one good annulus around each Julia point). Fix r > 0
(which will be the constant for f in the definition of weak hyperbolicity).

For any x ∈ Jf rR, there are two open neighborhoods N ′(x) and N(x)

of x in D(x, r/4) and m > 0 such that modht(N(x)rN ′(x)) ≥ m for all t.

For any x = βγ ∈ R, with γ an R-component with repelling end βγ
and B(γ) the corresponding B-component , there are two open neighborhoods
N ′(γ) and N(γ) of γ in (D(βγ, r/4)∪F)∩B(γ), labeled also by N(βγ) and

N ′(βγ), and there is m > 0 such that modht(N(βγ)rN ′(βγ)) ≥ m for all t.

Proof. Let x ∈ Jf r R. Choose Jordan neighborhoods N ′ ⊂ N ⊂
D(x, r/4) of x avoiding at least two marked points such that no G∗-compo-
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nent would have a closure that intersects both boundaries. Then

N ′ ∪
( ⋃

G∩∂N ′ 6=∅
G aG-comp.

G ∪ ∂N ′
)
⊂ N r

( ⋃

G∩∂N 6=∅
G aG-comp.

G ∪ ∂N
)
.

Moreover the right hand set is open and the left hand set is compact con-
nected. So their difference has an annular component A satisfying ∂A ∩ G
= ∅.

There is m > 0 such that

modht(N rN ′)
Grötzsch
≥ modht(A)

Lemma 2.6
≥ m.

Let x = β ∈ Jf ∩ R. We will choose N and N ′ similarly, but as neigh-
borhoods of G∗(β) and as subsets of (B(x) ∩ F) ∪D(x, r/4).

Now we can prove

Step 2. Equicontinuity of (ht) at z0 ∈ Jf r (R∪ {preparabolics}).

Proof. We will use a standard pullback argument. When x ranges over
Jf , the sets N ′(x) define an open cover of Jf ∪ R, which is compact. We
extract a finite subcovering N ′(xi), i = 1, . . . , l. Note that Lemma 2.7 im-
plies the existence of m > 0 such that, for any t and any i ∈ {1, . . . , l},
modht(N(xi)rN ′(xi)) ≥ m.

Assume z0 ∈ Jfr(R∪{preparabolics}). By weak hyperbolicity, there are
infinitely many n (the good iterates) such that fn blows up a neighborhood
of z0 to D(fn(z0), r) with degree at most δ. There is i(n) such that fn(z0) ∈
N ′(xi(n)). Taking a subsequence if necessary we may assume i(n) ≡ i.

We distinguish two cases. Either xi = βγ for some γ; then we use the
fact that N(xi) is contained in a B-component so that we may apply Lemma
2.2. Or

fn(z0) ∈ N ′(xi) ⊂ N(xi) ⊂ D
(
xi,

r

4

)
⊂ D

(
fn(z0),

r

2

)
⊂ D(fn(z0), r)

for infinitely many n. Let E,U , with E ⊂ U , be the respective components
of f−n(N ′i) and of f−n(Ni) containing z0. Set An = U r E. Then

modht(An) ≥ 1

δ
modht(N(xi)rN ′(xi)) ≥

m

δ

(for the first inequality, see for example [23, the proof of Lemma 2.1]). Taking
again a subsequence if necessary, we may assume that the annuli An are
disjoint, nesting down to z0 (this follows from the shrinking lemma, due to
the “Koebe space” D(r)rD(r/2)). This shows that (ht) is equicontinuous
at z0.

Step 3. Equicontinuity of (ht) at z0 ∈ R∪{preparabolics}. This part is
postponed to §2.5.
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In order to study the fiber structure of limit maps of (ht), we will make
use of the following lemma which is proved in §2.3:

Lemma 2.8 (4 points). Let (z1, z2, z3, z4) be four distinct points such
that no two belong to the same R-component. Then, for Γ the set of Jor-
dan curves which separate (z1, z2) from (z3, z4), there is m > 0 such that
Λ(ht(Γ )) ≥ m (for all t, where Λ(Γ ) denotes the extremal length of the curve
family Γ , cf. [2])).

Step 4. For any limit map of (ht), the nontrivial fibers are R-compo-
nents.

Proof. Recall that (ht) are normalized to fix three points a, b, c in the
complement of G∗.

Assume htn ⇒ H. By Step 3 and its proof, H maps each R-component
to a point. We will show that they are the only fibers of H.

Choose z 6= w, so that z, w are not in the same R-component. Assume
that H(z) = H(w). We may assume that H(z) 6∈ {a, b} and that {z, w, a, b}
are in different R-components by relabeling the points a, b, c if necessary.
Let Γ(z,w),(a,b) be the set of curves separating {z, w} from {a, b}. The as-
sumptions of Lemma 2.8 are satisfied, so Λ(ht(Γ(z,w),(a,b))) ≥ m > 0 for
all t. Consequently, H(z) 6= H(w) (see Corollary B.2 in the appendix).

This ends the proof of Proposition 2.3, modulo Lemma 2.6, Lemma 2.8
and Step 3.

2.3. Estimates of conformal invariants. The technical Lemma 2.6
and Lemma 2.8 used above are proved in this section. The main idea is
to formalize the noninfluence of the deformation in appropriate cases by
“forgetting” its support.

We start with the key lemma due to Cui.

Key Lemma. There is a uniform constant 0 < c ≤ 1 with the following
properties. Let η : [0, 1]→ C (resp. η : [0, 1]→ C) be a rectifiable curve with
end points outside G. Then

l%e(η) ≥ cde(η(0), η(1)) (resp. l%(η) ≥ cd(η(0), η(1))),

where de is the Euclidean metric (resp. d the spherical metric), %e (resp. %)
is the same metric but with zero density in Y (the support of σt), i.e.

%e(z)|dz| = (1− χY(z))|dz|, %(z)|dz| = 1− χY(z)

1 + |z|2 |dz|,

where χY denotes the indicatrix function associated to Y.

Proof. We will modify η in the following way that will also be used
later on: Let I be a maximal open subinterval such that η(I) ⊂ G (so that
η(I) ⊂ G and η(∂I) ⊂ ∂G for some G). Define η′(I) to be the Euclidean
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(spherical) geodesic linking the two ends of η(I). We then claim: for some
c > 0,

l%e(η(I)) ≥ cle(η′(I)) (resp. l%(η(I)) ≥ cl(η′(I))).

Proof of the claim: If η(I) ∩ Y = ∅, then l%e(η(I)) = le(η(I)) ≥ le(η
′(I)). If

η(I) ∩ Y 6= ∅, set I = ]s1, s2[; then there are two subintervals, one on each
end, I1 = ]s1, s

′
1[ and I2 = ]s′2, s2[, such that η(si) ∈ ∂G and η(s′i) ∈ ∂(Y∩G).

We claim that there are constants cG, c > 0, with c independent of G, such
that

l%e(η(I)) ≥
∑

i=1,2

l%e(η(Ii)) =
∑

i=1,2

le(η(Ii)) ≥
∑

i=1,2

|η(si)− η(s′i)|

∗
≥ cG

∑

i=1,2

|η(si)− β(G)| ≥ cG|η(s1)− η(s2)|

= cGle(η
′(I))

∗
≥ cle(η′(I)).

Here the only nontrivial inequalities are the ones marked with ∗. Lemma 2.9
below proves the first ∗-inequality.

Lemma 2.9. If g : D → C is a univalent function such that g(z) =
λz + O(z) at the origin with |λ| > 1, and if γ1 and γ2 are two disjoint
invariant arcs in D r {0} landing at 0, then γ1 ∪ γ2 forms a “quasi-arc” in
the following sense: there is a constant c > 0, depending only on the germ g,
such that for any z ∈ γ2, de(z, γ1) ≥ cde(z, 0).

Proof. Let φ : U → Dr be a linearization mapping (with U ⊂ D so that
φ(U) is a round disk). As |φ′(z)| is bounded from above and from below, we
may estimate the distance in the φ(z) coordinate. For λ = g′(0), φ(γ1) and
φ(γ2) are both invariant under z 7→ λz. In other words, they are self-similar.
There is a constant c0 > 0 such that for z ∈ φ(γ2) ∩ {r/|λ| ≤ |w| ≤ r},
d(z, φ(γ1)) ≥ c0|z|, due to compactness and the fact that the two arcs are
disjoint. The rest follows by self-similarity and bounded distortion of the
univalent map φ.

For each G-component G there is a minimal n such that fn(β(G)) is
q-periodic and repelling, and fn is either locally injective at β(G) or has an
isolated critical point at β(G). We may then apply the above lemma to the
(well defined) map F = f−nf qfn in a neighborhood UG of β(G). Combining
this with a compactness argument for Gr UG, we obtain the constant cG.

It remains to show the second starred inequality, that is, c = infG cG > 0.

Assume by contradiction that infG cG = 0. Then for some periodic γ
and its corresponding B-component B, there are nk → ∞, Bk ∈ B, a G-
component Gk in Bk with attaching point βk, and zk ∈ ∂Gk r {βk}, z′k ∈
Gk ∩ ∂Y such that |zk − z′k|/|zk − βk| → 0 as k →∞.
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Y

η(s2)

α

η(s1)

∆′α

β

κ

η(s′1)

η(s′2)

G′

Fig. 3. Cui’s inequality

We let Ĝ denote the union of the G-components attached to β = β(γ) (i.e.

Ĝ = G∗(β) r {β}). Set yk = fnk(zk), y
′
k = fnk(z′k). We have β = fnk(βk)

and it follows from the above that |yk − y′k|/|yk − β| ≥ C ′ > 0. We will
uniformize the domains in order to deal with proper maps ψk of the unit
disk of degree at most δ:

(βk, zk, z
′
k), Bk

hk
��

fnk // B, (β, yk, y
′
k)

h
��

(0, wk, w
′
k), D

ψk // D, (0, xk, x
′
k)

Since h has bounded distortion on Ĝ which contains yk, y
′
k, we have

|xk − x′k|/|xk| ≥ C > 0 and h(Ĝ) ⊂ D(0, r) for some r < 1. As wk, w
′
k, 0

are in the same component of ψ−1
k (h(Ĝ)), we know that |wk|, |w′k| ≤ s < 1

(see e.g. [23, Lemma 2.1]). Therefore h−1
k has uniform bounded distortion,

so that |wk − w′k|/|wk| is comparable to |zk − z′k|/|zk − βk| and tends to 0.

