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Clones on regular cardinals

by

Martin Goldstern (Wien) and Saharon Shelah (Jerusalem)

Abstract. We investigate the structure of the lattice of clones on an infinite set X.
We first observe that ultrafilters naturally induce clones; this yields a simple proof of
Rosenberg’s theorem: there are 22λ maximal (= “precomplete”) clones on a set of size λ.
The clones we construct do not contain all unary functions. We then investigate clones
that do contain all unary functions. Using a strong negative partition theorem from pcf
theory we show that for cardinals λ (in particular, for all successors of regulars) there are

22λ such clones on a set of size λ. Finally, we show that on a weakly compact cardinal
there are exactly 2 precomplete clones which contain all unary functions.

1. Introduction

1.1. Definition. Let X be a nonempty set. The full clone on X, de-
noted by O or O(X), is the set of all finitary functions on X: O =

⋃∞
n=1 O(n),

where O(n) is the set of all functions from Xn into X.
A clone (on X) is a set C ⊆ O which contains all projections and is

closed under composition. That is,

(1) For all 1 ≤ k ≤ n, the function πnk : Xn → X, πnk (x1, . . . , xn) = xk,
is in C .

(2) Whenever f1, . . . , fk ∈ C ∩ O(n), g ∈ C ∩O(k), then the function

(x1, . . . , xn) 7→ g(f1(x1, . . . , xn), . . . , fk(x1, . . . , xn))

(which we sometimes call g(f1, . . . , fk)) is also in C .
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Alternatively, C is a clone if C is the set of term functions of some
universal algebra over X.

The set of clones over X forms a complete algebraic lattice with largest
element O. The coatoms of this lattice are called precomplete clones or
maximal clones.

Many results for clones on finite sets, and in particular a classification
of all precomplete clones on finite sets can be found in [Sz86].

Rosenberg proved in [Ro76] that if X is an infinite set of cardinality λ

then there are 22λ precomplete clones on X. In Section 2 we will give a short
new proof of this theorem, using ultrafilters.

Let O〈1〉, the full unary clone, be the clone generated by O (1), i.e., the
set of functions which depend only on one argument:

O〈1〉 := {f ◦ πnk : f ∈ O(1), 1 ≤ k ≤ n}.

The clones that we construct in Section 2, as well as the clones in the
family constructed by Rosenberg, all have the property that they induce a
proper submonoid of the monoid O (1) of all unary functions. This raises the
following question: What is the structure of those clones that contain the
full monoid of all unary functions, i.e., the interval [O 〈1〉,O]? In particular,
what can we say about the precomplete elements in this interval?

If X is a finite set with k elements, then it is known that this interval is
actually a finite chain (with k+ 1 elements). In particular, there is a unique
precomplete clone above the full unary clone, namely, the set of all functions
which are either essentially unary or not onto.

We now turn to infinite sets. Again we will be mainly interested in the
maximal or “precomplete” clones above O 〈1〉. Since O is finitely generated
over O1, it is clear that the interval [O 〈1〉,O] is dually atomic, that is, ev-
ery C ∈ [O〈1〉,O) is contained in some precomplete C ′ ∈ [O〈1〉,O). (See
Fact 1.3.)

For the case of countable X, Gavrilov proved in [Ga65] that there are
exactly 2 precomplete clones in this interval, and Davies and Rosenberg (see
[DR85]) gave an explicit example of one precomplete clone in this interval
for every infinite X.

It turns out that (for any infinite set X of regular cardinality), the clones
on X above O(1) can be naturally divided into 2 classes, depending on
whether the binary functions of the clone are all “almost unary” or if there
is a “heavily binary” function among them (see Definitions 3.1 and 5.1).

In Section 3 we show that among the clones whose binary part is almost
unary, there is a unique precomplete clone (namely, the clone from [DR85],
which we call Û , see 3.3).
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Finally, we discuss the case which was hitherto unknown, and which
turns out to be the most interesting from the set-theoretical point of view:
clones with heavily binary functions. The structure of the set of these clones
depends on partition properties of the cardinality of the underlying set:

(1) If the cardinality of the underlying set is a weakly compact cardinal
(or ℵ0), then there is a unique precomplete clone in [O 〈1〉,O] which is heavily
binary (so altogether there are exactly two precomplete clones above O (1):
Û from 3.3 and T from 5.11). This result, which generalizes Gavrilov’s
theorem for ℵ0, is proved in Section 5.

(2) If the cardinality λ of the underlying set satisfies a certain negative
partition property Pr(λ) (see also 6.4—in particular, we know Pr(κ+) for all
regular uncountable κ), then there are 22λ precomplete clones above O (1)

which are heavily binary. This result is proved in Section 4.

In an appendix we briefly discuss partition relations and the combinato-
rial principle Pr(λ).

All sections of the paper can be read independently, but they all rely on
notation, facts and concepts established in this introduction.

We plan to investigate clones on singular cardinals in a separate paper.

1.2. Notation. We fix an infinite set X. For n ∈ {1, 2, . . .} we write
O(n) for the set of all functions from Xn to X, and O =

⋃∞
n=1 O(n).

