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Schanuel Nullstellensatz for Zilber fields
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P. D’Aquino (Napoli), A. Macintyre (London) and G. Terzo (Napoli)

Abstract. We characterize the unsolvable exponential polynomials over the expo-
nential fields introduced by Zilber, and deduce Picard’s Little Theorem for such fields.

1. Introduction. In this paper we work with the class of exponentially-
algebraically closed exponential fields introduced by Zilber in [24]. For the
subclass of Zilber fields which are strongly closed and have the countable
closure condition he establishes categoricity in each uncountable power, and
puts forward the dramatic conjecture that the classical complex exponential
field is the unique model of power continuum. The huge importance of this
conjecture for the classical case is that Zilber has, unconditionally, estab-
lished, for the Zilber fields, geometrically natural criteria for solvability of
systems of exponential equations, whereas in the classical case only a very
few such criteria have been established (and then by using hard complex
analysis, for example Nevanlinna Theory).

There is one beautiful result which has been proved analytically for
the complex case, but which is far from obvious for Zilber fields. This
is what we call the Schanuel Nullstellensatz (SN), which was conjectured
by Schanuel (but it is not directly connected to Schanuel’s famous Con-
jecture, also prominent in the Zilber case). For the complex field, it was
proved by Henson and Rubel [5] using very serious Nevanlinna Theory.
The main result of our paper is that it also holds for the Zilber fields.
We give the exact statement later, once we have established some for-
malism. But the reader will get the flavour if we express it as “An ex-
ponential polynomial has no zero iff it is the exponential of another ex-
ponential polynomial”. From (SN) we will deduce a version of Picard’s
Little Theorem for Zilber fields purely algebraically (it could not be oth-
erwise, since Zilber’s Conjecture implies that the complex topology is not
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first-order definable from the basic operations of the complex exponential
field).

2. Zilber fields. An exponential field, or for short an E-field, is a pair
(K,E) where K is a field and E is a morphism from the additive group
structure ofK to the multiplicative group ofK, that is, E(x+y) = E(x)E(y)
for all x, y ∈ K. If E is only partially defined we refer to (K,E) as a partial
exponential structure.

The class of E-fields has been studied for the last 35 years, originally
motivated by understanding the elementary theory of the real exponential
field [13], [3]. The main results concerning the real exponential field go back
to the early nineties with the work of A. Wilkie.

Schanuel’s Conjecture has already played a crucial role in the real case,
giving the decidability of the theory of the real exponential field, as shown by
Macintyre and Wilkie [14]. The complex exponential field is unconditionally
undecidable, but this does not, as Zilber saw, stand in the way of a deep
model-theoretic analysis.

Zilber saw a subtle connection between Schanuel’s Conjecture (SC) and
the technology of predimensions introduced by Hrushovski [7]. Quite in-
dependent of the truth of (SC) for the complex exponential field, there
are exponential fields [24] in which (SC) holds, and in which the peri-
ods of exponentiation form an infinite cyclic group. This has been known
for a long time. The great novelty is to observe that if we consider the
Hrushovski predimension corresponding to (SC) (see below) and work in
the category of exponential fields satisfying (SC) with the corresponding
notion of strong embedding, then there are existentially closed structures,
which can be characterized by geometrically natural axioms for solvabil-
ity of exponential systems. Among the existentially closed structures are
the strong existentially closed structures, characterized by having “generic”
solutions for the systems in the axioms and a countable closure, and it
is for these that Zilber shows uncountable categoricity. For the details,
see [24].

Everything we do depends on [24], though the formalism is not always
to our taste. Zilber works in an unusual language L containing +, n-ary
predicate symbols V for V ⊆ Fn an affine algebraic variety defined and
irreducible over Q, unary function symbols 1

m · for each integer m > 0, and
a binary relation E(x, y). Let L = L− ∪ {E}. There is thus a forced notion
of structure and substructure for this mixed functional-relational formal-
ism.

This formalism is suitable for dealing with substructures of exponential
fields of characteristic 0 (for the basic definitions about exponential fields, see
[13], [12]). E corresponds to the graph of exponentiation, and may be partial
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in a substructure, if one works, as Zilber does, in a formalism involving
relations. 1

m · stands for multiplication by 1
m , + for addition, V for V ⊆ Fn,

where F is the ambient field. Obviously the graph of multiplication can be
defined in terms of the variety corresponding to its graph. E(F ) will denote
the set {y : ∃x ∈ F such that E(x, y)}.

Zilber identifies the basic class E of L-structures F which are alge-
braically closed fields of characteristic 0, where the symbols of the language
have their natural interpretations and E is the graph of a surjective homo-
morphism

ex : (F,+)→ (F ∗, ·)

(as it is in the case of C).
An L-structure A belongs to the class subE if there is an L-structure F

such that A ⊆ F as L−-structures, EA ⊆ EF , and the domain of exponen-
tiation on A is a Q-vector space, under the natural operations.

subEst denotes the class of those structures A in subE having standard
full kernel, i.e. ker(ex) = {a ∈ A : ex(a) = 1} = ωZ, where ω is in A and is
transcendental over Q.

Zilber has a more elaborate definition of this notion, but in fact his extra
conditions are redundant. In what follows, we will refer to the elements of
the kernel of exponentiation also as periods.

An example of a structure belonging to subEst is A = C, where ω = 2iπ
and domain of exponentiation DA = Qω, and ex = exp |DA .

Crucial to Zilber’s model theory of exponentiation is the condition SC
(Schanuel’s Conjecture)

Schanuel’s Conjecture (SC). Let λ1, . . . , λn ∈ C be linearly inde-
pendent over Q. Then Q(λ1, . . . , λn, E(λ1), . . . , E(λn)) has transcendence
degree (t.d.) at least n over Q.

In a straightforward way Schanuel’s Conjecture can be formulated for
any exponential structure of characteristic 0.

