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The homology of spaces of simple topological measures

by

Ø. Johansen and A. B. Rustad (Trondheim)

Abstract. The simple topological measures X∗ on a q-space X are shown to be a
superextension of X. Properties inherited from superextensions to topological measures
are presented. The homology groups of various subsets of X∗ are calculated. For a q-
space X, X∗ is shown to be a q-space. The homology of X∗ when X is the annulus is
calculated. The homology of X∗ when X is a more general genus one space is investigated.
In particular, X∗ for the torus is shown to have a retract homeomorphic to an infinite
product of circles.

1. Introduction. Throughout the text we will assume that X (and Y )
is a compact Hausdorff space. We will let O(X) and C(X) denote the open
and closed subsets of X respectively. Furthermore we put A(X) = O(X) ∪
C(X). When there is no confusion concerning the space in question, we will
omit the space from the notation. A positive set function µ : A(X) → R+

is a topological measure if:

(i) µ(
⊎n
i=1Ai) =

∑n
i=1 µAi (where

⊎
indicates disjoint union, and all

Ai and
⋃
Ai are assumed to be in A).

(ii) µU = sup{µC : C ⊂ U, C ∈ C} for all U ∈ O.

We denote the set of all topological measures on X by Q(X). The {0, 1}-
valued topological measures are referred to as simple topological measures
and denoted by X∗. Note that the simple topological measures are not gen-
erally all the extreme topological measures.

The topological measures originated in [1], and were formerly called
quasi-measures. It was proved in [9] that topological measures are countably
additive. Their definition only differs from that of regular Borel measures
by their domain of definition. However, they constitute a vastly larger class
of set functions with a rich mathematical structure, the most distinctive
difference being that topological measures need not be subadditive.

Homological techniques have become of considerable importance for
topological measures (cf. [11], [3] and [7]). We continue this work here with
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the Čech homology functor as our main vehicle. A remarkable correspon-
dence between superextensions and simple topological measures is presented
yielding several results about simple topological measures.

Next we turn to the homology of various subsets of X∗. In particular,
the homology of the sets C∗ = {µ ∈ X∗ : µC = 1} for C ∈ C(X) (where X
is a q-space) is calculated. It is shown that X∗ is a q-space (see Section 2 for
definition) whenever X is a q-space. Solid maps are shown to be monotone
in general only when X is a q-space.

Then we turn to more general spaces. Homotopies on X are lifted to X∗.
The homology of the space of simple topological measures on the annulus
is shown to be isomorphic to the homology of the circle. Image transforma-
tions are constructed from solid sets on spaces with genus one, enabling the
calculation of homology groups on such spaces. In particular, the collection
of simple topological measures on the torus has a retract homeomorphic to
a countable product where each factor has a circle as a retract. The latter
reveals the complexity of the homology of the topological measures on the
torus (as opposed to the annulus).

2. Basic results

2.1. Topological measures. The family of normalized topological mea-
sures is a convex set. Its extreme points are, however, much more complex
than the Dirac measures. They are not in general {0, 1}-valued.

Definition 1. The space of representable topological measures is the
convex closure of the set of simple topological measures, and will be denoted
by Qr(X).

Notation 2. We will denote the Borel probability measures on X by
P (X). Its extreme points, the Dirac measures, will be denoted by Pe(X).
Moreover, the normalized topological measures on X (i.e. the topological
measures with µ(X) = 1) will be denoted by Q1(X).

The integral of f ∈ C(X) with respect to a topological measure µ in
X is defined as follows: Let µf denote the topological measure given by
µf (A) = µ(f−1(A)) for A ∈ A(X). Then µf extends uniquely to a Borel
measure on R (all topological measures on one-dimensional spaces extend
uniquely to regular Borel measures, cf. [14]). Hence we have the definition

µ(f) =
�

sp f

x dµf (x) where sp f = {f(x) : x ∈ X}.

The integrals (with respect to topological measures), and hence topological
measures, were shown in [1] to be uniformly continuous. That is, for µ ∈
Q(X) we have ‖µ‖ = µ(X), and |µ(f) − µ(g)| ≤ ‖µ‖ ‖f − g‖∞ for all
f, g ∈ C(X). In [2] a weak topology in Q1(X) was introduced: Any function
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f ∈ C(X) may be represented as a functional f̂ on Q(X) by f̂(µ) = µ(f),
where the map f 7→ f̂ is a non-linear Gelfand transform. The topology
on Q(X) is defined to be the topology induced by the separating space of
functionals {f̂ : f ∈ C(X)}. This turns Q1(X), Qr(X) and X∗ into compact
Hausdorff spaces. Moreover, the sets V ∗ = {µ ∈ X∗ : µ(V ) = 1} (V ∈ O(X))
form a subbase for the topology of X∗.

For the remainder of this subsection our spaces will be assumed con-
nected and locally connected.

Definition 3. If a set A ∈ A and its complement are both connected
we will call the set solid. A restriction to solid sets will be denoted with
a subscript s (e.g. Cs will denote the compact solid sets). We will let the
index c indicate the restriction to connected sets, e.g. Cc(X) denotes the
closed, connected subsets of X.

We recall the following two results from [3].

Proposition 4. Let K ∈ Cs, U ∈ O and K ⊂ U . Then there is a set
V ∈ Os such that K ⊂ V ⊂ V ⊂ U .

Proposition 5. If A ∈ A(X) is connected then the components of X\A
are solid.

It was shown in [8] that {V ∗ : V ∈ Os(X)} is actually a subbase for
the topology of X∗. The solid sets play an important role in the theory of
topological measures. For their full use some restrictions on the space X are
needed:

Definition 6. A partition P = {Ci}ni=1 ∪ {Uj}mj=1 (∅ 6= Ci ∈ Cs(X),
i = 1, . . . , n; ∅ 6= Uj ∈ Cs(X), j = 1, . . . ,m; m,n ≥ 2; X =

⊎P) of X into
solid sets is called irreducible if for any proper subset F  {Ci}ni=1, X \⊎F
is connected. By the genus of X we will mean the supremum of m − 1 for
all irreducible partitions of X, or zero if no such partitions exist.

Remark 7. The genus requirement was treated in [3] and [11]. If X
has genus zero, then X can at most be the disjoint union of two solid sets.
This property is shared by a large class of spaces (e.g. when X is simply
connected). Our characterization of genus through finite unions of solid sets
is due to [7], where it is shown that if the genus is larger than zero, then it
is always possible to find an irreducible partition of X into solid sets such
that n = 2 and m− 1 is the genus of X.

Definition 8. A connected, locally connected, compact Hausdorff space
with genus zero is called a q-space.

The solid sets constitute a small and manageable family of sets that
totally determines a topological measure on a locally connected continuum.
This is illustrated by the solid set functions, introduced in [3]. In particular
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they are invaluable tools for constructing topological measures. We include
their definition and an extension theorem:

Definition 9. LetX be a locally connected continuum. Then a function
µ : As → R+ is a solid set function if it satisfies:

(i)
∑n

i=1 µCi ≤ µC whenever
⊎n
i=1Ci ⊂ C with Ci, C ∈ Cs for i =

1, . . . , n.
(ii) µU = sup{µC : C ⊂ U, C ∈ Cs} for all U ∈ Os.

(iii) µA+ µ(X \ A) = µX.
(iv)

∑
A∈P µ(A) = µX for any irreducible partition P of X.

Remark 10. Note that q-spaces have no irreducible partitions, so the
fourth requirement is redundant for q-spaces.

Theorem 11. If X is a locally connected continuum and µ is a solid set
function, then µ extends uniquely to a topological measure on X. Conversely ,
the restriction of a topological measure on X to the solid sets is a solid set
function.

Image transformations were introduced in [4] as natural topological mea-
sure preserving transformations. We include their definition and construc-
tion from solid sets:

Definition 12. Let X and Y be compact Hausdorff spaces. An image
transformation is a map q : A(X)→ A(Y ) with q(O(X)) ⊂ O(Y ) satisfying:

(a) A ∩B = ∅ ⇒ qA ] qB = q(A ∪B).
(b) Uλ ↗ U ⇒ qUλ ↗ qU whenever Uλ, U ∈ O(X) and λ ∈ Λ where Λ

is a directed set.
(c) qX = Y .

The adjoint of an image transformation q : A(X) → A(Y ) is the map
q∗ : Q(Y )→ Q(X) defined by

q∗µ(A) = µ(qA), µ ∈ Q(Y ), A ∈ A(X).