For any set of functions F ⊆ O we let cl(F ) be the smallest clone
containing F as well as all unary functions.

We will write λ = |X| for the cardinality of X. It will often be conve-
nient to have a well-order of X available; we will then identify X with the
ordinal λ.

We call a function f : X×X → X a pairing function if f�{(x, y) : x 6= y}
is 1-1. For the rest of the paper we fix a pairing function pr. We will assume
that the cardinality of the complement of the range of pr is equal to the
cardinality of X: |X \ ran(pr)| = λ.

We fix a value 0 ∈ X, and we will assume that 0 is not in the range of pr.
When we consider terms in which several functions are nested, we may

write fx or gxy for f(x) or g(x, y) to avoid too many parentheses.
We identify Xn with the set of functions from {1, . . . , n} to X. If s ∩ t

= ∅, s ∪ t = {1, . . . , n}, a : s→ X, b : t→ X, then a ∪ b is in Xn.
If C ⊆ O is a clone, we let C (n) = C ∩ O(n).

1.3. Fact. (1) If f : X ×X → X is a pairing function, then there are
unary functions g, g1, g2 such that the function (x, y) 7→ g ◦ f(g1x, g2y) is a
bijection from X ×X to X.

(2) If C ⊆ O, {pr} ∪ O(1) ⊆ C , where pr is any pairing function,
then C = O. [Use (1).]
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(3) If O(1) ⊆ C ⊆ O, pr 6∈ C , then the clones which are maximal in

{D : C ⊆ D ⊆ O, pr 6∈ D}
are exactly the precomplete clones extending C . (By Zorn’s lemma this easily
implies that the interval [O 〈1〉,O] is dually atomic: Every clone above O (1),
except for O itself, is contained in a precomplete one.)

1.4. Remark. As we shall see in Section 3, we cannot relax the assump-
tion “pr is 1-1 on {(x, y) : x 6= y}” in 1.3(2) to “pr is 1-1 on {(x, y) : x < y}.”

1.5. Definition. Let J be any index set, and R ⊆ XJ . Let f ∈ O(n).
We say that f respects R if whenever ρ̄1 = 〈ρ1

i : i ∈ J〉, . . . , ρ̄n = 〈ρni : i ∈ J〉
are all in R, then also 〈f(ρ1

i , . . . , ρ
n
i ) : i ∈ J〉 ∈ R.

We let PolR be the set of all functions respecting R.

We will usually be interested in the case where R is a set of n-ary func-
tions on X, i.e., R ⊆ XXn

.
The following observations follow easily from the definitions and from

the facts above:

1.6. Fact. (1) For any relation R, PolR ⊆ O is a clone.
(2) If C is a clone, then C ⊆ Pol C (n).
(3) If C is a clone and C (n) 6= O(n), then Pol C (n) ( O. In fact ,

(Pol C (n))(n) = C (n).
(4) If C is a precomplete clone and C (1) 6= O(1), then C = Pol C (1).
(5) If C is a precomplete clone and C (1) = O(1), then C (2) 6= O(2), and

C = Pol C (2).

1.7. More notation. Let C be a clone on the set X. We let C̃ be the
set of all functions f̄ : Xn → Xk (n, k > 0) such that each function πki ◦ f̄
is in C .

The “closure under composition” of the clone C just means that C̃ is
closed under the usual notion of composition, i.e., whenever f̄ : Xn → Xm

and ḡ : Xm → Xk are in C̃ then also ḡ ◦ f̄ ∈ C̃ .

1.8. Acknowledgments. We are grateful to Lutz Heindorf for his thought-
ful remarks on an earlier version of the paper, and for alerting us to Gavri-
lov’s results.

2. A new proof of Rosenberg’s theorem. Let X be an infinite set.
Rosenberg [Ro76] has shown that there are 22|X| precomplete clones on X.
Using transfinite induction he first constructs 22|X| clones with certain or-
thogonality properties and then shows that they can be extended to pairwise
different precomplete clones.

Here we give an alternative proof of Rosenberg’s theorem, utilizing the
well-known fact (see e.g. [CN2]) that on every infinite set X there are 22|X|
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ultrafilters. We will find an explicit 1-1 map from the ultrafilters to precom-
plete clones.

2.1. Definition. Let I ⊆P(X) be a maximal ideal. We define

CI :=
∞⋃

n=1

{f ∈ O(n) : ∀A ∈ I f [An] ∈ I}.

2.2. Fact. (1) CI ( O.
(2) CI is a clone.
(3) If f : Xk → X and ran(f) ∈ I, then f ∈ CI . More generally , if

A ∈ I, f : Xk → Xn and the range of f is contained in An, then f ∈ C̃ .
(4) I can be reconstructed from CI as

I = {A ⊆ X : For all f : X → X: If ran(f) ⊆ A, then f ∈ CI},
so in particular the map I 7→ CI is 1-1.

(5) CI is a precomplete clone, i.e., for all f ∈ O \CI the clone generated
by CI ∪ {f} contains all of O.

