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The Hurewicz covering property and slaloms in
the Baire space
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Abstract. According to a result of Kočinac and Scheepers, the Hurewicz covering
property is equivalent to a somewhat simpler selection property: For each sequence of
large open covers of the space one can choose finitely many elements from each cover to
obtain a groupable cover of the space. We simplify the characterization further by omitting
the need to consider sequences of covers: A set of reals X has the Hurewicz property if,
and only if, each large open cover of X contains a groupable subcover. This solves in the
affirmative a problem of Scheepers. The proof uses a rigorously justified abuse of notation
and a “structure” counterpart of a combinatorial characterization, in terms of slaloms,
of the minimal cardinality b of an unbounded family of functions in the Baire space. In
particular, we obtain a new characterization of b.

1. Introduction. A separable zero-dimensional metrizable space X has
the Hurewicz property [3] if:

For each sequence {Un}n∈N of open covers of X there exist finite
subsets Fn ⊆ Un, n ∈ N, such that X ⊆ ⋃n

⋂
m>n ∪Fm.

This property is a generalization of σ-compactness.
Much effort was put in the past in order to find a simpler characterization

of this property. In particular, it was desired to avoid the need to glue the
elements of each Fn together (that is, by taking their union) in the definition
of the Hurewicz property.

The first step toward simplification was the observation that one may
restrict attention to sequences of large (rather than arbitrary) open covers
of X in the above definition [10] (U is a large cover of X if each member of
X is contained in infinitely many members of U).
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The main ingredient in the next major step toward this goal was implic-
itly studied in [11, 8, 5] while considering spaces having analogous properties
in all finite powers and a close relative of the Reznichenko (or: weak Fréchet–
Urysohn) property. Finally, this ingredient was isolated and analyzed in [6]:
A large cover U of X is groupable if there exists a partition P of U into finite
sets such that for each x ∈ X and all but finitely many F ∈ P, x ∈ ∪F .
Observe that ignoring all but countably many elements of the partition, we
see that each groupable cover contains a countable groupable cover. More-
over, in [13] it is proved that for the types of spaces considered here, each
large open cover contains a countable large cover.

One of the main results in Kočinac–Scheepers’s [6] is that the Hurewicz
property is equivalent to the following one:

For each sequence {Un}n∈N of large open covers of X there exist
finite subsets Fn ⊆ Un, n ∈ N, such that

⋃
nFn is a groupable

cover of X.

This characterization is misleading in its pretending to be a mere result of
unstitching the unions ∪Fn: The sets Fn need not be disjoint in the original
definition, and overcoming this difficulty requires a deep analysis involving
infinite game-theoretic methods—see [6].

In this paper we take the task of simplification one step further by re-
moving the need to consider sequences of covers. We prove that the Hurewicz
property is equivalent to:

(?) Each large cover of X contains a groupable subcover.

This solves in the affirmative a problem of Scheepers [11, Problem 1], which
asks whether, for strong measure zero sets, (?) is equivalent to the Hurewicz
property.

Another way to view this simplification is as follows: The Kočinac–
Scheepers characterization is equivalent to requiring that the resulting cover⋃
nFn is large together with the property that each large open cover of X

contains a groupable cover of X. The first requirement has also appeared in
the literature, and is equivalent to a property introduced by Menger in [7]
(see [10]). Our result says that it is enough to require only that the second
property holds, or in other words, that the second property actually implies
the first.

2. Two possible interpretations. Our proof relies on a delicate in-
terplay between two possible interpretations of the term “large open cover
of X” when X is a subspace of another space Y :

(1) A large open cover of X by subsets of X which are relatively open
in X; and
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(2) A large open cover of X by open subsets of Y .

The notions do not coincide, because a large cover of the second type, when
restricted to X, need not be large—it can even be finite.

For brevity, we will use the following notation. For a space X, denote
the property that each large cover of X by open subsets of X contains a
groupable cover of X by

( ΛX
Λgp
X

)
. We write

(
Λ
Λgp

)
instead of

( ΛX
Λgp
X

)
when the

space X is clear from the context. It is easy to see that
( ΛX
Λgp
X

)
implies that

each countable large open cover of X is groupable (divide the countably
many remaining elements between the sets in the partition so that they
remain finite).

We will need the following simple fact.

Lemma 1. The property
(
Λ
Λgp

)
is preserved under taking closed subsets

and continuous images, that is:

(1) If
( ΛX
Λgp
X

)
holds and C is a closed subset of X, then

( ΛC
Λgp
C

)
holds.