In his paper Zilber uses the notion of strong extension (inspired by
Hrushovski’s work [7]) in order to define the class of existentially strongly
closed structures in the class of exponential fields of characteristic 0 satisfy-
ing Schanuel’s Conjecture, and with full standard kernel.

2.1. Strong extensions. Let S be an L-structure. We denote the do-
main of exponentiation in S by DS . If A ⊂ S then 〈A〉Q is the Q-vector
space generated by A.

Definition 2.1. Let A be a finite subset of DS . We define the predi-
mension of A as
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δS(A) = t.d.(A ∪ E(〈A〉Q))− l.d.(A)

where t.d.(A) is the transcendence degree of A over Q and l.d.(A) is the
linear dimension of A over Q.

Note that the predimension of A is the same as the predimension of 〈A〉Q.
Since we are working with structures which satisfy Schanuel’s Conjecture

we will always have δS(A) ≥ 0 for all finite A ⊆ DS . (This is actually an
equivalent form of Schanuel’s Conjecture.)

subE0 denotes the class of structures R ∈ subE such that δR(A) ≥ 0 for
all finite A ⊆ DR, and E0 = E ∩ subE0.

Some care is needed when we work with structures where exponentiation
is only a partial function. If R,S are structures on which only a partial
exponential function is defined, then for some finite A ⊂ R it can happen
that δR(A) < δS(A). This happens since some elements of A may not have
exponentials in R but they have exponentials in S. So in S there is extra
transcendence degree. This problem does not exist when exponentiation is
total.

We let δR(B/A) = δR(B ∪ A) − δR(A) when A and B are finite sub-
sets of R, but we need to extend this notion to the case of general A.
Here we use an inductive procedure very common in geometric model the-
ory.

Definition 2.2. Let B be a finite subset of R and A an infinite subset
of R. For any integer k we define δR(B/A) ≥ k to mean that for each finite
subset W of A there is a finite subset W ′ of A, extending W , such that
δR(B/W ′) ≥ k. Then δR(B/A) = k means that δR(B/A) ≥ k but not
δR(B/A) ≥ k + 1.

Definition 2.3. Let R,S ∈ subE . Then S is a strong extension of R
(written R ≤ S) if R ⊆ S and the following two conditions hold:

(i) δR(A/B) ≤ δS(A/B) for any finite subsets A,B of R.
(ii) δS(B/DR) ≥ 0 for any B ⊂fin DS .

Remark 2.4. Condition (i) is always satisfied if the exponential function
over A is total, but we do need to use it in other cases, too.

Let R ∈ subE0. For any finite A ⊂ R the dimension of A in R is

dimR(A) = min{δR(B) : A ⊆ B ⊂fin DR}.
If R and S are exponential structures where exponentiation is total and

satisfy Schanuel’s Conjecture then

R ≤ S iff dimR(A) = dimS(A) for all A ⊆fin R.
We recall the following properties of strong extensions proved in [24,

p. 71].
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Lemma 2.5.

(i) If R ≤ S and S ≤ Z, then R ≤ Z.
(ii) If (I,<) is a chain and Ri ≤ Rj for i ≤ j, then Ri ≤

⋃
i∈I Ri for

all i ∈ I.
Zilber also shows that a structure with partial exponentiation satisfying

Schanuel’s Conjecture can always be extended by a strong embedding to a
structure with total exponentiation preserving periods and still satisfying
Schanuel’s Conjecture (see [24, Lemma 2.11, p. 73]).

Lemma 2.6. Let R ∈ subE0 with full kernel. Then there is F ∈ E0 and
an embedding of R into F such that R ≤ F and ker |F = ker |R.

The proof of our main result (see Theorem 4.6) will consist in the con-
struction of a strong extension of a certain exponential structure. Right now,
we provide an example of a very natural extension of an exponential field
which is not a strong extension.

Theorem 2.7. (C, ex) is not a strong extension of (R, ex) assuming
(SC).

Proof. First note that

(1) δR(π) = t.d.(π, eπ)− l.d.(π) = 1

by Nesterenko’s great theorem [17] (although we may as well use (SC), as
we use it below). And again by Nesterenko’s result,

(2) δC(π, iπ) = t.d.(π, iπ, eπ, eiπ)− l.d.(π, iπ) = 0.

Notice that (1) and (2) have been obtained unconditionally. By (SC) the
dimension of π in C is 0. If the extension is strong then there must be a finite
subset B of R, Q-linearly independent over π, so that the predimension of
B ∪ {π} is 0. But B, π and iπ are linearly independent over Q, and so the
predimension of B ∪ {π, iπ} in C is −1, contradicting (SC).

The refereee pointed out to us the example in Kirby [8] showing un-
conditionally that (C, ex) is not a strong extension of (R, ex). This is short
and easy, using the first definition of strong extension. We prefer to keep
our example as it is more explicit about the dimension of π, which is of
basic importance. Note that Macintyre and Wilkie showed that Schanuel’s
Conjecture implies that π is not in the prime model of (R, ex) [14].

2.2. Exponentially-algebraically closed structures. We now iden-
tify those exponential fields F in E0

st (i.e. those structures of E which have
standard full kernels and satisfy Schanuel’s Conjecture) in which there are
solutions of as many equations as possible without violating Schanuel’s Con-
jecture or adding new periods, or lowering a predimension.



128 P. D’Aquino et al.

Let Gn(F ) = Fn × (F ∗)n, the F -points of an algebraic group over Q.

Definition 2.8. A structure F in E0
st is said to be exponentially-algeb-

raically closed if whenever W ⊂ V ⊆ Gn(F ) are irreducible varieties defined
over F and there are K ∈ E0

st and a ∈ Kn such that F ≤ K and (a, ex(a)) ∈
V −W , then there is c ∈ Fn such that (c, ex(c)) ∈ V −W .

