On isomorphism classes of $C(2^{\mathfrak{m}} \oplus [0, \alpha])$ spaces

by

Elói Medina Galego (São Paulo)

Abstract. We provide a complete isomorphic classification of the Banach spaces of continuous functions on the compact spaces $\mathbf{2}^{\mathfrak{m}} \oplus [0, \alpha]$, the topological sums of Cantor cubes $\mathbf{2}^{\mathfrak{m}}$, with \mathfrak{m} smaller than the first sequential cardinal, and intervals of ordinal numbers $[0, \alpha]$. In particular, we prove that it is relatively consistent with ZFC that the only isomorphism classes of $C(\mathbf{2}^{\mathfrak{m}} \oplus [0, \alpha])$ spaces with $\mathfrak{m} \geq \aleph_0$ and $\alpha \geq \omega_1$ are the trivial ones. This result leads to some elementary questions on large cardinals.

1. Introduction and statement of the main results. Given a compact Hausdorff topological space K, C(K) stands for the Banach space of all continuous real-valued functions on K, equipped with the supremum norm. For a fixed cardinal number \mathfrak{m} , $2^{\mathfrak{m}}$ denotes the product of \mathfrak{m} copies of the two-point space 2, provided with the product topology.

If α is an ordinal number, $[0, \alpha]$ denotes the interval of ordinals $\{\xi : 0 \leq \xi \leq \alpha\}$ endowed with the order topology. As usual, we denote by $\aleph_0, \aleph_1, \omega$ and ω_1 the first infinite cardinal, the first uncountable cardinal, the first infinite ordinal and the first uncountable ordinal, respectively. The symbol $X \oplus Y$ will denote the Cartesian product of the Banach spaces X and Y, i.e. the space of all pairs $(x, y), x \in X, y \in Y$, with the norm $||(x, y)|| = \max\{||x||, ||y||\}$. We write $X \sim Y$ when the Banach spaces X and Y are isomorphic. By $X \hookrightarrow Y$ we mean that the Banach space Y contains a subspace isomorphic to the Banach space X. Other notations are standard and in conformity with [20].

This paper is concerned with the question of describing the isomorphism classes of $C(\mathbf{2}^{\mathfrak{m}} \oplus [0, \alpha])$ spaces, where $\mathbf{2}^{\mathfrak{m}} \oplus [0, \alpha]$ is the topological sum of $\mathbf{2}^{\mathfrak{m}}$ and $[0, \alpha]$ for some cardinal \mathfrak{m} and ordinal α , that is, of the family of $C(\mathbf{2}^{\mathfrak{m}}) \oplus C([0, \alpha])$ spaces. As we will see in the first three remarks below, the motivation for this work comes from some classical isomorphic

²⁰⁰⁰ Mathematics Subject Classification: Primary 46B03, 46E15; Secondary 03E55.

Key words and phrases: Banach spaces of continuous functions, Cantor cube, isomorphic classification, Mazur property, sequential cardinal.

classifications of C(K) spaces closely connected with $C(2^{\mathfrak{m}}) \oplus C([0, \alpha])$ spaces.

REMARK 1.1. First of all, notice that this family of spaces includes the finite-dimensional spaces $\mathbb{R}^{2^m+\alpha}$ as well as the $C([0,\alpha])$ spaces with $\alpha \geq \omega$. The isomorphic classification of $C([0,\alpha])$ spaces was accomplished by Bessaga and Pełczyński [2] in the case where $\omega \leq \alpha < \omega_1$; by Semadeni [19] in the case where $\omega_1 < \alpha \leq \omega_1 \omega$; by Labbé [11] in the case where $\omega_1 \omega < \alpha < \omega_1^{\omega}$; and independently by Kislyakov [10] and Gul'ko and Os'kin [8] in the general case.

REMARK 1.2. For $\mathfrak{m} = \aleph_0$ and $\alpha < \omega_1$, it follows from the classical Milyutin theorem [20, Theorem 21.5.10] about the isomorphic classification of C(K) spaces, with K compact metric uncountable, that every space of this family is isomorphic to $C(\mathbf{2}^{\aleph_0})$.

