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Abstract. It is known that all subspaces of w% have the property that every pair of
disjoint closed sets can be separated by disjoint Gs-sets (see [4]). It has been conjectured
that all subspaces of w]' also have this property for each n < w. We exhibit a subspace
of {{a, 8,7) € w} : & < B <~} which does not have this property, thus disproving the
conjecture. On the other hand, we prove that all subspaces of {(a, 3,7) € w} : a < 8 < 7}
have this property.

1. Introduction. A topological space X is said to be subnormal if
every pair of disjoint closed sets can be separated by disjoint Gs-sets. A
subshrinking of an open cover U = (U; : i € I) of X is an F,-cover F =
(F; i €T) of X such that F; C U, for each i € Z. A space X is said to be
subshrinking if every open cover has a subshrinking. It is easy to see that
every subshrinking space is subnormal. For these properties, see [2] or [7].

It is well known that w? is normal but wy x (w; + 1) is not subnormal.
Moreover it is known [5] that there is a nonnormal subspace of w?. For
example, X = A x B, where A and B are disjoint stationary sets in wq,
is such a space. However, in [4] an unexpected result is proved that all
subspaces of w? are subshrinking, so subnormal. It has been conjectured
that all subspaces of w]" are subnormal for every n < w. In Section 4, we
prove that this conjecture is false.

THEOREM 1.1. There exists a nonsubnormal subspace of w3.
On the other hand, all subspaces of
wil« ={s € wl :s(i) < s(j) for each i < j < n}
are subnormal for an arbitrary n < w. We prove this in Section 5.
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THEOREM 1.2. Every subspace of w|< is subshrinking, so subnormal,
for every n < w.

To prove these theorems, we show some combinatorial lemmas in Sec-
tion 3. We use the concept of trees of finite sequences and state the Pressing
Down Lemma in terms of trees. The Pressing Down Lemma in a more gen-
eral situation appears in [1].

2. Preliminaries. We identify an ordinal o with the set of all ordinals
less than . We do not distinguish natural numbers from finite ordinals.

Hence a natural number n is the set {0,1,...,n— 1}. A sequence s of finite
length n is a function of domain n, so s = (s(0),s(1),...,s(n — 1)). In
particular, A™ denotes the set of all functions from {0,1,...,n — 1} into A.

For each sequence s, lh(s) denotes the length of s, and ran(s) denotes
the set {s(i) : i < lh(s)}. Let A be a set of sequences of ordinals. We use
the following notations:

o Al ={s€ A:s(i) < s(j) for each i < j < lh(s)}.
o Al ={s e A:s(i) < s(j) for each i < j < lh(s)}.
e For n < w, =" and a<" denote the sets Uk<n o and |J,_,, o re-

spectively.

Throughout this paper, each ordinal « is considered to be a space with
the order topology and each subset of o is considered to be a subspace of
the product space.

A family A = (A; : i € Z) of subsets of a space is called o-locally finite
(respectively o-discrete) if 7 can be represented as |J;c ,Z; for some J
with |J] < w such that A[Z; = (A4; : i € Z;) is locally finite (respectively
discrete) for each j € J.

We will need the following two facts about o-local finiteness and the
subshrinking property. Their verification is routine.

LEMMA 2.1. Let X be a topological space and F = (F; : 1 € I) a o-
locally finite, closed cover of X such that for each i € I, F; is subshrinking.
Then X s also subshrinking.

LEMMA 2.2. Let X be a topological space, U = (U, : i € T) a point finite
family of open sets, and G = (G; : i € I) a family of Gs-sets of X such
that G; C U; for each i € Z. Then the union of G is also a Ggs-set.

3. Trees and stationary sets

DEFINITION 3.1. Let A be a regular uncountable cardinal and n < w.
A set X C \" is stationary if C™ N X # () for every closed unbounded (club)
subset C of A.
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The empty sequence () is considered to be the unique sequence of length 0,
and \° = {()}. Moreover X C \° is stationary if and only if () € X.

