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The universal minimal system for the group of
homeomorphisms of the Cantor set

by

E. Glasner (Ramat Aviv) and B. Weiss (Jerusalem)

Abstract. Each topological group G admits a unique universal minimal dynami-
cal system (M(G), G). For a locally compact noncompact group this is a nonmetrizable
system with a rich structure, on which G acts effectively. However there are topological
groups for which M(G) is the trivial one-point system (extremely amenable groups), as
well as topological groups G for which M(G) is a metrizable space and for which one
has an explicit description. We show that for the topological group G = Homeo(E) of
self-homeomorphisms of the Cantor set E, with the topology of uniform convergence, the
universal minimal system (M(G), G) is isomorphic to Uspenskij’s “maximal chains” dy-

namical system (Φ,G) in 22E . In particular it follows that M(G) is homeomorphic to
the Cantor set. Our main tool is the “dual Ramsey theorem”, a corollary of Graham
and Rothschild’s Ramsey’s theorem for n-parameter sets. This theorem is used to show
that every minimal symbolic G-system is a factor of (Φ,G), and then a general procedure
for analyzing G-actions of zero-dimensional topological groups is applied to show that
(M(G), G) is isomorphic to (Φ,G).

0. Introduction. This work is a sequel to our paper [3] and it es-
tablishes results similar to those obtained in [3] for the group S(Z) (see
also Pestov [7]). This time we are dealing with the Polish topological group
G = Homeo(E) of self-homeomorphisms of the Cantor set E. More explic-
itly, we identify in the present work the universal minimal G-dynamical
system (M(G), G) as the natural induced action of G on Uspenskij’s “max-
imal chains space” Φ (a subset of the compact hyper-hyper-space 22E). In
particular it follows that M(G) is a compact metric space (in fact homeo-
morphic to the Cantor set) and can be described as the inverse limit of a
countable collection of minimal symbolic G-systems. We also show that the
system (Φ,G) is proximal, thereby establishing that every minimalG-system
is necessarily proximal. Our methods of proof are similar to those employed
in [3]. However, whereas in [3] the main combinatorial tool was the well
known Ramsey theorem, here we use one of the consequences of Graham
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and Rothschild’s “Ramsey’s theorem for n-parameter sets” as the key tool
for proving dynamical results. It is perhaps worthwhile to point out the re-
versal of roles which takes place here: combinatorial results are employed
for proving dynamical theorems rather than the reverse situation in which
dynamical methods are utilized in order to prove (number-theoretical) com-
binatorial results—situations with which the Furstenberg school made us
familiar in recent years.

The motivation for considering the question of identifying the univer-
sal minimal Homeo(E)-system becomes clear upon recalling some results
established by V. Pestov and V. Uspenskij. First, Pestov [6] showed that
the universal minimal dynamical system (M(G), G) for the group G =
Homeo+(S1), of orientation-preserving homeomorphisms of the circle with
the compact-open topology, coincides with the natural action of G on S1.
This provided the first nontrivial example of a metrizable universal minimal
system. He then proposed the possibility that similarly for G = Homeo(X),
the group of homeomorphisms of any compact manifold X (say a sphere),
the universal minimal G-system coincides with the natural action of G on X.
Then, in [9], V. Uspenskij showed that the action of a topological group G
on its universal minimal system M(G) is never 3-transitive, so that, e.g., for
manifolds X of dimension > 1 as well as for X = Q, the Hilbert cube, and
X = E, the Cantor set, M(G) cannot coincide with X. To establish this
result he constructed, for any compact dynamical system, the associated
dynamical system Φ of maximal chains, which in the case of the canonical
action of G = Homeo(E) on E turns out to be isomorphic to the universal
minimal system (M(G), G). We refer to the introduction to our previous
paper [3] for further motivation and background concerning the study of
universal minimal systems.

We thank Noga Alon for confirming the validity of the relevant combi-
natorial result, which our investigation of the dynamical problem led us to
formulate. Later we found it mentioned explicitly in [8] where it is called
the “dual Ramsey theorem”.