REMARK 1.3. Assume $\mathfrak{m} \geq \aleph_0$ and $\alpha < \omega_1$. Then $\mathbf{2}^{\mathfrak{m}}$ is homeomorphic to the topological product $\mathbf{2}^{\mathfrak{m}} \times \mathbf{2}^{\aleph_0}$. Hence $C(\mathbf{2}^{\aleph_0})$ is isomorphic to a complemented subspace of $C(\mathbf{2}^{\mathfrak{m}})$. That is, there exists a Banach space Y such that $C(\mathbf{2}^{\mathfrak{m}})$ is isomorphic to $Y \oplus C(\mathbf{2}^{\aleph_0})$. Therefore, by the above mentioned Milyutin theorem we deduce

$$C(\mathbf{2}^{\mathfrak{m}}) \oplus C([0,\alpha]) \sim Y \oplus C(\mathbf{2}^{\aleph_0}) \oplus C([0,\alpha]) \sim Y \oplus C(\mathbf{2}^{\aleph_0}) \sim C(\mathbf{2}^{\mathfrak{m}}).$$

Consequently, if $\mathfrak{m}, \mathfrak{n} \geq \aleph_0$ and $\alpha, \beta < \omega_1$, then by [20, Corollary 8.2.7],

 $C(\mathbf{2^m})\oplus C([0,\alpha])\sim C(\mathbf{2^n})\oplus C([0,\beta]) \quad \text{if and only if} \quad \mathfrak{m}=\mathfrak{n}.$

REMARK 1.4. Now we turn to the cases where both \mathfrak{m} and α are large: $\mathfrak{m} \geq \aleph_0$ and $\alpha \geq \omega_1$. Suppose that $\mathfrak{n} \geq \aleph_0$ and $\beta \geq \omega$. Then $C(2^{\mathfrak{m}}) \oplus C([0,\alpha]) \sim C(2^{\mathfrak{n}}) \oplus C([0,\beta])$ implies that $\mathfrak{m} = \mathfrak{n}$. Indeed, assume that $\mathfrak{m} < \mathfrak{n}$ and let Γ and Λ be two sets of the same cardinality as α and β , respectively. According to [17, Proposition 5.2],

$$\left(\sum_{2^{\mathfrak{m}}} \oplus L^{1}[0,1]^{\mathfrak{m}}\right)_{1} \oplus l_{1}(\Gamma) \sim \left(\sum_{2^{\mathfrak{n}}} \oplus L^{1}[0,1]^{\mathfrak{n}}\right)_{1} \oplus l_{1}(\Lambda).$$

Recall that given a Banach space X, the *dimension* of X is the smallest cardinal δ for which there exists a subset of cardinality δ with linear span norm-dense in X. Pick a subspace H of $L^1[0,1]^n$ which is isomorphic to a Hilbert space of dimension \mathfrak{n} [18, Proposition 1.5]. Hence

$$H \hookrightarrow \left(\sum_{2^{\mathfrak{m}}} \oplus L^{1}[0,1]^{\mathfrak{m}}\right)_{1} \oplus l_{1}(\Gamma).$$

Since H contains no subspace isomorphic to l_1 , by a standard gliding hump argument (see [3]) we infer that there exist a finite sum of $L^1[0,1]^{\mathfrak{m}}$ and

 $1 \leq p < \omega$ such that

$$H \hookrightarrow L^1[0,1]^{\mathfrak{m}} \oplus \cdots \oplus L^1[0,1]^{\mathfrak{m}} \oplus \mathbb{R}^p,$$

which is absurd, because the dimension of $L^1[0,1]^{\mathfrak{m}}$ is clearly \mathfrak{m} .

REMARK 1.5. If $\mathfrak{m} \geq \aleph_0$ then $C(\mathbf{2}^{\mathfrak{m}}) \oplus C([0,\alpha]) \nsim C(\mathbf{2}^{\mathfrak{m}})$ for every $\alpha \geq \omega_1$. Indeed, suppose $C(\mathbf{2}^{\mathfrak{m}}) \oplus C([0,\alpha]) \sim C(\mathbf{2}^{\mathfrak{m}})$ for some $\alpha \geq \omega_1$. Let Γ be the set of isolated points of $[0,\alpha]$ and denote by $C_0(\Gamma)$ the classical Banach space of all functions defined on Γ such that for every $\epsilon > 0$ the set $\{\gamma \in \Gamma : |f(\gamma)| \geq \epsilon\}$ is finite. Thus $C_0(\Gamma) \hookrightarrow C([0,\alpha]) \hookrightarrow C(\mathbf{2}^{\mathfrak{m}})$.

Now recall that a topological space K is said to satisfy the *countable* chain condition (ccc) if every uncountable family of open subsets of K contains two distinct sets with nonempty intersection. Since $C_0(\Gamma) \hookrightarrow C(2^{\mathfrak{m}})$, it follows from [17, Theorem 4.5] that $2^{\mathfrak{m}}$ would not satisfy the ccc, which is absurd by [6, Theorem 2.3.17].