(2) If
( ΛX
Λgp
X

)
holds and Y is a continuous image of X, then

( ΛY
Λgp
Y

)
holds.

Proof. (1) Assume that U is a large open cover of C. Then Ũ = {U ∪
(X \C) : U ∈ U} is a large open cover of X. Applying the groupability of Ũ
for X and forgetting the X \C part of the open sets shows the groupability
of U for C.

(2) Assume that f : X → Y is a continuous surjection and that U is a
large open cover of Y (by open subsets of Y ). Then V = {f−1[U ] : U ∈ U}
is a large open cover of X. By the assumption, there exists a groupable
subcoverW ⊆ V for X. It follows that {U ∈ U : f−1[U ] ∈ W} is a groupable
cover of Y .

The following theorem tells us that for our purposes, it does not matter
which notion of large covers we use (so that we can switch between the two
notions at our convenience).

Theorem 2. Assume that X is a subspace of Y and
( ΛX
Λgp
X

)
holds. Then

each countable collection U of open sets in Y which is a large cover of X is
groupable for X.

Proof. We will repeatedly use the following lemma.

Lemma 3. Assume that X is a subspace of Y , and U = {Un}n∈N is a
large open cover of X by open subsets of Y . Define an equivalence relation
∼ on N by

n ∼ m if X ∩ Un = X ∩ Um.
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Let A = {n : [n] is infinite}, and V =
⋃
n∈A Un. Then {Un : n ∈ A} is a

groupable cover of X ∩ V , and {Un : n 6∈ A} is a large cover of X \ V (by
open subsets of Y ).

Proof. Define a partition of A as follows: Let [n0], [n1], . . . enumerate
the elements of A/∼. Let F0 contain the first element of [n0], F1 contain
the second element of [n0] and the first element of [n1], F2 contain the third
element of [n0], the second element of [n1] and the first element of [n2], etc.
Fix x ∈ X ∩ V , and let i be such that x ∈ Uni . Then for all but finitely
many n, there exists k ∈ Fn ∩ [ni], and therefore x ∈ Uk. This proves the
first assertion.

Assume that X 6⊆ V . As U is a large cover of X \V and for x ∈ X \V and
n ∈ A, x 6∈ Un, there must exist infinitely many n 6∈ A such that x ∈ Un.

We now prove Theorem 2. Enumerate U bijectively as {Un}n∈N. We
make the following definition by transfinite induction on α < ℵ1 (and make
sure that indeed it terminates at some α < ℵ1). Carry out the following
construction as long as Aα is not empty.

(1) First step: Set X0 = X, B0 = N, and V0 = ∅.
(2) Successor step: Assume that Xα, Bα, and Vα are defined, and {Un :

n ∈ Bα} is a large cover of Xα \ Vα. Set Xα+1 = Xα \ Vα, and define
an equivalence relation ∼α+1 on Bα by n ∼α+1 m if Xα+1 ∩ Un =
Xα+1 ∩Um. Let Aα+1 = {n ∈ Bα : [n]∼α+1 is infinite}, Bα+1 = Bα \
Aα+1, and Vα+1 =

⋃
n∈Aα+1

Un. Use Lemma 3 to obtain a partition
{Fα+1

n }n∈N of Aα+1 into finite sets witnessing that {Un : n ∈ Aα+1}
is a groupable cover of Xα+1 ∩ Vα+1 (and {Un : n ∈ Bα+1} is a large
cover of Xα+1 \ Vα+1).

(3) Limit step: Assume that α is a limit and the construction was car-
ried out up to step α. Set Xα =

⋂
β<αXβ, Aα =

⋃
β<αAβ, Bα =⋂

β<αBβ = N \ Aα, and Vα =
⋃
β<α Vβ. For each x ∈ Xα and each

β < α, x 6∈ Vβ, that is, {n : x ∈ Un} is disjoint from Aβ . Thus,
{n : x ∈ Un} is infinite, and is a subset of Bα. In other words,
{Un : n ∈ Bα} is a large cover of Xα. Observe that in this case, Xα

is disjoint from Vα.