1. The space Φ(E) of maximal chains. For a compact space Y , given
a finite collection of open sets U = {U1, . . . , Uk} in Y , we set

(1.1) 〈U1, . . . , Uk〉 =
{
F ∈ 2E : ∀j, F ∩ Uj 6= ∅ and F ⊂

k⋃

j=1

Uj

}
.

The family of sets of the form (1.1) forms a basis for the Vietoris topol-
ogy on 2Y , the space of closed subsets of Y . Let E be the Cantor set and
let G denote the Polish group of self-homeomorphisms of E equipped with
the topology of uniform convergence. The Cantor set E is characterized,
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up to a homeomorphism, by being compact, separable, perfect and zero-
dimensional. However, we will consider it here as the classical Cantor set,
i.e. the ternary subset of the interval [0, 1]. Thus E has the following repre-
sentation:

E =
∞⋂

n=0

In,

where In =
⋃2n
j=1 I

n
j is the disjoint union of the 2n closed intervals ob-

tained by removing from I = [0, 1] the appropriate 2n − 1 open “middle
third” intervals, which we call the adjacent intervals. In what follows we will
write Imj for the clopen subset Imj ∩ E of E. For each integer m ≥ 1,
Im = {Imj : 1 ≤ j ≤ 2m} denotes the basic partition of E into 2m clopen
“intervals”.

Let Φ = Φ(E) ⊂ 22E be the collection of maximal chains on E. Recall
that a chain on E is a family c = {Fα}α∈A of closed subsets linearly ordered
by inclusion (for Fα, Fβ ∈ c either Fα ⊂ Fβ or Fβ ⊂ Fα). A chain c is called
maximal if it is maximal with respect to inclusion (if c ⊂ c′ and c′ is a chain
then c = c′). As was shown by Uspenskij (see [9]), Φ is a closed subset of the
compact and metrizable space 22E . The natural action of G on E induces
an action of G on 22E , and with respect to this action Φ is an invariant set.
Clearly every c ∈ Φ has a first element of the form {r(c)} with r(c) ∈ E. It
is easy to verify that the root map r : (Φ,G)→ (E,G) is a homomorphism
of dynamical systems.

For each permutation α ∈ S2n and 1 ≤ k ≤ 2n let

Ikα = 〈Inα(1), . . . , I
n
α(k)〉.

Thus Ikα is a clopen subset of 2E and we now set

Unα = 〈I1
α, I

2
α, . . . , I

2n
α 〉 ∩ Φ

= 〈〈Inα(1)〉, 〈Inα(1), I
n
α(2)〉, . . . , 〈Inα(1), I

n
α(2), . . . , I

n
α(2n)〉〉 ∩ Φ

= {c ∈ Φ : ∀j ∃F ∈ c ∩ Ijα, and ∀F ∈ c ∃j, F ∈ Ijα}.
The proof of the following lemma is straightforward.

Lemma 1.1. The collection {Un
α : α ∈ ⋃∞n=1 S2n} is a basis for the Vie-

toris topology on Φ ⊂ 22E .

Let P ⊂ G be the group of order preserving homeomorphisms of E.
With every p ∈ P we associate the unique homeomorphism p̃ : [0, 1]→ [0, 1]
such that p̃�E = p and p̃ is linear on the adjacent open intervals. The
map p 7→ p̃ is a topological isomorphism of the group P onto the closed
subgroup P̃ = {p̃ : p ∈ P} of the Polish group Aut(I,<) of order preserving
homeomorphisms of I = [0, 1].
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Theorem 1.2. The topological group P is topologically isomorphic to the
Polish group Aut(Q, <) of order preserving bijections of the rational num-
bers Q, equipped with the topology of pointwise convergence. In particular
then, P has the fixed point property on compacta.

Proof. Let {Vn}n∈N be some enumeration of the set of adjacent open
intervals associated with the construction of E. The order induced on the
collection of these intervals by the natural order on [0, 1] has the order type
of the rational numbers Q (it is linear, there is no first nor last element and
there are infinitely many intervals between any two). It is easy to check that
any element p ∈ P defines an element A(p) = αp ∈ Aut(Q, <) and that the
map p 7→ A(p), p ∈ P , is a topological isomorphism of P onto Aut(Q, <).
By a theorem of Pestov [6] the group Aut(Q, <) has the fixed point property
on compacta and therefore so does P .