It is clear (and proved in [24]) that F is algebraically closed. As Zilber
remarks, K does not need to range over E0

st but it is enough to consider
partial exponential structures thanks to Lemma 2.6. This observation will
be crucial in the proof of our main result.

The class of exponentially-algebraically closed structures in E0
st is de-

noted by ECst. In [24] the author proves that the class ECst has an Lω1ω-
axiomatization. He uses some conditions on varieties which are Lω1ω-defin-
able. Moreover, Schanuel’s Conjecture and having full standard kernel are
Lω1ω-definable properties. We briefly review the axiomatization. Let T =
(aij) be a k × n matrix of integers and

[T ] : Gn(F )→ Gk(F )

be the homomorphism given by

〈z1, . . . , zn, w1, . . . , wn〉 7→ 〈z′1, . . . , z′k, w′1, . . . , w′k〉
where

z′i = ai1z1 + · · ·+ ainzn and w′i = wai11 · · ·w
ain
n

for i = 1, . . . , k.

Definition 2.9. The variety V ⊆ Gn(F ) is normal if dimF V
′ ≥ k,

where V ′ = [T ](V ) for any k × n matrix of integers T of rank k where
1 ≤ k ≤ n.

Definition 2.10. The variety V ⊆ Gn(F ) is free if we cannot find
a1, . . . , an ∈ Z and b, d ∈ K with d 6= 0 such that V is contained in ei-
ther variety

{(z, w) : a1z1 + · · ·+ anzn = b} or {(z, w) : wa1
1 · · ·w

an
n = d}.

Remark 2.11. The conditions of normality and freeness for a variety
avoid the existence of any further algebraic relation among the coordinates
of a point in the variety (except those imposed by the variety itself) which
could be an obstruction for intersecting the graph of exponentiation.

The condition of normality can be expressed equivalently by saying that
for all generic points of V ′ the following inequality holds:

t.d.Q(z′1, . . . , z
′
k, w

′
1, . . . , w

′
k) ≥ k.

Part of [24] is devoted to showing that the properties of normality and
freeness are first order definable.
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We will call the exponentially-algebraically closed fields Zilber fields. The
Lω1ω-axiomatization of the class of Zilber fields is given by the following
characterization (see Proposition 4.3 of [24]).

Theorem 2.12. Let F ∈ E0
st. Then F is exponentially-algebraically closed

iff for every variety V ⊆ Gn(F ) defined over F that is irreducible, normal
and free there is a ∈ Fn such that (a,E(a)) ∈ V .

The above theorem implies that in a Zilber field we can solve certain sys-
tems of polynomial equations. Zilber goes on to add conditions guaranteeing
categoricity in uncountable cardinalities.

Zilber obtains a remarkable categoricity result for the class of exponent-
ially-algebraically closed fields satisfying a countable closure condition and
a weak saturation property (for details see [24]).

3. E-polynomial ring. For any exponential field (or E-field) (K,E)
we can construct the ring of exponential polynomials over K. We use it
now when K is a Zilber field. For the proof of our main result it is useful
to review the construction of the E-polynomial ring, and related notions of
exponential algebra (see also [3]).

Let (K,E) be an E-field. The ring of E-polynomials in the indetermi-
nates X = X1, . . . , Xn is an E-ring constructed in the following way by
recursion. We construct three sequences:

1. (Rk,+, ·)k≥−1 are rings;
2. (Bk,+)k≥0 are torsion free abelian groups, and in the case of Zilber’s

fields, the elements of the sequence are also divisible groups;
3. (Ek)k≥−1 are partial E-morphisms.

Step 0. We define R−1 = K; R0 = (K[X],+, ·); B0 is the ideal generated
by X, R0 = R−1⊕B0 and E−1 : R−1 → R0, is the composition of the initial
E-morphism over K with the immersion of K into K[X].

Inductive step. Suppose that k ≥ 0 and Rk−1, Rk, Bk and Ek−1 have
been defined in such a way that

Rk = Rk−1 ⊕Bk, Ek−1 : (Rk−1,+)→ (U(Rk), ·),
where U(Rk) denotes the set of units in Rk. Let

t : (Bk,+)→ (tBk , ·)
be a formal isomorphism. Define

Rk+1 = Rk[tBk ] (as group ring over Rk).

Therefore Rk is a subring of Rk+1, and as additive group

Rk+1 = Rk ⊕Bk+1,
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where Bk+1 is the Rk-submodule of Rk+1 freely generated by tb, with b ∈ Bk
and b 6= 0 (this last condition ensures that Bk+1 does not coincide with
Rk+1). We define Ek : (Rk,+)→ (U(Rk+1), ·) as follows:

Ek(x) = Ek−1(r) · tb for x = r + b, r ∈ Rk−1 and b ∈ Bk.

In this way we construct a chain of partial E-rings (the domain of ex-
ponentiation of Rk+1 is Rk) R0 ⊂ R1 ⊂ · · · . Then the E-polynomial ring
is

K[X]E = lim
k
Rk =

∞⋃
k=0

Rk

and the E-ring morphism defined on K[X] is the following:

E(x) = Ek(x) if x ∈ Rk, k ∈ N.

Notice that each Rk+1 as additive group is the direct sum K ⊕ B0 ⊕
B1 ⊕ · · · ⊕ Bk+1. Moreover, as an additive group, K[X1, . . . , Xn]E can be
considered as K ⊕B0 ⊕B1 ⊕ · · · .

Recall that for all k the group ring Rk+1 can be viewed in the following
different ways:

Rk+1
∼= R0[tB0⊕···⊕Bk ]; Rk+1

∼= R1[tB1⊕···⊕Bk ]; . . . Rk+1
∼= Rk[tBk ].

Moreover, K[X1, . . . , Xn]E = R0[tB0⊕B1⊕···], i.e. K[X1, . . . , Xn]E is a group
ring constructed over a UFD U = K[X1, . . . , Xn] (= R0) and a torsion free
divisible abelian group G = tB0⊕B1⊕··· (a Q-vector space).