DEFINITION 3.2. A set T of sequences of ordinals less than A is called a
tree of sequences on X if s|[k € T for each s € T" and k < lh(s). We only use
trees of finite sequences, so we will omit “of sequences” from now on.

Let X\ be a regular uncountable cardinal and n < w. For a tree T C AS"
and j < n, TN M (respectively T N A<I, T N ASJ) is denoted by Lv;(T)
(respectively Lv;(T), Lv<;(T)).

An n-stationary tree (respectively n-cofinal tree) on A is a tree T C A"
such that ) € T and {a < X : s"(a) € T'} is stationary (respectively cofinal)
in A for each s € Lv,(T).

Let X C A". A function f : X — (AU {—o0})" is called regressive if for
each s € X and k < n, f(s)(k) < s(k). (—oo is considered to be less than
every ordinal.)

LEMMA 3.1. Let A be a regular uncountable cardinal and n < w.

(1) If T is an n-stationary tree on \, then Lvy(T)|< is stationary in \F
for all kE <n.

(2) If X C \"|< is stationary, then there exists an n-stationary tree T
on A such that Lv,(T) C X.

(3) (The Pressing Down Lemma) If T is an n-stationary tree on A and
f i Lvp(T) — (AU {—0c0})™ is a regressive function, then there exist an
n-stationary subtree U of T|< and a function g : Lv<,(U) — AU {—o0}
such that f(s)(k) = g(slk) for each s € Lv,(U) and k < n.

Proof. (1) is trivial.
(2) We define X, C A\¥| for each k < n inductively. Put X,, = X and

X, ={s€ |- :{a<)\:5(a) € Xpy1]} is stationary}

if £ < n. We show that X} is stationary by downward induction. First, X,
is stationary by the assumption. Assume that k < n and Xy is stationary.
For each s € \¥|. — X}, pick a club set C, disjoint from {a < X : s7(a) €
Xk41} and put

C={a<\:aecC,forall s € oo — X;}.

Note that C' is a club subset of A. If D is a club subset of A, then there is
an s € Xj41 N (C N D)1 since Xy is stationary, and such an s satisfies
slk € Xy, since s(k) € C and s[k € s(k)*|.. Hence, X, is stationary.

Now T = {s € AS"| : s|k € X}, for all k < lh(s)} satisfies the required
condition.

(3) Pick a regressive function fj, : Lvy(T) — (AU{—00})¥ for each k < n
inductively. Put f, = f. Assume that k¥ < n and f;1 is regressive. For each
s € Lvi(T), As = {a < X : s {a) € T} is stationary and fr11(s™(a))(k) < «
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for each a € Ag. By the Pressing Down Lemma for A, there are a stationary
set Bs C As and a & € AU {—o0} such that fri1(s™(a))(k) = & for all
a € Bs. Since fiy1 is regressive, |{fi+1(s™(@))[k : @ € Bs}| < A. By the
completeness of the club filter, there are a stationary set Ny C By and
fr(s) € (AU {—00})* such that fr 1(s™(a))lk = fr(s) for all o € Ny. It is
easily seen that fj is regressive.

Put U = {s € T|< : s(k) € Ny, for all k < lh(s)}. Then U is an n-
stationary subtree of T'|.. Let g(s) = & for each s € Lv,,(U). Inductively,
fre(s)(@) =g(sli) forall i < k <mnand s € Lvi(U). So f(s)(k) = fn(s)(k) =
g(slk) for all s € Lv,(U) and k <n. m

LEMMA 3.2. Let X be a regular uncountable cardinal, n < w, T an n-
cofinal tree on A\, and H = (H; : i € T) a family of subsets of Lv,(T)
such that |JH = Lv,(T). Then there exist an n-cofinal subtree U of T,
To CZ, and a family (t; : i € Iy) of elements of U satisfying the following
conditions.