For t ∈ [0, 1] let Et = E ∩ [0, t] and set c0 = {Et : t ∈ [0, 1]}. It
is easy to check that c0 is a maximal chain on E, i.e. an element of Φ.
Two more examples of chains with roots at 0 ∈ E are the chains c+

0 =
{{0}} ∪ {Et ∪ {1} : t ∈ [0, 1]} and c−0 = {{0}} ∪ {Ft ∪ {0} : t ∈ [0, 1]}, where
Ft = E ∩ [t, 1]. We let c1, c

±
1 be the images of the chains c0, c

±
0 under the

homeomorphism σ ∈ G, σ : E → E obtained by restricting the reflection
of [0, 1] about its midpoint 1/2 to E. Note that for any dense sequence of
distinct points in E, say {x0, x1, . . .}, the ascending sequence of finite sets
c = {{x0, x1, . . . , xn} : n = 0, 1, . . .} ∪ {{E}} forms an element of Φ with
root r(c) = x0.

Theorem 1.3. (i) The action of G on Φ is minimal.
(ii) The stability subgroup Stc0 = {g ∈ G : gc0 = c0} coincides with P .

(iii) The six points {c0, c
±
0 , c1, c

±
1 } are the only fixed points of P in Φ.

(iv) The action of G on Φ is proximal.

Proof. (i) Given two basic neighborhoods of the same “rank” Un
α and Un

β,
α, β ∈ S2n , as given in Lemma 1.1, there exists a homeomorphism h ∈ G
which maps one onto the other, e.g. the obvious piecewise linear homeo-
morphism associated with the permutation α ◦ β−1. This property clearly
implies minimality of (Φ,G).

(ii) For every p ∈ P and t ∈ [0, 1] we have p(Et) = Ep(t) and it follows
that pc0 = {p(Et) : t ∈ [0, 1]} = c0. Conversely, if gc0 = c0 for g ∈ G then
for every t ∈ E, g(Et) = Es for some s ∈ E. The fact that c0 is a chain
implies that s = g(t), and that g is in P .

(iii) Clearly each of these six points is a fixed point for P . Conversely,
assume that c ∈ Φ is P -fixed with r(c) = 0. We first observe that elements
F ∈ c can have no nontrivial “gaps”. In fact, if F ∈ c is such that for some
real numbers 0 < a < b < 1 we have E ∩ (a, b) 6= ∅, F ∩ (a, b) = ∅ yet
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F ∩(0, a] 6= ∅ as well as F ∩ [b, 1) 6= ∅, then there surely is a homeomorphism
p ∈ P with F \pF 6= ∅ 6= pF \F . However, as pc = c, we also have F, pF ∈ c.
Since these two sets are not comparable this contradicts the fact that c is
a chain. We observe that this immediately rules out the possibility that the
chain c is of the “discrete type” described above. It follows that for every
F ∈ c with {0}  F  E, there exists 0 < a < 1 such that either F ∩ [0, a)
or F ∩(a, 1] is an infinite set. In the first case it is then easy to verify that for
every t ∈ [0, 1] there exists a sequence pn ∈ P such that either lim pnF = Et
or lim pnF = Et ∪ {1} (in the compact space 2E). Since pnc = c for each n,
it follows that either Et or Et ∪ {1} is in c. It is now clear how one finishes
the proof.

(iv) Let c1, c2 be two chains in Φ. Let Z = cls{(gc1, gc2) : g ∈ G} be the
orbit closure of the point (c1, c2) in the product system (Φ× Φ,G). By the
fixed point property of P , there exists a point (a1, a2) ∈ Z with pai = ai
for every p ∈ P, i = 1, 2. By (iii) we know that both a1 and a2 are in
{c0, c

±
0 , c1, c

±
1 }. It therefore suffices to show that any pair of points in this

set is proximal. Let us consider the case a1 = c0 and a2 = c1. Let Um
id be the

basic neighborhood of c0 at level m. By considering the canonical partition
{Inj : j = 1, . . . , 2n} of a much higher order n, it is easy to “cook up” a
homeomorphism g ∈ G that will map the first 2m and the last 2m intervals
of this partition into the 2m corresponding intervals {Imj : j = 1, . . . , 2n} in
their natural order. For such g we have gc0, gc1 ∈ Um

id and we conclude that
indeed c0 and c1 are proximal. The arguments proving the proximality of
the other pairs are similar and we omit the proofs.