Moreover, the map q∗ : Q(Y )→ Q(X) is continuous.

Proposition 13. Let X be a q-space. A map q : As(X)→ A(Y ) extends
uniquely to an image transformation q̃ : A(X) → A(Y ) if and only if the
following hold :

(a′) If A,Ai ∈ As for i = 1, . . . , n and
⊎
Ai ⊂ A, then

⊎
q(Ai) ⊂ qA.

(b′) If U,Uλ ∈ Os and Uλ ↗ U with λ ∈ Λ where Λ is a directed set ,
then qUλ ↗ qU .

(c′) For any A ∈ As we have q(A) ] q(X \ A) = Y .

We have the following definition and proposition from [13]:



Homology of spaces of measures 23

Definition 14. An image transformation q : A(X) → A(Y ) will be
called a solid image transformation if q(As(X)) ⊂ As(Y ). A continuous
function is called a solid function if its inverse image is a solid image trans-
formation.

Proposition 15 (Urysohn’s lemma for solid variables). Let X be any
connected and locally connected compact Hausdorff space. If C ∈ Cs(X) and
F ∈ C(X) are disjoint and non-empty , there is a solid function f : X → [0, 1]
such that f |C ≡ 0 and f |F ≡ 1. If in addition X is a metric space we may
assume that f−1(0) = C.

2.2. Superextensions. Superextensions of topological spaces are con-
structed similarly to Wallman compactifications, with filters replaced by
linked systems. A comprehensive presentation of the subject and its achieve-
ments may be found in [12].

Definition 16. Let S be a closed subbase of X. A linked system in S is
a collectionM⊂ S such that any two members ofM intersect. A maximal
linked system in S is a linked system not properly contained in any other
linked system in S.

Definition 17. The superextension of X relative to S, λ(X,S), is the
topological space defined as the set of all maximal linked systems in S with
the closed subbase

S∗ = {C∗ : C ∈ S}
where C∗ denotes the set of all maximal linked systems in S containing C.

Definition 18. A topological space X is said to be supercompact if
there is a closed subbase S of X such that each linked system M in S
satisfies ⋂

{M : M ∈ M} 6= ∅
Such subbases are called binary.

Definition 19. A closed subbase S of X is called a T1-subbase if for
each S ∈ S and for each x ∈ X − S there exists a T ∈ S such that x ∈ T
and T ∩ S = ∅. A subbase S of X is called normal if for each disjoint pair
S1, S2 ∈ S there are S′1, S

′
2 ∈ S such that S1 ⊂ X \ S′1, S2 ⊂ X \ S′2, and

S′1 ∪ S′2 = X.

It should be noted that supercompact spaces are compact, and that a
superextension is supercompact with S∗ as a binary T1-subbase. Moreover,
if S is normal, then S∗ is normal.

We include the following result from [12]:

Theorem 20. Let X be a connected topological space. If X admits a nor-
mal T1-subbase S, then λ(X,S) is connected and locally connected , acyclic,
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and a Lefschetz space. Moreover , if X is a metric continuum then λ(X,S)
is an absolute retract , in particular it is contractible.

3. Correspondence between simple topological measures and
superextensions. Throughout this section we will assume X to be a q-
space. The closed solid sets constitute a normal closed T1-subbase of X
by a straightforward application of Proposition 4. We have the following
surprising correspondence:

Theorem 21. There is a homeomorphism φ : X∗ → λ(X, Cs) given by

φ(µ) = {C ∈ Cs : µ(C) = 1},
where X∗ is endowed with the weak∗ topology.

Proof. Let µ ∈ X∗, and let C1, C2 ∈ φ(µ). Then µ(C1) = µ(C2) = 1,
so C1 ∩ C2 6= ∅. Thus φ(µ) is a linked system. If C 6∈ φ(µ), C ∈ Cs, then
µ(Cc) = 1, hence by regularity of µ there is C ′ ∈ Cs with C ′ ∩ C = ∅ and
µ(C ′) = 1, so C ∪φ(µ) is not linked. Thus φ(µ) is a maximal linked system.
Since φ(µ) determines the value of µ on solid sets, φ is one-to-one.

Conversely, let S ∈ λ(X, Cs). Define µ : Cs → {0, 1} by µ(C) = 1 if and
only if C ∈ S, and extend µ to As by µ(O) = 1 − µ(Oc) for O ∈ Os. Then
µ fulfills requirement 9(iii) by definition. For 9(i) at most one of the sets
Ci, i = 1, . . . , n, can be in S since they are disjoint. Now C contains each
of them and hence must also be in S, implying 9(i). If none of the sets Ci,
i = 1, . . . , n, are in S then 9(i) is trivially fulfilled. It remains to prove the
regularity 9(ii), so let O ∈ Os be arbitrary. If µO = 0 then any compact
set C ⊂ O is disjoint from Oc ∈ S, and hence µO = sup{µC : C ⊂ O,
C ∈ Cs} = 0. If µO = 1 then Oc 6∈ S, hence there must be some C ∈ S with
C ∩ Oc = ∅ by the maximality of S. Accordingly C ⊂ O with µC = 1, so
µO = sup{µC : C ⊂ O, C ∈ Cs} = 1.

Finally, the continuity of φ and φ−1 is evident by considering closed
subbases.

Remark 22. The correspondence between maximal linked systems and
simple topological measures on q-spaces was already noted in [11], but the
connection to the topological construct of a superextension was not made.

Example 23. The image transformation Ψ : X → X∗ defined by Ψ(A)
= A∗ where A∗ = {µ ∈ X∗ : µ(A) = 1} was presented in [4]. It is noteworthy
that this image transformation is, through the correspondence in Theorem
21, analogous to the ∗-operation of Definition 17. We will return to this
image transformation after establishing some immediate consequences of
Theorem 21.

Corollary 24. If X is a metric q-space, then X∗ is an absolute retract ,
in particular it is contractible.
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Corollary 25. If X is a q-space, then:

(i) X∗ is connected and locally connected.
(ii) X∗ is acyclic.

(iii) X∗ is a Lefschetz space.

Remark 26. The connectedness of X∗ was proven in [11], and the local
connectedness in [10], so those results are not new. The notion of a Lefschetz
space may be found in [5], and refers to a conditional fixed point property
of selfmaps of X∗. Acyclicity is meant with respect to the Čech homology
functor, H = (Hn)n∈N, over a field F; we refer the reader to [6] for a good
source of information on homology theory. Since X∗ is acyclic, the Lefschetz
property implies that every continuous map of X∗ into itself has a fixed
point.

Example 27. Let q : A(X) → A(X) be an image transformation. The
adjoint map q∗ : X∗ → X∗ given by (q∗µ)(A) = µ(q(A)) for A ∈ A(X) and
µ ∈ Q(X) was shown in [4] to be continuous. By Corollary 25(iii), q∗ must
have a fixed point in X∗.

4. Homological results for simple topological measures on q-
spaces. Image transformations were introduced in [4] as natural continu-
ous topological measure preserving transformations. Hence they are natural
tools to consider when calculating the various homology groups of spaces of
simple topological measures. We start by introducing a fundamental class
of image transformations to achieve this. Again we will assume X to be a
q-space throughout this section.

Lemma 28. For C ∈ C(X) define a set map qC : As(X)→ A(X) by

qC(A) =





∅ if C ∩ A = ∅,
A if ∅ 6= C ∩A 6= C, A ∈ As(X),

X if C ⊂ A.
Then qC extends uniquely to an image transformation. Moreover , if C1∩C2

6= ∅ and C1, C2 ∈ C(X), then qC1 ◦ qC2 = qC2 ◦ qC1.

Proof. Requirement (c′) of Proposition 13 is trivially fulfilled by exten-
sion. Requirement (a′) is a straightforward verification for the set map qC .
For the regularity requirement (b′), we have three cases to consider for a
net Uλ ↗ U of open solid sets. The case qCU = ∅ implies qCUλ = ∅ for
all λ ∈ Λ. The next two cases, qCU = U and qCU = X, are handled by
a standard compactness argument. Hence qC extends uniquely to an image
transformation. If A ∈ As(X), then the only way in which (qC1 ◦ qC2)(A)
can be different from (qC2 ◦ qC1)(A) is if one of qC1(A) and qC2(A) is ∅ and
the other is X; but this is impossible if C1 and C2 intersect.
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Since topological measures are inner regular it is an easy exercise to show
that additivity on disjoint open sets holds in general. We have the following:

Theorem 29. Let C ∈ Cc(X). Then q∗C is a retraction of X∗ onto C∗.
Moreover , if C1, . . . , Cn ∈ Cc(X) are pairwise intersecting , then q∗C1

◦. . .◦q∗Cn
is a retraction of X∗ onto C∗1 ∩ . . . ∩ C∗n.