Case 1: |xk| ≥ r1 > 0. This implies that |xk − x′k| ≥ Cr1 > 0. Switch
to the hyperbolic metric %(·, ·) for convenience, and use the fact that ψk
contracts %; we have

%(wk, w
′
k)

%(wk, 0)
≥ %(xk, x

′
k)

C1
≥ C2 > 0,

which is a contradiction.

Case 2: |xk| → 0. One can check that wk and 0 are in the same com-
ponent of ψ−1

k (D(0, 2|xk|)). This implies that %(wk, 0)→ 0 (see for example
[23, Lemma 2.1]); therefore %(wk, w

′
k)→ 0 and %(xk, x

′
k)→ 0.
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We claim that there is a > 0 such that |x′k| ≤ a|xk|. For otherwise
for infinitely many k, ψ−1

k ({z : |xk| < |z| < |x′k|}) would contain a round
annulus centered at 0, separating wk from w′k, and having definite modulus.
This contradicts the fact that |wk − w′k|/|wk| → 0.

For all large k, set Wk = D(0, 2a|xk|) ⊂ D and let W ′k be the component
of ψ−1(Wk) containing 0. One checks again that wk, w

′
k ∈ W ′k. Now uni-

formizing Wk,W
′
k again we are more or less back in the situation of Case 1

(by checking as well that wk, w
′
k, 0 are always in the same pulled-back com-

ponents). Therefore infG cG > 0.

This ends the proof of the claim for le. The spherical case is similar. We
then get the Key Lemma by replacing η(I) by η′(I) for every possible I.

Proof of Lemma 2.6 (control of moduli of deformed annuli). Denote by
δ the Euclidean distance between the two components of ∂A, and let Γ be
the family of rectifiable curves joining them. It follows from the Key Lemma
that for any η ∈ Γ , l%e(η) ≥ cδ. Set At = ht(A), and let Γt be the family
of arcs joining the two boundary components of At, and %t = ht∗(%) (with
%t = 0 on ht(Y)). Then

modAt = Λ(Γt) = sup
%′

L%′(Γt)
2

Area%′ At
≥ L%t(Γt)

2

Area%t At
=

L%(Γ )2

Area%A

≥ (cδ)2

Area%A
≥ (cδ)2

Area(A)
=: m(A) > 0,

where the supremum is taken over all measurable conformal metrics %′ on At,
and L%′(Γt) denotes the infimum of the %′-lengths of curves in Γt.

Before proving Lemma 2.8, we first establish a lemma that gives a uni-
form control. This estimate will also be used to prove the weak hyperbolicity
of limit maps of (ft).

Let z ∈ C. We assign to z a compact subset K(z) in the following way. If
z ∈ G∗, then there is a unique G∗-component G∗ and a unique Y∗-component
Y ∗ such that z ∈ G∗ and Y ∗ ⊂ G∗. We set K(z) = Y ∗. If z 6∈ G∗, we set
K(z) = {z}.

Let Q be the set of distinct quadruples q = (z1, z2, z3, z4) (zi 6= zj for
i 6= j). If q ∈ Q, we let Γq be the set of rectifiable curves which separate
(z1, z2) from (z3, z4).

For r > 0, we define Qr ⊂ Q as the set of quadruples such that
d(K(z1),K(z2)) ≥ r, d(K(z3),K(z4)) ≥ r, d(z1, z2) ≥ r and d(z3, z4) ≥ r.

Lemma 2.10 (uniform control of lengths). For all r > 0, there is a
constant ` = `(r) > 0 such that , for any q ∈ Qr and any γ ∈ Γq, we have
l%(γ) ≥ ` (where l% is given in the Key Lemma).
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Proof. If not, let qn ∈ Qr and γn ∈ Γqn be such that l%(γn) → 0.
Taking subsequences if necessary, we may assume that qn tends towards
(z1, z2, z3, z4) ∈ C4, and that γn tends in the Hausdorff topology towards a
compact subset γ of diameter at least r.

Let γ′n = γn r G. If there is a subsequence such that diam(γ ′nk) ≥ δ > 0
for all k ≥ 0, then it follows from the Key Lemma that

l%(γnk) ≥ 2cdiam(γ′nk) ≥ 2cδ > 0,

which is a contradiction.
Therefore, diam(γ′n) → 0. Taking a further subsequence we may also

assume that γ′n → {a} in the Hausdorff topology. As G is open, we have
a 6∈ G. Therefore, for any s with 0 < s < r, and for all large n, we have

γ′n ⊂ D(a, s), γn ⊂ D(a, s) ∪ G∗.
Hence γn is contained in the connected component D′s of D(a, s) ∪ G∗ con-
taining a.

Case 1: a 6∈ G∗ for any G∗-component G∗. Then diamD′s → 0 as s→ 0.
This contradicts diam γn ≥ r.

Case 2: a ∈ ∂G∗r{β(G∗)} for some G∗-componentG∗. Then for s small
enough, and n large, γn ⊂ D′s = D(a, s) ∪G∗. Hence a pair of points in the
quadruple qn, say z1n, z2n, are in D(a, s) ∪ G∗. But qn ∈ Qr. This implies
that {z1n, z2n} 6⊂ D(a, s), and {z1n, z2n} 6⊂ G∗. Therefore, say, z1n ∈ G∗ and
z2n ∈ D(a, s), and consequently z1 ∈ G∗ r D(a, s) and z2 = a. It follows
that l%(γ) ≥ min{d(a,Y), d(a, z1)} > 0, which is a contradiction.

Case 3: a = β(G∗) for some G∗-component G∗. In this case we have
diam(D′s rG∗)→s→0 0. It is then easy to see that d(K(z1n),K(z2n))→ 0.
This gives us a contradiction.

Proof of Lemma 2.8 (4 points). We proceed as in Lemma 2.6 but with
the spherical metric. If neither {z1, z2} nor {z3, z4} is a subset of a green
star of G∗, then q = (z1, z2, z3, z4) belongs to some Qr. Therefore, Lemma
2.10 implies that l%(γ) ≥ ` > 0 for all γ ∈ Γq and for some ` = `(r), and we
obtain

Λ(ht(Γ )) ≥ `2

4π
> 0.

Otherwise, z1 and z2, say, belong to the same star G∗ of G∗. By assump-
tion, at least one point in each group is not in R. We now consider a new,

smaller pair (Ŷ∗, Ĝ∗) of neighborhoods of Rr Jf such that neither {z1, z2}
nor {z3, z4} is a subset of a Ĝ∗-component. Now we will need our technical
assumption on the complex structure σt(z). It implies that there is t0 ∈ ]0, 1[

such that σs = σt0 off Ŷ∗ for all t0 < s < 1. Therefore hs ◦ h−1
t0 is conformal

off ht0(Ŷ∗). On the other hand, we may check that the proofs of Key Lemma
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and Lemma 2.10 are still valid on ht0(C), for the dynamics of ft0 , and for the

pair (ht0(Ŷ∗), ht0(Ĝ∗)) (but probably with another constant c). Therefore,
for all t0 < s < 1,

Λ(hsh
−1
t0 (ht0(Γ ))) ≥

̂̀2

4π
> 0.

This implies that Λ(hs(Γ )) ≥ C > 0 for t0 < s < 1, with C independent
of s. But (ht)0≤t≤t0 is uniformly quasiconformal, so Λ(ht(Γ )) ≥ m > 0 for
all t ∈ [0, 1[, with m independent of t.

2.4. Equicontinuity of (ft) and the proof of Theorem 2.1. In
this section, we prove the equicontinuity of (ft)t together with the weak
hyperbolicity of any of its limits, and then Theorem 2.1.

The equicontinuity of (ft) is due to Lemma A.4 in the appendix: in our
case, assume htn ⇒ H. Then each R-component is a fiber of H and all the
other fibers are points. Therefore f maps any fiber of H into a fiber of H.
Replacing both Ft and Gt by ht, and replacing g by f in Lemma A.4, we
conclude that ftn = htn ◦ f ◦ h−1

tn converges uniformly to a limit map F . It
is automatically a rational map of the same degree as f .

Let us prove that F is weakly hyperbolic. Let C = inf t diste(0, Jft). Due
to the facts that 0 is fixed in the Fatou set and disjoint from Jf ∪ R, and
that {ht}t is equicontinuous, we have C > 0.

Lemma 2.11. If r < C/2 then there is some constant r′ > 0 such that ,
for all x ∈ Jf r (R ∪ {preparabolics}) and any y /∈ G∗ ∪ D(x, r), we have
|H(x)−H(y)| ≥ r′.

Proof. We use the notation of §2.3. Let x ∈ Jf r (R∪ {preparabolics})
and y ∈ C r G∗ with |y − x| ≥ r. Then K(x) = {x} and K(y) = {y}. Let
Γ be the set of rectifiable curves which separate {x, y} from {0,∞}. The
quadruple belongs to Qr. Lemma 2.10 implies that Λ(ht(Γ )) ≥ C ′r for all
t < 1. We claim that |ht(x) − ht(y)| ≥ C exp(−2π/C ′r). This would imply
the lemma.

If |ht(x) − ht(y)| ≥ C then the claim is proved. Otherwise, |ht(x) −
ht(y)| < |ht(x)|, and therefore Lemma B.1 in the appendix implies that

|ht(x)− ht(y)| ≥ |ht(x)| exp(−2π/C ′r) ≥ C exp(−2π/C ′r),

which is the claim.

Proof that F is weakly hyperbolic. We assume that f is weakly hyperbolic
with constants (δ, r0). The weak hyperbolicity will come from two different
arguments. The first will follow from Lemma 2.11 when the point considered
is far from G∗-components with large diameter, the second from Lemma 2.2.
We will use the notation introduced in §2.1.
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Given n0 ∈ N, we let G∗(n0) be the union of the G∗-components G∗

such that there is an iterate n ≤ n0 such that fn(G∗) is the periodic Gi
chosen in the cycle. Since the diameters of the connected components of G∗
shrink to 0, we may choose n0 large enough so that the diameter of any
G∗ r G∗(n0)-component does not exceed min{r0, r

′
βi
}/3.

Define

rβi = min{r0/3, d(βi,G∗(n0)rG∗(βi)), r′βi/3}.
Recall that Bβi = B′βi ∪D(βi, rβi/2). We let r1 = min d(G∗, ∂B) where G∗

ranges over G∗(n0)-components and B = BG∗ ∈ B satisfies G∗ ⊂ B. We set
A(βi) = ∆βirf−ki(∆βi). There is an r2 > 0 such that, for any z ∈ Jf∩A(βi),
the disk D(z, r2) is disjoint from G∗(n0). Note that r2 ≤ |z − βi| ≤ rβi/2.