2. On the structure of the group G = Homeo(E). For each n we let

Hn = {g ∈ G : g(Inj ) = Inj , ∀1 ≤ j ≤ 2n}
Clearly Hn is a clopen subgroup of G and we note that the system of clopen
subgroups {Hn : n = 2, 3, . . .} forms a basis for the topology of G at the
identity e ∈ G. The results in this section are not required for the proof of
our main result. We include them for completeness.

Theorem 2.1. Let L be the subset of G consisting of all homeomor-
phisms g ∈ G which preserve λ, the Cantor–Lebesgue measure on E. Then
L and P are closed subgroups of G, L ∩ P = {id} and G = LP = PL.

Proof. Let g ∈ G be given and set ν = gλ. For every Inj we have
ν(Inj ) = λ(g−1Inj ) and it follows that to each number in the set {ν([0, t]) :
Et = E ∩ [0, t] is a clopen subset of E} corresponds a unique p(t) ∈ E such
that Ep(t) = [0, p(t)] ∩ E is clopen and λ([0, t]) = ν([0, p(t)]). The map p

extends uniquely to a homeomorphism p ∈ G and we have p−1gλ([0, t]) =
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gλ([0, p(t)]) = ν([0, p(t)]) = λ([0, t]). Thus l = p−1g ∈ L and g = pl. The
relation L ∩ P = {id} is easy to verify.

It is also easy to verify that in the unique decomposition h = lp of an
element h ∈ Hn as a product of l ∈ L and p ∈ P we have l ∈ Ln = L ∩Hn

and p ∈ Pn = P ∩Hn, i.e. Hn = LnPn. Similarly Hn = PnLn.
The next proposition shows that a direct proof of the universality of

(Φ,G) along the lines of Pestov’s proof in [7] of the main result of [3] (i.e.
by showing that G/P uniformly embeds into (M(G), G)) is not possible.

Proposition 2.2. (i) The natural projection π : G → G/P restricts to
a homeomorphism onto π : L→ G/P .

(ii) The map gP 7→ gc0 from G/P onto the G-orbit Gc0 ⊂ Φ is 1-1 and
continuous but not a homeomorphism.

Proof. (i) Clearly the restriction π : L → G/P is 1-1, continuous and
onto. A basic open neighborhood of g ∈ G has the form U = gHn for some
n ≥ 0. Clearly for g ∈ L, L ∩ U = g(L ∩ Hn) = gLn and therefore the
sets gLn, n ∈ N, form a basis for the relative topology at g ∈ L. Now
π(gLn) = gLnP = gLnPnP = gHnP = π(gHn) and as the latter is open in
G/P we see that π : L→ G/P is also open, hence a homeomorphism.

(ii) If we consider the commutative diagram

L

α

��

π

##FFFFFFFFF

G/P

β||xxxxxxxx

Gc0

we have α = β ◦ π. Since the maps π and α are continuous, so is β. Now
it is not hard to construct a sequence ln ∈ L such that lnc0 → c0 in Φ but
ln 6→ e in L so that β is not a homeomorphism.

Lemma 2.3. The closed subgroup P ⊂ G has the following properties:

(i) P ⊂ gPg−1 ⇒ g ∈ P ∪ σP .
(ii)

⋂
g∈G g

−1Pg = {e}.
Proof. (i) We have

Pgc0 ⊂ (gPg−1)gc0 = gPc0 = gc0,

hence, by Theorem 1.3(iii), gc0 is an element of the set {c0, c
±
0 , c1, c

±
1 } of

P -fixed points in Φ. Clearly then gc0 ∈ {c0, c1} and we either have gc0 = c0,
in which case g ∈ P , or gc0 = σc0 and then σg ∈ P .