Remark 3.1. From the construction of K[X]E , for any exponential
polynomial f(X) there is k ∈ N such that f(X) ∈ Rk+1 − Rk, where
Rk+1 = Rk[tBk ]. Following [3] we will refer to k + 1 as the height of f .

Recalling that tBk is freely generated by tbj for bj ∈ Bk, modulo the
exponential identities, we can write f(X) uniquely as

f(X) =
m∑
h=1

aht
bh ,

where ah ∈ Rk and bh ∈ Bk. We observe that tb1 , . . . , tbm are linearly inde-
pendent over Rk.

However, for what follows, the representation of K[X]E as a group ring
over U (= R0) is more important. That is, f(X) can be written uniquely
as

f(X) =
m∑
h=1

aht
bh ,

where ah ∈ R0 and bh ∈ B1 ⊕B2 ⊕ · · · .
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We recall the following characterization of the invertible elements in any
E-polynomial ring (see [3]).

Proposition 3.2. If R is an integral domain of characteristic 0, then
R[X]E is an integral domain whose units are of the form u · E(p), where u
is a unit of R and p ∈ R[X]E .

This is in fact a special case of a standard theorem about units of group
rings of torsion-free abelian groups over domains of characteristic zero [10],
since K[X]E is such a group ring. We study divisibility in K[X]E via di-
visibility in the group ring over the polynomial ring U . Irreducibility is
of course the first notion to consider, and to work with that we need to
know the units. Recall that an associate of an element is any product of it
by a unit, and that an element is irreducible if its only divisors are asso-
ciates.

The main point is that the units of R[G], when R is a characteristic zero
domain, and G is a torsion-free abelian group, are the elements of the form
utg where u is a unit of R, and g ∈ G. In the special case when R is the
above U , the units of R are exactly the nonzero elements of K.

Remark 3.3. From the construction of K[X]E it follows that for each k,
Rk+1 is a strong extension of Rk. Conditions (i) and (ii) of Definition 2.3
are satisfied since at each step of the construction the new exponentials are
added as freely as possible over the elements in the previous ring. Moreover,
the domain of exponentiation of each Rk is a Q-vector space. By Lemma 2.5,
K[X]E is a strong extension of K.

From (ii) of Definition 2.3 it also follows that if K satisfies Schanuel’s
Conjecture, so do all the Rk’s, and hence also K[X]E .

We notice that at each step in the construction no new periods have
been introduced. So, ker(EK) = ker(EK[X]E ).

3.1. A factorization theorem. In the literature on exponential alge-
bra there is no detailed account of a theory of factorization for exponential
polynomials. There are, however, a few important papers, of which we were
unaware until fairly recently ([20], [4], [11], [18], [19]). It seems that Ritt
and Gourin were the first to consider a factorization theory for exponential
polynomials over an algebraically closed field K of characteristic 0, and with
only one iteration of exponentiation. They worked with the group ring U [G],
where U = K[x] and G is the group of pure exponential terms. They reduce
the study of factorization in U [G] to that of U [y1, . . . , yk] (k varying), and
to polynomials f(yµ1

1 , . . . , yµkk ) with µ1, . . . , µk ∈ N+. We will adapt their
results to our setting, i.e. the group ring U [G] is constructed over the unique
factorization domain U = K[X] and the group G is tB1⊕B2⊕···.
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The basic idea is to attach to elements f of U [G] polynomials over U in
fractional powers of many variables. For our purposes there is no need to be
canonical. Here is the basic idea.

As observed before, an exponential polynomial f(X) can be written
uniquely as

f(X) =
m∑
h=1

aht
bh ,

where ah ∈ R0 = K[X] and bh ∈ B1 ⊕B2 ⊕ · · · .
Let Γ be the abelian additive group generated by b1, . . . , bm. The Q-space

generated by Γ is denoted by supp(f), the support of f . Choose a Z-base
{β1, . . . , βl} of Γ . This choice is noncanonical, but we ignore this point.
Without loss of generality we can consider f as a polynomial in tβ1 , . . . , tβl ,
with coefficients in U = K[X].

We use formally ω1, . . . , ωl for tβ1 , . . . , tβl , and we consider f as an ele-
ment of U [ω1, . . . , ωl]. Later we will refer to the associate polynomial of f .
Notice that there is no connection with the notion of associate connected
with divisibility, which we will also use.

Suppose f is irreducible in K[X]E . Then, clearly, f is irreducible in
Rk[ω1, . . . , ωl]. It is much less obvious, but true, that f is also prime in
Rk[ω1, . . . , ωl]. This follows from the work of Ritt and his followers, which
we now review.

One of Ritt’s most fundamental results is that if f factors as f1f2 then
supp(fi) ⊆ supp(f) for i = 1, 2, up to associates (i.e. up to multiplying by
units of K[X]E). If we translate this into a formulation involving the polyno-
mials over U associated to the fi’s, then we are led to issues about factoring
polynomials into polynomials in fractional powers, the main concern of the
literature cited earlier.

We need some definitions. Let x = (x1, . . . , xn). By a monomial in the
variables x1, . . . , xn we mean xm1

1 · · ·xmnn , where m1, . . . ,mn ∈ Z.

Definition 3.4. A polynomial f(x) is effectively 1-variable if f = τ1 ·
g(τ2), where τ1, τ2 are monomials (possibly with negative exponents) and g
is a polynomial over U with constant term different from zero.