Let r < min{C/2, r0/3, r1/2, r2}, and consider a point x ∈ Jf r (R ∪
{preparabolics}). There is a sequence (nk) such that deg(fnk : Wk(x) →
D(fnk(x), r0)) ≤ δ. We construct inductively a sequence (n′p) such that

deg(Fn
′
p : W ′p(H(x)) → D(Fnp(H(x)), r′)) ≤ δ, where r′ is associated to r

by Lemma 2.11.

We assume that we have already constructed n′1, . . . , n
′
p−1. Let k be the

smallest index so that nk > n′p−1. We distinguish two cases.

If D(fnk(x), r) ∩ G∗(n0) = ∅, then we define D′k to be the union of
D(fnk(x), r) with all G∗-components G∗ such that G∗ ∩ D(fnk(x), r) 6= ∅.
Since r < r0/3, it follows thatD′k ⊂ D(fnk(x), r0) so it is also the case for the
fill-inDk ofD′k. It follows from Lemma 2.11 thatH(Dk) ⊃ D(H(fnk(x), r′)).
Let Wk(H(x)) be the connected component of F−nk(D(Fnk(H(x)), r′))
which contains H(x). Then the degree is at most δ since Dk ⊂ D(fnk(x), r0).
Therefore, we set n′p = nk.

If D(fnk(x), r) ∩ G∗(n0) 6= ∅, then there is a G∗(n0)-component G∗ such
that fnk(x) ∈ B = BG∗ because r < r1. Therefore, there is a minimal iterate
j such that fnk+j(x) ⊂ A(β). We set n′p = nk + j. Since r < r2, it follows

that D(fn
′
p(x), r)∩G∗(n0) = ∅; we let D′ be the union of D(fn

′
p(x), r) with

all G∗-components which intersect that disk. Let w ∈ D(fn
′
p(x), r). Then

|w − β| ≤ |w − fn′p(x)|+ |fn′p(x)− βi| ≤
(
r +

r′β
3

)
+
rβ
2

≤
(
r2 +

r′β
3

)
+
r′β
6
≤ 2

r′β
3
,

since r2 ≤ rβ/2. It follows that D′k ⊂ ∆′β and the fill-in Dk of D′k
is also contained in ∆′β. Therefore H(D(fn

′
p(x), r)) ⊃ D(F n

′
p(H(x)), r′),

and the degree of the restriction of F n′p to any connected component of
F−n

′
p(D(Fnk+j(H(x)), r′)) is at most δ (cf. the definition of r′β).

This implies that F is weakly hyperbolic.
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Proof of Theorem 2.1. We first assume that we are under the normaliza-
tion fixing (0, 1,∞). It follows from Proposition 2.3 that (ht) is an equicon-
tinuous family, and that so is (ft). To prove the convergence of the defor-
mation, it suffices to prove the uniqueness of the limits as t→ 1.

Therefore, we may now assume that there are sequences (tn) and (sn)
tending to 1 such that htn ⇒ H1, hsn ⇒ H2, ftn ⇒ F1, and fsn ⇒ F2. As
H1,2 have the same fiber systems, there is a homeomorphism φ making the
following diagram commute:

C
H1

��

id // C
H2

��
C

φ // C

We claim that Hi(Jf∪R) = JFi , for the left hand set is Fi-fully invariant, has
no isolated points, and periodic points are dense inside. This implies that φ
is a topological conjugacy from F1 to F2. Moreover φ restricted to the Fatou
set F of F1 is equal to H2◦H−1

1 . But due to our technical assumption on the
complex structure σt, on any compact set of H−1

1 (F) the two maps H1 and
H2 integrate the same complex structure (this is still true even without the
technical assumption, but the proof is more delicate). By local uniqueness
the map φ is conformal on F . The key point here is to apply a rigidity result
of Häıssinsky, restated in Theorem 2.12 below, to conclude that in this case
φ is globally conformal. But it fixes 0, 1,∞ due to normalization. So φ = id.
This gives the convergence of (ht), with the same fiber system, i.e. properties
(I) and (II). The other properties follow.

Theorem 2.12. Let f be a weakly hyperbolic rational map which is not
a Lattès example. Assume that ϕ is a homeomorphism of C, conformal on
C r Jf , such that ϕ ◦ f ◦ ϕ−1 is again a rational map. Then ϕ is a Möbius
transformation.

See [11] for a proof.

2.5. Equicontinuity of (ht) at z0 ∈ R ∪ {preparabolic points}
(Step 3). The idea is to compare deformations of local dynamics with
that of model parabolic dynamics.

For each ν ∈ N, we define the model parabolic maps gν(z) and the stan-
dard projection πν to be:

g1(z) = g(z) =
z

1− z ,

gν(z) =

(
g(νzν)

ν

)1/ν

= z

(
1

1− νzν
)1/ν

= z(1 + zν + · · · ), πν(z) = νzν .
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The map gν maps univalently Crπ−1
ν ([1,∞[) onto Crπ−1

ν (]−∞,−1[),
and has a parabolic fixed point at 0 with ν attracting petals. Note that
π(z) = −1/z conjugates g(z) to the standard translation T : z 7→ z + 1.
Therefore ππν is the Fatou coordinate for gν .

A left sepal (resp. right sepal) for gν is an invariant region corresponding
to an upper (resp. lower) half-plane H in the π ◦ πν(z) coordinates with
TH = H. In case the boundary of H is a straight line and ν = 1, the
corresponding sepal is simply a round disk centered in iR tangent to 0.

One defines similarly attracting (resp. repelling) petals corresponding to
right (resp. left) half-planes L with TL ⊂ L (resp. T−1L ⊂ L), and then
attracting and repelling invariant sectors corresponding to right and left
half-strips. A flower neighborhood corresponds to the union of a left and a
right sepal, together with an attracting and a repelling petal.

When the boundaries of these regions are horizontal or vertical straight
lines (in the ππν coordinate), we call them straight sepals, petals, etc.

Lemma 2.13. Given any parabolic germ F with ν attracting fixed petals
at 0, there is a neighborhood V of 0 for F , a straight flower neighborhood U
of 0 for gν , and a qc-conjugacy ϕ from (gν(z), U) to (F (z), V ). Moreover ϕ
can be chosen to be conformal on the sepals and on the repelling petals.

Proof. We shall construct χ = ϕ−1.

We let {Pj,+(F )}j∈Z/νZ (resp. {Pj,−(F )}j∈Z/νZ) be ν disjoint repelling
(resp. attracting) petals of F numbered in cyclic order such that Pj,+(F )
lies between Pj,−(F ), and Pj+1,−(F ). Let Sl,j(F ) be a sepal which intersects
Pj,+(F ) and Pj+1,−(F ), and Sr,j(F ) be a sepal which intersects Pj,+(F )
and Pj,−(F ). We let vj(F ) be the repelling axis of Pj,+(F ). Finally, we let
Φj,± : Pj,±(F )→ C be Fatou coordinates.

We define {vj(gν)}j∈Z/νZ to be the ν repelling axes of gν numbered in
cyclic order.

Let χ : Pj,+(F ) → C be defined by χ(z) = (ππν)
−1 ◦ Φj,+(z) with the

inverse branch of (ππν) chosen so that, for all j ∈ Z/νZ, χ maps vj(F ) to
vj(gν). Restricting Pj,+(F ) if necessary, we may assume that its image is
contained in D. It follows that

χ ◦ F = gν ◦ χ
on F−1(

⋃
j Pj,+(F )).

Therefore, we may use this functional equation to extend χ univalently
to the sepals, shortening them if necessary. It remains to extend χ quasi-
conformally to invariant attracting sectors.

For each j ∈ Z/νZ, we let P ′j ⊂ Pj,− be disjoint attracting invariant
sectors which cover the set on which χ is not defined. On the attracting
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quotient cylinder C/Z, P ′j is an annulus. We assume that its modulus is
finite and that its boundary is composed of two disjoint horizontal curves.

It follows from the uniqueness of Fatou coordinates up to an additive
constant that the expressions of χ on those two curves differ by a constant.
Therefore, a quasiconformal extension of χ exists which conjugates the dy-
namics. The map ϕ = χ−1 satisfies the requirement of the lemma.

Let us return to our rational map f . Let γ = γi be one of the repelling
star-like graphs for f . Assume that it has ν edges (κj)j∈Z/νZ (numbered in
cyclic order). Denote by q the (common) period of κj . Choose a smooth
Jordan neighborhood ∆(β) of β so that its boundary intersects (transver-
sally) each κj at only one point. A flower neighborhood of γ is in the form
∆(β) ∪⋃j(B

′(κj) ∪∆(α(κj))), that is, like a blue set.

Lemma 2.14. There is a flower neighborhood V of γ, a flower neighbor-
hood U of 0 for the model map gν , a collection R of closed sepals, one in
each sepal of U , and a qc-conjugacy ϕ from (U r R, gν) to (V r γ, f q),
such that ϕ maps conformally (sepals(U) r R onto

⋃
j B
′(κj) r γ, and

ϕ is conformal on a union C of invariant repelling sectors with ϕ(C) ⊃
(Jf ∪ G) ∩ (∆(β)r

⋃
j B
′(κj)).

Proof. We proceed as in the previous lemma and define the inverse map
χ = ϕ−1. Let V be a flower neighborhood of f as above, and let ψ̂ : ∆(β) \
{β} → C be a multivalued, locally univalent map which satisfies ψ̂ ◦f q(z) =

ψ̂(z) + 1.
1. For each κj , recall that B′(κj) is the invariant strip neighborhood

chosen in the set up of simple pinching.
Let {Pj,+}j∈Z/νZ be the connected components of ∆(β) \ γ numbered in

cyclic order.
2. For each j, choose an invariant subsector with piecewise smooth

boundary P ′j,+ such that

(Jf ∪ G) ∩
(
∆(β)r

⋃

i

B′(κi)
)
⊂ P ′j,+ ⊂ Pj,+ r

⋃

i

B′(κi)

(we assume that the boundaries intersect just at β and ∂∆(β)).
3. Around each repelling axis vj(gν), choose a straight invariant sector

neighborhood Cj such that the quotient Riemann surfaces have the same
moduli:

modCj/gν = modP ′j,+/f q.
Define χ : (P ′j,+, f q)→ (Cj , gν) to be a conformal conjugacy (adjusting the
outer boundary of Cj if necessary).