(ii) For h ∈ ⋂g∈G g
−1Pg we have hgc0 = gc0 for every g ∈ G. Thus h

acts as the identity on a dense subset of Φ, hence on all of Φ. In particular
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hr(c) = r(c) for every c ∈ Φ and we conclude that h acts as the identity
on E; i.e. h = id = e.

3. The symbolic dynamical systems (Ωk, G). Fix an integer k ≥ 1
and consider the collection

Ak = {a = {A1, . . . , Ak} : a partition of E into k nonempty clopen sets}.
As above we let, for each integer m ≥ 1, Im = {Imj : 1 ≤ j ≤ 2m} denote
the basic partition of E into 2m clopen “intervals”.

Each a ∈ Ak determines a smallest integer m′, with 2m
′ ≥ k, such

that a is Im
′

= {Im′j : 1 ≤ j ≤ 2m
′} measurable. We denote by Ak

m the
(finite) collection of all a whose m′ ≤ m. Thus Ak =

⋃
m≥1 Ak

m. It will be
convenient to identify elements of Ak

m as labelling with exactly k labels of
the collection Im. Thus

Ak
m
∼= {1, . . . , k}2m∗ ,

where the ∗ means that only ordered sequences (of length 2m) where all k
digits appear are counted.

For a fixed partition {B1, . . . , Bk} of E into k nonempty clopen sets, let

H = {g ∈ G : gBj = Bj , ∀1 ≤ j ≤ k}.
Then H is a clopen subgroup and the discrete homogeneous space H\G can
be identified with Ak. In fact an element Hg ∈ H\G is uniquely determined
by the partition a = {g−1Bj : 1 ≤ j ≤ k}, and conversely to every partition
a ∈ Ak corresponds a coset Hg ∈ H\G. In fact, if a = {A1, . . . , Ak} we can
choose g to be any homeomorphism of E with Aj = g−1Bj .

In particular for k = 2n, taking Bj = Inj , 1 ≤ j ≤ 2n, we have a parame-
terization of Ak = A2n by the discrete homogeneous space Hn\G.

Set
Ωk = {1,−1}Ak ∼= {1,−1}Hn\G.

The group G acts on the compact space Ωk as follows. For ω ∈ Ωk and
g ∈ G let

gω(a) = ω(g−1A1, . . . , g
−1Ak)

for any a = {A1, . . . , Ak} ∈ Ak, and the G-action on Ωk = Ω2n can be
described equivalently by gω(Hng

′) = ω(Hng
′g) for every Hng

′ ∈ Hn\G.
Again for k = 2n let Sk denote the group of permutations of {1, . . . , k}

and set
Tk = {1,−1}Sk .

We call elements of Tk tables. The natural action of Sk on {1, . . . , k} defines
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induced actions of Sk on Tk, Ak and Ωk as follows. For σ, θ ∈ Sk, T ∈ Tk,
a = {A1, . . . , Ak} ∈ Ak and ω ∈ Ωk let

(LσT )(θ) = T (σ−1θ), σa = {Aσ−1(1), . . . , Aσ−1(k)}, (σω)(a) = ω(σa).

Clearly this Sk-action on Ωk commutes with the G-action, i.e. Sk acts as a
group of automorphisms of the dynamical system (Ωk, G).

Using tables we can give an alternative description of elements of Ωk =
{1,−1}Ak

. Let Âk be the quotient space Ak/Sk, i.e. the collection of un-
ordered partitions of E into k nonempty clopen sets. Given ω ∈ Ωk let
ω̂ ∈ Ω̂k = (Tk)Âk

be defined by

(ω̂)(â)(σ) = ω(σa∗),

where a∗ is obtained from the partition a = {A1, . . . , Ak} ∈ Ak by rearrang-
ing the sets Aj in the order in which they appear on E going from left to
right.

It is easy to see that ω 7→ ω̂ is an isomorphism of the G-system (Ωk, G)
onto the G-system (Ω̂k, G), where the G-action on the latter is defined by
(gω̂)(â) = (ω̂)(g−1â).

