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Axioms which imply GCH

by

Jan Mycielski (Boulder, CO)

Abstract. We propose some new set-theoretic axioms which imply the generalized
continuum hypothesis, and we discuss some of their consequences.

1. Introduction, motivations and summary of results. The gen-
eralized continuum hypothesis (GCH) says that 2α = α+ for all infinite car-
dinals α; it is due to Cantor (for α = ℵ0) and to Hausdorff (for all α). GCH
greatly simplifies and strengthens the theory of infinite sets. The main the-
orems concerning GCH (all proved in ZFC) are: Cantor’s inequality 2α > α;
Kőnig’s refinements cf(2α) > α and αcf(α) > α; the theorem of Silver [Si1]
that if GCH fails then the least α for which it fails cannot be singular of un-
countable cofinality; and the theorem of Solovay [So] that 2α = α+ whenever
α is singular, strong limit, and larger than the least strongly compact cardi-
nal (for an alternative definition of strong compactness see [M6]). There are
also “antitheorems”: GCH cannot be disproved, and CH (2ℵ0 = ℵ1) cannot
be proved, in ZFC + (V = OD) + (all currently used large cardinal axioms).
(Proofs of those independence results are not fully published, but they are
known and the methods appear in [Mc, Me, Si2]. For related results and
references see also [FW, LS, W2], and for large cardinal axioms see [Ka, L].)

We will propose in this paper new axioms which imply GCH and appear
natural. They are intended to be additions to a canonical set theory, a theory
which must appear consistent and well motivated.

The program of inventing axioms for a canonical set theory (strictly
speaking a chain of such theories) must satisfy the following three intentions:

(1) The axioms should be simple and general.
(2) The universe of sets must not be enriched arbitrarily with unnatural

sets or relations.
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(3) The universe of sets should contain all interesting mathematical ob-
jects.

In spite of the fact that (1) depends on the ambient culture, it is an
important intention. For example ZF + AD is not in the canonical set theory
since the Axiom of Determinacy AD is too special, as it does not generalize
to sets of higher ranks, while ZFC is in the canonical theory since the Axiom
of Choice is simple and general.

In order to clarify the intention (2) we recall some examples. Urelements
and non-well-founded membership relations are not needed in mathematics
and for this reason the full axiom of extensionality and the axiom of regular-
ity are in ZFC. Quine’s set theory NF is not in the canonical set theory since
its models (if any exist) would have to be rather artificial. We do not accept
2ℵ0 > ℵ1 as an axiom for the canonical theory since we do not know any
important or natural sets X which would have to satisfy 2ℵ0 > |X| > ℵ0.
(For related remarks see the last Section 7 in this paper.)

In order to clarify (3) we recall other examples. The Axiom of Con-
structibility (V = L) is not in the canonical set theory since V = L excludes
interesting objects. Already Gödel expected this to be the case, and in 1961
D. S. Scott proved that indeed V = L precludes the existence of measurable
cardinal numbers. Later it was shown that even R ⊆ L has such undesir-
able consequences (see e.g. [D]). The question if V = OD should be in the
canonical theory is undecided since we may expect that some natural axiom
will be invented which will imply that R ⊆ OD also fails (see Section 7.1).

There is no doubt that all large cardinal axioms which are used today are
intended to be in the canonical theory. This is so because of their intrinsic
interest and natural character, because of their consequences such as the
Martin–Steel–Woodin theorem 〈L[R],∈〉 |= AD (for an outline of the proof
see [N]) which is important for real analysis, game theory and descriptive
set theory (see e.g. the surveys [Ma] and [M2]), and because of the partition
theory for infinite sets which they yield.