In order to present a complete isomorphic classification of $C(2^{\mathfrak{m}}) \oplus C([0,\alpha])$ spaces, we will state a more general result on isomorphic classification of some Banach spaces. To do this, we recall that a Banach space X is said to have the *Mazur property* if every element of X^{**} , the bidual space of X, which is sequentially weak^{*} continuous is weak^{*} continuous and thus is an element of X. Such spaces were investigated in [5], [12] and also in [9] and [21] where they were called d-complete and μ B-spaces, respectively. Section 2 is devoted to proving the following isomorphic classification theorem for $X \oplus C([0, \alpha])$ spaces:

THEOREM 1.6. Let X be a Banach space having the Mazur property and $\alpha, \beta \geq \omega_1$. If $X \oplus C([0, \alpha]) \sim X \oplus C([0, \beta])$ then $C([0, \alpha]) \sim C([0, \beta])$.

Before applying Theorem 1.6, we need to recall a concept which had its origins in the study of continuity of functions on large Cartesian products. Following Noble [14] and Antonovskiĭ–Chudnovskiĭ [1], we say that a cardinal \mathfrak{m} is *sequential* if there exists a sequentially continuous but not continuous real-valued function on $2^{\mathfrak{m}}$. We recall that a function $f: 2^{\mathfrak{m}} \to \mathbb{R}$ is said to be *sequentially continuous* if $f(k_n)$ converges to f(k) whenever the sequence $(k_n)_{n < \omega}$ converges to k in $2^{\mathfrak{m}}$.

REMARK 1.7. Important for us is a result due to Plebanek which states that $C(2^{\mathfrak{m}})$ has the Mazur property for every nonsequential cardinal \mathfrak{m} [15] (see also [16, Theorem 5.2.c]).

REMARK 1.8. Mazur [13] showed that the first sequential cardinal \mathfrak{s} is weakly inaccessible. Hence $\omega_1 < \mathfrak{s}$. Moreover, there are many weakly inaccessible cardinals before \mathfrak{s} [4]. On the other hand, let $\mathfrak{m}_{\mathbb{R}}$ and \mathfrak{m}_2 denote the least real-valued measurable cardinal and two-valued measurable cardinal, respectively [7]. It is well-known that $\mathfrak{s} \leq \mathfrak{m}_{\mathbb{R}}$; $\mathfrak{s} \leq 2^{\aleph_0}$ or $\mathfrak{s} = \mathfrak{m}_2$; and $\mathfrak{s} = \mathfrak{m}_2$ under Martin's axiom [1], [7] and [13].

In particular, it is relatively consistent with ZFC that there exist no sequential cardinals [16]. Therefore, keeping in mind the above remarks, it is also consistent with ZFC that Corollary 1.9 completes the isomorphic classification of $C(2^m) \oplus C([0, \alpha])$ spaces.

COROLLARY 1.9. Suppose that \mathfrak{m} is a nonsequential cardinal and $\alpha, \beta \geq \omega_1$. If $C(\mathbf{2}^{\mathfrak{m}}) \oplus C([0,\alpha]) \sim C(\mathbf{2}^{\mathfrak{m}}) \oplus C([0,\beta])$ then $C([0,\alpha]) \sim C([0,\beta])$.

REMARK 1.10. As another direct application of Theorem 1.6 we get the isomorphic classification of $C(K) \oplus C([0, \alpha])$ spaces where C(K) has the Mazur property and $\alpha \geq \omega_1$. This includes the cases where K is firstcountable [16, Corollary 3.2], or the ω_1 th Cantor derived set of K is empty [9, Theorem 4.1], or K is a Corson-compact [16, Corollary 3.4].

2. Proof of Theorem 1.6. As in [2], $C([0, \alpha])$ will be denoted by \mathbb{R}^{α} and we set $\mathbb{R}_0^{\alpha} = \{f \in \mathbb{R}^{\alpha} : f(\alpha) = 0\}$. By [2, Lemma 1.2.1], $\mathbb{R}^{\alpha} \sim \mathbb{R}_0^{\alpha}$.

Since \mathbb{R}^{α} with $\alpha \geq \omega_1$ does not have the Mazur property [21, p. 49] and finite sums of Banach spaces with the Mazur property also have this property, it follows that Theorem 1.6 is an immediate consequence of Proposition 2.5 below.