Proof. Let µ ∈ X∗. Then

q∗C(µ)(C) = 1−
∑

λ∈Λ
µ(q(Uλ)) = 1−

∑

λ∈Λ
µ(∅) = 1,

where {Uλ}λ∈Λ are the (solid and open) components of X \ C. Thus q∗C(µ)
∈ C∗. Assume further that µ ∈ C∗ and A ∈ As(X). Then in each of the
three cases in the definition of qC , µ(qC(A)) = µ(A), hence q∗C(µ) = µ.
Accordingly, q∗C is a retraction of X∗ onto C∗.

Clearly, (q∗C1
◦ . . . ◦ q∗Cn)(X∗) ⊂ C∗1 and by commutativity it follows that

(q∗C1
◦ . . . ◦ q∗Cn)(X∗) ⊂ C∗1 ∩ . . . ∩ C∗n. If µ ∈ C∗1 ∩ . . . ∩ C∗n, it is immediate

that (q∗C1
◦ . . . ◦ q∗Cn)(µ) = µ.

Corollary 30. If C∈Cc(X), then C∗ is acyclic. Moreover , if C1, . . . , Cn
∈ Cc(X) are pairwise intersecting , then C∗1∩. . .∩C∗n is acyclic. In particular ,
C∗1 ∩ . . . ∩ C∗n is non-empty.

Proof. Acyclicity follows since retracts of acyclic spaces are acyclic. The
set C∗1∩. . .∩C∗n is non-empty since it is the image of the map q∗C1

◦. . .◦q∗Cn .

Corollary 31. Let C1, . . . , Cn ∈ Cc(X) and let Fi =
⋂
j∈Ii C

∗
j , where

Ii ⊂ {1, . . . , n}, i = 1, . . . ,m. If F1, . . . , Fm are pairwise intersecting , then
F1 ∩ . . . ∩ Fm 6= ∅.

Proof. If F1, . . . , Fm are pairwise intersecting, then {Cj : j ∈ ⋃m
i=1 Ii}

must also intersect pairwise.

Corollary 32. If A ∈ A(X) is connected , then A∗ is connected.

Proof. For C ∈ Cc(X) we have q∗C(X∗) = C∗, implying connectedness
of C∗. For O ∈ Oc(X), O∗ =

⋃{C∗ : C ∈ Cc(X), C ⊂ O} and the union is
directed, hence O∗ is also connected.

Recall that a map between compact Hausdorff spaces is called monotone
if inverse images of connected sets are connected. We have the following
definition for image transformations:

Definition 33. An image transformation q : A(X) → A(Y ) is called
monotone if q(Ac(X)) ⊂ Ac(Y ).

Note that any monotone image transformation is necessarily solid since
image transformations preserve complements. This, of course, also applies
to functions.
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Corollary 34. The image transformation Ψ :A(X)→ A(X∗) is mono-
tone.

The Čech homology functor is continuous in the sense that to limits
of inverse systems of sets correspond inverse limits of the corresponding
homology groups. We obtain the following result:

Proposition 35. Let C ∈ C(X). Then Hn(C∗) = 0 for all n 6= 0, and
H0(C∗) ∼= H0(C).

Proof. If C ∈ C(X) has finitely many components, then the result follows
from Corollary 30 by taking the sum of the homologies of each component.
For any C, let {Cλ}λ∈Λ be the family of compact sets with finitely many com-
ponents containing C, ordered by reverse inclusion. Then {C∗λ}λ∈Λ together
with the inclusion mappings is an inverse system with C∗ as its intersection,
and so by the continuity of the Čech homology, Hn(C∗) = lim←−Hn(C∗λ). For
n 6= 0 this gives the result. For n = 0 we have H0(C∗λ) ∼= H0(Cλ) as inverse
systems, so H0(C∗) = lim←−H0(C∗λ) = lim←−H0(Cλ) = H0(C).

The Čech homology sequence is exact for compact sets, and hence the
Mayer–Vietoris sequence is exact for compact sets. We have the following
useful result:

Proposition 36. If C1, . . . , Cn ∈ Cc(X) are pairwise intersecting , then
any combination of unions and intersections of the sets C∗1 , . . . , C

∗
n is acyclic.

Proof. We may assume that any combination of unions and intersections
is of the form

m⋃

j=1

nj⋂

k=1

C∗j,k, Cj,k ∈ {C1, . . . , Cn}.

Now
⋂nj
k=1C

∗
j,k is acyclic for each j. This shows the result for m = 1. We

proceed by induction on m. Assume the assertion to be true for some m ≥ 1.
We obtain the Mayer–Vietoris sequence

0 = H̃n

( m⋃

j=1

nj⋂

k=1

C∗j,k
)
⊕ H̃n

( nm+1⋂

k=1

C∗m+1,k

)
→ H̃n

(m+1⋃

j=1

nj⋂

k=1

C∗j,k
)

→ H̃n−1

(( m⋃

j=1

nj⋂

k=1

C∗j,k
)
∩
( nm+1⋂

k=1

C∗m+1,k

))
.

The acyclicity of
⋃m+1
j=1

⋂nj
k=1C

∗
j,k follows since

( m⋃

j=1

nj⋂

k=1

C∗j,k
)
∩
( nm+1⋂

k=1

C∗m+1,k

)
=

m⋃

j=1

(( nj⋂

k=1

C∗j,k
)
∩
( nm+1⋂

k=1

C∗m+1,k

))



28 Ø. Johansen and A. B. Rustad

and by induction

H̃n−1

( m⋃

j=1

(( nj⋂

k=1

C∗j,k
)
∩
( nm+1⋂

k=1

C∗m+1,k

)))
= 0.

Example 37. Consider pairwise intersecting sets C1, C2, C3 ∈ Cc(X),
e.g. the three edges of a triangle. Then by Proposition 36, C∗1 ∪ C∗2 ∪ C∗3 is
acyclic, whereas the set C1∪C2∪C3 may be homeomorphic to a circle. This
is a rather disappointing result, but as the next example illustrates we need
at least four sets to obtain more complicated homology of X∗.

Example 38. Let C1, . . . , C4 ∈ Cc(X) be the edges of a square numbered
clockwise. Then (C∗1∪C∗2 )∩(C∗3∪C∗4 ) = (C∗1∩C∗4)∪(C∗2∩C∗3) where the latter
is a disjoint union. Thus we obtain the following Mayer–Vietoris sequence:

0 = H̃1(C∗1 ∪ C∗2)⊕ H̃1(C∗3 ∪ C∗4)→ H̃1(C∗1 ∪ . . . ∪ C∗4)

→ H̃0((C∗1 ∩ C∗4) ] (C∗2 ∩ C∗3))→ H̃0(C∗1 ∪ C∗2)⊕ H̃0(C∗3 ∪ C∗4) = 0.

The homology group H̃0((C∗1 ∩C∗4)] (C∗2 ∩C∗3)) is isomorphic to the field F,
and hence H̃1(C∗1 ∪ . . .∪C∗4) ∼= F. This illustrates that C∗1 ∪ . . .∪C∗4 has the
same first homology group as the circle.

The preceding example may be generalized to n-cubes; we include the
calculations below:

Example 39. Let Fi,s ∈ Cc(X), i = 1, . . . , k, s = 0, 1, be such that
Fi,s∩Fj,t = ∅ ⇔ i = j, s 6= t (i.e. the same pairwise intersections as the faces
of a k-cube). For I0, I1 ⊂ {1, . . . , k} define FI0,I1 = (

⋃
i∈I0 F

∗
i,0)∪(

⋃
i∈I1 F

∗
i,1).

Then:

(i) FI0,I1 is acyclic when I0 6= I1.

(ii) H̃n(FI,I) ∼= H̃n(Scard I−1) ∼=
{

0, n 6= card I − 1,

F, n = card I − 1.