Some special axioms which imply the negation of CH, and even 2ℵ0 = ℵ2

and other theorems, were studied; see [W2, CP, CMP, T]. Like AD, those
axioms do not seem to generalize to sets of higher ranks. In those papers, it
is not told explicitly if those axioms are intended for the canonical theory,
or they are viewed only as properties of some special models of ZFC (e.g.
models obtained by iterated forcing with perfect sets). I think that such
intentions about new axioms should be clearly expressed since otherwise the
canonical theory will be lost in a thicket of mutually inconsistent theories.
{Of course by suppressing such motivations (if they exist) one achieves a kind
of security (which is not possible in physical sciences), the security of correct
definitions, theorems and proofs. But I think that this is not satisfying since,
as long as it appears possible, we should value the unicity of mathematics
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which is defined by a canonical (however tentative) set theory, and accept
the risks of being on the wrong track or proposing inconsistent axioms.
This is not to say that some special models such as 〈L[R],∈〉 or 〈L[R] ∩
Vω+ω,∈〉 are not interesting. Indeed these models are the most natural for
the development of analysis and functional analysis of separable spaces. For
related remarks see [M3, M4, M5].}

In this paper we will introduce two groups of axioms A,A1,A2,A3 and
B,B0, B1, B2 and show (in ZFC) the following implications:

A & B ⇒ GCH, V = OD ⇒ A1 & A2 & A3,

A1 & B0 ⇒ GCH, B ⇒ B0,

(A1 or A2 or A3) ⇒ A, GCH ⇒ B,

as well as some other consequences of these axioms. The axioms B1 and B2

stand apart since their consistency (in ZFC) is not known. All the other
axioms are consequences of GCH & V = OD, and they are intended for the
canonical set theory. Perhaps B1 and B2 (if they are consistent) also deserve
to be added there.

All the proofs in this paper will be very simple. The main points are the
statements of the axioms and the arguments showing their natural character.
Of course this paper would loose all its motivation if V = OD was accepted
into the canonical set theory since in that case all our axioms (except B1

and B2) would reduce to GCH.
A. Enayat and W. H. Woodin have proved some consequences of those

axioms (see Section 6). In particular Woodin proved that a certain variant of
B1 is inconsistent with (A2 or A3). Originally I thought that that variant
is important, and so his theorem influenced the shape of this paper in a
significant way.

I am also indebted to Andreas Blass, Ali Enayat and Benedikt Löwe for
stimulating correspondence and conversations in earlier stages of this work,
and to Richard Laver for information about many things and especially
those partly published independence and consistency proofs.

2. The simplest new axioms A and B. We will use the following
standard notations and conventions: α will always denote infinite cardinal
numbers, α+ the successor cardinal of α, and cf(α) the least ordinal cofinal
with α. All cardinals are identified with initial ordinals, and all ordinals are
sets of all smaller ordinals. For any sets X and Y , |X| denotes the cardinality
of X, P (X) the powerset of X, XY the set of functions f : X → Y . Ord
denotes the class of ordinal numbers and Vξ =

⋃
η<ξ P (Vη) for every ξ ∈

Ord. OD denotes the class of ordinal-definable sets and HOD the class of
hereditarily ordinal-definable sets (see Myhill and Scott [MS]). L denotes
the class of Gödel’s constructible sets and L[X] the class of constructible
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sets with parameters in X. Recall that L[X] is always a model of ZF but
not always of ZFC. Finally ξ + η will denote ordinal addition.

Our simplest axioms which imply GCH are the following:

A. For every α we have |P (α) ∩OD| > α.

B. For every α and every set X ⊆ P (α) such that |X| > α and X ∈ OD
we have |X| = 2α.

Theorem 1. A & B⇒ GCH.

Proof. Let X = P (α) ∩ OD. Thus X has a definable well-ordering (see
[MS]). By A, X has an initial segment X0 of type α+. Of course X0 ∈ OD.
Hence, by B, α+ = |X0| = 2α.

It may be worthwhile to point out that A is equivalent to the statement:
for every α there exists an ordinal-definable injection f : α+ → P (α).

Now let us argue that A and B should be included in the canonical set
theory. We have four arguments in favor of A and one in favor of B.