A fundamental ingredient in the proof of Proposition 2.5 is Lemma 2.1, which generalizes the following result of Bessaga and Pełczyński [2, Lemma 2]:

$$\mathbb{R}^{\alpha^{\omega}} \nleftrightarrow \mathbb{R}^{\alpha}, \quad \forall \alpha \ge \omega.$$

LEMMA 2.1. Let X be an infinite-dimensional Banach space and $\alpha \geq \omega$. Then $\mathbb{R}^{\alpha^{\omega}} \hookrightarrow X \oplus \mathbb{R}^{\alpha}$ implies that $\mathbb{R}^{\alpha} \hookrightarrow X^n$ for some $1 \leq n < \omega$.

Proof. Assume that $\mathbb{R}^{\alpha^{\omega}} \hookrightarrow X \oplus \mathbb{R}^{\alpha}_0$ and consider the ordinal λ defined by

$$\lambda = \min\{\xi \le \alpha : \exists m, 1 \le m < \omega, \text{ with } \mathbb{R}_0^{\alpha} \hookrightarrow X^m \oplus \mathbb{R}_0^{\xi}\}.$$

Thus there exists $m, 1 \leq m < \omega$, such that

(1)
$$\mathbb{R}_0^{\alpha} \hookrightarrow X^m \oplus \mathbb{R}_0^{\lambda}.$$

We distinguish two cases:

CASE 1: λ is finite. In this case, (1) yields $\mathbb{R}_0^{\alpha} \hookrightarrow X^m \oplus \mathbb{R}^{\lambda} \hookrightarrow X^{m+1}$, and we are done.

CASE 2: λ is infinite. Then again by (1),

(2)
$$\mathbb{R}^{\lambda^{\omega}} \hookrightarrow \mathbb{R}^{\alpha^{\omega}} \hookrightarrow X \oplus \mathbb{R}^{\alpha}_{0} \hookrightarrow X^{m+1} \oplus \mathbb{R}^{\lambda}_{0}.$$

Notice that if $\mathbb{R}^{\lambda} \hookrightarrow X^{m+1} \oplus \mathbb{R}_{0}^{\xi}$ for some $\xi < \lambda$, then by (1) we would have $\mathbb{R}_{0}^{\alpha} \hookrightarrow X^{2m+1} \oplus \mathbb{R}_{0}^{\xi}$, which is absurd by the choice of λ . Hence

(3)
$$\mathbb{R}^{\lambda} \nleftrightarrow X^{m+1} \oplus \mathbb{R}_{0}^{\xi}, \quad \forall \xi < \lambda.$$

According to (2) there are operators $\pi_1 : \mathbb{R}^{\lambda^{\omega}} \to X^{m+1}$ and $\pi_2 : \mathbb{R}^{\lambda^{\omega}} \to \mathbb{R}^{\lambda}_0$, and $a \in \mathbb{R}_+$, such that for every $f \in \mathbb{R}^{\lambda^{\omega}}$,

(4)
$$a||f|| \le \max\{||\pi_1(f)||, ||\pi_2(f)||\} \le ||f||.$$

Fix an integer N and $\epsilon > 0$ such that aN > 1 and $1 + \epsilon < aN$. For every $0 \le \xi < \lambda$, write

$$\Delta_{\xi}^{1} = (\lambda^{N}\xi, \lambda^{N}(\xi+1)].$$

Let Y_N be the subspace of $\mathbb{R}^{\lambda^{\omega}}$ given by

 $\{f \in \mathbb{R}^{\lambda^{\omega}} : f \text{ is constant on } \Delta^{1}_{\xi} \text{ for all } \xi \in [0, \lambda), \text{ and}$

 $f(\xi) = 0$ for all $\xi \in [\lambda^{N+1}, \lambda^{\omega}]$.

Clearly, Y_N is isomorphic to \mathbb{R}^{λ} . Thus by (3), π_1 restricted to Y_N is not an isomorphism of Y_N into X^{m+1} . So there exists $f_1 \in Y_N$ such that $||f_1|| = 1$ and $||\pi_1(f_1)|| \leq \epsilon/2$.

We may change f_1 to $-f_1$ and assume that there exists $\xi_1 \in [0, \lambda)$ such that $f_1(\gamma) = 1$ for all $\gamma \in (\lambda^N \xi_1, \lambda^N (\xi_1 + 1)]$.

Since $\pi_2(f_1) \in \mathbb{R}_0^{\lambda}$, there exists $\lambda_1 < \lambda$ such that for every $\gamma \in [\lambda_1 + 1, \lambda]$, we have $|\pi_2(f_1)(\gamma)| \leq \epsilon/2$.