4. The symbolic factors of (Φ,G). In this section we show that all the
minimal subsets of the system (Ωk, G) are factors of (Φ,G). Throughout the
section k = 2n. We first indicate how one associates with each table T ∈ Tk a
minimal subsystem ΣT ⊂ Ωk and a homomorphism φT : (Φ,G)→ (ΣT , G).

Let UT ⊂ Φ be the clopen subset
⋃
{Un

α : α ∈ Sk, T (α) = 1}.

We let φT : Φ→ Ωk be the associated “name map”. As indicated in Section 3
we identify Ak with Hn\G and set

φT (c)(Hng) =
{

1, gc ∈ UT ,

−1, gc 6∈ UT .

It is easily seen that φT is indeed a homomorphism from (Φ,G) into (Ω,G)
and we set ΣT = φT (Φ).

Theorem 4.1. Every minimal subset of the system (Ωk, G) is a factor
of the minimal system (Φ,G).

Proof. Fix a minimal subset Σ ⊂ Ωk. We shall construct a homomor-
phism φ : Φ→ Σ. Fix a point ω ∈ Σ.

As described in Section 3, the corresponding element ω̂ ∈ Ω̂k = (Tk)Âk

is defined by
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(ω̂)(â)(σ) = ω(σa∗),

where a∗ is obtained from the partition a = {A1, . . . , Ak} ∈ Ak by rear-
ranging the sets Aj in the order in which they appear on E going from
left to right. We consider ω̂ as a coloring of elements of Âk (i.e. unordered
k-partitions) by r “colors”, where the colors we use are the tables in Tk =
{1,−1}Sk , so that r = card Tk = 2k!.

Applying the dual Ramsey theorem (Corollary 10 of [4], see also Corol-
lary 4.2 of [8], page 130), for each m there exists a large number n =
DR(k,m, r) and a partition of {0, 1, . . . , 2n − 1} into 2m sets so that when
inducing a coloring on Âk

m from the coloring defined by ω̂�Âk
n we get a

monochromatic coloring.
This means that applying a suitable gm ∈ G to ω, we get an ωm = gmω

in the G-orbit of ω which has a constant table on Âk
m.

Taking a subsequence mj so that limj→∞ ωmj = ω0 exists we find that
ω0 is in the minimal set Σ and that as an element of Ωk it has a con-
stant table T . Clearly φT (c0) = ω0 and we conclude that Σ = ΣT as re-
quired.

5. The universal transitive and minimal systems of a topological
group T . This section is reproduced verbatim from [3] in order to make
the exposition self-contained.

Let T be a topological group; we write L(T ) for the commutative C∗-
algebra of bounded left uniformly continuous C-valued functions on T with
the norm ‖f‖ = supt∈T |f(t)|, and with f∗(t) = f(t). Recall that a function
f : T → C is in L(T ) iff it is bounded and for every ε > 0 there exists a
symmetric neighborhood V = V −1 of the unit element e ∈ T with

st−1 ∈ V ⇒ |f(s)− f(t)| < ε.

An equivalent condition is ‖Lrf − f‖ < ε for every r ∈ V , where Lrf(t) =
f(r−1t). It is easy to see that L(T ) is right and left T -invariant; that is,
f ∈ L(T ) ⇒ Rsf ∈ L(T ) and Lsf ∈ L(T ), where Rsf(t) = f(ts) and
Lsf(t) = f(s−1t). The next lemma is well known and its proof is straight-
forward.

Lemma 5.1. Let (X,x0, T ) be a pointed T -dynamical system (i.e. X is
a compact Hausdorff space and the action (t, x) 7→ tx, T × X → X is
jointly continuous; x0 ∈ X is a distinguished point with OT (x0) = X).
Let F ∈ C(X). Then the function f = fx0 defined by fx0(t) = F (tx0) is an
element of L(T ). In fact the map

Φ : F 7→ fx0 , Φ : C(X)→ L(T )
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is a linear isometry of C∗-algebras such that for every s ∈ T ,

Φ ◦ Ls = Ls ◦ Φ.
In the situation described in the lemma, we say that the function f is

coming from the pointed system (X,x0, T ).
Let L be the Gelfand space corresponding to the C∗-algebra L(T ) and

`0 ∈ L the multiplicative functional `0 : f 7→ f(e) corresponding to the
evaluation of a function in L(T ) at the identity element e ∈ T .