1. Consider first the case α = ℵ0 of A. Assume to the contrary that
|P (ω) ∩ OD| = ℵ0. This expresses a kind of independence between P (ω)
and OD. Such an independence suggests the logical independence of the
continuum hypothesis (CH). Thus, if we wish at all to decide CH, it is more
natural to assume |P (ω)∩OD| > ℵ0 than its negation. By analogy we think
that A is also natural for all α.

2. Again start with α = ℵ0. A theorem of Myhill and Scott [MS] tells us
that

|P (ω) ∩OD| = |{Th〈Vξ,∈〉 : ξ ∈ Ord}|.
Now, the language of mathematics is decribed mathematically as the first-
order language of ZF (or the Hilbert ε-extension of this language). Hence
|P (ω)∩OD| = ℵ0 tells us that we can distinguish only ℵ0 models 〈Vξ,∈〉 in
this language. This is a pessimistic assumption about the expressive power
of mathematics. Thus again |P (ω)∩OD| > ℵ0 seems more natural. And we
have the following generalization of the theorem of Myhill and Scott to all
cardinals α:

Theorem 2. |P (α) ∩OD| = |{Th(〈Vα+ξ,∈, χ〉χ<α) : ξ ∈ Ord}|.
Proof. Each theory Tξ = Th(〈Vα+ξ,∈, χ〉χ<α) is in OD and the language

of Tξ is of power α. Hence there are at most |P (α) ∩OD| theories Tξ.
To show the converse inequality notice first that for each α there are

infinitely many theories Tξ (e.g. those with ξ < ω are different from each
other). Now we will use the fact that, given any set X ∈ OD, the extent
of X is definable in some model 〈Vα+ξ,∈〉 by some unary formula ϕ of the
language of ZF. Thus, for X ⊆ α and for such ξ and ϕ, the set of sentences

{ϕ(cχ) : χ ∈ X} ∪ {¬ϕ(cχ) : χ ∈ α−X},
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where cχ is the name of χ in Tξ, is a subset of Tξ. But there are only ℵ0

possible formulas ϕ. So for all infinite α there must be at least |P (α)∩OD|
distinct theories Tξ.

Thus, by Theorem 2 and by analogy with the case α = ℵ0 which was
discussed prior to Theorem 2, the full axiom A is also natural.

3. Our third and fourth arguments supporting A also support stronger
axioms A2 and A3. These arguments will be formulated in Section 5, and
they are perhaps more convincing than the above ones.

4. The reasons for accepting B are not as convincing as those supporting
A or its variants A1, A2 and A3 (see below). We can only say that B is
similar to the theorem (of an appropriate strengthening of ZFC) that all
uncountable sets of reals of the class L[R] have perfect subsets. The latter
may suggest propositions stronger than B, but some such propositions will
be disproved in Sections 4 and 6.

In view of the less motivated status of B, a weaker version B0 of B which
may be more natural will be proposed in the next Section 3.

Notice that A follows from V = OD, and B follows from GCH. So there
is no problem with the consistency of A&B. Moreover, ZFC + (V = OD) +
GCH + (any currently used large cardinal axiom) is consistent, assuming
that ZFC + (that large cardinal axiom) is consistent. {The proofs of those
theorems are not fully published but they are known and based on methods
which appear in four papers [LS, Mc, Me, Si2].}

3. The variants A1 and B0. We will now state a strengthening of A
and a weakening of B which together still yield GCH.

A1. For every α we have |cf(α)α ∩OD| > α.

B0. For all α and all X ⊆ cf(α)α, if |X| > α and X ∈ OD, then |X| =
αcf(α).

We have A1 ⇒ A since there are ordinal-definable injections cf(α)α →
α×α2→ P (α).

We have B ⇒ B0 since these injections, the statement B, and the as-
sumption of B0 yield |X| = 2α and 2α = αcf(α).

Theorem 3. A1 & B0 ⇒ GCH.

Proof. We argue by induction. Suppose that β+ = 2β for all cardinals
β < α. Then by cardinal arithmetic αcf(α) = 2α. By A1 the set cf(α)α ∩ OD
has an ordinal-definable subset S of power α+. Thus, by B0, |S| = αcf(α).
Hence α+ = 2α.