For the second step, for every $0 \leq \xi < \lambda$, write

$$\Delta_{\xi}^2 = (\lambda^N \xi_1 + \lambda^{N-1} \xi, \lambda^N \xi_1 + \lambda^{N-1} (\xi+1)].$$

Let Y_{N-1} be the subspace of $\mathbb{R}^{\lambda^{\omega}}$ defined by

 $\{f \in \mathbb{R}^{\lambda^{\omega}} : f \text{ is constant on } \Delta_{\xi}^2 \text{ for all } \xi \in [0, \lambda), \text{ and} \\ f(\xi) = 0 \text{ for all } \xi \notin (\lambda^N \xi_1, \lambda^N (\xi_1 + 1)] \}.$

Denote by P_{λ_1} the natural projection of \mathbb{R}^{λ}_0 onto $\mathbb{R}^{\lambda_1}_0$ and define the operator $\pi_1 + P_{\lambda_1} \pi_2 : \mathbb{R}^{\lambda^{\omega}} \to X^{m+1} \oplus \mathbb{R}^{\lambda_1}_0$ by

$$(\pi_1 + P_{\lambda_1} \pi_2)(f) = (\pi_1(f), P_{\lambda_1}(\pi_2(f))), \quad \forall f \in \mathbb{R}^{\lambda^{\omega}}.$$

Since Y_{N-1} is isomorphic to \mathbb{R}^{λ} , and since by (3), $X^{m+1} \oplus \mathbb{R}_0^{\lambda_1}$ contains no subspace isomorphic to \mathbb{R}^{λ} , it follows that $\pi_1 + P_{\lambda_1}\pi_2$ restricted to Y_{N-1} is not an isomorphism of Y_{N-1} into $X^{m+1} \oplus \mathbb{R}_0^{\lambda_1}$.

Hence there exists $f_2 \in Y_{N-1}$ such that $||f_2|| = 1$, $||\pi_1(f_2)|| \le \epsilon/2^2$ and $|\pi_2(f_2)(\gamma)| \le \epsilon/2^2$ for every $\gamma \in [0, \lambda_1]$.

Since $\pi_2(f_2) \in \mathbb{R}_0^{\lambda}$, pick $\lambda_2 \in [\lambda_1 + 1, \lambda)$ such that $|\pi_2(f_2)(\gamma)| \leq \epsilon/2^2$ also for all $\gamma \in [\lambda_2 + 1, \lambda]$.

We may change f_2 to $-f_2$ and suppose that there exists $\xi_2 \in [0, \lambda)$ such that $f_2(\gamma) = 1$ for all $\gamma \in (\lambda^N \xi_1 + \lambda^{N-1} \xi_2, \lambda^N \xi_1 + \lambda^{N-1} (\xi_2 + 1)].$

Repeating this procedure N times we will find

•
$$f_1, \ldots, f_N \in \mathbb{R}^{\lambda^{\omega}},$$

- $\xi_1 < \cdots < \xi_N < \lambda$,
- $\lambda_1 < \cdots < \lambda_N < \lambda$,

such that for every $1 \le k \le N$ and for every γ belonging to $(\lambda^N \xi_1 + \lambda^{N-1} \xi_2 + \dots + \lambda^{N-k+1} \xi_k, \lambda^N \xi_1 + \lambda^{N-1} \xi_2 + \dots + \lambda^{N-k+1} (\xi_k + 1)]$ we have:

- $f_k(\gamma) = ||f_k|| = 1$,
- supp $f_2 \subset f_1^{-1}(1)$, supp $f_3 \subset f_2^{-1}(1), \dots, \text{supp } f_k \subset f_{k-1}^{-1}(1),$
- $\|\pi_1(f_k)\| \leq \epsilon/2^k$,
- $|\pi_2(f_k)(\gamma)| \le \epsilon/2^k, \, \forall \gamma \in [\lambda_k + 1, \lambda],$
- $|\pi_2(f_k)(\gamma)| \le \epsilon/2^k, \forall \gamma \in [0, \lambda_{k-1}], k > 1.$

Let $f = f_1 + \cdots + f_N$. Then it is obvious that ||f|| = N, $||\pi_1(f)|| \le \epsilon$, and $||\pi_2(f)|| \le 1+\epsilon$. Finally, by (4) we conclude that $aN \le 1+\epsilon$, which is absurd by the choice of ϵ .

To state the next lemmas, we need to recall some Banach spaces introduced in [8] and [10]. Let us recall that an ordinal α is said to be *regular* if the smallest ordinal cofinal with α is equal to α . Otherwise α is said to be *singular*.