Proof of Example 39. (i) If I0 ∩ I1 = ∅ then all the sets {Fi,0, Fj,1 :
i ∈ I0, j ∈ I1} intersect pairwise and Proposition 36 applies. Otherwise, let
i ∈ I0 ∩ I1 and put F = FI0\{i},I1\{i}. Then

FI0\{i},I1 ∩ FI0,I1\{i} = (F ∪ F ∗i,1) ∩ (F ∪ F ∗i,0) = F ∪ (F ∗i,1 ∩ F ∗i,0) = F.

We have the Mayer–Vietoris sequence

0 = H̃n(FI0\{i},I1)⊕ H̃n(FI0,I1\{i})→ H̃n(FI0,I1)→ H̃n−1(FI0\{i},I1\{i}) = 0

and the acyclicity of FI0,I1 follows by induction on card I0 + card I1.
(ii) The statement is clear when card I ≤ 1. Otherwise let i ∈ I; by (i)

we have the Mayer–Vietoris sequence
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0 = H̃n(FI\{i},I)⊕ H̃n(FI,I\{i})→ H̃n(FI,I)

→ H̃n−1(FI\{i},I\{i})→ H̃n−1(FI\{i},I)⊕ H̃n−1(FI,I\{i}) = 0,

yielding the result by induction on card I.

5. Conditions for q-spaces. Throughout this section X and Y will be
assumed to be locally connected continua. Conditions for X and X∗ being
q-spaces will be given. We start with a characterization of q-spaces in terms
of compact sets:

Proposition 40. Let X be a connected , locally connected compact Haus-
dorff space. If C◦1 ∪ C◦2 = X with C1, C2 ∈ Cc(X) implies C1 ∩ C2 ∈ Cc(X),
then X is a q-space. Conversely , if X is a q-space, then C1 ∪ C2 = X with
C1, C2 ∈ Cc(X) implies C1 ∩ C2 ∈ Cc(X).

Proof. Assume to the contrary that X does not have genus zero accord-
ing to Definition 6. Then there is a collection of sets A1, . . . , An ∈ As(X)
such that X =

⊎n
i=1Ai with exactly two of the solid sets closed (see Re-

mark 7), say A1 and A2. We must have n ≥ 4 and hence may fix two points
x1, x2 contained respectively in two different open sets, say A3 and A4. By
Proposition 4 there is an open solid set O1 such that A1 ⊂ O1 ⊂ O1 ⊂
X \ (A2 ∪ {x1, x2}). Similarly there is also an open solid set O2 such that
A2 ⊂ O2 ⊂ O2 ⊂ X \ (O1 ∪ {x1, x2}). Now put Ci = X \ Oi, i = 1, 2; then
C◦1 ∪ C◦2 = X and C1, C2 ∈ Cc(X). However, we have x1, x2 ∈ C1 ∩ C2 ⊂⊎n
i=3Ai, in particular, A3 and

⊎n
i=4Ai separate C1 ∩ C2. We must have

C1 ∩ C2 6∈ Cc(X), contradicting the hypothesis of the proposition.
Conversely, let X be a q-space and assume X = C1∪C2, C1, C2 ∈ Cc(X).

Then ∅ 6= C∗1 ∩ C∗2 = (C1 ∩ C2)∗ and hence (C1 ∩ C2)∗ is acyclic, implying
that (C1 ∩C2)∗ is connected. If (C1 ∩C2)∗ is connected, then C1 ∩C2 must
also be connected by Proposition 35.

Remark 41. We note that in the case of Čech homology this result
is stronger than necessary, since the Mayer–Vietoris sequence is exact for
compact pairs regardless of whether their interiors cover the space. For other
homologies the stronger result in Proposition 40 may be useful.

The Čech homology group H0 has the nice property of describing con-
nectivity whereas singular homology describes pathwise connectivity. That
is, for a set A ∈ A(X) we have H̃0(A) = 0 if and only if A is connected.

Theorem 42. If X is a q-space, then X∗ is also a q-space.

Proof. By Corollary 25(i), X∗ is connected and locally connected. Sup-
pose C1, C2 ∈ Cc(X∗) with C1 ∪ C2 = X∗. Applying the acyclicity of X∗

(Corollary 25(ii)) we have the Mayer–Vietoris sequence

0 = H̃1(X∗)→ H̃0(C1 ∩ C2)→ H̃0(C1)⊕ H̃0(C2) = 0,
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since H̃0(C1) = H̃0(C2) = 0 and hence H̃0(C1) ⊕ H̃0(C2) = 0. It follows
from the exactness that H̃0(C1 ∩C2) = 0 and accordingly C1 ∩C2 ∈ Cc(X).
Finally X∗ is a q-space by Proposition 40.

Theorem 43. The following are equivalent :

(i) X is a q-space.
(ii) Any solid image transformation q : A(Y )→ A(X) is monotone.

(iii) Any solid function f ∈ C(X) is monotone.

Proof. For (i)⇒(ii) assume X to be a q-space, and q : A(Y )→ A(X) to
be a solid image transformation.

We will first consider compact sets. Let C ∈ Cc(Y ) be arbitrary and let
{Vλ}λ∈Λ denote the open solid components of Y \C. By regularity we then
have X \ q(C) =

⊎
λ∈Λ q(Vλ).

We will show that X \⊎λ∈F q(Vλ) is connected whenever F ⊂ Λ is finite.
For cardF = 1 this follows since by assumption each q(Vλ) is solid. Assume
that X \ ⊎λ∈F q(Vλ) is connected whenever cardF ≤ n. Let F = F1 ] F2
with cardF = n+ 1 and F1 and F2 both non-empty. We have

X \
⊎

λ∈F
q(Vλ) =

(
X \

⊎

λ∈F1

q(Vλ)
)
∩
(
X \

⊎

λ∈F2

q(Vλ)
)
,

X =
(
X \

⊎

λ∈F1

q(Vλ)
)
∪
(
X \

⊎

λ∈F2

q(Vλ)
)
,

and by the induction hypothesis and Proposition 40, X \ ⊎λ∈F q(Vλ) is
connected. This completes the induction.

We see that {X \⊎λ∈F q(Vλ) : F ⊂ Λ, F finite} is a directed family of
connected compact sets ordered by reverse inclusion, and so its intersection
q(C) is connected.

Now let O ∈ Oc(Y ) be arbitrary, and let x1, x2 ∈ q(O). Consider the
directed family {Uλ ⊂ O : Uλ ∈ Oc(Y ), Uλ ⊂ O}, which has union O; by
regularity of q we have x1, x2 ∈ q(Uλ) for some Uλ. Then {x1, x2} ⊂ q(Uλ) ⊂
q(O), where q(Uλ) is connected by the above, and so any x1, x2 ∈ q(O) must
be in the same component of q(O), which must therefore be connected. This
establishes the monotonicity of q.

The implication (ii)⇒(iii) is trivial. For (iii)⇒(i) assume that X is not
a q-space. By Remark 7 (cf. [7]) we can find disjoint compact solid sets
C1, C2 such that X \ (C1 ] C2) is a union

⊎n
i=1 Ui with ∅ 6= Ui ∈ Os(X)

for i = 1, . . . , n, n ≥ 2, and by Proposition 15 we have a solid function
f : X → [0, 1] with f(C1) = 0 and f(C2) = 1. We will show that f−1((0, 1))
is disconnected. Assume the contrary; then f−1((0, 1)) must be contained in
a single component of X \ (C1]C2), say U1. But then U2 must be contained
entirely in either f−1(0) or f−1(1), and so either U2∩C1 = ∅ or U2∩C2 =∅,
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say the former, i.e. C1 ⊂X \ U2. But then X \C2 = U2 ] (X \ (C2 ∪ U2)),
contradicting the solidity of C2. We have shown that f−1((0, 1)) is discon-
nected and so f is not monotone.

6. Results for general spaces. In this section we will consider some
methods for calculating the homology of X∗ for more general spaces. Ac-
cordingly, we will only assume X, Y and Z to be compact Hausdorff spaces.

The transformation theorem for integrals holds for integrals with respect
to topological measures, i.e. if µ ∈ Q(X), f ∈ C(X,Y ) (continuous functions
from X to Y ) and g ∈ C(Y ), then

µ(g ◦ f) = (f∗µ)(g).

We have the following:

Proposition 44. Let f : X × [0, 1] → Y be a homotopy. Then f lifts
naturally to a homotopy f̃ : X∗×[0, 1]→ Y ∗ defined by f̃(µ, t) = (f(·, t))∗(µ)
for µ ∈ X∗ and t ∈ [0, 1].