As long as the construction continues, Aα is not empty and therefore Bα+1
is a proper subset of Bα. Thus, as B0 ⊆ N, the construction cannot continue
for uncountably many steps. Let α < ℵ1 be the step where the construction
terminates (this can only happen when α is a successor). Then Aα is empty,
therefore Vα is empty, thus {Un : n ∈ Bα} is a large cover of Xα. The
definition of Bα implies that in this case, {Un∩Xα : n ∈ Bα} is a large cover
of Xα by open subsets of Xα. By the construction, Xα is a closed subset
of X (an intersection of closed sets). By Lemma 1, {Un ∩Xα : n ∈ Bα} is
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groupable for Xα; let {Fα+1
n }n∈N be a partition of Bα into finite sets that

witnesses that.
The partitions {F β+1

n }n∈N where β ≤ α form a countable family of
partitions of disjoint subsets of N. Relabel these partitions as {{Gm

n }n∈N :
m ∈ N}, and define a partition {Hn}n∈N of N into finite sets by

Hn =
⋃

max{i,j}=n
Gij .

Observe that X ⊆ Xα∪
⋃
β<α(Vβ+1\Vβ), where each X∩(Vβ+1\Vβ) is taken

care of by {F β+1
n }n∈N, and Xα is taken care of by {Fα+1

n }n∈N. Hence, for
each x ∈ X there exists m such that x ∈ ∪{Uk : k ∈ Gmn } ⊆ ∪{Uk : k ∈ Hn}
for all but finitely many n. This shows that U is a groupable cover of X.

3. The main theorem

Theorem 4. For a separable and zero-dimensional metrizable space X,
the following are equivalent :

(1) X has the Hurewicz property.
(2) Every large open cover of X contains a groupable cover of X.
(3) Every countable large open cover of X is groupable.

Proof. (2)⇔(3). By Proposition 1.1 of [13], every large open cover of X
contains a countable large open cover of X.

(1)⇒(3). This is proved in [11, Lemma 3] and [6, Lemma 8].
(3)⇒(1). We will prove this assertion by a sequence of small steps, using

the results of the previous section.
The Baire space NN of infinite sequences of natural numbers is equipped

with the product topology (where the topology of N is discrete). A qua-
siordering ≤∗ is defined on the Baire space NN by eventual dominance:

f ≤∗ g if f(n) ≤ g(n) for all but finitely many n.

We say that a subset Y of NN is bounded if there exists g in NN such that for
each f ∈ Y , f ≤∗ g. Otherwise, we say that Y is unbounded . According to a
theorem of Hurewicz [3] (see also Recław [9]), X has the Hurewicz property
if, and only if, each continuous image of X in NN is bounded. Let N↗N
denote the subspace of NN consisting of the strictly increasing elements of
NN. The mapping from NN to N↗N defined by

f(n) 7→ g(n) = f(0) + · · ·+ f(n) + n

is a homeomorphism which preserves boundedness in both directions. Con-
sequently, Hurewicz’s theorem can be stated using N↗N instead of NN.

For f, g ∈ N↗N, we say that f goes through the slalom defined by g if for
all but finitely many n, there exists m such that f(m) ∈ [g(n), g(n + 1)).
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A subset Y of N↗N admits a slalom if there exists g ∈ N↗N such that each
f ∈ Y goes through the slalom g.

Lemma 5 (folklore). Assume that Y ⊆ N↗N. The following are equiva-
lent :

(1) Y is bounded.
(2) Y admits a slalom.
(3) There exists a partition {Fn}n∈N of N into finite sets such that for

each f ∈ Y and all but finitely many n, there exists m such that
f(m) ∈ Fn.

For completeness, we give a short proof.

Proof. (1)⇒(2). Assume that g ∈ N↗N bounds Y . Define inductively
h ∈ N↗N by

h(0) = g(0), h(n+ 1) = g(h(n)) + 1.

Then for each f ∈ Y and all but finitely many n, h(n) ≤ f(h(n)) ≤
g(h(n)) < h(n+ 1), that is, f(h(n)) ∈ [h(n), h(n+ 1)).

(2)⇒(1). Assume that Y admits a slalom g. Let h be a function which
eventually dominates all functions of the form f(n) = g(n0 + n), n0 ∈ N.
Let f be any element of Y and choose n0 such that for each n ≥ n0, there
exists m such that f(m) ∈ [g(n), g(n+ 1)). Choose m0 such that f(m0) ∈
[g(n0), g(n0 + 1)). By induction on n, we find that (f(n) ≤) f(m0 + n) ≤
g(n0 + 1 + n) for all n. For large enough n, we have g(n0 + 1 + n) ≤ h(n),
thus f ≤∗ h.