Let X be a Banach space and α a regular ordinal. We denote by X_{α} the space of all $x^{**} \in X^{**}$ having the following property: for any limit ordinal $\beta < \alpha$ and transfinite sequence $(f_{\xi})_{\xi < \beta}$ of continuous linear functionals on X with $\sup\{\|f_{\xi}\|: \xi < \beta\} < \infty$ and $f_{\xi}(x) \xrightarrow{\xi \to \beta} 0$ for every $x \in X$, we have $x^{**}(f_{\xi}) \xrightarrow{\xi \to \beta} 0$.

From now on, if X is a Banach space, then cX denotes the canonical image of X in X^{**} .

REMARK 2.2. Clearly $cX \subset X_{\alpha} \subset X_{\omega_1}$ for every regular ordinal $\alpha \geq \omega_1$. Moreover, it may easily be shown that if $X \sim Y$, then

$$\frac{X_{\alpha}}{cX} \sim \frac{Y_{\alpha}}{cY}.$$

Observe also that if X has the Mazur property, then $X_{\omega_1} = cX$.

LEMMA 2.3. Let X and Y be Banach spaces and α be a regular ordinal. Then there exists an isomorphism $\Phi: X^{**} \oplus Y^{**} \to (X \oplus Y)^{**}$ satisfying

- (i) $\Phi(cX \oplus cY) = c(X \oplus Y)$.
- (ii) $\Phi(X_{\alpha} \oplus Y_{\alpha}) = (X \oplus Y)_{\alpha}.$

Proof. Let $T : (X \oplus Y)^* \to X^* \oplus Y^*$ be the isomorphism given by $T(z^*) = (z^*_{|X}, z^*_{|Y})$ for $z^{**} \in (X \oplus Y)^*$. Then the isomorphism $T^* : (X^* \oplus Y^*)^* \to (X \oplus Y)^{**}$ is given by $(T^*z^{**})(w^*) = z^{**}(Tw^*)$ for $z^{**} \in (X^* \oplus Y^*)^*$ and $w^* \in (X \oplus Y)^*$.

Consider also the isomorphism $L: X^{**} \oplus Y^{**} \to (X^* \oplus Y^*)^*$ defined by $L(x^{**}, y^{**})(x^*, y^*) = x^{**}(x^*) + y^{**}(y^*)$ for $x^{**} \in X^{**}$, $y^{**} \in Y^{**}$, $x^* \in X^*$ and $y^* \in Y^*$.

Put $\Phi = T^*L$. Then $\Phi(x^{**}, y^{**})(w^*) = x^{**}(w^*_{|X}) + y^{**}(w^*_{|Y})$ for $x^{**} \in X^{**}$, $y^{**} \in Y^{**}$ and $w^* \in (X \oplus Y)^*$. Now it is easy to see that (i) and (ii) hold.

The next lemma is a generalization of a result of Gul'ko and Os'kin [8] and independently of Kislyakov [10]. Let ξ be any ordinal and α a regular ordinal. The cardinality of ξ will be denoted by $\overline{\xi}$. Let Λ_{ξ}^{α} denote the subset of $[0, \xi]$ consisting of the nonisolated points that are not limit points for any set of cardinality smaller than $\overline{\alpha}$.

LEMMA 2.4. Let α be an uncountable regular ordinal and $\xi \in [\alpha, \alpha^2]$, with $\xi = \alpha \xi' + \delta$ and $\xi', \delta \leq \alpha$. Suppose that X is a Banach space satisfying $X_{\alpha} = cX$. Then

$$\frac{(X \oplus \mathbb{R}^{\xi})_{\alpha}}{c(X \oplus \mathbb{R}^{\xi})} \sim C_0(\Lambda_{\xi}^{\alpha}).$$

Proof. Let Φ be as defined in Lemma 2.3. Then by using [10, Corollary 4.1], it can be easily checked that

$$\frac{(X \oplus \mathbb{R}^{\xi})_{\alpha}}{c(X \oplus \mathbb{R}^{\xi})} = \frac{\varPhi(X_{\alpha} \oplus \mathbb{R}^{\xi}_{\alpha})}{\varPhi(cX \oplus c\mathbb{R}^{\xi})} \sim \frac{X_{\alpha} \oplus \mathbb{R}^{\xi}_{\alpha}}{cX \oplus c\mathbb{R}^{\xi}} = \frac{cX \oplus \mathbb{R}^{\xi}_{\alpha}}{cX \oplus c\mathbb{R}^{\xi}} \sim \frac{\mathbb{R}^{\xi}_{\alpha}}{c\mathbb{R}^{\xi}} \sim C_{0}(\Lambda^{\alpha}_{\xi}).$$

PROPOSITION 2.5. Suppose that $\omega_1 \leq \alpha \leq \beta$ and X is a Banach space satisfying

- $\mathbb{R}^{\alpha} \hookrightarrow X^n$ for every $1 \le n < \omega$,
- $X_{\omega_1} = cX$.