If B appears too strong (for singular α) then perhaps B0 is more accept-
able (see also the next section).
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Concerning consistency, once again V = OD ⇒ A1, and hence there is
no problem with the consistency of A1 & B. To me, A1 appears almost as
natural as A.

4. The axioms B1 and B2. In this section we state a variant B1 of
B0 which is suggested by the perfect set property and another candidate
axiom B2 related to the property of Baire.

Let us order α2 and cf(α)α in the lexicographic way.

B1. For all α and all X ⊆ cf(α)α, if |X| > α and X ∈ L[cf(α)α], then X
has a subset which is order-isomorphic to cf(α)α.

It seems that B1 could be useful if we wanted to generalize descriptive
set theory to higher cardinal numbers replacing the Baire space ωω by the
space cf(α)α with its order topology. But I do not know if ZFC + B1 is
consistent. We add five remarks:

1. B1 for α = ℵ0 is equivalent to the perfect set property for the class
L[R], i.e., the claim that all uncountable sets of reals of that class have
perfect subsets. (This equivalence follows easily from the fact that a subset
of the irrational numbers is order-isomorphic to the set of irrationals iff it is
the image of a strictly increasing function and the fact that such a function
can have at most ℵ0 points of discontinuity.)

2. The set cf(α)α in the statement of B1 cannot be replaced by the set α2.
Indeed, if α = ℵω, we can define a set D ⊆ α2, |D| > α, and D ∈ L[α2], such
that D has no subsets order-isomorphic to α2 nor even to ω1. This definition
is the following: We consider first the partition ωω = P0∪P1∪ . . . , where Pn
is of order type ωn, and x < y whenever x ∈ Pi, y ∈ Pj and i < j. Then D
is defined as the set of functions f : ωω → {0, 1} such that |f−1(1)∩Pn| = 1
for all n < ω. Thus D ∈ L[α2] and D ∈ OD. It is clear that the order type of
D is ω̃0 × ω̃1 × . . . , where ω̃n denotes the converse of ωn and the product is
ordered lexicographically. Let us identifyD with ω̃0×ω̃1×ω̃2×. . . By Kőnig’s
inequality |D| > ℵω. Now suppose to the contrary that D has a subset E
of order type ω1. Let En denote the projection of E into ω̃n. We claim that
some En must be infinite. Indeed if all were finite then E0 ×E1 × . . . would
be order-isomorphic to the Cantor set ω2. But ω2 has no subsets of order
type ω1. Then let n0 be the least integer such that En0 is infinite. Let F be
the image of the projection of E into ω̃0× ω̃1× . . .× ω̃n0−1. Thus F is finite,
and there exists a point p ∈ F such that the cylinder over p intersected with
E projects to an infinite subset of En0 . Since En0 ⊆ ω̃n0 , and the product
is ordered lexicographically, E is not well ordered. So again E is not of
type ω1.

3. In Section 6 we will state a theorem of H. Woodin which implies
that the class L[cf(α)α] in the statement of B1 cannot be replaced by OD,
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without violating another axiom A2 introduced there. Thus we think that
such a modification of B1 cannot be added to the canonical set theory. At
this point in time only B1 itself has a chance.

4. The connection of B1 with the perfect set property suggests seeking
some general version of the Axiom of Determinacy (AD) for all cardinal
numbers. But we do not know any such version. AD does not generalize
to binary games of perfect information of length ω1 + ω, even when the
set X ⊆ ω1+ω2 defining the game belongs to OD and to L[P (ω1)]. The
following example of a nondetermined game of that kind is due to F. Galvin
(see [St]): Player I must code in his first ω1 moves (in some natural way)
an uncountable set Y ⊆ ω2 (otherwise he loses). Then, for the remaining ω
moves they play the perfect set game of Morton Davis defined by Y , that
is, II has a winning strategy iff Y has a perfect subset (see e.g. [M2]). It
follows that the whole game (of length ω1 + ω) is not determined, but it is
fully defined and hence it is in OD and also in the class L[P (ω1)].