(a) For each t € Lv,(U), there is a unique i € Iy such that t; C t.
(b) For eachi € Zy and t € Lv,(U), if t; Ct thent € H;.

Moreover, if |Z| < X\ then we can pick Iy as a singleton {ig} such that
ti, = 0.

Proof. By induction on n. If n = 0 then the statement is trivial. Assume
that n =n' + 1. Put 77 = Lv<,/(T) and A;(t) = {a < X : t*() € H;} for
each t € Lv,/(T) and i € Z. Then T” is an n/-cofinal tree. Define H' = (H/ :
i€Z)by

H! ={t € Lv,,(T) : A;(t) is cofinal in \}
for each @ € Z. Since Lv, (T") = Lv(T) = UH U (Lv(T) — UH'),
there is an n’-cofinal subtree 7" of T such that either Lv, (T") C UH’
or Lv, (T") C Lv,(T) — |JH', by the “moreover” part of the inductive
hypothesis. Moreover, if |Z| < A then Lv,/(T) = [JH/, so the latter case
does not happen.

CASE 1: Lv, (T") C [JH'. By the inductive hypothesis, there exist an
n’-cofinal subtree U’ of T”, Zo C Z, and a family (¢; : i € Zp) of elements of
U’ satisfying the following conditions:

(a’) For each t € Lv,,/(U"), there is a unique ¢ € Z such that ¢; C ¢.
(b") For each i € Zp and ¢ € Lv,,(U’), if t; C t then t € H!.

Moreover, if |Z| < X then we can pick Zy as a singleton {io} such that ¢;, = .
Put

U=U"U{t(a):teLv,(U"), aec Ait) for all i € Zy such that ¢; C t}.
It is easy to check that U, Zy, and (¢; : i € Z,) satisfy the required conditions.
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CASE 2: Lv,/ (T") C Lv, (T) —UH’. Fix a well ordering < on Lv,,/(T")
x X of order type A. For each (t,§) € Lv,.(T") x A, pick an i(¢,&) € Z and
an a(t,§) € Ay (t) inductively. Assume that (t,£) € Lv,/(T") x A and
that i(t',¢') € Z and o(t',&') € A (') are defined for each (t',¢') €
Ly, (T") x X such that (t',&') < (t,€). The set |J;c; Ai(t) is cofinal in A
since t € Lv,/(T"). On the other hand,

Uiy () : (#',€) € Ly (T7) x A and (,€') < (£,€)}

is not cofinal in A since ¢t ¢ H/ for every ¢ € Z. So we can pick an i(t,&) € T
and a(t,§) € Aj.¢)(t) such that & < a(t,€) and «a(t,§) does not belong to
the set above.
Put Zp = {i(t,€) : (t,&) € Lv (T") x A} and
U=T"U{t(a(t,§)):t € Lv,(T"), £ <A}

If (¢,€), (¢, &) € Lvp (T") x A and (t',£") < (£,€), then a(t,§) € Ay ¢ ()
but a(t,§) ¢ A e (t), so i(t,§) # i(t',€'). Hence (t,&) € Lv (T") x A
satisfying i = i(¢,£) is unique for each ¢ € Zy. For each i € Iy, put t; =
t"(a(t,&)) where (t,) is the element of Lv,, (T") x A such that i = i(¢, &).

It is easy to check that U, Zy, and (t; : i € Zy) satisfy the required
conditions. m

DEFINITION 3.3. Let A be a regular uncountable cardinal, n < w, T' C
AS™ a tree, and g : T — )\ a function. We say that (v,t) is a uniformly
n-cofinal subtree of T closed under g if v = (y¢ : £ < A) : A — X is a strictly
increasing, continuous sequence, and t = (t(s) : s € AS"|) is a family of
elements of T" such that:

(i) Th(t(s)) = lh(s), t(s)[k = t(s[k) for each s € AS"|, k < 1h(s),
(ii) g(t(s)) < ¢ for each £ < X and s € €57,
(iii) ys(k) < t(s)(k) for each s € AS™|. and k < Ih(s).