Then $X \oplus \mathbb{R}^{\alpha} \sim X \oplus \mathbb{R}^{\beta}$ implies that $\mathbb{R}^{\alpha} \sim \mathbb{R}^{\beta}$.

Proof. First we will prove that $\bar{\alpha} = \bar{\beta}$. Suppose that $\bar{\alpha} < \bar{\beta}$. Then $\alpha^{\omega} < \beta$. Consequently,

(5)
$$\mathbb{R}^{\alpha^{\omega}} \hookrightarrow \mathbb{R}^{\beta} \hookrightarrow X \oplus \mathbb{R}^{\beta} \sim X \oplus \mathbb{R}^{\alpha}.$$

Therefore by Lemma 2.1, $\mathbb{R}^{\alpha} \hookrightarrow X^n$ for some $1 \leq n < \omega$, contradicting our hypotheses.

Next let λ be the first ordinal of cardinality $\bar{\alpha}$. There are two cases:

CASE 1: λ is a singular ordinal or λ is a regular ordinal with $\lambda^2 \leq \alpha$. If $\alpha^{\omega} \leq \beta$, then (5) holds and again we obtain a contradiction. Thus $\beta < \alpha^{\omega}$ and by [10, Theorem 1], we conclude that $\mathbb{R}^{\alpha} \sim \mathbb{R}^{\beta}$.

CASE 2: λ is a regular ordinal with $\alpha < \lambda^2$. Thus $X_{\lambda} = cX$. Write $\alpha = \lambda \alpha' + \gamma$ with $\alpha', \gamma < \lambda$. If $\lambda^2 < \beta$, then $\mathbb{R}^{\lambda^2} \hookrightarrow \mathbb{R}^{\beta} \hookrightarrow X \oplus \mathbb{R}^{\beta} \sim X \oplus \mathbb{R}^{\alpha}$

and according to [10, Lemmas 1.4 and 2.4] we deduce

$$C_0(\Lambda_{\lambda^2}^{\lambda}) \sim \frac{\mathbb{R}_{\lambda}^{\lambda^2}}{c\mathbb{R}^{\lambda^2}} \hookrightarrow \frac{(X \oplus \mathbb{R}^{\alpha})_{\lambda}}{c(X \oplus \mathbb{R}^{\alpha})} \sim C_0(\Lambda_{\alpha}^{\lambda}).$$

Therefore by [10, Corollary 4.1], $\overline{\lambda} \leq \overline{\alpha'}$, which is absurd. So we may assume that $\beta \leq \lambda^2$. Write $\beta = \lambda \beta' + \delta$, with $\beta', \delta \leq \alpha$. Then Lemma 2.4 yields

$$C_0(\Lambda_{\alpha}^{\lambda}) \sim \frac{(X \oplus \mathbb{R}^{\alpha})_{\lambda}}{c(X \oplus \mathbb{R}^{\alpha})} \sim \frac{(X \oplus \mathbb{R}^{\beta})_{\lambda}}{c(X \oplus \mathbb{R}^{\beta})} \sim C_0(\Lambda_{\beta}^{\lambda})$$

Once again by [10, Corollary 4.1] we see that $\overline{\alpha'} = \overline{\beta'}$ and by [10, Theorem 2] we conclude that $\mathbb{R}^{\alpha} \sim \mathbb{R}^{\beta}$.

3. Some questions. Corollary 1.9 leads naturally to the following question.

QUESTION 3.1. Assume that $C(2^{\mathfrak{m}})$ has the Mazur property. Does it follow that \mathfrak{m} is not sequential?