5. However, it is easy to generalize the perfect set game to the case of any
regular cardinal α and any set X ⊆ α2 such that the resulting game has the
following properties: I has a winning strategy iffX has a subset lexicographic
order-isomorphic to α2, and II has a winning strategy iff |X| ≤ α. This
generalizes the theorem of Morton Davis from ℵ0 to all regular α. However,
I do not know of any such generalization for singular cardinals α.

In order to state B2 we need the following definitions. A subset X of
cf(α)α will be called α-meager iff it is a union of at most cf(α) nowhere
dense sets in the lexicographic order topology. And X will be said to have
the α-Baire property iff it is open modulo α-meager.

B2. If X ⊆ cf(α)α and X ∈ L[cf(α)α], then X has the α-Baire property.

Our former comment which follows B1 applies also to B2. And we add
that it is easy to define a Banach–Mazur game of length cf(α) such that
X ⊆ cf(α)α is a complement of an α-meager set iff player II has a winning
strategy.

5. Model-theoretic considerations. In this section we will show some
model-theoretic theorems which will be used in the next section as sugges-
tions for our strongest axioms A2 and A3.

Let T be a countable consistent first-order theory in a language L and
δ(x) a unary formula in L.

We will say that δ is weakly well ordered iff there exists a binary formula
x < y in L satisfying the following conditions:

(1) T proves x < y → δ(x) & δ(y).
(2) T proves that < is a linear ordering of the class defined by δ.
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(3) For every unary formula ϕ(x) in L, T proves the implication: if
∃x[δ(x) & ϕ(x)] then there exists a <-least element in the class defined by
δ(x) & ϕ(x).

[Sometimes it is the case that δ is strongly well-ordered, in the sense
that additional free variables are allowed in ϕ. But this concept will not be
needed in this paper.]

The work of Paris [P] suggests the following theorem.

Theorem 4. There exists a model M of T such that for every δ weakly
well-ordered by T all the elements of M satisfying δ are definable in M by
some unary formulas of L.

Proof. For every δ weakly well-ordered by T we consider the type Γδ
consisting of all unary formulas γϕ(x) of the form

γϕ(x) = [δ(x) & ¬(x is the <-least element satisfying ϕ(x))],

where ϕ is any unary formula in L.
If a is an element of a model N of T such that a satisfies δ(x) and a omits

the type Γδ, then of course a is defined in N by one of the formulas ¬γϕ(x).
Therefore, by the Omitting Types Theorem, in order to prove Theorem 4 it
suffices to show that each of the types Γδ can be locally omitted, i.e., that
the following is true:

For every unary formula ψ in L, if

T proves ψ(x)→ γϕ(x)

for all γϕ ∈ Γδ, then T proves ¬ψ(x).
Indeed, for such ψ, T proves ψ(x) → γψ(x). Hence by (3), T proves

¬ψ(x).

Consider the set-theoretic formula

L: ∀α[x, y ∈ Vα → 〈Vα,∈, x〉 ≡ 〈Vα,∈, y〉]→ x = y,

where ≡ denotes elementary equivalence of models.

Theorem 5. If T is a complete consistent extension of ZF, then T
proves L iff T has a model M which satisfies the Leibniz definition of equal-
ity

L∗: ∀ϕ[ϕ(x)↔ ϕ(y)]→ x = y,

where ϕ runs over unary formulas in the language of ZF. Moreover if such a
model M exists it can be such that all the ordinals of M are definable in M .

Proof. This theorem was already proved as Theorem 5 in [M1]. This
proof is similar to that of Theorem 4. It is enough to omit two types: the
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unary type Γδ0 , which is defined as in the previous proof with δ0(x) defining
the class of ordinal numbers, and the binary type of formulas of the form

(ϕ(x)↔ ϕ(y)) & x 6= y,

for all unary formulas ϕ.

Remark. It is easy to see that every model of ZF which satisfies L∗

satisfies also L.