4. For each attracting axis of gν , choose one left sepal Sj,l and one right
sepal Sj,r disjoint from

⋃
i Ci.
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5. Inside each sepal Sj,l, define Rj,l to be the uniquely determined sub-
sepal so that

mod (Sj,l rRj,l)/gν = modB′l(κj)/f q

(where B′l(κj) is the left component of B′(κj)r κj).
Define χ : (B′l(κj), f q)→ (Sj,l rRj,l, gν) to be a conformal conjugacy.
Do the same for each right sepal.
6. Extend χ quasiconformally to the domains ∆(αj)\B′(κj) and ∆(β)r⋃

i(B
′(κi)∪P ′i,+). In both cases, the boundaries are periodic half-strips in the

log-linearizing coordinates for∆(αj)\B′(κj) and in ψ̂-coordinates for∆(β)r⋃
i(B
′(κi) ∪ P ′i,+), and the restriction of χ to the boundary commutes with

translation by 1. This ensures the existence of a quasiconformal extension
which conjugates the dynamics. The map ϕ = χ−1 satisfies the requirements
of the lemma.

Proposition 2.15 (equicontinuity of (ht) at z0 ∈ R). Fix z0 ∈ γ. For
any ε > 0, there is δ > 0 such that for any |z − z0| < δ and any t, we have
|ht(z)− ht(z0)| < ε.

Proof. For simplicity we will only treat the case that γ has a unique
edge κ.

Let ϕ,U,R be as in the above lemma. Note that π = π−1. Denote by Bl

the left sepal of U . There is a translation Tσ by a pure imaginary constant,
mapping π(Bl) to {y > Lb} and π(Bl r R) to {Lb < y < Lr}. Define Pt(z)

on Bl to be πT−1
σ P̃tTσπ(z). Define Pt(z) on the right sepal Br similarly. It

extends by identity to the remaining part of U .
Set µt = ϕ∗σt = µbt ∧ µct ∧ µs, where we have decomposed µt into three

structures with disjoint supports B (= Bl∪Br), C and S respectively. Note
that µst = µs is independent of t.

We will integrate them one by one: first Pt integrates µbt , conjugates g
to g, and is the identity on S ∪ C. The next step Ct integrates µct , and
conjugates g to a germ Xt. Finally, St integrates (Ct)∗µs, it is a K-qc map
with K independent of t, and conjugates Xt to a parabolic germ Yt.

We have
ht|V = H−1 ◦ St ◦ Ct ◦ Pt ◦ ϕ−1|V ,

where H is a suitable univalent map.
Let us end up the proof assuming the following lemma.

Lemma 2.16. For any M > 0, there are t0 < 1 and a closed neighborhood
Ê of γ such that for any t > t0, modht(V r Ê) > M .

Due to the normalization, Lemma 2.16 implies that

Given any ε > 0, there are t0 < 1 and a closed neighborhood Ê of γ such
that for any t > t0, diamht(Ê) < ε.
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Fig. 4. Relations with various models

This, together with the continuity of ht(z) on (t, z) ∈ [0, t0] × C, gives
the proposition.

In order to prove Lemma 2.16, we first study the properties of Pt and Ct:

Property of Pt: For any r > 0, there are t0 < 1 and E a full contin-
uum neighborhood of R such that for any t ≥ t0, Pt(E) ⊂ Dr.

This is due to the continuity of Pt(z) on (t, z) with P1(R) = {0}.
Property of Ct: For some sequence rk ↘ 0, modCt(U rDrk) → ∞

as rk → 0 uniformly in t ∈ [0, 1[.
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Proof. Note that π(C) is a left half-strip of the form {x ≤ a′ < 0,
|y| ≤ b}. Set G ′ = π(G ∩ C). Denote by G′ a general G ′-component. For
a ∈ R, a < a′, define

Σa = {x = a, |y| ≤ b} ∪
⋃

G′∩{x≡a}6=∅
G′.

All disks D(ri) below are centered at 0. Choose one by one R−0 > 0, x0 < 0,
R+

0 > 0 and N ∈ N such that

∂D(R−0 ) ⊂ π(U), Σx0 ∩D(R−0 ) = ∅, Σx0 ⊂ D(R+
0 ), T−NΣx0 ∩D(R+

0 ) = ∅.
Fix k ∈ N. Set xk = x0 − kN . Let R−k be the radius of the largest disk not
intersecting the interior of Σxk . Define R+

k such that −R+
k −xk = −R+

0 −x0

=: C0. Set rk = 1/R+
k and let Q be the rectangle {logR−0 < x < logR+

k ,
|y| ≤ π}. Then

modCt(U rDrk) ≥ modCt(π({R−0 < |z| < R+
k })) = modCtπ(−eQ).

Define now % to be the density of the Euclidean metric on Q minus the
yellow set (more precisely on Qr log(−π(ϕ−1(Y ∩ϕ(C))))), and to be zero
elsewhere. Let Γ be the set of arcs in Q connecting the two vertical segments.
Then

modCt(U rDrk) ≥ L%(Γ )2

Area%(Q)

∗
≥ (c(logR−k − logR+

0 ))2

2π(logR+
k − logR−0 )

→∞

as k →∞, where ∗ is due to the following two facts:

1. Each arc in Γ contains a subarc with end points outside − log G ′, of
Euclidean length at least logR−k − logR+

0 , due to the construction
of R±k .

2. There is a uniform Koebe space around each green component in Q
so that the estimates in the Key Lemma still hold, probably with a
different constant.

Now the limit follows from R+
k −R−k ≤ R+

k − (−xk) + diamΣxk = C0 +
diamΣx0 as TkNΣxk = Σx0 . This ends the proof of Property of Ct.

Proof of Lemma 2.16. For any M > 0, there exists r > 0 such that
mod(Ct(UrDr)) ≥ KM for any t; also there are t0, E such that Pt(E) ⊂ Dr

for any t > t0. Set Ê = ϕ(E). Then for any t > t0,

modht(V r Ê) = modHht(V r Ê) = modStCtPt(U r E)
St is K-qc
≥ 1

K
modCtPt(U rE)

Grötzsch
≥ 1

K
modCt(U rDr) ≥

1

K
KM = M.

There are two variants of the above proof, one uses only the properties
of Pt (which is used in Cui’s original manuscript), and the other only the
properties of Ct.
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Fig. 5. Estimates in the log-coordinate

Denote by h0,t : V → C the map that integrates the complex structure
µt that is σt on B′(κ) and σ0 elsewhere, normalized so that h0,t(0) = 0 and
h0,t(z) = z +O(1) at ∞.

Now (Pt◦ϕ−1)∗(µt) is g-invariant with dilatation K on S, and conformal
elsewhere. Denote by st the integrating map normalized as h0,t. Then st
conjugates g to a parabolic germ Zt.

Then the argument above proves that h0,t is equicontinuous at γ and
h0,t(γ) → {0} as t → 1. (As this does not rely on the estimates in the Key
Lemma, it works for nonsimple pinching as well, see [4].)

The other variant is the following:

Lemma 2.17. Let F be a parabolic germ with r petals, defined and uni-
valent on a neighborhood V of 0. Assume that Y ⊂ G ⊂ V satisfies:

(a) G is open, and Gi → {point} for any convergent sequence of distinct
G-components Gi,

(b) F−1(G) ⊂ G,
(c) the Key Lemma holds for paths in V .

Then given any family of F -invariant structures σt with support contained
in Y, the integrating map Ht (normalized as above) is equicontinuous at 0.

For this we use ϕ as in Lemma 2.13, and then Ct and St as above.

Applying this lemma to f l near an l-periodic parabolic point, we get the
equicontinuity of ht at these points.
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Finally, in order to prove equicontinuity of ht on backward components
of γi or at preparabolic points, we use the same technique as the one to find
cG for preperiodic G. The details are omitted.

3. MATINGS OF POLYNOMIALS

3.1. Definition, existence and unicity. There are many equivalent
ways to define matings of polynomials. We have chosen here the one pre-
sented by Milnor [18]:

Definition (the sphere). Following the terminology of Milnor, we con-
sider S2 as the subspace of C × R defined by S2 = H+ ∪ H− ∪ {(z, 0) ∈
C × R : |z| = 1}, where H+ = {(z, r) ∈ C × R : |z|2 + r2 = 1, r > 0} and
H− = {(z, r) ∈ C × R : |z|2 + r2 = 1, r < 0}. Let τ± : C → H± be the
gnomonic projections defined by

τ+(z) = (z, 1)/
√
|z|2 + 1, τ−(z) = (z̄,−1)/

√
|z|2 + 1.

The hemispheres H± are equipped with conformal structures by τ±.

τ+

τ−

C conjugate

C

Fig. 6. Matings and gnomonic projections

Definition (topological mating). Let F,G : C → C be two degree
d ramified coverings. Here we allow d to be 1. Assume that ∞ is totally
invariant for both F and G, and F and G are holomorphic in a neighborhood
of ∞ with local expansion zd(1 + O(1/z)) (i.e. they have the same leading
term in their local expansion at∞). We define the topological mating F⊥⊥G :
S2 → S2 to be the unique extension onto S2 of τ+ ◦F ◦ τ−1

+ |H+ and τ− ◦G ◦
τ−1
− |H− . By abuse of notation we will not distinguish F and τ+ ◦F ◦ τ−1

+ |H+

(resp. G and τ−◦G◦τ−1
− |H−). An easy calculation shows that the map F⊥⊥G

is a well defined degree d branched covering. In particular, if d = 1 then we
get a homeomorphism of the sphere.
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Assume now that f and g are two monic geometrically finite polynomials
of degree d ≥ 2 with connected Julia sets. The sphere S2 on which f ⊥⊥ g
is defined is equipped with the ray equivalence relation, which is defined to
be the smallest equivalence relation generated by x ∼ y if x, y belong to the
closure in S2 of an external ray of f or an external ray of g. The map f ⊥⊥ g
preserves this relation.

Definition. We say that (f, g, q, R) is a marked mating if f, g are monic
polynomials of degree d, R is a degree d rational map and q : S2 → C is a
continuous map such that

(1) (semi-conjugacy) q ◦ (f ⊥⊥ g) = R ◦ q;
(2) (identification) q(x) = q(y) if and only if x and y are ray-equivalent;
(3) (maximal conformality) q is conformal in int(Kf )∪ int(Kg), q(int(Kf )
∪ int(Kg)) = Cr JR and q−1(Cr JR) = int(Kf ) ∪ int(Kg).