Corollary 5.2. With the natural action of the group T on the Gelfand
space L and the distinguished point `0, the pointed dynamical system
(L, x0, T ) is the universal point transitive T -system. That is, for every point
transitive T -system (X,x0, T ) with distinguished transitive point x0 there
exists a unique homomorphism

φ : (L, `0, T )→ (X,x0, T ).

Proof. The map φ is realized by the dual of the isometric isomorphism
Φ : C(X)→ L(T ) on the corresponding Gelfand spaces.

We shall use the notation |A| for the Gelfand space of a closed T -invariant
subalgebra A ⊂ L(T ) (i.e. LsA = A for every s ∈ T ). Thus with this nota-
tion L = |L(T )| and in the above corollary |A| ∼= X where A = Φ(C(X)).

Let now M ⊂ L be any minimal subset. If (X,T ) is a minimal system
then the restriction of the map φ : L → X to M is a homomorphism
φ : M → X. So in this sense M is a universal minimal system. It turns
out that in fact any two minimal sets M1 and M2 of L are isomorphic as
dynamical systems (we shall not prove this fact here; see for example [1]).
Thus (M, T ) is the unique universal minimal system (although not as a
pointed system; fixing a distinguished point m0 ∈ M and given a pointed
minimal system (X,x0, T ), a homomorphism φ : L → X with φ(m0) = x0

may not exist). The next theorem is due to Pestov [6] (see also [5]).

Theorem 5.3. If the topology of T admits a basis for neighborhoods at
e consisting of clopen subgroups, then the topological space L (and hence
also M) is zero-dimensional.

Proof. Given a clopen subgroup H ⊂ T let

LH = {f ∈ L(T ) : Lsf = f, ∀s ∈ H}.
If f̃ is any bounded function on the discrete space H\T then the correspond-
ing lift f(t) = f̃(Ht) is an element of LH and conversely every element of
LH defines a function in l∞(H\T ). Thus |LH | ∼= β(H\T ) where β(H\T )
is the Stone–Čech compactification of the discrete space H\T ; in particu-
lar |LH | is zero-dimensional (in fact extremely disconnected when H\T is
infinite; see [2]).
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Given f ∈ L(T ) and ε > 0 there exists a clopen subgroup H ⊂ T with
supt∈T diam f(Ht) < ε. The function g̃ ∈ l∞(H\T ) defined by g̃(Ht) =
inf{f(rt) : r ∈ H} lifts to a function g(t) = g̃(Ht) in LH with ‖g − f‖ ≤ ε.

It follows that the algebra
⋃
{LH : H is a clopen subgroup of T}

is dense in L(T ) and by the Stone–Weierstrass theorem, its closure is all
of L(T ). We conclude that

L = lim←−|LH |
is the inverse limit of the zero-dimensional spaces |LH | over the directed
system of clopen subgroups H ⊂ T . In particular we conclude that L and
therefore also its subset M are zero-dimensional.

Again let (X,T ) be a T -dynamical system and let F ∈ C(X) be a real-
valued function. Let I be the interval [−‖F‖, ‖F‖], and consider the compact
space IT of all maps from T to I (with the topology of pointwise conver-
gence). We define a map ψ : X → IT by ψ(x) = fx, i.e. fx(t) = F (tx)
(t ∈ T ). Let Y = ψ(X). As observed in Lemma 5.1 each fx is in L. It is
easy to check that ψ is a continuous map and if we let T act on Y according
to the formula tfx(s) = fx(st), then tψ(x) = tfx = ftx = ψ(tx). In fact we
have:

Lemma 5.4. The action of T on Y is jointly continuous and the map
ψ : (X,T )→ (Y, T ) is a homomorphism of T -systems.