LEMMA 3.3. Let X be a regular uncountable cardinal, n < w, T an n-
cofinal tree on \, g : T — X a function, and E C X a club set. Then there
exists a uniformly n-cofinal subtree (v,t) of T closed under g such that
Ye € E for all £ < A.

Proof. We define t(s) € Lvyys)(T) for s € £5"| and v¢ € E by induc-
tion on & < A. Assume that { < A and that £(s) € Lvyy)(T) and 7¢ € E
are defined for all ¢ < ¢ and s € (="|_.

First, we define ¢(s) € Lviy(s)(T) for s € £57| — UC<£(§§"\<). In case &
is a limit ordinal, such an s does not exist. In case £ = 0, such an s is only (),
and put t(()) = (). In case £ = (+1 for some (, such an s has length k+1 for
some k < n, s(k) = ¢, and sk € ¢¥|<; so t(s[k) € Lvg(T) is defined and we
can pick ¢(s) € Lvy41(T') such that ¢(s)[k = t(s[k) and v, < t(s)(k) since
T is an n-cofinal tree.
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Now, t(s) is defined for all s € £5"|.. We define 7¢ € E. In case £ is a
limit ordinal, put ve¢ = sup{~¢ : {( < {}; since E is a club set, 7¢ € E. In the
other case, pick ¢ € E such that y¢ > ¢ for every ( < £ and v¢ > g(t(s))
for every s € £57| .

It is easy to check that (v,t) defined as above satisfies the required
conditions. m

4. Nonsubnormal subspaces of w$. In this section, we prove Theo-
rem 1.1.

THEOREM 4.1. Let X be a subspace of w}. If X|< is stationary in w3,
Xop = {(a,8) € wilc : (@,0,0) € X} and X1 = {{a,B) € wi|< :
(a, B,8) € X} are stationary in w?, and Xop2 ={a€cw  (a,a,a) € X}
is not stationary in w1, then X is not subnormal.

Proof. Pick a club subset C' of w; disjoint from X 1 2. Define
E={{(a,8,7) € X :a=pand y€C},
F={(op,7)€X:=~and a € C}.

These are disjoint closed sets. We show that they cannot be separated by
disjoint Gs-sets.

Assume that P; and @Q; are open subsets of X such that £ C P; and
F C Q; for each i < w. It suffices to show that (,_, P; N, Qi # 0.

Since X| ., Xo,lﬁC2 and X o NC? are stationary, there are a 3-stationary
tree T' and 2-stationary trees U, V on wy such that Lvs(T") C X|., Lvo(U) C
X071 N 02, and LVQ(V) - X172 N 02.

Let i < w. If {o,3) € Lva(U), then it also belongs to Xo1 N C?, so
(a,a,B) € E C P;. Since P; is open, we can pick a regressive function
ei 1 Lvo(U) — (w1 U {—oc})? satisfying

X0 (e (u)(0), u(O) x (e;(u)(1), u(1)]) € P

for each u € Lvg(U). In the same way, we can pick a regressive function
fi : Lva(V) — (w1 U {—00})? with

X N ((£i(0)(0),0(0)] x (fi(v)(1),v(1)]*) € Qs
for each v € Lvy (V). By the Pressing Down Lemma, there are 2-stationary
subtrees U; of U, V; of V, and functions ¢; : Lvey(U;) — wy U {—o0},
hi : Lv<o(V;) — wiU{—o0} such that e;(u)(k) = g;(ulk), fi(v)(k) = h;(vlk)
for every u € Lvo(U;),v € Lva(V;), and k < 2.
Pick t € Lvs(T),u; € Lvo(U;), and v; € Lvo(V;) for i < w such that:

(1) gi(0), hi(0) < ¢(0) for all i < w,
(ii) ¢(0) < v;(0) for all i < w,
(iii) ¢(0) < ¢(1) and h;(v;]1) < ¢(1) for all i < w,
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(iv) £(1) < u;(0) for all i < w,

(v) t(1) <¢(2) and g¢;(u;[1) < t(2) for all i < w,

(vi) £(2) < wu;(1),v;(1) for all i < w.
It follows from e;(u;)(0) = g¢;(u;[0) = g;(0) < t(0) < ¢(1) < u;(0) and
ei(u;)(1) = gi(u; [1) < t(2) < u;(1) that

t € X N ((ei(u:)(0), ui(0)]* x (ei(us)(1),us(1)]) € Pi.