Proof. Assume f : X × [0, 1] → Y to be a homotopy and define f̃ :
X∗ × [0, 1] → Y ∗ by f̃(µ, t) = (f(·, t))∗(µ) for µ ∈ X∗, t ∈ [0, 1]. It suffices
to show that f̃ is continuous. Let (µλ, tλ) → (µ, t) with µλ, µ ∈ X∗ and
tλ, t ∈ [0, 1] be a convergent net in X∗ × [0, 1]. For any g ∈ C(Y ) we have

|f̃(µλ, tλ)(g)− f̃(µ, t)(g)| = |[f(·, tλ)∗(µλ)](g)− [f(·, t)∗(µ)](g)|
≤ |[f(·, tλ)∗(µλ)](g)− [f(·, t)∗(µλ)](g)|+ |[f(·, t)∗(µλ)](g)− [f(·, t)∗(µ)](g)|
= |µλ[(g ◦ f)(·, tλ)]− µλ[(g ◦ f)(·, t)]|+ |µλ[(g ◦ f)(·, t)]− µ[(g ◦ f)(·, t)]|
≤ ‖(g ◦ f)(·, tλ)− (g ◦ f)(·, t)‖∞‖µλ‖+ |µλ[(g ◦ f)(·, t)]− µ[(g ◦ f)(·, t)]|.

The continuity of f̃ now follows from the uniform convergence of (g◦f)(·, tλ)
and the definition of the topology on X∗.

Remark 45. It should be noted at this point that the adjoint operation
is also a functor when ordinary measures are replaced by X∗, i.e. (f ◦ g)∗ =
f∗ ◦ g∗ for g ∈ C(X,Y ), f ∈ C(Y,Z). A comprehensive treatment of the
adjoint operation may be found in [4]. The proof of Proposition 44 goes
through unchanged with X∗ and Y ∗ replaced by Q(X) and Q(Y ), but we
do not need the more general result here.

If C ∈ C(X) and A ∈ A(C), let A∗C denote the zero-one-valued topolog-
ical measures µ in C with µA = 1.

Proposition 46. Let C ∈ C(X) be a deformation retract of X. Then
i∗(C∗C) is a deformation retract of X∗, where i∗ is the adjoint of the inclusion
map i : C ↪→ X. In particular , X∗ is homotopically equivalent to C∗C .
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Proof. There is a homotopy f : X×[0, 1]→X and a retraction r : X → C
such that f(x, 0) = x and f(x, 1) = (i ◦ r)(x) for x ∈ X. By Proposition 44
we obtain a homotopy f̃ : X∗ × [0, 1] → X∗ with f̃(µ, 0) = µ and f̃(µ, 1)
= (i ◦ r)∗(µ) = (i∗ ◦ r∗)(µ). For i∗µ ∈ i∗(C∗C) we have (i∗ ◦ r∗)(i∗µ) =
(i∗ ◦ (r∗ ◦ i∗))(µ) = i∗µ since r ◦ i is the identity map on C. Hence i∗ ◦ r∗ is
the identity map on i∗(C∗C), establishing that i∗(C∗C) is a deformation retract
of X∗. Now, r ◦ i = idC implies that r∗ ◦ i∗ = idC∗ and accordingly i∗(C∗C)
is homeomorphic to C∗C , which proves that X∗ is homotopically equivalent
to C∗C .

Corollary 47. Let X be the annulus. Then X∗ is homotopically equiv-
alent to the circle. In particular , the homology of X∗ is isomorphic to that
of the circle.

Proof. The circle T is a deformation retract of the annulus, so Propo-
sition 46 applies. The circle is one-dimensional and hence all topological
measures extend to regular Borel measures (cf. [14]). Accordingly T∗ is
homeomorphic to the circle, establishing the assertion.

The homology of the simple topological measures on the torus T2 has
been a bit of a mystery. The next result will shed some light on the problem
by showing that the homology of (Tn)∗ is at least as complicated as the
homology of Tn. We have the following more general result:

Theorem 48. Let Xi all be one-dimensional and put X = X1×. . .×Xn.
Then X (identified with the Dirac measures) is a retract of X∗. In particular ,
Hq(X) is isomorphic to a subgroup of Hq(X∗) for each q ∈ Z.

Proof. Since each Xi is one-dimensional we may identify Xi with X∗i
(cf. [14]). Let pi : X → Xi denote the projections, i = 1, . . . , n. Define
P : X∗ → X by P (µ) = ((pi)∗(µ))ni=1 and let I : X → X∗ be the inclusion
map (as Dirac measures). We have

(P ◦ I)(x) = ((pi)∗(δx))ni=1 = (xi)ni=1 = x,

i.e. P is the desired retraction and the assertion follows.

6.1. Locally connected continua. In this subsection X denotes a locally
connected continuum. We recall a notion from [7]:

Definition 49. For a set C ∈ Cs(X) we define the number of sides of
C, denoted by sd(C), as follows:

sd(C) = sup
C⊂U∈Oc(X)

card{V : V is a component of U \ C}.

We denote the n-sided sets by Csn ⊂ Cs(X) for n ∈ N ∪ {∞}, where Cs0 =
{∅,X}.

It is shown in [7] that the genus of a spaceX equals supC∈Cs(X) sd(C)− 1.
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The following proposition is a straightforward generalization of Propo-
sition 13:

Proposition 50. Let X be a locally connected continuum. A map q :
As(X) → A(Y ) extends uniquely to an image transformation q̃ : A(X) →
A(Y ) if and only if the following hold :

(a′) If A,Ai ∈ As for i = 1, . . . , n and
⊎
Ai ⊂ A, then

⊎
q(Ai) ⊂ qA.

(b′) If U,Uλ ∈ Os and Uλ ↗ U with λ ∈ Λ where Λ is a directed set ,
then qUλ ↗ qU .

(c′) For any A ∈ As we have q(A) ] q(X \ A) = Y .
(d′) For any irreducible partition P of X,

⊎
A∈P q(A) = Y .

Proof. The proof of Proposition 13 of [4] goes through unchanged, pro-
vided we note that for genus larger than zero, (d′) is necessary to ensure that
the adjoint of q maps Dirac measures into solid set functions (corresponding
to the additional requirement (iv) for a solid set function).

7. Spaces with genus one. The property that C1, C2 ∈ Cs2 disjoint
implies X \ (C1 ∪ C2) 6∈ Oc is shared by a large class of spaces with genus
one, e.g. annuli and tori of all dimensions. This property is necessary for the
results in the following propositions.

Simple topological measures on the torus have been studied in [11] and
[7]. We recall some of the ideas and results from [7]:

Proposition 51. Let X be a space of genus one with the property that
C1, C2 ∈ Cs2 disjoint implies X\(C1∪C2) 6∈ Oc. Then there is a classification
of the sets in Cs(X) as follows:

(i) We have

Cs(X) = Cs0 ] Cs1 ] Cs2, Cs1 = B ] F ] T , Cs2 =
⊎

S∈E
S,

B = {C ∈ Cs1 : there is a C ′ ∈ Cs2 with C ∩ C ′ = ∅},
T = {C ∈ Cs1 : for all ∅ 6= C ′ ⊂ X \ C, C ′ ∈ B},
F = Cs1 \ (B ] T ).

(ii) Each S ∈ E is an equivalence class of the relation

C ∼ C ′ ⇔ ∃C = C1, . . . , Cn = C ′ ∈ Cs2, Ci ∩ Ci+1 = ∅, i = 1, . . . , n− 1.

(iii) If ∅ 6= C ⊂ C ′ 6= X and C,C ′ ∈ Cs(X), then either C ∈ B, or
C ′ ∈ T , or C,C ′ are both in the same element of E ∪ {F}.

(iv) If C ∩ C ′ = ∅; ∅ 6= C,C ′ ∈ Cs(X), then either C ∈ B, or C ′ ∈ B, or
C,C ′ are both in the same element of E ∪ {F}.

(v) If C ∈ B then there is a C ′ ∈ T disjoint from C. If C ∈ E∪{F} then
there is a disjoint C ′ in the same element of E ∪ {F}.
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(vi) If P is an irreducible partition of X, then P = {C1, C2, U1, U2}
where C1, C2, X \ U1 and X \ U2 all belong to a single element of E.