We denote the xi-degree of f(x1, . . . , xn) by di. Let µ = (µ1, . . . , µn)
∈ Nn

+. Ritt and Gourin saw the relevance of understanding the ways in
which an irreducible polynomial f(x1, . . . , xn) can become reducible once
we replace the variables with their powers. Van der Poorten [18] provides
a uniform bound for the number of factors of f(xµ1

1 , . . . , xµnn ) depending
only on D = max{d1, . . . , dn}. He works over an algebraically closed field
of characteristic 0. From an inspection of his proof, one sees that the only
property of an algebraically closed field that he uses is that all the roots of
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unity belong to the field of coefficients. For the application that we will give
of the factorization of an exponential polynomial the coefficients belong to
a unique factorization domain containing all roots of unity.

Definition 3.5. A polynomial f(x) is power-irreducible (over K or U)
if for each sequence of positive integers µ, f(xµ) is irreducible (over K
or U).

Now the fundamental result of Ritt (that if f factors as f1f2 then
supp(fi) ⊆ supp(f) for i = 1, 2) comes into play. A factorization of the
exponential polynomial f is equivalent to a factorization of its associate
polynomial (over U) into polynomials in fractional powers. Such a factor-
ization of the polynomial is possible iff the polynomial is a unit times a
power-reducible polynomial. Looking more closely, one gets an exact corre-
spondence (up to units and associates) between factorization of exponential
polynomials and factorizations of compositions of polynomials and powers
of variables.

We are now in a position to state a version of a unique factorization result
for exponential polynomials, the “Almost Unique Factorization Theorem”.
As already remarked, the proof in our context follows the lines of the proof
of Theorem 2 on page 1296 of [19], and there seems no need to repeat the
details.

Theorem 3.6. An element f 6= 0 of K[X]E factors, uniquely up to units
and associates, as a finite product of irreducibles of K[X], a finite product
of irreducibles of K[X]E whose support is of dimension bigger than 1, and
a finite product of elements Gj of K[X]E, where supp(Gj1) 6= supp(Gj2) for
j1 6= j2 and whose supports are of dimension 1.

A very important consequence is that an irreducible f with support of
dimension more than 1 is prime. For if f divides gh then by the uniqueness
theorem, f must occur in the factorization of one of g or h.

We leave open the interesting question of when f with support of dimen-
sion 1 is irreducible.

4. Main result. Zilber’s axioms focus on the existence of solutions of
certain systems of exponential polynomials. Laczkovich [9] proved that there
is no algorithm for testing solvability of systems of exponential polynomials,
but the situation is different for a single polynomial. In this section we give
a necessary and sufficient condition for an exponential polynomial over a
Zilber field to have no zeros in the field. We will show that if the polynomial
has a certain form then necessarily it has a zero. This is a special case of
some of Zilber’s axioms.
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For the complex exponential field such a characterization exists and it is
due to Henson and Rubel [5]:

Let F (z1, . . . , zn) ∈ C[z1, . . . , zn]E . Then

F (z1, . . . , zn) has no roots in C iff F (z1, . . . , zn) = eG(z1,...,zn),

where G(z1, . . . , zn) ∈ C[z1, . . . , zn]E .

4.1. Constructing strong extensions. First of all we give a method
for constructing strong extensions of partial E-domains. In [24] Zilber has
a similar result but our proof uses different techniques.

In the following, (R,D,E) will denote a characteristic 0 domain R, Q ⊆
R, with a partial exponential function E defined on R whose domain is D
and Q ⊆ D.

Lemma 4.1. Let (R,D,E) be a partial E-domain where D is a Q-vector
space. Then for any t ∈ R with t 6∈ D, the partial E-ring R can be extended to
a partial E-ring (S,D⊕Q·t, E1), which is also a strong extension. Moreover,
(S,D ⊕ Q · t, E1) can be chosen so that if (R,D,E) satisfies Schanuel’s
Conjecture then so does (S,D ⊕Q · t, E1).

Proof. We can extend R to S by a transcendental α in such a way that
there is a homomorphism from the additive group (Q,+) into the multi-
plicative group of S, sending r to αr. This can be obtained by a simple
compactness argument.

Let D1 = D⊕Q ·t. If γ ∈ D1, then γ = d+rt, where d and r are uniquely
determined with d ∈ D, r ∈ Q. We extend E to D1 in the freest possible
way as follows:

E1(γ) = E(d) · αr,
where α = E1(t) and each αr gets its meaning from the homomorphism
mentioned above. E1 extends the morphism E, and satisfies the axioms of
exponentiation. Then (S,D1, E1) is the extension we wanted.

Now we want to prove that the extension is strong, that is:

(i) δR(A/B) ≤ δS(A/B) for any finite subsets A,B of R,
(ii) δS(B/DR) ≥ 0 for any B ⊂fin DS .

(i) Simply from the definition of the predimension, we see that to prove (i)
we have to show that

t.d.(A ∪B,E1(A ∪B))− t.d.(B,E1(B))
≥ t.d.(A ∪B,E(A ∪B))− t.d.(B,E(B)).

Now, bearing in mind that the domain of exponentiation in S has dimension
one more than the dimension of the domain of exponentiation in R, and that
E1(t) is transcendental over R, we see that E1(A ∪ B) has transcendence
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degree at most 1 over E(A ∪ B), with a similar result for B rather than
A ∪B.

Now, if t.d.(B,E1(B)) = t.d.(B,E(B)) the estimate above is clear.
If, however, the left-hand side is bigger than the right-hand side, their dif-

ference is exactly 1, and then the same is true for t.d.(A∪B,E1(A∪B)) and
t.d.(A∪B,E(A∪B)) by the preceding remarks. Thus the inequality holds.

(ii) A similar argument works. Let A ⊆ D. We extend A by adding to it
the projection of B onto D. Without loss of generality for what follows we
can assume this is A, and that B is t. We have to show that δS(B/A) ≥ 0.
But this is obvious since R satisfies (SC) and α is transcendental over R.

Note that the same proof shows that S satisfies (SC).

We can generalize this result to the case of group rings. Using a similar
proof the following result holds.