As pointed out by the referee, $C(\mathbf{2}^{\mathfrak{m}_2})$ does not have the Mazur property. Moreover, he noticed that $C(\mathbf{2}^{\mathfrak{m}_2})_{\lambda} \neq cC(\mathbf{2}^{\mathfrak{m}_2})$ for every $\omega_1 \leq \lambda < \mathfrak{m}_2$. Indeed, let F be an \mathfrak{m}_2 -complete ultrafilter and x^{**} the weak*-limit along the ultrafilter F of $\{c(p_{\alpha}) : \alpha \in \mathfrak{m}_2\} \subset C(\mathbf{2}^{\mathfrak{m}_2})^{**}$, where $p_{\alpha} : \mathbf{2}^{\mathfrak{m}_2} \to \mathbf{2}$ is the α th projection. Then $x^{**} \in C(\mathbf{2}^{\mathfrak{m}_2})_{\lambda} \setminus cC(\mathbf{2}^{\mathfrak{m}_2})$ for all $\lambda < \mathfrak{m}_2$.

However, we do not know the answer to the following question.

QUESTION 3.2. Is it true that $C(\mathbf{2}^{\mathfrak{m}})_{\omega_1} = cC(\mathbf{2}^{\mathfrak{m}})$ whenever $\aleph_1 \leq \mathfrak{m} < \mathfrak{m}_2$?

Acknowledgements. The author wishes to thank the referee for helpful comments and suggestions which have been incorporated into the current version of the paper.

References

- M. Ya. Antonovskiĭ and D. V. Chudnovskiĭ, Some questions of general topology and Tikhonov semifields II, Russian Math. Surveys 31 (1976), no. 3, 69–128.
- [2] C. Bessaga and A. Pełczyński, Spaces of continuous functions IV, Studia Math. 19 (1960), 53–61.
- [3] L. Burlando, On subspaces of direct sums of infinite sequences of Banach spaces, Atti Acad. Ligure Sci. Lett. 46 (1989), 96–105.
- [4] D. V. Chudnovsky, Sequentially continuous mappings and real-valued measurable cardinals, in: Infinite and Finite Sets, Colloq. Math. Soc. J. Bolyai 10 (Keszthély, 1973), Part I, North-Holland, Amsterdam, 1975, 275–288.
- [5] G. A. Edgar, Measurability in a Banach space II, Indiana Univ. Math. J. 28 (1977), 559–579.
- [6] R. Engelking, *General Topology*, Sigma Ser. Pure Math. 6, Heldermann, Berlin, 1989.

- [7] D. H. Fremlin, Consequences of Martin's Axiom, Cambridge Tracts in Math. 84, Cambridge Univ. Press, Cambridge, 1984.
- [8] S. P. Gul'ko and A. V. Os'kin, Isomorphic classification of spaces of continuous functions on totally ordered bicompacta, Functional Anal. Appl. 9 (1975), no 1, 56–57.
- [9] T. Kappeler, Banach spaces with condition of Mazur, Math. Z. 191 (1986), 623–631.
- [10] S. V. Kislyakov, Classification of spaces of continuous functions on the ordinals, Siberian Math. J. 16 (1975), 226–231.
- M. A. Labbé, Isomorphism of continuous function spaces, Studia Math. 52 (1975), 221–231.
- [12] D. Leung, Banach spaces with Mazur's property, Glasgow Math. J. 33 (1991), 51–54.
- S. Mazur, On continuous mappings on Cartesian products, Fund. Math. 39 (1952), 229–238.
- [14] N. Noble, The continuity of functions on Cartesian products, Trans. Amer. Math. Soc. 149 (1970), 187–198.
- [15] G. Plebanek, On Pettis integrals with separable range, Colloq. Math. 64 (1993), 71–78.
- [16] —, On some properties of Banach spaces of continuous functions, in: Séminaire d'Initiation à l'Analyse, Exp. No. 20, 9 pp., Publ. Math. Univ. Pierre et Marie Curie 107, Univ. Paris VI, Paris, 1991/1992.
- [17] H. P. Rosenthal, On injective Banach spaces and the spaces $L^{\infty}(\mu)$ for finite measure μ , Acta Math. 124 (1970), 205–248.
- [18] —, On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from $L^p(\mu)$ to $L^r(\nu)$, J. Funct. Anal. 4 (1969), 176–214.
- [19] Z. Semadeni, Banach spaces non-isomorphic to their Cartesian squares. II, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 8 (1960), 81–84.
- [20] —, Banach Spaces of Continuous Functions, Vol. I, Monografie Mat. 55, PWN– Polish Sci. Publ., Warszawa, 1971.
- [21] A. Wilansky, Mazur spaces, Int. J. Math. Math. Sci. 4 (1981), 39–53.

Department of Mathematics University of São Paulo São Paulo, Brazil 05508-090 E-mail: eloi@ime.usp.br

> Received 22 December 2008; in revised form 5 March 2009