We will say that two monic polynomials f and g are matable if there exist
a continuous map q and a rational map R such that (f, g, q, R) is a marked
mating.

Unicity of R and q. Pilgrim provided examples of nonunicity of the
conformal conjugacy class of R in a marked mating (f, g, q, R) in case R is
a Lattès example. For details, see [18, Appendix B.9]. However, we have:

Proposition 3.1. Let (f, g, q, R) be a marked mating. If f , g, R are
weakly hyperbolic and R is not a Lattès example, then R is unique up to
conformal conjugacy , and for a given R, the map q is unique up to postcom-
position of an automorphism of R.

Proof. Consider two marked matings (f, g, q, R) and (f, g, q′, R′). By
Lemma A.2 below, the map q′ ◦ q−1 is a homeomorphism conformal off
the Julia set which conjugates R to R′. We conclude by the rigidity Theo-
rem 2.12.

We remark that it is not always easy to check thatR is weakly hyperbolic,
knowing that f and g are weakly hyperbolic. But if f and g are geometrically
finite, so is R. Moreover, without any normalization on f and g, there are
generally d− 1 possible topological matings.

Existence. There are many known results regarding the existence and
nonexistence of matings of postcritically finite polynomials, especially in
degree 2 and 3. Interested readers can go to [18] and [24] for surveys of
these results. The central tool is Thurston’s theory for postcritically finite
branched coverings. We mention here only the quadratic case: combining
results of Levy, Rees, Shishikura and Tan, we have:
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Proposition 3.2. Two postcritically finite quadratic polynomials fc and
fc′ are matable if and only if c and c′ do not belong to conjugate limbs of
the Mandelbrot set.

See [22, 25] for more details. One of our tasks here is to extend this result
to geometrically finite quadratic polynomials (Corollary C).

Existence of marked matings of some postcritically infinite polynomials
can now follow from surgeries. We state this in the next proposition, which
in particular provides us with an extension of Proposition 3.2 to hyperbolic
polynomials with infinite critical orbits.

Proposition 3.3. Let (f, g, q, R) be a marked mating of polynomials f

and g. Assume that f̂ (resp. ĝ) is a quasi-regular map which coincides with f

(resp. g) on its basin of infinity , and that µ (resp. ν) is an f̂ -invariant (resp.
ĝ-invariant) Beltrami form supported on its filled-in Julia set. If we let ϕ
(resp. ψ) be a quasiconformal homeomorphism which integrates µ (resp. ν)
normalized at infinity to be tangent to the identity , then the polynomials
f1 = ϕ ◦ f̂ ◦ ϕ−1 and g1 = ψ ◦ ĝ ◦ ψ−1 are matable.

Proof. Define ϕ⊥⊥ ψ : S2 → S2 by

ϕ⊥⊥ ψ =





τ+ ◦ ϕ ◦ τ−1
+ on H+,

id on the equator,

τ− ◦ ψ ◦ τ−1
− on H−.

The map ϕ restricted to the basin of ∞ of f realizes a conformal conjugacy
from f to f1. The normalizations guarantee that ϕ maps the θ external
ray of f to the ray of f1 with the same angle. Therefore the map ϕ ⊥⊥ ψ
is a homeomorphism of S2, and a conjugacy from f̂ ⊥⊥ ĝ to f1 ⊥⊥ g1 which
preserves the external rays of the same angle.

Now we define a “q-pushed forward” Beltrami form ξ on the Riemann
sphere as follows:

ξ =





q∗µ on q(intKf ),

q∗ν on q(intKg),

0 · dz̄/dz elsewhere.

Since q is conformal on int(Kf )∪ int(Kg), the form ξ is R-invariant. There-
fore, the measurable Riemann mapping theorem provides us with a qua-
siconformal homeomorphism χ : (C, a, b, c) → (C, a, b, c) which solves the
Beltrami equation associated to ξ.

Set R1 = χ ◦R ◦ χ−1 and q1 = χ ◦ q ◦ (ϕ⊥⊥ ψ)−1 : S2 → C.

We can then check easily that (f1, g1, q1, R1) is a marked mating.
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Remark. The proof of Theorem D will follow the same lines as Propo-
sition 3.3, but instead of using the measurable Riemann mapping theorem,
we shall use a generalization due to David [5].

3.2. Continuous paths of matings

Definition. Let (ft)t∈T and (gt)t∈T be two continuous families of mat-
able polynomials. Let us say that they define a continuous family of matings
if there are continuous families (qt)t∈T and (Rt)t∈T such that (ft, gt, qt, Rt)t∈T
defines a family of marked matings. If T = [0, 1), we say that a continuous
path of matings (ft, gt, qt, Rt)t∈T is convergent if there exist limits f , g, q
and R of ft, gt, qt and Rt as t tends to 1 such that (f, g, q, R) is a marked
mating.

We first need a preliminary result which is a version with parameter of
Proposition 3.3.

Let (f0, g0, q0, R0) be a marked mating of polynomials with connected
Julia sets.

Let (f̂t)t∈T be a continuous family of quasi-regular maps, each coinciding
with f0 on the basin of ∞ and mapping the interior of Kf0 onto itself.

Let µt be f̂t-invariant Beltrami forms, continuous in t ∈ T , and with sup-
port contained in Kf0 . The measurable Riemann mapping theorem provides
us with a continuous family of quasiconformal maps ϕt, integrating µt, and
normalized to be tangent to the identity at infinity. Clearly ϕt is conformal
on the basin of ∞ for f0.

Define ft = ϕt ◦ f̂t ◦ ϕ−1
t . They are again monic polynomials with con-

nected Julia set, and depend continuously on t.
Assume that ĝt, νt, ψt, gt are similar deformations of g0.

Proposition 3.4. Under the above assumptions the marked matings
(ft, gt, qt, Rt)t∈T exist and depend continuously on t. In particular , if
(ft)t∈[0,1) and (gt)t∈[0,1) are simple pinching deformations of f0 and g0 re-

spectively (in this case f̂t ≡ f0 and ĝt ≡ g0), then (Rt) is a simple pinching
deformation of R0 and (ft, gt, qt, Rt)t∈[0,1) is a continuous path of marked
matings.

Proof. We repeat the proof of Proposition 3.3 adding the subscript t. So
we define subsequently the maps ϕt⊥⊥ψt, the q0-pushed forward forms ξt and
the quasi-regular dynamics R̂t. Since q0 is conformal on int(Kf0)∪ int(Kg0),

the forms ξt are R̂t-invariant and depend continuously on t. Therefore, the
measurable Riemann mapping theorem provides us with a continuous fam-
ily of quasiconformal homeomorphisms χt : (C, a, b, c) → (C, a, b, c) which
solves the Beltrami equation associated to ξt.

Set Rt = χt ◦ R̂t ◦ χ−1
t and qt = χt ◦ q0 ◦ (ϕt ⊥⊥ ψt)−1 : S2 → C.
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We can then check easily that (ft, gt, qt, Rt)t∈T are marked matings and
are continuous with respect to t ∈ T .

If (ft)t and (gt)t are simple pinchings, we check that the q-pushed forward
Beltrami forms define a simple pinching deformation of R0.

Now we can turn to the limit of simple pinchings. Consider simple pinch-
ings (ft, ϕt) and (gt, ψt). We apply Proposition 3.4 and wish to prove The-
orem B, which can be summed up by the following diagram:

(S2, f0 ⊥⊥ g0)

q0
��

ϕt⊥⊥ψt// (S2, ft ⊥⊥ gt)
qt
��

t→1 // (S2, f1 ⊥⊥ g1)

q1
��

(C, R0)
χt // (C, Rt)

t→1 // (C, R1)

Proof of Theorem B. It follows from Proposition 3.4 that (ft, gt, qt, Rt)
exists and is a marked mating for any 0 ≤ t < 1, and that it depends
continuously on t.

We can then apply Theorem 2.1 to all three deformations for f0, g0 and
R0 respectively and establish the convergences ft ⇒ f1, gt ⇒ g1, ϕt ⇒ ϕ1,
ψt ⇒ ψ1, Rt ⇒ R1 and χt ⇒ χ1. One checks easily that ϕ1 ⊥⊥ ψ1 is well
defined and semi-conjugates f0 ⊥⊥ g0 to f1 ⊥⊥ g1. It remains to prove the
uniform convergence of qt to a map q1 as t → 1, and that the limit 4-tuple
(f1, g1, q1, R1) is also a marked mating.

By our definition of pushed forward deformation, the map q maps each
equivalence class of ϕ1⊥⊥ψ1 (a red star in Kf0 or in Kg0) into an equivalence
class of χ1.

Define now q1 = χ1◦q◦(ϕ1⊥⊥ψ1)−1. By Lemma A.4, it has the following
property:

(i) q1 is well defined and continuous, qt converges uniformly to q1 and
q1 ◦ (ϕ1 ⊥⊥ ψ1) = χ1 ◦ q.

We have furthermore

(ii) q1 ◦ (f1 ⊥⊥ g1) = R1 ◦ q1.

Indeed, qt ◦ (ft ⊥⊥ gt) = Rt ◦ qt and every map in the equation converges
uniformly to the corresponding limit map.

(iii) q1(x) = q1(y) iff x and y are ray-equivalent.

By (i) and Lemma A.3 we just need to show that x ∼q x′ implies ϕ1 ⊥⊥
ψ1(x) ∼q1 ϕ1 ⊥⊥ ψ1(x′). The map ϕ1 ⊥⊥ ψ1, as the uniform limit of ϕt ⊥⊥ ψt,
maps external rays of f0 ⊥⊥ g0 bijectively onto external rays of f1 ⊥⊥ g1 with
the same angle. This is exactly what we wanted.

(iv) q1 is univalent in int(Kf1) ∪ int(Kg1).
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Fix any open set L compactly contained in int(Kf1)∪int(Kg1). For t close
to 1 the maps qt are univalent on L. So q1 is either univalent or constant
on L. The injectivity follows from (i) and (iii) above.

Remark. The only assumptions that we have really used were the exis-
tence of the marked mating (f0, g0, q0, R0) and the convergence of the three
pinching deformations (ft, ϕt), (gt, ψt) and (Rt, χt).