Let M = 〈A,E〉, where E ⊆ A2, be a model which satisfies the axiom of
extensionality, i.e.,

∀z[zEx↔ zEy]→ x = y,

and is well-founded, i.e., there exists no infinite sequence a1, a2, . . . of ele-
ments of A such that

a2Ea1, a3Ea2, a4Ea3, . . .

Let S ⊆ A be an E-transitive set, i.e.,

aEb& b ∈ S → a ∈ S.
We have the following refinement of Mostowski’s Lemma:

Theorem 6. If f : S → Vα is an isomorphic imbedding , i.e., for
a, b ∈ S we have

aEb↔ f(a) ∈ f(b),

then there exists some β ≥ α and an extension f∗ : A → Vβ of f such that
f∗ is an isomorphic embedding of M into 〈Vβ ,∈〉 and such that , for all
b ∈ A−S, f∗(b) = {f∗(a) : aEb}. Moreover such an extension f∗ is unique.

Proof. If such an f∗ exists then it must satisfy

(4) f∗(x) =
{
f(x) if x ∈ S,
{f∗(y) : yEx} if x 6∈ S.

Since E is well-founded this is a correct recursive definition of a function
f∗ : A → Vβ , where β ≥ α. The unicity of f∗ follows. It remains to show
that f∗ is an isomorphism. By the definition (4) it is clear that if a, b ∈ S
or if b 6∈ S then

(5) aEb↔ f∗(a) ∈ f∗(b).
It remains to show that (5) holds also in the case a 6∈ S and b ∈ S. By the
E-transitivity of S, in this case we have not-(aEb). So it remains to show
that f∗(a) 6∈ f∗(b).

Let %1 : A → Ord and %2 : Vβ → Ord be ranking functions which are
defined as follows:

%1(x) =
{ 0 if x ∈ S,
⋃{%1(y) + 1 : yEx} if x ∈ A− S,
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and

%2(x) =

{
0 if x ∈ Tr(f [S]),
⋃{%2(y) + 1 : y ∈ x} if x ∈ Vβ − Tr(f [S]),

where Tr(z) = z ∪⋃(z) ∪⋃⋃(z) ∪ . . .
It is easy to show by induction relative to E that, for all x ∈ A,

%2(f∗(x)) = %1(x).

Also, if x ∈ y then %2(x) ≤ %2(y), and %1(x) > 0 for all x ∈ A − S.
Then, since in our case a 6∈ S and b ∈ S, we have %1(a) > %1(b), and
%2(f∗(a)) > %2(f∗(b)). Thus f∗(a) 6∈ f∗(b) follows.

Theorem 7. If T is a consistent complete extension of ZF then T has
a model M such that all the ordinals of M are definable in M by unary
formulas. If T has a well-founded model then M is also well-founded. If T
has a model of the form 〈Vξ,∈〉 then M is isomorphic to a submodel M∗

of 〈Vξ,∈〉 such that each formula defining an ordinal in 〈Vξ,∈〉 defines the
same ordinal in M∗. If L is a theorem of T and 〈Vξ,∈〉 satisfies T , then M∗

can be required to satisfy the Leibniz principle L∗.

This theorem follows immediately from the previous theorems of this
section. Of course the isomorphism of M and M ∗ is given by Theorem 6 as
an extension of the isomorphism of the set of ordinals of M and the set of
definable ordinals of 〈Vξ,∈〉 given by their definitions.

Problem. We do not know if any 〈Vξ,∈〉 with ξ ≥ ω1 has an elementary
submodel such that all its ordinals are definable.

6. The axioms A2 and A3. Here we will state our second and third
refinements of A, arguments supporting those refinements, and some conse-
quences. A2 will strengthen the following well known theorem of ZF: If Φ is
a finite set of ordinal numbers, then there exists a ξ such that all ordinals
of Φ are definable in 〈Vξ,∈〉.

A2. For every α and every set S of ordinal numbers such that |S| ≤ α,
there exists an ordinal ξ such that S ⊆ α + ξ and all the ordinals of S are
definable in the structure 〈Vα+ξ,∈, η〉η<α.