Proposition 4.2. Let (R,A,E) be a partial E-domain satisfying Scha-
nuel’s Conjecture, and let B be an abelian divisible group. If R1 = R[tB] and
E1 is the natural extension of E then (R1, A⊕B,E1) is a strong extension
of (R,A,E) and satisfies Schanuel’s Conjecture.

4.2. A sharper version of Schanuel’s Conjecture for K[X]E. We
now prove a sharper version of Schanuel’s Conjecture for the E-polynomial
ring K[X]E where K is a Zilber field. The result is an analogue of what was
proved by Ax [1] for power series, and Bianconi [2] for infinitesimal elements
of an ultrapower of C.

Definition 4.3. Let β1, . . . , βk, δ1, . . . , δn∈K[X]E , and suppose β1, . . . ,
βk ∈ Rh and δ1, . . . , δn ∈ Rj with h < j. We say that δ1, . . . , δn are Q-linearly
independent over β1, . . . , βk if there is no linear combination of δ1, . . . , δn
with rational coefficients which belongs to 〈β1, . . . , βk〉Q, the Q-vector space
generated by β1, . . . , βk.

We observe that being Q-linearly independent over Rk for some k implies
Q-linear independence.

Notice that if δj =
∑

i 6=j riδi + α with ri ∈ Q and α ∈ 〈β1, . . . , βk〉Q
then E(δj) is algebraic over E(δi) with i 6= j and E(β1), . . . , E(βk).

Theorem 4.4. Let K be a Zilber field. Suppose that γ1, . . . , γn ∈ K[X]E

−K are Q-linearly independent over K. Then

t.d.K K(γ1, . . . , γn, E(γ1), . . . , E(γn)) ≥ n+ 1.

Proof. We partition γ1, . . . , γn according to the number of iterated ex-
ponentials they contain identifying the first partial E-ring they belong to as
follows:
γ1, . . . , γd1 ∈ Rl1 ; γd1+1, . . . , γd2 ∈ Rl2 ; . . . ; γds−1+1, . . . , γds ∈ Rls

with d1 + · · ·+ ds = n and Rl1 ⊂ · · · ⊂ Rls , where l1 ≥ 0.
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Without loss of generality we may assume that for each j = 1, . . . , s− 1,
γdj+1, . . . , γdj+1

are Q-linearly independent over the previous γ’s, i.e., over
γ1, . . . , γdj , and γ1, . . . , γd1 are Q-linearly independent over K.

If not, let {γh1 , . . . , γhr} be a maximal subset of {γdj+1, . . . , γdj+1
} which

is Q-linearly independent over γ1, . . . , γdj , for j = 1, . . . , s − 1. If γ ∈
{γdj+1, . . . , γdj+1

}−{γh1 , . . . , γhr} then γ ∈ K(γ1, . . . , γdj , γh1 , . . . , γhr), and
E(γ) does not contribute towards the transcendence degree of

K(γ1, . . . , γdj , γh1 , . . . , γhr , E(γ1), . . . , E(γdj ), E(γh1), . . . , E(γhr), E(γ))

over K since it is algebraic over this extension.
Similarly, we can prove that there is no loss of generality in assuming

γ1, . . . , γd1 Q-linearly independent over K.
We now show that

E(γ1), . . . , E(γd1);E(γd1+1), . . . , E(γd2); . . . ;E(γds−1+1), . . . , E(γds)

are algebraically independent over K. Suppose

(3)
∑
I

αI(E(γ1) · · ·E(γds))
I = 0

where I = (n1, . . . , ns) ∈ Ns and αI ∈ K. We say that a multi-index I is
high if nds−1+1, . . . , nds are not all equal to 0. If in (3) there is a unique high
I then we get a contradiction since we have exponentials of elements of Bls
algebraic over Rls which contradicts the construction of Ri’s (Bls+1 is the
Rls-submodule freely generated by E(b) with b ∈ Bls). If there are more than
one high multi-indices we have to pay attention to possible cancellations. If
there is no cancellation then we get a contradiction as before. If there is
cancellation then we reduce to work in a lower Rlj where j < s, and we get
again a contradiction for the same reasons as before. This is also the case
when there is no high I.

The extra transcendence degree is given by any of γ1, . . . , γd1 since they
do not belong to K.

Remark 4.5. The result of the previous theorem is a special case of
Ax’s theorem for power series. In our proof we make essential use of the
explicit construction of K[X]E as a union of partial E-rings, and we avoid
referring to any derivation with constant field K.

4.3. Exponential polynomials with no zeros. Now we state and
prove our main result:

Theorem 4.6. Let f(X) ∈ K[X]E where K is a Zilber field. Then

f(X) has no roots in K iff f(X) = eh(X),

where h(X) ∈ K[X]E .



Schanuel Nullstellensatz for Zilber fields 137

Proof. One direction is obvious since exponentials have no roots.
Now suppose that f is not an exponential. We show that f has a root

in K. Recall that the height of f is the first k such that f is in Rk −Rk−1.
If f ∈ U = K[X] then f has a zero in K, unless f is a nonzero constant,
in which case f is an exponential. Assume that the height of f is k + 1 for
k ≥ 0. By the Almost Unique Factorization Theorem, we can reduce the
proof to one of the following cases:

Case 1. f is irreducible in K[X]E and supp(f) has dimension > 1;
Case 2. supp(f) has dimension 1, i.e. the associated polynomial of f is

essentially 1-variable.

In both cases we can assume f(X) 6= eh(X)g(X) for all h(X), g(X) ∈
K[X]E , with height(g) < height(f) (in particular, f(X) is not invertible).
We will construct a strong extension A (simply as a partial E-domain) of K
in which f has a zero, and there are no new periods. Lemma 2.6 guarantees
the existence of an exponential field F which is a strong extension of A, and
with no new periods added. By Lemma 2.5, F is also a strong extension of K,
and it contains a solution of f . A Zilber field is exponentially-algebraically
closed, and so f must have a zero also in K, and this gives the contradic-
tion.