Since f;(v;)(0) = hi(vi[0) = hs(0) < #(0) < vi(0) and fi(vi)(1) = ha(vi[1) <
t(1) < t(2) <w;(1), we have

t € X N ((fi(vi)(0),v:(0)] x (fi(vi)(1),v:(1)]*) € Qs
Hence, t € ()., PN (), Qi- =

For instance, X = {{(a,3,7) € w} : a < B <y or a < 8 < v} satisfies
the assumption of the theorem above. So Theorem 1.1 holds.

5. Canonical subnormal subspaces of w]. The purpose of this sec-
tion is to prove Theorem 1.2. We start with an easy fact.

Facrt 5.1. If X C w;y is nonstationary in wi, then there is a pairwise
disjoint family of clopen, bounded subsets of wy which covers X.

We show two ways of deriving the subshrinking property of some spaces
from the properties of simpler spaces.

LEMMA 5.1. Let m < n < w and X C wi|<. If X, = {s[m :s € X}
is not stationary in wi*, then there exists a o-discrete, closed cover F =
(F; : i € I) of X such that for each i € I, there is a k < m such that
{s(k) : s € F;} is bounded in w;.

Proof. By induction on m. Fix an n. In case m = 0, if X,,, is not sta-
tionary, then X,, = 0, so X = (). The empty family satisfies the required
condition.

Assume that m < n and the statement holds for m. Let X C w}'|< with
Xmt+1 = {sIm +1:s € X} nonstationary. There is a club subset C of w;
such that C™ ™M1 N X, .1 =0. Put Y = {s € X : sJm € C™}. Then Y is a
closed subset of X. Moreover {s(m) : s € Y} is nonstationary in w; since
it is disjoint from C. Hence it is covered by a pairwise disjoint family of
clopen bounded sets of wy by Fact 5.1. By pulling back this family by the
projection, we obtain a pairwise disjoint family P = (P; : j € J) of clopen
subsets of X, covering Y, such that for each j € J, {s(m) : s € P;} is
bounded in w. For each j € J, Y N P; is a Gs-set because

YnPi= (| (({seX:s(k)#&nNP

Eep—C k<m
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where p<wi satisfies {s(m) : s€ P;} Cp. By Lemma 2.2, Y=, (Y NF;)
is a Gs-subset of X. Hence, there are a closed cover £ = (F; : 1 < w) of X
such that By =Y and E; NY = () for every i < w except 0. If 4 # 0, then
{sIm : s € E;} is disjoint from C™, so nonstationary, hence the inductive
hypothesis can be applied to E;. On the other hand, (Y N P; : j € J) is
a discrete, closed cover of Ej. In any case, there exists a o-discrete, closed
cover F; = (F; j : j € J;) of E;, for every i < w, such that for each j € J;,
there is a k& < m + 1 such that {s(k) : s € F;;} is bounded in w;. Now
F=(Fi;:i<w, je€ J; is a o-discrete, closed cover satisfying the
required condition. Hence the statement also holds for m + 1. m

COROLLARY 5.1. Let n < w and X a nonstationary subset of wi'. Then
there exists a o-discrete closed cover F = (F; : i € I) of X such that for
each i € I, there is a k < n such that {s(k) : s € F;} is bounded in w;.