As a consequence, we get a positive answer to Milnor’s original question
(in a more general form):

Corollary 3.5. Let f and g be two quadratic hyperbolic polynomials
in nonconjugate limbs of the Mandelbrot set. Then they are matable. Fur-
thermore, assume that both maps have an attracting but non-superattracting
periodic cycle. Then there exist a simple pinching path of f and a simple
pinching path of g. The mating of the two paths yields a continuous path
of marked matings, and converges to a marked mating of parabolic polyno-
mials. In the particular case that the multipliers of the attractors are real
and positive, the pinching paths can be chosen so that the multipliers remain
real and tend to 1 (this is stronger than radial convergence in the sense of
McMullen).

Proof. In the hyperbolic component of f there is a unique postcritically
finite map f0 (one can obtain this by surgery). Similarly for g0. They do not
belong to conjugate limbs of the Mandelbrot set. So Proposition 3.2 ensures
that f0 and g0 are matable, and that f and g are matable as well.

To find a simple pinching combinatorics for f and for g, we just need to
lift a suitable simple closed curve in the quotient torus to the attractor. See
for example [26].

Now we can apply Theorem B to conclude.

In the particular case with real positive multipliers for the attractors, we
define an adapted pinching deformation. Let us first consider a conformal
mapping which maps the Fatou component which contains the critical point
to the unit disk. If it is properly normalized then it conjugates the first
return map to

B(z) = z
z + λ

1 + λz

on the unit disk with λ ∈ (0, 1). We will define the deformation for B and
then pull it back to our original map. We can check that the critical point of
B is on the segment (−1, 0), choose the pinching combinatorics to be the real
segment [0, 1], and the Beltrami forms in the pinching deformations to be
symmetric with respect to the real axis for B. These choices will guarantee
that the deformed maps ft and gt continue to have a real positive multiplier
for the attractor, and these multipliers tend to 1 at the limit of pinching.
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Proof of Corollary C. Let c and c′ be geometrically finite polynomials.
If they belong to conjugate limbs of the Mandelbrot set, their respective
α-fixed point have opposite external angles and therefore S2/∼ray is not a
sphere and the marked mating cannot exist. See [25] for further details.

On the other hand, if they are not in conjugate limbs, then it is the same
for T (c) and T (c′), the center of the hyperbolic component having c, resp. c′

as root. Therefore the marked mating of fc and fc′ exists by Corollary 3.5.

3.3. Theorems D and E. In this section, we prove Theorems D and E.

Postcritically finite polynomials associated to geometrically finite polyno-
mials. Let f be a monic and centered geometrically finite polynomial with
connected Julia set of degree d ≥ 2. Let us recall that there is a unique con-
formal map Bf : C \D→ C \Kf which is tangent to the identity at infinity
such that Bf (zd) = f ◦ Bf (z). Since the Julia set is locally connected, this
map extends continuously to the closure and induces the Carathéodory loop
γf : S1 → Jf . We wish to associate with f a canonical postcritically finite
polynomial T (f). We will proceed in two steps. The first step follows from
the statement proved in [10]:

Proposition 3.6. Let f be a monic centered geometrically finite poly-
nomial with connected Julia set. Then there exist continuous families of
subhyperbolic polynomials (ft)0≤t<1 and of orientation preserving homeo-
morphisms (ht : Jf → Jft)0≤t<1 such that (ft, ht) tends to (f, id) and such
that ht ◦ f = ft ◦ ht on Jf . The maps ht are obtained as continuous exten-
sions of the composition Bft ◦B−1

f of the Böttcher coordinates of f and ft,

so ht = γft ◦ γ−1
f formally.

Remarks. The construction of this perturbation is made in two steps:
in the first step, we perturb f in the space of polynomial-like mappings in
order to destroy all parabolic points and to get a stable family; in the sec-
ond step, the straightening theorem is used to get back to the polynomial
world. The stability and the hand-made peturbation help showing that the
mappings ht can be defined as continuous extensions of the Böttcher coor-
dinates of f and ft. They have no particular regularity besides continuity
in this statement. It follows that Kf and Kft are described by the same
pinched disk model (cf. [6]) so that ht admits a homeomorphic extension
to the plane which coincides with Bft ◦ B−1

f . It could be possible to prove

that they admit W 1,2
loc extensions to the plane, but this will not be needed

in what follows (see however Corollary 3.10).

We would also like to emphasize that, at this point, the perturbation
which is given by this proposition has nothing to do with pinching deforma-
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tions. But later on, we will use Proposition 3.6 to prove that we can actually
choose it that way (see Proposition 3.11).

Given a monic and centered geometrically finite polynomial f with con-
nected Julia set, the proposition provides us with a (monic and centered)
subhyperbolic polynomial map S(f) = f0 with a conjugacy h : Jf → Jf0 . If
f is subhyperbolic, then we set S(f) = f . By a simple surgery, we can then
associate a canonical postcritically finite polynomial T (f) to S(f) (see for
instance Theorem VI.5.1 of [3] or [15]).

We divide Theorem D into the next two propositions:

Proposition 3.7. Let f, g be two monic and centered geometrically fi-
nite polynomials with connected Julia sets. If T (f) and T (g) are matable,
then so are f and g.

Proposition 3.8. Let f, g be two monic and centered geometrically fi-
nite polynomials with connected Julia sets. If f and g are matable, then so
are T (f) and T (g).

Our proof of Proposition 3.7 will rely on the following proposition [9].

Proposition 3.9 (parabolic surgery). Let f be a subhyperbolic rational
map with connected Julia set. Assume that f has an attracting cycle α and
a repelling cycle β on the boundary of its immediate basin with period less
than or equal to that of α. Then there are another rational map g and a
µ-homeomorphism ϕ, locally quasiconformal in the Fatou set , univalent in
the basin of ∞ and tangent to the identity at ∞, such that :

(i) ϕ(Jf ) = ϕ(Jg), ϕ(β) is parabolic and the immediate basin of α be-
comes that of ϕ(β);

(ii) outside α’s immediate basin, ϕ◦f = g◦ϕ; in particular , ϕ : Jf → Jg
is a homeomorphism which conjugates the dynamics.

The class of µ-homeomorphisms is a generalization of quasiconformal
maps [5]. It is stable under composition by quasiconformal maps and the
associated Beltrami equation admits a unique normalized solution as in the
measurable Riemann mapping theorem. For more details on µ-homeomor-
phisms, we refer to [5]. Here also, the construction of ϕ has nothing to do
with pinchings, but this statement remains true for a much wider class than
subhyperbolic maps.

Corollary 3.10. Let f be a geometrically finite polynomial with con-
nected Julia set. There is a µ-homeomorphism ϕ : C → C such that ϕ ◦
T (f) = f ◦ ϕ on JT (f).

Proof. Since T (f) and S(f) are quasiconformally conjugate on their Ju-
lia sets, we may replace T (f) by S(f). Let us apply Proposition 3.9 to S(f)
at points which used to be parabolic for f . One obtains a polynomial F
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with a homeomorphism h : Jf → JF such that h ◦ f = F ◦ h. This yields
a correspondence between the Fatou components of f and F which has the
property of matching the periodic points and components of the same na-
ture together, and the restrictions of f and F to these domains have the
same degree. It follows from McMullen’s Propositions 6.7 and 6.8, and The-
orem 6.1(d) from [15], that we may extend h as a plane homeomorphism
which will be quasiconformal off the Julia sets. The rigidity Theorem 2.12
then implies that it is globally quasiconformal so that f and F are quasi-
conformally conjugate. Since the class of µ-homeomorphisms is preserved
under the composition of quasiconformal maps, we have established the
corollary.

We are now ready to prove Proposition 3.7.

Proof of Proposition 3.7. We proceed as in Proposition 3.3. Let us apply
Corollary 3.10 to f and g, and denote by ϕ and ψ the µ-homeomorphisms
that are given.

We denote by (T (f), T (g), q, R) a marked mating. We let µ and ν be
the Beltrami forms associated to ϕ and ψ. We push them forward by q on
C and denote the result by ξ. Define

H = q ◦ (ϕ−1 ◦ f ◦ ϕ)⊥⊥ (ψ−1 ◦ g ◦ ψ)) ◦ q−1.

This map is well defined and we can check that it is ACL. Moreover, ξ
is H-invariant, and we may complete the proof analogously to the proof
of Proposition 3.3 using David’s generalization of the measurable Riemann
mapping theorem (see [9] for further details).

Remark. We have used Proposition 3.9 because this strategy can be
applied to a larger variety of matings for which we wish to create parabolic
points. We could have used pinching techniques instead.

We propose an alternative proof of Corollary C which does not use pinch-
ing deformations.

Proof of Corollary C. Let c and c′ be geometrically finite polynomials.
If they belong to conjugate limbs of the Mandelbrot set, we argue as in the
first proof.

On the other hand, if they are not in conjugate limbs, then the same
holds for T (c) and T (c′), the center of the hyperbolic component having c,
resp. c′ as its root. Therefore the marked mating of fc and fc′ exists by
Proposition 3.7.

It remains to prove Proposition 3.8 and Theorem E. The following will
be used several times.
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Proposition 3.11. Let f be a geometrically finite polynomial with con-
nected Julia set. There exist a subhyperbolic map f0 and a simple pinching
deformation of f0 which converges to f .

Remark. Cui has proved this result for geometrically finite rational
maps, regardless of whether the Julia set is connected or not [4]. But his
proof is more involved since it relies on Thurston’s characterization of ra-
tional maps.

Proof. We assume that f is monic and centered. We denote by Apar the
union over all the parabolic points of their basin of attraction, and by A∗par

their immediate basins.

Proposition 3.6 enables us to define a first continuous family (f̂t)0≤t<1

of monic, centered, subhyperbolic polynomials with homeomorphims ht :
Jf → J

f̂t
which conjugates the dynamics. Furthermore, for each t ∈ [0, 1),

the map ht◦h−1
0 : J

f̂0
→ J

f̂t
extends to aKt-quasiconformal homeomorphism

ϕ̂t where Kt is a nondecreasing function of t and ϕ̂0 = id because they lie in
a stable analytic family of polynomials (cf. Prop. 4.2 in [10]). These maps
coincide with the composition of the Böttcher coordinates off the filled-in
Julia sets.

Actually, we may assume that ϕ̂t is uniformly quasiconformal off the
closure of the new attracting domains. To see this, it is enough to restrict
ourselves to the periodic attracting cycles of f . Conjugating the first return
maps f̂kt to finite Blaschke products of the unit disk by Riemann maps, we
see that we get a family of rational maps which are uniformly hyperbolic.

Let us note that this perturbation comes with a simple pinching combi-
natorics R̂t which link together all the new attracting and repelling points
created by the desingularization of the parabolic points (cf. Prop. 2.1 in [10]).