Case 1. Suppose f is irreducible, of height k + 1, and supp(f) has di-
mension more than 1. Let S be the domain K[X]E/(f) (f is prime).

By Theorem 3.6, f divides no element of Rk, and so Rk embeds naturally
in S. Now we consider Rk as a partial E-domain, with Rk−1 as domain of
exponentiation. We now put a partial E-domain structure on S, extending
that of Rk. We take the representation of f as a series over U , namely

f(X) =
n∑
i=1

ait
bi ,

where ai ∈ U = R0 and bi ∈ B1 ⊕ B2 ⊕ · · · . Now some of the bi are in
Rk − Rk−1. Let D be the Q-space over Rk−1 generated by all the bi’s. We
define ES on D by ES(g) = E(g)+(f), i.e. ES is the natural quotient of the
original exponentiation. This is clearly a partial exponentiation, extending
that on Rk. We claim that there are no new periods. For, if ES(g) − 1 is
divisible by f then for some c ∈ K and µ ∈ Γ , f divides ctµ−1, contradicting
the fact that supp(f) has dimension at least 2 (see Section 3.1).

It is obvious that f has a zero in S. Now we come to the key claim that
S is a strong extension of K. For the first condition, since E is total on K
we have nothing to prove.

Let B be a subset of D − K, assumed, without loss of generality, to
be Q-linearly independent over K. Let A be a finite subset of K, linearly
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independent over Q. We have to show that

(4) δS(B ∪A)− δS(A) ≥ 0.

By Theorem 4.4 the transcendence degree of B ∪ ES(B) in K[X]E over K
is at least one plus the linear dimension of B. If the transcendence degree
of B ∪ ES(B) over K drops in S by at most 1 then we are done since we
would have

t.d.Q(B ∪A ∪ E(B ∪A)) ≥ l.d.(B) + l.d.(A),

which implies (4). So it is enough to prove that no further algebraic relation
for B∪ES(B) over K holds in S, except that induced by f = 0. Suppose B =
{β1, . . . , βt}, and βj = β∗j + β∗∗j , where β∗j ∈ Rk−1 and β∗∗j ∈ 〈b1, . . . , bn〉Q
for j = 1, . . . , t. Without loss of generality for each j we may assume β∗∗j to
be a Z-linear combination of b1, . . . , bn (this hypothesis has no consequences
on the transcendence degree). Suppose there is an irreducible polynomial
P (X,Y ) ∈ K[X,Y ] such that

(5) P (β1, . . . , βt, ES(β1), . . . , ES(βt)) = 0.

We split each βj into the two components β∗j and β∗∗j . Then by multi-
plying by a suitable monomial in E(β∗∗1 ), . . . , E(β∗∗t ), we get an algebraic
relation satisfied by E(β∗∗1 ), . . . , E(β∗∗t ) over Rk,

(6) Q(β1, . . . , βt, ES(β∗1), . . . , ES(β∗t ))(ES(β∗∗1 ), . . . , ES(β∗∗t )) = 0.

We may regard Q(β1, . . . , βt, ES(β∗1), . . . , ES(β∗t ))(X) as a polynomial
over Rff

k , the fraction field of Rk. Let F = Rff
k . In this way the polynomial

(7) Q = Q(β1, . . . , βt, ES(β∗1), . . . , ES(β∗t ))(ES(β∗∗1 ), . . . , ES(β∗∗t ))

is an element of the group ring F [G], where G is the multiplicative group
generated by ES(β∗∗1 ), . . . , ES(β∗∗t ), and also f is in F [G]. So we are in the
group ring set-up and we can apply the Almost Unique Factorization of
Section 3.1.

From (6) in S it follows that f divides Q of (7) both in K[X]E and in
F [G]. We factor the polynomial Q in F [G] according to Theorem 3.6, and
we find that f divides one of the irreducible factors of Q in F [G]. So f is
one of these factors, and this implies that f divides Q in K[X]E , modulo
a monomial. Because of the irreducibility of Q it follows that Q = fτ for
some monomial τ . Hence the transcendence degree of B ∪ ES(B) drops in
S at most by 1.

Case 2. (The associate polynomial of) f is essentially 1-variable. Then
clearly we can assume without loss of generality that f is of the form

H(X, tτ ),
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where H(X, y) is an irreducible polynomial over K, and τ ∈ Rk−Rk−1. We
show that, except for the obvious case when H is a constant times a power
of the last variable, f has a zero in K.

Let Ualg be the algebraic closure of U = K[X], and factor H over Ualg

as
n∏
j=1

(Aj(X)− y) · C(X),

where the Aj(X) and C(X) are in Ualg[X], and C(X) 6= 0. Note that no Aj
is zero unless H = Cy, when the result is clear. So we assume all Aj 6= 0.
Now the strategy is to get E(τ) = Aj for some j, since in this way H has a
zero.

Recall that K[X]E = U [tG] where G = B0 ⊕ B1 ⊕ · · · . This implies
Ualg[tG] = U [tG] ⊗U Ualg. We consider the extension S = U [tG] ⊗U Ualg

of K, with domain of exponentiation DS = Rk−1 ⊕Qτ , and we define

ES(τ) = A1 (or A2, . . .).

We have to give a meaning to (A1)r for r ∈ Q, so that

ES(r.τ) = (A1)r ∈ Ualg.

This is routine, by an inverse limit argument. Then the values of ES will
be in Ualg[tG]. Clearly H has a root is S, and it is left to show that (S,ES)
is a strong extension of K.

We claim there are no new periods. If there are, then for some r 6= 0
with r ∈ Q, ES(α+ rτ) = 1 for some α ∈ Rk−1.