For the next three lemmas, let T" be a fixed n-cofinal tree on w; with
n <w,g:T — w a function such that u(k) < g(u) for each u € T and
k < lh(u), and (v, t) a uniformly n-cofinal subtree of T' closed under g. From
these objects define (s, m, k), r(s,m, k), Z(s,m), and Z(3) for s,5 € wf"k,
m < lh(s), and k < lh(s) as follows:
_ [g(t(s)Tk) ik <m,
* Z(S’ i k) B {75(1@—1)—}—1 it m < ka
[ t(s)(k) ifk<m,
o r(s,m,k) = {%(k) i m < k.
b 2(87 m) = Hk<1h(s)(l(87 m, k)? T(Sv m, k)]?
e Z(s) =U{Z(s, lh(g)) :s €wll<, s C s}
LEMMA 5.2. If s € w "|<, m < 1h(s), and s(k) is a limit ordinal for
every m < k < 1h(s), then (vsk) : k < 1h(s)) € Z(s,m).

Proof. Let (i), (ii), and (iii) be the conditions in Definition 3.3.

Let k < lh(s). Then I(m, s, k) = g(t(s[k)) < Vs by (i) and (ii) where
E < m.If m <k then s(k — 1) < s(k) and s(k) is a limit ordinal, hence
s(k—1)+1 <s(k), l(s;m, k) = Vsr—1)11 < Vs(h)-

We have vy < 7(s,m, k) by (iii) where k < m, and it is trivial that
Ys(ky < 7(s,m, k) where m < k.

Therefore () : k <lh(s)) € Z(s,m). m

LEMMA 5.3. If s € wE"|< and m < 1h(s), then
Z(s,m) S T (9(t()Ik), t(s) (k).
k<1h(s)

Proof. 1t suffices to show that g(t(s)[k) <
t(s)(k) for each k < 1h(s). Now, g(t(s)lk) =

s,m,k) and r(s,m,k) <
(smk:) if k& < m, and

(s,
l
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r(s,m,k) = t(s)(k) if & < m by definition. If m < k then g(t(s)[k) =
g(t(slk)) < Ysk—1)4+1 = Il(s,m,k) by (i) and (ii). And if m < k then
r(s,m, k) = ys) < t(s)(k) by (iii).

LEMMA 5.4. If § € wi"|< and X C w?|<, then X N Z(3) is an open
F,-subset of X.

Proof. For each limit ordinal £ < wy, let (e(&£,7) 1 i < w) : w — ¢ be a
strictly increasing, cofinal sequence. For each i < w and 0 < k < n, put

Eir={zewl|<:a(k—1) & (e, i), 7e] or (k) & (e, Vet
for every limit ordinal £ < w1 },

Fip={rve b ;:x(k—1) <~ and y¢41 < x(k) for some & < w1 }.

CLAIM. Foreachi <w and0 < k <n, E;, and F; ; are closed in w}|<.

Both {z € wi|< : z(k — 1) € (e(§,i),7¢]} and {x € wi|< : x(k) €
(Ve,Ye+1]} are clopen for every { < wy. So E;j, is closed. To see that F; j
is closed in Fj;y, let * € F;; and let {§ < w; be the least ordinal such
that x(k — 1) < g, If & is a limit ordinal, then v¢, = z(k — 1) < z(k) and
x(k—1) = ve, € (e(£0,7), Ve, )5 S0 Yeo+1 < (k) and © € F; i, because z € E; .
Hence, if © € E; j, — F ;; then & is not a limit ordinal and x(k) < veo41. If
& = 0 then {z € E; , : (k) < 71} is a neighborhood of x in E; j, disjoint
from Fj . If §o = £ + 1 then

{r €Eij:x(k—1) > and z(k) < veqa}

is a neighborhood of x in E; ; disjoint from Fj ;. So F;j is closed in E; j.

Now we return to the proof of the lemma. It is trivial that X N Z(5s) is
open. We prove that X N Z(s) is F,. Put m = 1h(s) and

Z ={z e X :gt3)k) < z(k) for every k € nn (m + 1),

and z(k) < t(5)(k) for every k < m}.