6. The universal minimal G-system. Recall that the system of
clopen subgroups Hn = {g ∈ G : g(Inj ) = Inj , ∀1 ≤ j ≤ 2n}, n = 1, 2, . . . ,
forms a basis for the topology of G at the identity e ∈ G. By Theorem 5.3
it follows that the universal minimal dynamical system (M(G), G) is zero-
dimensional. Let D ⊂M(G) be a clopen subset and FD = 21D−1 ∈ C(M),
with 1D the indicator function of D. If H = {g ∈ G : gD = D} then H is a
clopen subgroup of G and hence it contains Hn for some n. It follows that
the map ψD constructed above (see the paragraph preceding Lemma 5.4)
using FD as F can be defined as a mapping into {1,−1}Hn\G and thus we
have ψD : (M,G) → (Ω2n , G), so that with YD = ψD(M(G)), the system
(YD, G) is a minimal symbolic subsystem of Ω2n .

Theorem 6.1. (Φ,G) is the universal minimal G-system. Hence all
minimal actions of G are proximal.

Proof. Since (M(G), G) is the universal G-minimal system, there exists
a homomorphism π : M(G) → Φ and we pick some m0 ∈ M(G) with
π(m0) = c0 as a distinguished point for M(G).
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Given a clopen subset D ⊂M(G) consider the following diagram:

(M(G),m0)

ψD
��

π // (Φ, c0)

φD
��

(YD, yD) (YD, y′D)

The homomorphism ψD was defined above (see the first paragraph of the
section) and yD = ψD(m0). We apply Theorem 4.1 to define the homomor-
phism φD : Φ→ Ωk, with y′D defined to be φD(c0).

Now the image (ψD × (φD ◦ π))(M(G),m0) = (W, (yD, y′D)), with W ⊂
YD×YD, is a minimal subset of the product system (YD×YD, G). Since the
system (YD, G) is proximal the diagonal ∆ = {(y, y) : y ∈ YD} is the unique
minimal subset of the product system and we conclude that yD = y′D, so
that the above diagram is replaced by

(M(G),m0)

ψD ''NNNNNNNNNNN
π // (Φ, c0)

φDyyssssssssss

(YD, yD)

Next form the product space

Π =
∏
{YD : D a clopen subset of M(G)},

and let ψ : M(G)→ Π be the map whose D-projection is ψD (i.e. (ψ(m))D
= ψD(m)). We set Y = ψ(M(G)) and observe that since clearly the maps
ψD separate points on M(G), the map ψ : M(G) → Y is an isomorphism,
with ψ(m0) = y0, where y0 ∈ Y is defined by (y0)D = yD. Likewise define
φ : Φ → Y by (φ(m))D = φD(m), so that also φ(c0) = y0. These equations
force the identity ψ = φ ◦ π in the diagram

(M(G),m0)

ψ &&MMMMMMMMMM
π // (Φ, c0)

φzzuuuuuuuuu

(Y, y0)

Since ψ is a bijection it follows that so are π and φ, and the proof is com-
plete.

References

[1] R. Ellis, Lectures on Topological Dynamics, W. A. Benjamin, New York, 1969.
[2] L. Gillman and M. Jerison, Rings of Continuous Functions, Van Nostrand, Princeton,

1960.



Homeomorphisms of the Cantor set 289

[3] E. Glasner and B. Weiss, Minimal actions of the group S(Z) of permutations of the
integers, Geom. Funct. Anal. 12 (2002), 964–988.

[4] R. L. Graham and B. Rothschild, Ramsey’s theorem for n-parameter sets, Trans.
Amer. Math. Soc. 159 (1971), 257–292.

[5] M. G. Megrelishvili and T. Scarr, The equivariant universality and couniversality of
the Cantor cube, Fund. Math. 167 (2001), 269–275.

[6] V. G. Pestov, On free actions, minimal flows, and a problem by Ellis, Trans. Amer.
Math. Soc. 350 (1998), 4149–4165.

[7] —, Remarks on actions on compacta by some infinite-dimensional groups, in: Infinite
Dimensional Lie Groups in Geometry and Representation Theory (Washington, DC,
2000), World Sci., River Edge, NJ, 2002, 145–163.
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