Of course, there are no reasons why this deformation could be inter-
preted as a pinching deformation. The rest of the proof will be broken into
three steps. They consist in “correcting” this path of polynomials to make
it a pinching path. The first step will fix the right dynamics in the Fatou
components which we wish to keep intact, the second step will study the
limit of the simple pinching associated to the combinatorics coming from the
above, and the third will provide us with the sought pinching deformation.

Step 1. If f has no attracting point, then we define F̂t = f̂t, and ψ = id,
and we may directly proceed to Step 2. Otherwise, let α ∈ C be an attracting
periodic point of f of period k. Let U be the Fatou component containing α.
For all t, we denote by α̂t the perturbation of α and Ût the Fatou component
bounded by ht(∂U).

Since the Julia sets are locally connected, both components U and Û0

are Jordan domains. Furthermore, the restrictions of f k and f̂k to these
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domains have the same degree and contain an attracting point by continuity.
Therefore, Proposition 6.7 in [15] implies that there is a quasiconformal

homeomorphism ĥ0 : U → Û0 which coincides with h0 on the boundary.
We proceed similarly for all bounded Fatou components disjoint from Apar.
We note that the quasiconformal distortion can be chosen to be uniformly
bounded. For each t, we may define ht = ϕ̂t ◦ h0.

Let us define a new family of maps gt by setting gt = ht ◦ f ◦ h−1
t where

h−1
t is defined, and gt = f̂t elsewhere. Each map gt is continuous. Since gt

is quasi-regular on the complement of where it coincides with f̂t, Rickman’s
removability theorem implies that gt is a well defined quasi-regular map (see
[21] or Lemma I.2 in [7]). Furthermore, we may define a gt-invariant ellipse
field Et by setting Et = (ht)∗S1 on the domain of h−1

t and Et = S1 else-
where, where S1 denotes the conformal structure induced by the standard
complex structure. Thus, the measurable Riemann mapping theorem pro-
vides us with a quasiconformal homeomorphism ψt and a monic centered
polynomial F̂t = ψt ◦ gt ◦ ψ−1

t . It follows from the construction that (ψt) is
a normalized family of uniformly quasiconformal homeomorphisms, so that
there is a quasiconformal map ψ which is the limit of a convergent sequence
(ψtn)n with tn → 1.

Therefore, one also gets a limit F̂ of (F̂tn). The maps ψt◦ht are conformal

on C \Apar, so we get a conformal conjugacy between f and F̂ on this set.
Furthermore, for any z ∈ Jf , ψtn ◦ htn(z) tends to ψ(z). On the other

hand, on any compact subset of Apar, gt = f̂t for t close enough to 1, so that

F̂ = ψ◦f◦ψ−1. Therefore f and F̂ are conjugate by a homeomorphism which
is conformal off Jf . It follows from Theorem 2.12 and the normalization that

F̂ = f . Furthermore, the whole path (F̂t)t converges to f since it has only
one accumulation point.

Step 2. We may define a simple pinching deformation (Ft, φt) of F0 =

F̂0 supported by ψ0(R̂0) with φt(z) = z + o(1) at infinity. We let Y be
the yellow set for F0. It follows from Theorem 2.1 that this deformation
converges to some (F, φ). The map H = φ ◦ ψ0 ◦ h0 defined off Apar defines
a conjugacy between f and F which is conformal off Apar.

We end this step by proving that H admits a quasiconformal extension
to C which will extend the conjugacy. We will need more knowledge on f̂t to
proceed. We will refer to [10] when this is needed. The conjugacy between
the parabolic basins will be first defined on the level of Fatou coordinates
and then lifted to the dynamical planes.

Let βf be a parabolic point for f , and denote by A(βf ) its basin of
attraction and by Φf : A(β)→ C a Fatou coordinate that will be normalized
later on. We define βF = ψ(βf ) (ψ has been defined in Step 1), A(βF ) and
ΦF similarly.
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Let c1, . . . , cν be the critical points of f in A(β). It follows from the con-

struction of f̂t that we may follow continuously the critical points with re-
spect to t (cf. Prop. 3.1 in [10]). We may assume that c1 is on the boundary of
a petal of βf defined as a preimage of a right half-plane and that Φf (c1) = 0.

The perturbation (f̂t)t enables us to follow continuously each critical
point of C(f)∩A(βf) (cf. Prop. 3.1 in [10]). This correspondence extends to

(F̂t)t. Hence we obtain a correspondence between C(f)∩A(βf ) and C(F )∩
A(βF ) (cf. Prop. 3.1). We denote by H(cj) the point corresponding to cj .
We normalize ΦF so that ΦF (H(c1)) = 0.

We let {γ̂j : 1 ≤ j ≤ ν} be pairwise disjoint curves of the plane invariant
under the map T : z 7→ z + 1 such that ΦF (cj) ∈ γ̂j for all j. These curves
define an order on the critical points since each splits the plane in two com-
ponents. Let also γ̂+

j be the closure of the forward T -invariant component

of γ̂j \ {Φf (cj)} (so it contains Φf (cj)), and γj be the connected compo-

nent of Φ−1
f (γ̂+

j ) which contains cj . This curve joins cj to finitely many

preimages of βf . The perturbation which defines (f̂t)t enables us also to
follow continuously γj as a curve joining the critical point to preimages of
the new attracting points (cf. Prop. 2.1 of [10]). Applying φ defines curves
which join H(cj) to preimages of βF which are the images under H of the
corresponding preimages of βf . We note that we may choose the pinching
deformation (Ft, φt) so that the yellow set Y be disjoint of these curves.
The Fatou coordinate ΦF defines an order on H(cj) which is the same as
the previous one. This means that we may define curves δj : [0, 1] → C
joining Φf (cj) to ΦF (cj) such that their quotients π(δj) in C/Z are pairwise
disjoint, where π : C → C/Z is the canonical projection. We let Dj ⊂ C/Z
be pairwise disjoint neighborhoods of π(δj). We choose them so that these
domains are disjoint from π◦ΦF ◦φ(Y). Therefore, there is a quasiconformal
isotopy (ωs)0≤s≤1 defined on C/Z, supported on

⋃
j Dj, such that ω0 = id

and ωs(πΦf(cj)) = πδj(s). Hence, there is a lift (ωs)s of (ωs)s to C such
that ω0 = id and ω1(Φf (cj)) = ΦF (H(cj)).

We claim that there is a map ω̃ : A(βf ) → A(βF ) such that ΦF ◦ ω̃ =
ω1◦Φf and ω̃(cj) = H(cj). This follows from the facts that the critical points
of Fatou coordinates are the precritical points of the polynomials and that
their critical points are associated to the corresponding preimages of the
parabolic points. Furthermore, ω̃ maps petals to petals, so ω̃(βf ) = βF ,
and the extension to the boundary coincides with H. We denote by H this
homeomorphism. Another application of Theorem 2.12 implies that H is a
global quasiconformal map which conjugates f to F .

Step 3. We first define an F0-invariant ellipse fieldE. On C\φ(Y), we let
E = (H◦φ)∗S1, and on φ(Y), we let E = S1 be the field of circles representing
the standard complex structure. Let χ be given by the measurable Riemann
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mapping theorem with χ(z) = z + o(1) at infinity so that f0 = χ ◦ F0 ◦ χ−1

is also monic and centered. Since χ is conformal on Y, we may transport
the simple pinching deformation defined for F0 to f0. We let (ft, ϕt) be this
new deformation, and (f1, ϕ) be the limit of this deformation provided by
Theorem 2.1. We note that since the fibers of φ and of ϕ ◦ χ are the same,
we may define a homeomorphism ϕ ◦ χ ◦ (H ◦ φ)−1 of the sphere which is
conformal off JF and which conjugates f to f1. It follows from Theorem
2.12 that this homeomorphism is an affine map which has to be the identity
thanks to the normalization.

We assume the reader is familiar with Thurston obstructions, Levy cycles
etc. as in [24].

Proof of Proposition 3.8. Suppose that (f, g, q, R) is a geometric mating
of geometrically finite polynomials. We wish to prove that T (f) and T (g)
are matable.

It follows from Proposition 3.6 that there is a homeomorphism hf :
JT (f) → Jf which conjugates T (f) to f . We let Hf : C → C be a hom-
eomorphic extension of hf which is conformal off KT (f) (cf. the Remark
following the statement of Prop. 3.6 or Cor. 3.10). We define similarly hg
and Hg for g.

The map

H = q ◦ (Hf ⊥⊥Hg) : KT (f) tKT (g)/∼ray → C
is a homeomorphism which maps JT (f) t JT (g)/∼ray onto JR. Define T =

H ◦ (T (f) ⊥⊥ T (g)) ◦ H−1 on the Riemann sphere. It follows that T is a
postcritically finite ramified covering which agrees with R on JR.

Claim 1. T has no Thurston obstruction.

Assume that T has an obstruction Γ . For each parabolic point of R and
in each component of its immediate basin, we consider a hyperbolic geodesic
ray which joins the point in Post(T ) to the parabolic point. The union of
these curves produces a finite set of star-like graphs S as a simple pinching
combinatorics. Let us remark that, for each parabolic point, we can include
the critical orbits of these immediate basins (and only those) into a Jordan
domain which can be contracted onto the star-like graph attached to this
parabolic point. Let Ω be the union of these domains.

If Γ can be homotoped rel. Post(T ) so that it does not intersect S,
then we may assume that Γ is disjoint from Ω. Therefore, Γ is also an
obstruction for R, which is impossible by Theorem B.4 in [16]. Hence Γ
intersects S. By the intersection theory of [24], this in turn implies that Γ
is a Levy cycle. Therefore, there is a curve γ cutting S and a preimage γ ′

by some iterate (T (f) ⊥⊥ T (g))k isotopic to γ rel. the postcritical set such
that (T (f)⊥⊥ T (g))k : γ′ → γ is a homeomorphism.
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The application of Proposition 3.11 produces simple pinchings (Ft, ϕt)
and (Gt, ψt) of F = F0 = S(f) and G = G0 = S(g) which converge to
F1 = f and G1 = g. Let us consider maps hF , hG,HF ,HG and

H0 = q ◦ (HF ⊥⊥HF ) : KF tKG/∼ray → C
as above. Let also S = H0 ◦ (F ⊥⊥G) ◦H−1

0 .
It follows that Γ is also a Levy cycle for S which intersects the pushfor-

ward L of the simple pinching combinatorics.
By pushing γ and γ′ with q ◦ (ϕ1 ⊥⊥ ψ1) ◦H−1

0 , one can extract curves `
and `′ in C such that:

– ` and `′ join parabolic points of R in their repelling directions, or join
a parabolic point in its repelling direction to a repelling postcritical
point,

– `′ is a preimage of ` by an iterate Rk
′
,

– `′ is isotopic to ` rel. the postcritical set of R,
– all curves in their isotopy class have definite diameter, and
– Rk

′
: `′ → ` is a homeomorphism.