From the above description of solid sets one may construct a family of
solid set functions (cf. [7]):

Proposition 52. Let ν and µS for each S ∈ E be normalized topological
measures on X. Then the function τ : Cs(X)→ R defined by

τ(C) =





1 if C ∈ T ,
ν(C) if C ∈ F ,
µS(C) if C ∈ S ∈ E ,
0 if C ∈ B,

is a solid set function, and hence extends uniquely to a topological measure
on X.

We have the following basic observation:

Lemma 53. Any homeomorphism Φ preserves each of the class B, T and
F , and induces a permutation of E.

Proof. A homeomorphism necessarily maps solid sets to solid sets. More-
over, two-sidedness is preserved by homeomorphisms, implying that B, T
and F are invariant under Φ. Two sets C,C ′ ∈ Cs2 \F are clearly equivalent
under the relation ∼ of Proposition 51 if and only if Φ(C) ∼ Φ(C ′), and
hence Φ induces a permutation of the family E .

Recall that an isotopy of a space X is a continuous map Γ : X× [0, 1]→
X (in particular, a homotopy) such that Γ (·, t) is a homeomorphism for
each t ∈ [0, 1]. Two subsets M1,M2 of X are ambiently isotopic if there is
an isotopy Γ of X such that Γ (M1, 0) = M1 and Γ (M1, 1) = M2. (One may
assume Γ (·, 0) to be the identity.) The following result will be useful in the
next section:

Proposition 54. Let X be a space of genus one with the property that
C1, C2 ∈ Cs2 disjoint implies X \(C1∪C2) 6∈ Oc. If C1, C2 ∈ Cs are ambiently
isotopic, then they are in the same element of {Cs0,B, T ,F} ∪ E.

Proof. Let Γ be an isotopy such that Γ (C1, 0) = C1 and Γ (C1, 1) =
C2. If the sets C1, C2 are not both two-sided, then the result follows from
Lemma 53. Otherwise, for each t ∈ [0, 1] we have Γ (C1, t) ∈ Cs2; so let
Kt ∈ Cs2 be such that Γ (C1, t)∩Kt = ∅, and by continuity of Γ let εt be such
that Γ (C1, t

′)∩Kt = ∅ for t−εt < t′ < t+εt. Now {(t−εt, t+εt) : t ∈ [0, 1]}
is an open covering of [0, 1]; by compactness there are 0 = t1 < . . . < tn = 1
such that

[0, 1] =
n⋃

i=1

(ti − εti , ti + εti),



Homology of spaces of measures 35

(ti − εti , ti + εti) ∩ (ti+1 − εti+1 , ti+1 + εti+1) 6= ∅, i = 1, . . . , n− 1.

Pick t′i+1 in the last intersection, for i = 1, . . . , n− 1; then clearly

C1 = Γ (C1, t1) ∼ Kt1 ∼ Γ (C2, t
′
2) ∼ Kt2 ∼ . . . ∼ Γ (Cn, t′n) ∼ Ktn

∼ Γ (C1, tn) = C2.

Define T ∗ = {µ ∈ X∗ : µC = 1 for all C ∈ T }. By setting ν and µS
equal to µ ∈ T ∗ we see that T ∗ are exactly those members of X∗ achievable
by the construction of Proposition 52.

The image transformations were crucial tools in the preceding sections.
We will present two fundamental classes of image transformations for ob-
taining retracts and deformation retracts in the more general setting of this
section.

Proposition 55. Let X be a space of genus one with the property that
C1, C2 ∈ Cs2 disjoint implies X\(C1∪C2) 6∈ Oc. Define q : Cs(X)→ C(X) by

q(C) =





∅ if C ∈ B,
C if C 6∈ B ∪ T ,
X if C ∈ T .

Then q extends uniquely to an image transformation. Moreover , q∗ is a
retraction of X∗ onto T ∗.

Proof. For U ∈ Os(X) we extend q by q(U) = X \ q(X \U), giving (c′).
Conditions (a′) and (d′) of Proposition 50 for q follow by a straightforward
(but tedious) application of Proposition 51. Let Uλ ↗ U be a net of open
solid sets with U ∈ Os(X), and put C = X \U and Cλ = X \Uλ, λ ∈ Λ. For
C ∈ B there is a C ′ ∈ T disjoint from C, and by compactness there is a finite
open cover {Uλi}ni=1 of C ′. Hence there is a λ′ such that for λ ≥ λ′ we have
Cλ ∈ B; accordingly, qUλ ↗ qU = X. When C ∈ T , we must have Cλ ∈ T
for all λ ∈ Λ, yielding qUλ = qU = ∅. If C ∈ S ∈ E∪{F}, pick C ′ ∈ S
with C ∩ C ′ = ∅. Compactness of C ′ yields existence of λ′ ∈ Λ such that
λ ≥ λ′ implies Cλ ∩C ′ = ∅; hence combining (iii) and (iv) of Proposition 51
we get Cλ ∈ S, and so qUλ = Uλ ↗ U = qU . We have established all the
requirements of Proposition 50; accordingly, q extends uniquely to an image
transformation q : A(X)→ A(X).

Adjoints of image transformations are continuous, so q∗ maps X∗ contin-
uously into T ∗. Moreover, if µ ∈ T ∗, then q∗ will map all sets in E∪{F} to
themselves and hence not change the measure of the sets. It is also clear that
q∗µ maps B to zero and T to one. Thus q∗ restricted to T ∗ is the identity
map.

The notion of a non-splitting topological measure is convenient when
constructing image transformations (cf. [4]). A topological measure µ in
X is called non-splitting if it assigns non-zero measure to all open sets
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(or equivalently there are no disjoint non-empty compact sets C,C ′ ⊂ X
such that µC + µC ′ = µX). Normalized Lebesgue measure on cubes and
Haar measure on the torus are natural examples of non-splitting measures.
More generally all separable spaces have non-splitting measures. We have
the following class of image transformations:

Proposition 56. Let X be a space of genus one with the property that
C1, C2 ∈ Cs2 disjoint implies X \(C1∪C2) 6∈ Oc. For a non-splitting topolog-
ical measure m in X and a number t ∈ [0, 1/2] define qm,t : Cs(X) → C(X)
by

qm,t(C) =





∅ if C ∈ B and mC < t,

X if C ∈ T and mC ≥ 1− t,
C otherwise.

Then qm,t extends uniquely to an image transformation. Moreover , q∗m,· :
[0, 1/2] × X∗ → X∗ is continuous, so that q∗m,1/2(X∗) is a deformation
retract of X∗.

Proof. For U ∈ Os(X) we extend q by q(U) = X \ q(X \ U), giving
condition (c′) of Proposition 50 for q. Notice that since m is non-splitting
we cannot have disjoint sets C ∈ B, C ′ ∈ T with mC = t and mC ′ = 1− t;
combining this with Proposition 51 one establishes conditions (a′) and (d′).
Now assume Uλ ↗ U , λ ∈ Λ, and again denote the complementary net by
Cλ ↘ C. If C ∈ E∪{F}, then the argument of Proposition 55 applies and
qCλ ↘ qC. If t ≤ mC < 1 − t, there is a λ′ ∈ Λ such that λ ≥ λ′ implies
t ≤ mCλ < 1− t (by the regularity of m) and hence qCλ = Cλ ↘ C = qC.
We are left with four cases to consider. For C ∈ T and mC < t, we have
Cλ ∈ T for all λ ∈ Λ, and hence qCλ ↘ qC. If C ∈ B and mC ≥ 1 − t,
pick C ′ ∈ T with C ′ ∩ C = ∅. By compactness there is a λ′ ∈ Λ such that
Cλ′ ∩ C ′ = ∅ (implying that Cλ ∈ B for λ ≥ λ′), and hence qCλ ↘ qC. The
case C ∈ T and mC ≥ 1 − t is trivial since it implies that Cλ ∈ T and
mCλ ≥ 1 − t for all λ ∈ Λ. If C ∈ B and mC < t, there is a λ′ ∈ Λ such
that λ ≥ λ′ implies mCλ < t (by the regularity of m) and Cλ ∈ B (by the
argument in Proposition 55), thus qCλ = ∅ = qC. Hence q also satisfies (b′)
and extends uniquely to an image transformation q : A(X)→ A(X).