We feel that the assumption that such a ξ exists is similar to the as-
sumptions that such and such large cardinals exist. The axiom A2 is in-
tended for the canonical set theory, and we argue for it as follows. Theo-
rem 7 suggests that instead of imagining Cantor’s universe we can imagine
a very saturated model M∗ as in that theorem. This in turn suggests the
axiom A2 for α = ℵ0. (In fact A2 puts into the theory as much of the
property of definability of ordinals as possible.) For larger α we argue by
analogy.
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If the axiom A2 is too optimistic, we can restrict it to the case S ∈ α+.
[A2 for the case α = ℵ0 was already formulated in [M1] and a similar

supporting argument was given there.]
Of course if V = OD then, since |S| ≤ α, there exists an ordinal-definable

injection of S into α. Hence V = OD⇒ A2.
We do not know if A2 ⇒ A1. Let us show that A2 ⇒ A. Since for every ξ

there are at most α definitions in the language of the model 〈Vα+ξ,∈, η〉η<α,
it follows that A2 restricted to S ∈ α+ implies that there are at least α+

theories of the form Th(〈Vα+ξ,∈, η〉η<α). Of course this implies A.

A3. For every α and every set S such that |S| ≤ 2α there exists an
ordinal ξ such that S ⊆ Vα+ξ and for all a, b ∈ S, a 6= b we have

Th(〈Vα+ξ,∈, η, a〉η<α) 6= Th(〈Vα+ξ,∈, η, b〉η<α),

in other words ξ is such that unary formulas of first-order logic separate the
points of S in the model 〈Vα+ξ,∈, η〉η<α.

Again we feel that the assumption that such a ξ exists is similar to the
assumptions that such and such large cardinals exist. But A3 is intended
for the canonical set theory. The argument supporting A3 is similar to that
supporting A2. First Ockham’s principle of economy of concepts suggests
that L∗ is a natural principle and hence L should be accepted as an axiom
of the canonical set theory. Then Theorems 5 and 7 suggest that instead
of imagining Cantor’s universe we can imagine a very saturated model M ∗

satisfying L∗. (Of course A3 puts into the theory as much of the property L∗

as possible.) This suggests the axiom A3 for α = ℵ0. For larger α we argue
by analogy.

We note that, like L∗, A3 also yields L.
If A3 is too optimistic, we can restrict it to the case S = α+.
[A3 for α = ℵ0 was already formulated in [M1] and some parts of the

above supporting argument were given there.]
Again we do not know if A3 ⇒ A1, and again A3 ⇒ A. To check

the latter it suffices to apply the case S = α+ of A3. Indeed this case
implies that for some ξ there are at least α+ distinct theories of the form
Th(〈Vα+ξ,∈, η, γ〉η<α), where γ < α+, and A follows.

Of course if V = OD then, since |S| ≤ 2α, there exists an ordinal-
definable injection of S into α2. Hence it follows easily that V = OD⇒ A3.

Let A(α) or Ai(α) denote the restriction of A or Ai to a specific α, for
i = 1, 2, 3.

Theorem 8. ZFC + A2(α) implies that for every ordinal γ < α+ there
exists an ordinal-definable injection f : γ → α. In other words, HOD evalu-
ates α+ correctly.
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Proof. By A2(α) there exists an ordinal ξ such that all ordinals less than
γ are definable in 〈Vα+ξ,∈, η〉η<α. This defines an injection f of γ into a set
of least size definitions in the language of that model. Of course there exists
an ordinal-definable bijection between the set of formulas of that model
and α. Thus if we choose ζ such that α, γ and ξ are definable in 〈Vζ ,∈〉,
then f is also definable in 〈Vζ ,∈〉.

Enayat [E] and Woodin [W1] proved some consequences of A(ℵ0),A2(ℵ0)
and A3, showing that each of these axioms implies the existence of very
irregular ordinal-definable sets. With their permission we add the following
information about their results.

We introduce the usual Cantor set topology in P (ω).