This makes A1 a unit of Rk+1, and so of the form utδ for some δ ∈ Rk
and u ∈ U . Since tδ is transcendental over U unless δ = 0, we conclude that
A1 is a unit of U , and so in K. Then, up to a nonzero constant of K, H
is A1 − y (if there are new periods). So the equation f = 0 is essentially
tτ = A1. This is equivalent to solving τ = a+p, where a ∈ K and E(p) = 1.
Since τ is in Rk we can apply the inductive hypothesis of Case 1, and we
can deduce, for any period p, τ = a + p is solvable in K unless τ − a − p
is of the form eq for some q ∈ K[X]E . Maybe this can happen for some p,
but it cannot happen for distinct periods p1 and p2. For then we would get
an equation tq1 − tq2 = p1 − p2, and from the normal form of exponential
polynomials it follows that no such equation is solvable in K[X]E . So we
can solve τ = a+ p in K for some period p, and thus we solve tτ = A1 in K
as required.

This leaves us the case when no new periods are introduced. We want to
show that S is a strong extension of K. The first condition for strong holds,
since exponentiation is total on K. For the second condition, we argue as in
Case 1.
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Let A be a finite subset of K, linearly independent over Q, and of di-
mension q. Let B be a finite subset of DS − K, and assume, without loss
of generality, that B is Q-linearly independent over K. A typical element
of B is of the form µi = νi + τi, with νi ∈ Rk−1 and τi ∈ Qτ . If distinct
µi’s have nonzero τi’s, then we can make a change of variable to make one
of the τi zero. So, without loss of generality, at most one τi is nonzero. If
all τi are zero, we can just use the fact that Rk is a strong extension of K,
and complete the proof. If precisely one is nonzero, let C0 be the subset of
B consisting of the µi’s with corresponding τi = 0. Then C0 is Q-linearly
independent over K, and so by Theorem 4.4 the transcendence degree of
C0 ∪ ES(C0) over K is at least the Q-dimension of B over K, provided C0

is nonempty. This proves that the predimension in S of A ∪ B does not go
below q, unless B0 is empty. Finally, we consider the case when C0 is empty,
i.e. when B is a singleton with element (without loss of generality) ν + τ .
Since this element is transcendental over K it is clear that the predimension
does not go below q. This completes the proof.

Remark 4.7. In the proof of Theorem 4.6 we used only purely algebraic
methods. The few cases where some of Zilber’s axioms have been proved for
the complex exponential field use hard complex analysis, e.g. Nevanlinna
theory.

4.4. Picard’s Little Theorem. A consequence of the characterization
proved in Theorem 4.6 is a classical result for the complex exponential field,
namely, Picard’s Little Theorem for exponential polynomials over a Zilber
field.

First of all we observe that as a corollary of Theorem 4.6 the map
which associates to every polynomial in K[X]E the corresponding function
Kn → K is 1-1. Let f, g ∈ K[X]E be such that f(a) = g(a) for all a ∈ Kn.
If c1, c2 ∈ K are nonzero elements of K and c1 6= c2 then by Theorem 4.6,

f(X)− g(X)− c1 = eh1(X) and f(X)− g(X)− c2 = eh2(X)

for some h1, h2 ∈ K[X]E . This implies

c2 − c1 = eh1(X) − eh2(X),

which is clearly a contradiction. Note that in the case of C a derivation is
used (see [3]).

Theorem 4.8. A nonconstant polynomial f(x) ∈ K[x]E cannot omit
two values.

Proof. Let f(x) ∈ K[x]E , and suppose by contradiction that for some
a, b ∈ K, a 6= b, f(x) 6= a, b for all x ∈ K. Then the corresponding function

g(x) =
f(x)− a
b− a
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is different from 0 and 1 for all x ∈ K. From g(x) 6= 0 for all x ∈ K and
Theorem 4.6 it follows that

g(x) = eh(x),

where h(x) is nonconstant polynomial in K[x]E . Moreover, g(x) 6= 1, for
all x ∈ K, and this implies that g(x) − 1 = el(x) for some nonconstant
l(x) ∈ K[x]E ; hence we get eh(x) − el(x) = 1, which is a contradiction.

4.5. Polynomials with finitely many zeros. Another consequence
of our main result is the following characterization of those exponential
polynomials which have only finitely many zeros.

Theorem 4.9. A nonconstant polynomial f(x) ∈ K[x]E has always in-
finitely many zeros unless it is of the form

(8) f(x) = (x− α1)n1 · · · (x− αs)nseg(x)

where α1, . . . αs ∈ K, n1, . . . , ns ∈ N and g(x) ∈ K[x]E.

Proof. Since the product of two polynomials as in (8) is still of the
same form, it is enough to prove the statement for irreducible polynomi-
als with support of dimension greater than 1, and for polynomials with
1-dimensional support, according to the Almost Unique Factorization The-
orem. Let α1, . . . , αk be the roots of f in K. We go through the proof of
Theorem 4.6 and we use the same notation.

Suppose f is irreducible and dim(supp(f)) > 1. We constructed a strong
extension S of K in which f has a root which is necessarily different from αi
for i = 1, . . . , k. This property can be expressed by an existential statement,
and so it is also true in K, which gives a contradiction.

If dim(supp(f)) = 1 then f may be considered as a polynomial H(x, tτ ),
where H(x, y) is an irreducible polynomial over K. Now H is factorized over
Ualg (U = K[x]) as

n∏
j=1

(Aj(x)− y) · C(x),

where the Aj(x) and C(x) are in Ualg, and C(x) 6= 0. In the strong extension
we considered we had the choice of defining E(τ) = Aj for some j. If for
some j0 no new periods are added then we define E(τ) = Aj0 , and we have
a new root of f in S. We can then argue as before. If for all j new periods
are added then H(x, y) is reducible over K. This forces H(x, y) = A(x)− y
since H is irreducible over K. Then we get infinitely many zeros of f in K
by solving τ = a+ p for some a ∈ K and p a period of K.

Remark 4.10. This result is not known for the complex exponential
field.
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