Obviously q∗m,0 : X∗ → X∗ is the identity map, and it is straightforward
to check that q∗m,1/2 is idempotent. We must show that q∗m,· : [0, 1/2]×X∗ →
X∗ is continuous in order for q∗m,· to be the desired deformation retraction.
Let (tλ, µλ) → (t, µ), λ ∈ Λ, be a convergent net in [0, 1/2] × X∗. Recall
that {V ∗ : V ∈ Os(X)} is a subbase for the topology of X∗, so we assume
that q∗m,t(µ) ∈ V ∗ for some V ∈ Os(X). Put C = X \ V , implying that
q∗m,t(µ)(C) = 0. Then we cannot have C ∈ T and mC ≥ 1 − t by the
definition of qm,t; moreover if C ∈ E ∪{F} then qm,tλ(C) = qm,t(C) = C for
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all λ ∈ Λ, trivializing that case. Now assume that mC < t or t < mC < 1−t;
in both cases there is a λ′ such that λ ≥ λ′ implies mC < tλ or respectively
tλ < mC < 1−tλ, and hence qm,tλ(C) = qm,t(C) (implying q∗m,tλ(µλ) ∈ V ∗).
A similar argument covers the case C ∈ T and mC = t. Finally, assume that
mC = t and C ∈ B. We then get qm,t(C) = C and accordingly µ(C) = 0.
There is a λ′ ∈ Λ such that λ ≥ λ′ implies µλ(C) = 0 and tλ < 1 − t, thus
qm,tλ(C) = C or ∅ and q∗m,tλ(µλ) ∈ V ∗. We have established the continuity
of q∗m,·.

Note that if two image transformations agree on solid sets they must
agree on all open or closed sets by the uniqueness of their extension. We
obtain the following nice property of the image transformations constructed
above. The proof is straightforward from the definition in Proposition 56.

Corollary 57. Let qm1,t1 , . . . , qmk,tk : C(X) → C(X) be image trans-
formations obtained from Proposition 56. Then

qmi,ti ◦ qmj ,tj = qmj ,tj ◦ qmi,ti , 1 ≤ i, j ≤ k.
Consequently , q∗m1,1/2

◦ . . . ◦ q∗mk,1/2(X∗) is a deformation retract of X∗.

Theorem 58. If X admits a non-splitting probability measure m, then
Hn(X∗) ∼= Hn(T ∗) for all n ∈ Z.

Proof. Let

Q = {Mλ = q∗m1,1/2 ◦ . . . ◦ q
∗
mk,1/2(X∗) :

λ = {m1, . . . ,mk} non-splitting measures on X}.
Then Q with inclusion maps is an inverse system of deformation retracts
of X∗. Note that Hn(q∗m1,1/2

◦ . . . ◦ q∗mk,1/2(X∗)) ∼= Hn(X∗) for all n ∈ Z.
Moreover, the inclusion maps i : Mλ1 → Mλ2 for Mλ1 ,Mλ2 ∈ Q induce
isomorphisms i∗ : Hn(Mλ1) → Hn(Mλ2). Hence by the continuity of the
Čech homology we have

Hn(X∗) = lim←−Hn(Mλ) = Hn

(⋂
Q
)
.

We have T ∗ =
⋂Q (completing the proof). Indeed, let C ∈ B. If mC = 0

then qm,1/2(C) = ∅. Since m is non-splitting we must have mC < 1, thus if
mC > 0 replace m with the non-splitting measure m′ given by

m′(E) =
1

3m(C)
m(E ∩ C) +

2
3(1−mC)

m(E \ C).

Then qm′,1/2(C) = ∅, and in either case we have µC = 0 for all µ ∈ ⋂Q.
Accordingly

⋂Q ⊂ T ∗; the reverse inclusion is obvious since any of the
image transformations leaves T ∗ fixed.
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Proposition 59. Let π :
∏
S∈E∪{F}X

∗ → T ∗ be given by

π((µS)S∈E∪{F})(C) = µS(C) when C ∈ S.
Then π is continuous and surjective.

Proof. The map π is well defined by Proposition 52 and surjective since
π((µ)) = µ for µ ∈ T ∗. Let (µλS)S∈E∪{F} → (µS)S∈E∪{F} be a conver-
gent net in

∏
S∈E∪{F}X

∗. To prove the continuity it suffices to show that
π((µλS)S∈E∪{F})(C) converges to π((µS)S∈E∪{F})(C) for C ∈ Cs(X) when
π((µS)S∈E∪{F})(C) = 0. This is trivially fulfilled when C ∈ B ∪ T , so
assume that C ∈ S ∈ E ∪ {F} and that π((µS)S∈E∪{F})(C)=µS(C)=0.
By the properties of the product topology, µλS → µS for each S ∈ E ∪ {F}
and thus π((µλS)S∈E∪{F})(C) = µλS(C)→ 0 = µS(C).

The map π above is not injective, but this can be achieved if we choose
the product space more restrictively. We have the following useful result:

Theorem 60. For µ0 ∈ T ∗ put

Mµ0
S = {µ ∈ T ∗ : µC = µ0(C), C ∈ Cs \ S}, S ∈ E ∪ {F}.

Then the restriction π :
∏
S∈E∪{F}M

µ0
S → T ∗ is a homeomorphism.

Proof. By Proposition 59 it suffices to show that π is bijective and that
each Mµ0

S is compact. For the latter let µλ → µ be a convergent net in
Mµ0

S . By Proposition 55, T ∗ is compact, so we must have µ ∈ T ∗. If C 6∈ S
and µ0(C) = 0, pick an open solid set U such that C ⊂ U , µ0(U) = 0 (by
regularity of µ0) and X \U 6∈ S (by Proposition 51(iii), (iv) and (v)). Then
µλ(U) = 0 for all λ ∈ Λ, and thus µU = 0, implying µC = 0. Conversely,
µC = 0 and C 6∈ S implies µ0(C) = µλ(C) ↘ 0, so µ0(C) = 0. Thus
µ ∈ Mµ0

S , establishing compactness of Mµ0
S .

For µ ∈ T ∗ let µS be given, as in Proposition 52, by

µS(C) =
{
µ0(C), C 6∈ S,
µC, C ∈ S, C ∈ Cs.

Then µS ∈ Mµ0
S and π((µS)S∈E∪{F}) = µ, so π is surjective.

Assume (µS)S∈E∪{F} 6= (µ′S)S∈E∪{F} ∈
∏
S∈E∪{F}M

µ0
S . Then for some

C ∈ S ∈ E∪{F} we must have µS(C) 6= µ′S(C), implying π((µS)S∈E∪{F})(C)
6= π((µ′S)S∈E∪{F})(C), so π is injective.

8. The torus. We will now apply the results of the previous section to
investigate the topological measures on the torus. Before we can embark on
the homological results we need to work out the basic properties of compact
solid sets in the torus. Throughout the section we will let T2 denote the
torus.
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Consider the maps

φ(p,q) : T→ T2 defined by φ(p,q)(z) = (zp, zq), p, q ∈ Z.
The family {φ(p,q)}p,q∈Z with coordinatewise multiplication is isomorphic to
the fundamental group π(T2) of the torus. Of course, the torus itself also
has a group structure as a Lie group. We recall the following:

Lemma 61. Let p1, q1, p2, q2 ∈ Z, p1q2 − p2q1 = 1. Then the map Φ :
T2 → T2 given by

Φ(z1, z2) = φ(p1,q1)(z1)φ(p2,q2)(z2) = (zp1
1 z

p2
2 , z

q1
1 z

q2
2 )

is an automorphism of T2. In particular , Φ is a homeomorphism and maps
line segments to line segments.

Remark 62. Note that the map Φ induces a change of basis in the
fundamental group π(T2).

We need to assign curves to each of the classes of solid sets in Proposition
51. This is achieved by the following proposition:

Proposition 63. Let C ∈ S ∈ E ∪{F ,B, T } and C⊂U ∈O. Then there
is a solid set K ∈ S such that C ⊂ K◦ ⊂ K ⊂ U and the boundary of K
consists of sd(C) polygons which are simple closed curves.

Proof. Let C ∈ S ∈ E ∪{F} be arbitrary, pick a disjoint set C ′ ∈ S, and
pick an open set U ′ with C ⊂ U ′ ⊂ X \ C ′ ∪ U and X \ U ′ ∈ Cc. Equip T2

with a metric d and put r = 1
2 min{d(C,X \ U ′)}; further, let ε < r/2 and

let Dl,k, 0 ≤ l, k ≤ (1− ε)/(r − ε), l, k ∈ N, denote the overlapping squares

Dl,k =
{

(e2πθi, e2πφi) ∈ T2 : l ≤ θ

r − ε ≤ r + l, k ≤ φ

r − ε ≤ r + k

}
.