Then Z is closed in X. It suffices to show the following.

Cramm. XNZ(3)=2Zn Uico Nircren Fik

Assume that x € X N Z(5). There is an s € w]'|< such that s C s
and © € Z(s,m). That x € Z is immediate from the definition. For each
m < k < n,let {(k) < w; be the least limit ordinal such that (k) < ve¢(r)41-
Since
(*) z(k—1) <r(s,m,k—1) = Yo-1) < Vs(k—1)+1

= l(S,ﬁ’L, k) < ZE(k‘) < Ye(k)+15

we have s(k —1) < {(k) and z(k — 1) < v¢(x). So there is an i < w such that

z(k—1) <e(&(k),i) for all m < k <mn.Let m <k <n and let £ <w; be a
limit ordinal. If £ < £(k) then x(k) & (v¢,Vet+1] by the minimality of £(k).
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If ¢ = &(k) then since x(k — 1) < e(&(k),i) = e(&,i), we have z(k — 1) ¢
(e(&,4),ve]- I € > &(k) then (k) < Yery+1 < e implies z(k) & (v, ves1]-
So x € E; . From (x), it follows that z € Fj ;. So we have proved the C
inclusion of the claim. _

Conversely, assume that z € Z N ;.. Nmcren Fik- Pick an i < w
such that x € (5 4, Fik- Let s be the sequence of length n such that
sim = § and for each m < k < n, s(k) < w; is the least ordinal satisfying
w(k) < vsay. If m < k < n then x € Fy, so there is a {’ < w; such that
x(k —1) <vg and vgr41 < z(k); such a £ must satisfy s(k —1) < ¢, hence
Ysth—1)+1 < Yere1 < w(k) < vo) and s(k — 1) < s(k). If k < m < n then
v € Z implies v51) < t(3)(k) < g(t(3)) < 2() < Yom), 50 (k) < s().
Hence s € w'|< and x € Z(s,m) C Z(3). This proves the D inclusion. =

LEMMA 5.5. Let n < w and X C w}|<. For each open cover U = (U; :
i € I) of X, there exists a family F = (F; : i € I) of open Fy-sets of X
such that:

(i) F; C U; for everyi€ I,
(ii) X —|JF is nonstationary.

Proof. If X is not stationary, then F = (F; : ¢ € ), where F; = () for
each 7 € Z, satisfies the required condition.

Assume that X is stationary. There is an n-stationary tree T on w;
such that Lv,(7"”) C X by Lemma 3.1(2). Pick a pairwise disjoint family
H = (H; : i € ) such that H; C U, for every i € 7T and |JH = Lv,(T").
Since U is an open cover of X, there is a regressive function f : Lv, (T") —
(w1 U {—00})™ such that for each i € Z and t € H;, X N [[, _,,(f(t)(k), t(k)]
C U;. By the Pressing Down Lemma, there are an n-stationary subtree T of
T"” and a function ¢’ : Lv.,(T") — wy such that f(t)(k) = ¢'(tk) for every
t € Lv,(T7) and k < n. By Lemma 3.2, there exist an n-cofinal subtree T
of T, Zy C Z, and a family (t; : i € Zp) of elements of T satisfying (a), (b).
Pick a function g : T — w; such that ¢(k) < g(t) for every t € T and
k < 1h(t), and ¢'(t) < g(t) for every t € Lv.,(T). By Lemma 3.3, there
exists a uniformly n-cofinal subtree (7,t) of T closed under g.