Theorem 9 (W. H. Woodin). ZFC + A2(ℵ0) implies the existence of
uncountable sets X ⊆ P (ω), X ∈ OD, such that X has no perfect subsets.

Proof. By Theorem 8, A2(ℵ0) ⇒ ℵHOD
1 = ℵ1. Thus for every ξ < ω1,

there exists an ordinal-definable injection of ξ into ω. Let fξ be the first
such injection with respect to the natural well-ordering of OD, and let xξ =
{p(m,n) : f−1

ξ (m) < f−1
ξ (n)}, where

p(m,n) =
(
m+ n+ 1

2

)
+ n.

Then the set X = {xξ : ξ < ω1} is ordinal-definable and |X| = ℵ1. But
X has no perfect subsets since the Boundedness Theorem of descriptive set
theory says that a perfect (or even analytic) set of codes of ordinals can
represent only countably many ordinals.

Before stating the theorem of Enayat recall that ZF + A3(ℵ0) implies
the axiom L.

Theorem 10 (A. Enayat). ZFC + L implies the existence of definable
sets of real numbers which are not Lebesgue-measurable and do not have the
property of Baire.

Proof (in outline). It is shown in [E] that L implies that for every set A
there exists a linear ordering of A which is definable in terms of A. Hence
the set P (P (ω)) has a definable linear ordering. It was shown by Sierpiński
[S] that one can define sets of reals as required in Theorem 10 in terms of
any linear ordering of P (P (ω)).

(Each of Theorems 9 and 10 implies a negative solution of Problem 1 of
[M1], namely that our axioms refute the Axiom of Determinacy restricted
to ordinal definable subsets of ω2.)

A second theorem of Woodin [W1] says that ZFC + A(ℵ0) implies the
existence of sets X ⊆ ω2, X ∈ OD, for which the axiom of determinacy fails.
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[Adapting the proof of a well known theorem of R. M. Solovay (see [Ke, The-
orem 7.3]), he shows that if all sets X ⊆ ω2, X ∈ OD, were determined, then
HOD would think that ω1 is a measurable cardinal. But this is inconsistent
with A(ℵ0) since the latter implies that there exists an injection of ω1 into
P (ω) which belongs to HOD.]

A third theorem of Woodin [W1] says that ZFC + A3 implies the ex-
istence of a cardinal α ≤ ℵ2 and a set X ⊆ α2, |X| > α, X ∈ OD, such
that X has no subset lexicographically isomorphic to α2. Theorem 9 and
the latter imply in particular that if A2(ℵ0) or A3 are accepted, then the
class L[cf(α)α] in the statement B1 cannot be replaced by the class OD.

7. Some concluding remarks. 1. As mentioned in Section 1, at pre-
sent there are no compelling reasons for rejecting V = OD from the canonical
set theory. And in spite of the fact that our axioms Ai (i = 1, 2, 3) follow
from V = OD we have no arguments supporting V = OD like those in
Sections 2 and 6 supporting the Ai’s. Of course, if V = OD, then B and B0

are equivalent to GCH. I think that the nature of the real line is so different
from the nature of Ord that there is a good chance that some natural and
interesting axiom will be found which will imply that some real numbers are
outside of OD.

2. Concerning the concept of a canonical set theory which was introduced
at the beginning of this paper, this is the set theory which a Platonist would
call true. But I do not believe in the existence of a Platonic (nonphysical)
reality of mathematical objects. (See [M1, M3, M4, M5] for more detailed
discussions of this view.) Hence I think that for the case of ZFC the concept
of truth in its usual meaning does not apply. Indeed, truth is an agreement
with reality, therefore it makes sense only for those mathematical theories,
necessarily weaker than ZFC, which are intended to be descriptions of some
physical reality. Still, a canonical set theory extending ZFC is motivated by
its interesting and beautiful formal qualities, by its consequences for sets
of lower ranks, by the fact that it unifies mathematics in a deep sense,
and because it is a natural extension of the logic which evolved in human
brains.
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