Then there is an index set I such that {D◦l,k}(l,k)∈I covers C and T2 \ C ′ ⊃⋃
I Dl,k ∈ Cs. Now exactly one of the co-components of

⋃
I Dl,k contains

X\U ′ (and consequently C ′) by connectedness of X\U ′. Adding the squares
covering the other co-components of

⋃
I Dl,k to

⋃
I Dl,k we conclude that

C ∼ ⋃I Dl,k.
It is clear that the boundary of

⋃
I Dl,k consists of polygons. It is also

clear from the construction that these polygons will be simple closed curves.
By the definition of sides there is an open set O (we may assume O∩C ′ = ∅)
such that O\C has two components covering the polygons, implying at least
two polygons; conversely, more than two components in the boundary would
imply that C has more than two sides.

A similar argument yields the desired result for C ∈ B and for C ∈ T .

Corollary 64. Let C ∈ S ∈ E. The procedure in Proposition 63 will
produce a boundary consisting of two polygons, each equivalent to C.
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Proof. The boundary of K will consist of two polygons, say l1 and l2,
since C ∈ Cs2. Each polygon is solid, e.g. l1 is solid since T2\ l1 = (

⋃
I D
◦
l,k)∪

l2 ∪ (T2 \⋃I Dl,k) and l2 is in the closure of both
⋃
I D
◦
l,kand T2 \⋃I Dl,k.

Each polygon is two-sided since lc2\l1 and lc1\l2 have two components each.
Both polygons are disjoint from C and two-sided, hence equivalent to C.

We include a proof of the following for the reader’s convenience.

Lemma 65. Let φ be a piecewise linear , simple closed curve in T2. Then
φ(T) is ambiently isotopic either to φ(p,q)(T) for some p, q ∈ Z with p ≥ 0
and gcd(p, q) = 1, or to an arbitrarily small square boundary.

Proof. By Lemma 61 we may assume that φ is homotopic to φ(n,0) for
some n ∈ N.

There is an ambient isotopy mapping each line segment of φ to a piece-
wise linear function with vertical and horizontal line segments. Indeed, let l
be a line segment in φ, and let l1, l2 denote the adjacent line segments. Put
r = d(l, φ(T)\{l, l1, l2}). Now pick a curve, say φ1, connecting the endpoints
of l such that each step has height and length smaller than r, intersecting l
in each step. Further, φ1 shall have a finite number of steps and be disjoint
from l1 and l2 (see Figure 1).

Fig. 1

The curve φ1 is then disjoint from φ(T) \ {l}, so there exists an isotopy
leaving φ(T) \ {l} invariant and with l ambiently isotopic to φ1 (the isotopy
may be constructed locally for each step). This procedure is carried out for
each line segment of φ, replacing the previous curve with a new ambiently
isotopic curve in each step. Composing the isotopies we have φ(T) ambiently
isotopic to a piecewise linear curve, say φ′, with vertical and horizontal line
segments.

The next step is to “straighten out” A shaped pieces of φ′, i.e. where φ′

makes the same turn twice. Start where the distance between the turns is
minimal (see Figure 2).

Then the rectangle (with interior) in Figure 2 is disjoint from the rest
of φ′. Thus there is an isotopy leaving the remainder of φ′ invariant such that
the A shaped piece is ambiently isotopic to a straight line. Again repeating
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Fig. 2

the process inductively on the new curve, and then composing the isotopies,
we get a curve ambiently isotopic to φ′. Note that each step in the induction
reduces the number of line segments in φ′, so the induction must stop. The
new curve has two possibilities:

If all the horizontal (and vertical) line segments have the same direction,
then since φ is homotopic to φ(n,0) the curve must be a straight line, and
consequently n = 1.

If the curve has horizontal (or vertical) segments with opposite direc-
tions, then it must be a square. In that case we get n = 0, and φ(T) is
ambiently isotopic to an arbitrarily small square boundary.

Theorem 66. We have F = ∅, and there is one class S(p,q) ∈ E for each
(p, q) with p, q ∈ Z, p ≥ 0 and gcd(p, q) = 1. Suitable representatives are
given by the curves {φ(p,q)} (presented at the beginning of this section).

Proof. Assume C ∈ S ∈ {F} ∪ E , and apply Proposition 63 to obtain a
solid set K ∈ S such that C ⊂ K◦ ⊂ K and the boundary of K consists
of sd(C) polygons which are simple closed curves. Let l denote one of the
polygons in the boundary of K. Consider Lemma 65. If K ∈ F then l is not
solid since X \ l = K◦ ] X \ K, and so must be ambiently isotopic to an
arbitrarily small square boundary. Hence the isotopy from Lemma 65 must
transfer K either to the square or the exterior of the square, neither of which
is in F , a contradiction. Accordingly F = ∅.

Now assume that K ∈ S ∈ E . Then l ∈ S by Corollary 64, in particular
l is solid and so ambiently isotopic to φ(p,q)(T) for some p, q ∈ Z with p ≥ 0
and gcd(p, q) = 1. Consequently, φ(p,q)(T) ∈ S.

We have shown that each class S ∈ E contains at least one curve φ(p,q)(T)
and clearly each such curve is a member of exactly one S ∈ E , giving a well
defined surjective map from {φ(p,q)} to E . It remains to show injectivity:

If φ(p,q) ∈ S, then φ(p,q) is ambiently isotopic to any piecewise linear
simple closed curve in S by Lemma 65 (the existence of such curves in S
is ensured by Proposition 63). In particular, if φ(p,q), φ(p′,q′) ∈ S, then φ(p,q)

and φ(p′,q′) must be homotopic, implying p = p′ and q = q′.
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Similarly to Theorem 60, for any µ0 ∈ T ∗ and S ∈ E we define a map
πµ0
S : (T2)∗ →Mµ0

S by µ 7→ µS with

µS(C) =
{
µ0(C), C 6∈ S,
µC, C ∈ S, C ∈ Cs.

Then πµ0
S is continuous. Indeed, let µλ → µ be a convergent net in (T2)∗.

Analogously to previous arguments it is straightforward to verify that µS(C)
= 0 implies µλS(C)→ 0.

We have the following:

Lemma 67. For µ0 ∈ (T2)∗, Mµ0
S from Theorem 60 has a retract hom-

eomorphic to the circle.

Proof. By Theorem 66 let S = S(p,q); we may assume by Lemmas 53
and 61 that (p, q) = (1, 0). Take P : T2→T to be the projection (z1, z2) 7→ z2.
We have P ◦φ(0,1) = idT, so φ(0,1)◦P is a retraction of T2 onto φ(0,1)(T) ∼= T.
We proceed to show that πµ0

S ◦ φ
(0,1)
∗ ◦ P∗|Mµ0

S
is our desired retraction:

Consider the continuous map P∗ ◦ πµ0
S ◦ φ

(0,1)
∗ : T∗ → T∗. It suffices to

show that P∗ ◦ πµ0
S ◦ φ

(0,1)
∗ is the identity on T∗. Note that T∗={δz : z ∈ T}

since T is one-dimensional, so let z ∈ T be arbitrary. Then P−1(z) ∈ S and

(P∗ ◦ πµ0
S ◦ φ

(0,1)
∗ )(δz)({z}) = (πµ0

S ◦ φ
(0,1)
∗ )(δz)(P−1(z)) = φ

(0,1)
∗ (δz)(P−1(z))

= δz((φ(0,1))−1(P−1(z))) = δz({z}) = 1,

i.e. (P∗ ◦ πµ0
S ◦ φ

(0,1)
∗ )(δz) = δz, and P∗ ◦ πµ0

S ◦ φ
(0,1)
∗ = idT∗ .

Theorem 68. Let X = T2. Then X∗ has tori of arbitrary countable
dimensions as retracts. In particular , Hn(X∗) is of infinite rank for all n∈N.

Proof. Let n ∈ N and µ0 ∈ T ∗. From Proposition 55 we know that T ∗
is a retract of X∗. By Proposition 60 we have

∏
S∈EM

µ0
S
∼= T ∗, and by

Lemma 67 we may retract n of the countably many factorsMµ0
S down to a

circle. The remaining factors of
∏
S∈EM

µ0
S may be retracted to single point

sets. The resulting space Tn is hence a retract of X∗. We may retract all
factors to a circle, obtaining TN as a retract of X∗, and hence Hn(X∗) is of
infinite rank for all n ∈ N.
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