Put 7) = {i € Ty : t(s;) = t; for some s; € w="|.}. For each i € Iy,
there is a unique s; witnessing 7 € Z;. Actually, if s € w1§"|< and t(s) = t;,
then 1h(s) = lh(¢;) and for each k < 1h(¢;),

Vsky < t(s) (k) = ti(k) < g(t(s)1k +1) = g(t(sTk + 1)) < Ys(h)+1-
Such an s is unique.
Apply Lemmas 5.2, 5.3, and 5.4 to T, g, and (v,t). Put F; = X N Z(s;)
for each i € 7y and F; = (0 for each i € T — 7. Let F = (F; : i € I).
By Lemma 5.4, F; is an open F,-set for every ¢ € Z in X. We show that
conditions (i) and (ii) hold for F.
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For each i € Z; and s € wi'|« with s; C s, we have #(s) € Lv,(T) and
t; = t(si) C t(s), so t(s) € H; by condition (b) of Lemma 3.2. Since t(s) €
Lv,(T) C Lv,(T") C Lv,(T"), it follows that f(¢(s))(k) = ¢'(t(s)[k) <
g(t(s)[k) for each k < n, and X N Hk<n(f(t(s))(k),t(s)(k)] C U;. By
Lemma 5.3,

XN Z(s,In(si)) € X0 [T (a(t(s) k), 8(s) (k)]

Hence (i) holds.

Now, D = {v¢ : £ is a limit ordinal < w;} is a club subset of w;. To see
that (ii) holds, it suffices to show that X N D™ C [JF. Let x € X N D™,
say = (Ys(k) : K < n) for some s € wi'|<. Then s(k) is a limit ordinal for
each k < n and ¢(s) € Lv,,(T). By Lemma 3.2(a), there is a unique i € Zy
such that ¢; C t(s). Since t(s[lh(t;)) = t(s)[1h(t;) = t;, we have i € Z; and
s; = s[lh(t;) C s. By Lemma 5.2, x € X N Z(s,lh(s;)) € X N Z(s;) = F;.
Hence X N D™ C |JF, so (ii) holds. m

LEMMA 5.6. Assume that n < w, X C w?, and Xpo = {s't : s € WF,
t€wy (k1) , (@)t € X} is subshrinking for each k < n and o < wy.

(1) If X is nonstationary, then X is subshrinking.
(2) If X Cwl|<, then X is subshrinking.

Proof. (1) Let F = (F; : i € Z) be a closed cover obtained by Corol-
lary 5.1. By Lemma 2.1, it suffices to show that F; is subshrinking for every
i €Z.Fixani € Z. We have {s(k) : s € F;} C p for some k < n and pu < wy.
For a < p, put C, = {s € F; : s(k) = a}. Then (C,, : a < p) is a closed
cover of F;. By Lemma 2.1 again, it suffices to show that C, is subshrinking
for each o < . In X, o, {8t :s €W, t € W]~ (k1) , s ()t € Cy} is closed
and homeomorphic to Cy, hence C, is subshrlnklng.

(2) Let U = (U; : i € T) be an open cover of X. Pick a family F = (F; :
i € I) of open F,-sets of X obtained by Lemma 5.5, and put G = |JF. For
each k <nand a < wi, {st:scwf tcw'™ (k1) ,s(a)te X —G}is a
closed subset of X}, , so subshrinking. Since X G is nonstationary, we can
apply (1) to X — G, so X —G is subshrinking. Hence, there is a subshrinking
M=(M;:ie€Z)of (UynN(X—-G):i€Z)in X —G. Since X — G is closed
in X, M is a family of Fj,-sets also in X. Finally, (M; UF; :i € 7) is a
subshrinking of i/ in X. Hence X is subshrinking. m

Now we can prove Theorem 1.2.

Proof. Apply Lemma 5.6(2) inductively. Then the statement follows im-
mediately. m
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Since all subspaces of w? are subshrinking (see [4]), the following holds
by Lemma 5.6(1).

COROLLARY 5.2. All nonstationary subspaces of w? are subshrinking.

w? in the corollary above cannot be changed to wf. Indeed, there is a
nonsubnormal subspace X of w3 by Theorem 1.1. Therefore {0} x X, which
is homeomorphic to X, is a nonstationary and nonsubnormal subspace of wf.
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