This yields a contradiction because of Fatou’s shrinking lemma (this is to
be compared to the notion of degenerate combinatorial equivalence of Cui
in [4], and was inspired by the proof of Theorem A therein). This proves the
claim.

Since T has no obstruction, Thurston’s characterization of rational maps
implies that T is combinatorially equivalent to a rational map RT . It follows
from Theorem 2.1 in [22] and its proof that there is a continuous map
h : C → C, obtained as a uniform limit of homeomorphisms, such that
h ◦ T = RT ◦ h and its restriction

h|C\JR : C \ JR → C \ JRT
is a homeomorphism.

Claim 2. h is a homeomorphism of C.

It remains to prove that h is injective on JR. Recall that h ◦R = RT ◦ h
on JR.

Since h is a limit of homeomorphisms, it follows that preimages of con-
nected sets are connected and full. Furthermore, since R and RT are both
degree d mappings, if K ′ is a connected component of R−nT (K) for some
continuum K ⊂ JR and the degree of RT |K′ is δ, then the restriction of R
to h−1(K ′) is also a degree δ mapping onto h−1(K).

We work with the spherical metric.
Since RT is subhyperbolic, a maximal degree δ and a radius r > 0 exist

such that, for any z ∈ JRT , the degree of the restriction of RnT to any
connected component of R−nT (D(z, r)) is bounded by δ.
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Since R is geometrically finite, a weaker statement remains true: there is
an r′ > 0 such that, for any ε > 0 and any continuum K ⊂ JR of diameter
less than r′, there is an iterate n0 such that for any n ≥ n0, any connected
component L of R−n(K) has diameter at most ε (see for instance Prop. 3.1
in [11]).

We note that the diameter of h−1({z}) is bounded uniformly in z, so,
using the (uniform) local connectivity of JR, there is some integer N inde-
pendent of z such that we may cover h−1({z}) in JR by at most N continua
of diameter less than r′. Fix z ∈ JRT and set Kn = h−1(RnT (z)). For ε > 0,
let n be such that the diameter of any connected component of R−n(K) of
any continuum K ⊂ JR of diameter less than r′ is less than ε/(δN). Cover
Kn by N continua of diameter at most r′. It follows that h−1({z}) is covered
by at most Nδ continua of diameter at most ε/(Nδ), so that the diameter
of h−1({z}) is less than ε. This implies that h−1({z}) is a point, and it
establishes the claim that h is a homeomorphism.

Therefore, (T (f), T (g), h ◦ H,RT ) defines a geometric marked mating,
and this establishes Theorem D.

We may now prove Theorem E, which we recall in a more precise form:

Corollary 3.12. If (f, g, q, R) is a geometrically finite marked mating
with at least one parabolic point , then there exist subhyperbolic perturbations
(ft)t∈[0,1) and (gt)t∈[0,1) which converge to f and g respectively as t tends to
1 such that Jft ≈ Jf , Jgt ≈ Jg, and their matings (ft, gt, qt, Rt) exist and
converge to (f, g, q, R).

Proof. Applying Proposition 3.11 to f and g we obtain two pinching de-
formations (ft, ϕt)t∈[0,1) and (gt, ψt)t∈[0,1). By Theorem D, there are q0, R0

so that (f0, g0, q0, R0) is a marked mating. Now Theorem B ensures that
the path of marked matings (ft, gt, qt, Rt) exists and converges to a marked
mating (f, g, q1, R1). Now R1 is again geometrically finite and has parabolic
points, so it is not a Lattès example. We can then apply the unicity result
of Proposition 3.1 to conclude that R = HR1H

−1 with H a Möbius trans-
formation. If q̂t = H ◦ qt and R̂t = HRtH

−1, then (ft, gt, q̂t, R̂t)t is again
a path of marked matings and it converges to (f, g,H ◦ q1, R). Now H ◦ q1

and q differ by a Möbius map G with GR = RG. We may then re-adjust
the mating path as above to make it converge to (f, g, q, R).

A. QUOTIENT TOPOLOGY

Definition. Let A,B be two compact Hausdorff topological spaces and
F : A → B be a continuous surjective map. We define the equivalence
relation ∼F on A by: x ∼F y if and only if F (x) = F (y).
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We give several topological lemmas, admitting the first two.

Lemma A.1. The equivalence relation ∼F is closed (i.e. if xn ∼F yn,
xn → x, yn → y then x ∼F y), and [F ] : [x]F → F (x) is a homeomorphism
from A/∼F to B.

Lemma A.2. Let (Xi,∼i), i = 1, 2, be two topological spaces equipped
with an equivalence relation each. Let h : X1 → X2 be continuous such
that if x ∼1 x

′ then h(x) ∼2 h(x′). Let πi : Xi → Xi/∼i be the quotient
projections. Then the quotient map [h] : X1/∼1 → X2/∼2 is well defined
and continuous, and is surjective if h is.

Lemma A.3. Let A,B,C,D be compact Hausdorff topological spaces,
and let l : A → C, r : A → D and s : C → B be continuous surjective
maps. In particular s ◦ l generates an equivalence relation in A. Assume
that x ∼r x′ ⇒ l(x) ∼s l(x′). Then there is a continuous surjective map
v : D → B such that v ◦ r = s ◦ l and ∼v = r∗(∼s◦l) (where r∗(∼) denotes
the pushed forward equivalence relation, that is, x ∼r∗(∼) x

′ if and only if

r−1(x) ∪ r−1(x′) belongs to a single equivalence class of ∼).

A
l

  @@@@@@@
r

~~~~~~~~~

C

s
  @@@@@@@ D

v
~~~~~~~~~

B

Proof. By Lemma A.1, s and r can be considered as quotient maps. The
map l satisfies the condition on h in Lemma A.2. Therefore v is well defined
and continuous by Lemma A.2 with v ◦ r = s ◦ l. Since s ◦ l is surjective, v
is surjective.

Let x, x′ ∈ D. Now r−1(x) ∼s◦l r−1(x′) if and only if s ◦ l(r−1(x)) =
s ◦ l(r−1(x′)) if and only if v(x) = v(x′).

Lemma A.4. Let g : S2 → S2 be a continuous surjective map. For t ∈
[0, 1), let Ft, Gt : S2 → S2 be two families of homeomorphisms of S2. Assume
that , as t → 1, Ft and Gt converge uniformly to continuous maps F1, G1

respectively , and g maps each fiber of F1 into a fiber of G1. Then gt =
Gt ◦ g ◦ (Ft)

−1 : S2 → S2 converges uniformly to a continuous map g1, and
g1 ◦ F1 = G1 ◦ g.

Proof. Define g1 = G1 ◦ g ◦ (F1)−1.

1. g1 is well defined and continuous. For this we apply Lemma A.3. Let
l = g, r = F1 and s = G1. We can check that all the conditions of Lemma
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A.3 are satisfied and therefore g1 = v is well defined, continuous, surjective
and with fibers F1∗(∼G1◦g).

2. gt converges uniformly to g1. In other words, for any ε > 0, there is
t0 such that for any 1 > t > t0 and any y, |gt(y)− g1(y)| < ε.

Assume by contradiction that gt does not converge uniformly to g1. That
is, there are ε0 > 0, tn → 1 and yn ∈ S2 such that |gtn(yn)− g1(yn)| > 2ε0.

We may assume yn → y (by taking subsequences). Since g1 is continuous,
we have g1(yn)→ g1(y) and |gtn(yn)− g1(y)| > ε0.

Let xn = (Ftn)−1(yn). We may assume xn → x (by taking subsequences).
We claim that Ftn(xn) → F1(x) and gtn ◦ Ftn(xn) → g1 ◦ F1(x). The first
limit is due to

|Ftn(xn)− F1(x)| ≤ |Ftn(xn)− F1(xn)|+ |F1(xn)− F1(x)| → 0 as n→∞
by uniform convergence of Ft. The second limit can be proved similarly, by
uniform convergence of gt ◦ Ft to g1 ◦ F1, which is a consequence of the two
equalities gt ◦Ft = Gt ◦ g, G1 ◦ g = g1 ◦F1 and the fact that Gt ◦ g converges
uniformly to G1 ◦ g.

Therefore F1(x) = y and gtn(yn) = gtn ◦ Ftn(xn) → g1 ◦ F1(x) = g1(y).
This leads to a contradiction.

3. g1 ◦ F1 = G1 ◦ g, since gt ◦ Ft = Gt ◦ g for t ∈ [0, 1) and, as t→ 1, all
maps in the equation converge uniformly to the corresponding maps.

B. AN INEQUALITY

Lemma B.1. Let z, w ∈ Cr {0} be points in the plane such that |z−w|
< |w|, and let Γ be the family of rectifiable curves which separate {0,∞}
from {z, w}. Then

|z − w| > |w| exp
−2π

Λ(Γ )
·

Proof. Let

h(ζ) =
ζ − w
ζ + w

be the Möbius transformation which maps (0,∞, w) to (−1, 1, 0). Since

|z + w| = |2w + (z − w)| ≥ 2|w| − |z − w| > |w|
and | z−wz+w | < 1, the annulus

A =

{
ζ ∈ C :

∣∣∣∣
z − w
z + w

∣∣∣∣ < |ζ| < 1

}

is well defined and nondegenerate. Therefore,

1

2π
log

∣∣∣∣
z + w

z − w

∣∣∣∣ = modA ≤ 1

Λ(h(Γ ))
=

1

Λ(Γ )
·



Pinching deformations and matings 187

Hence

|z − w| ≥ |z + w| exp
−2π

Λ(Γ )
≥ |w| exp

−2π

Λ(Γ )
.

Corollary B.2. Let zt, wt, a, b be four distinct points with zt, wt de-
pending on a parameter t. Assume that d(wt, {a, b}) ≥ C > 0 for all t. If
d(zt, wt) → 0, then Λ(Γ(zt,wt),(a,b)) → 0. Consequently , if Λ(Γ(zt,wt),(a,b)) ≥
C ′ > 0, then d(zt, wt) ≥ C ′′ > 0.
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