Clearly (2)⇒(3). We will show that (3)⇒(2). Let {Fn}n∈N be as in (2).
Define g ∈ N↗N as follows: Set g(0) = 0. Having defined g(0), . . . , g(n− 1),
let m be minimal such that Fm∩[0, g(n−1)) = ∅, and set g(n) = maxFm+1.
Then for each n there exists Fm such that Fm ⊆ [g(n), g(n + 1)). Conse-
quently, Y admits the slalom defined by g.

The Cantor space {0, 1}N is also equipped with the product topology.
Identify P (N) with {0, 1}N by characteristic functions. The Rothberger space
P∞(N) is the subspace of P (N) consisting of all infinite sets of natural
numbers. The space N↗N is homeomorphic to P∞(N) by identifying each
f ∈ N↗N with its image f [N] (so that f is the increasing enumeration of
f [N]).

Translating Lemma 5 into the language of P∞(N) and using Hurewicz’s
theorem, we obtain the following characterization of the Hurewicz property
in terms of continuous images in the Rothberger space.

Lemma 6. For a separable and zero-dimensional metrizable space X, the
following are equivalent :

(1) X has the Hurewicz property.
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(2) For each continuous image Y of X in P∞(N) there exists g ∈ N↗N
such that for each y ∈ Y , y ∩ [g(n), g(n+ 1)) 6= ∅ for all but finitely
many n.

(3) For each continuous image Y of X in P∞(N) there exists a partition
{Fn}n∈N of N into finite sets such that for each y ∈ Y , y ∩ Fn 6= ∅
for all but finitely many n.

Assume that every countable large open cover of X is groupable. We will
show that (3) of Lemma 6 holds. Let Y be a continuous image ofX in P∞(N).
Then by Lemma 1,

( ΛY
Λgp
Y

)
holds. Thus, by Theorem 2, every countable large

open cover of P∞(N) is groupable as a cover of Y .
Let U = {On}n∈N, where for each n,

On = {a ∈ P∞(N) : n ∈ a}.
Then U is a large open cover of P∞(N). Thus, there exists a partition
{Fn}n∈N of U into finite sets such that for each y ∈ Y , y ∈ ∪Fn for all
but finitely many n. For each n set Fn = {m : Om ∈ Fn}. Then {Fn}n∈N
is a partition of N into finite sets. For each y ∈ Y and for all but finitely
many n, there exists k such that y ∈ Ok ∈ Fn, that is, k ∈ y ∩Fn, therefore
y ∩ Fn 6= ∅.

Remark 7. A strengthening of the Hurewicz property for X, consider-
ing countable Borel covers instead of open covers, was given the following
simple characterization in [12]:

For each sequence {Un}n∈N of countable (large) Borel covers of X,
there exist elements Un ∈ Un, n ∈ N, such thatX ⊆ ⋃n

⋂
m>n Um.

(Notice that the analogous equivalence for the open case does not hold [4].)
Using the same proof as in Theorem 4, we deduce that this property is
also equivalent to requiring that every countable large Borel cover of X is
groupable.

Forgetting about the topology and considering only countable covers,
we get the following characterization of the minimal cardinality b of an
unbounded family in the Baire space NN. For a cardinal κ, denote by Λκ
(respectively, Λgp

κ ) the collection of countable large (respectively, groupable)
covers of κ.

Corollary 8. For an infinite cardinal κ, the following are equivalent :

(1) κ < b.
(2) Each subset of N↗N of cardinality κ admits a slalom.
(3) For each family Y ⊆ P∞(N) of cardinality κ, there exists a partition
{Fn}n∈N of N into finite sets such that for each y ∈ Y , y ∩ Fn 6= ∅
for all but finitely many n.

(4)
( Λκ
Λgp
κ

)
holds (i.e., every countable large cover of κ is groupable).
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Remark 9. The underlying combinatorics in this paper is similar to
that appearing in Bartoszyński’s characterization of add(N ) (the minimal
cardinality of a family of measure zero sets whose union is not a measure zero
set) [1]. The equivalence (1)⇔(2) in Corollary 8 is folklore. The equivalence
of these with (4) seems to be new.

The only other covering property we know of which enjoys the possibility
of considering subcovers of a given cover instead of selecting from a given
sequence of covers is the Gerlits–Nagy γ-property. The proof for this fact is
much easier—see [2].
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