Proof. Parts (1)–(3) are clear. We only check (4) and (5).
For (4), let

I ′ = {A ⊆ X : For all f : X → X: If ran(f) ⊆ A, then f ∈ CI}.
By (3) above, I ⊆ I ′, so we check I ′ ⊆ I. Let A 6∈ I. We want to prove
A 6∈ I ′, i.e., we are looking for a function f : X → X such that

ran(f) ⊆ A, but f 6∈ CI .

If |A| ≤ |X \ A|, then let A0 := A, otherwise we must have |A| = |X|,
so we can write A as a disjoint union A = A0 ∪ A1 with |A0| = |X| = |A1|,
A0 6∈ I. In either case we have found a set A0 ⊆ A with |A0| ≤ |X \A0| and
A0 6∈ I. So there is a function f : X → X with f [X] = f [X \ A0] = A0. So
f 6∈ CI while ran(f) ⊆ A0 ⊆ A. Thus, the function f witnesses that A 6∈ I ′.

We now turn to the proof of (5). We may assume that I is nonprincipal,
i.e., all finite sets are in I. [Otherwise I = {A ⊆ X : a0 6∈ A} for some
a0 ∈ X, and in this case CI is just PolR (see 1.5 with a singleton index
set J), where R = X \{a0}. It is well known (and easy to see) that the clone
PolR is precomplete, for all unary relations R 6= ∅,X.]

Call a function f conservative if it satisfies f(a1, . . . , an) ∈ {a1, . . . , an}
for all a1, . . . , an ∈ X. Clearly all conservative functions are in CI .

Let f : Xk → X, f 6∈ CI . So there is some set A ∈ I with f [Ak] 6∈ I. Let
B0 = f [Ak] and B1 = X \B0. So B0 6∈ I and B1 ∈ I.

Now let g : Xn → X be arbitrary. We have to show that g is in the clone
generated by CI and f . Pick two distinct elements 0, 1, where {0, 1} ∈ I.
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Ak

B1

B0
C1

C0

Xn

Xk

f

f∗

g

g′0

The function

H(x, y, z) =
{
y if x = 0,
z if x 6= 0,

is conservative, hence in CI .
Let C0 = g−1[B0], C1 = g−1[B1], and define two “approximations”

g0, g1 to g as follows:

g0(x̄) =
{
g(x̄) if x̄ ∈ C0,
0 if x̄ ∈ C1,

g1(x̄) =
{

0 if x̄ ∈ C0,
g(x̄) if x̄ ∈ C1,

Note that the range of g1 is contained in B1 ∪ {0}, hence g1 ∈ I.
Let χ(x̄) = 0 if x̄ ∈ C0, and χ(x̄) = 1 if x̄ ∈ C1. By definition of H,

g(x̄) = H(χx̄, g0x̄, g1x̄), so all we have to show is that H,χ, g0, g1 are all in
the clone generated by CI and f . We already know that

• H ∈ CI (because H is conservative),
• g1 ∈ CI (because the range of g1 is in I),
• χ ∈ CI (because the range of χ is in I).

It remains to show g0 is in the clone generated by CI and f .
Let f∗ : B0 → Ak be an “inverse” of f , i.e.,

∀b ∈ B0 : f(f∗(b)) = b.

(f∗�B1 can be an arbitrary function with range ⊆ Ak.) Define g′0 : Xn → Xk

by g′0(c) = f∗(g0(c)). Note that the range of g′0 is ⊆ Ak, A ∈ I, so g′0 ∈ C̃I .
Now we have, for all c̄ ∈ Xn, g0(c̄) = f(f∗(g0(c̄))) = f(g′0(c̄)), so g0 is in

the clone generated by CI and f .

2.3. Conclusion. On any infinite set X there are exactly 22|X| precom-
plete clones.

Proof. The upper bound follows from |O| = 2|X|. For the lower bound:
it is known that there are 22|X| maximal ideals, and we have just shown that
the function I 7→ CI maps them injectively to precomplete clones.
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3. Almost unary clones. In this section we will consider clones on an
infinite set X of regular cardinality. We will call a set small if its cardinality
is smaller than the cardinality of X, and we will say that there are few
objects with some property if the set of those objects is small.

For example, if X is countable, then “small” will mean “finite”. If X has
cardinality ℵ1, then “small” will mean “finite or countably infinite”.

[With this terminology, the property “X has regular cardinality” can be
rephrased as “X cannot be written as a union of few small sets”.]

3.1. Definition. Let g : Xn → X. We say that g is almost unary if
there is a function G which is defined on X, each G(x) a small subset of X,
such that for some k,

∀(x1, . . . , xn) ∈ Xn : g(x1, . . . , xn) ∈ G(xk).

If X itself is a cardinal, then we can equivalently say: g is almost unary
if for some k and G : X → X, for all x1, . . . , xn ∈ X: g(x1, . . . , xn) ≤ G(xk).

3.2. Definition. Let U ⊆ O be the set of all almost unary functions.

In Definition 5.1 we will call functions in O (2) \U heavily binary .
The set U (2) is called T1 in [Ga65].

3.3. Definition. Let Û := Pol U (2) (see 1.5).
That is, a function f ∈ O(n) is in Û iff

∀g1, . . . , gn ∈ U (2) : f(g1, . . . , gn) ∈ U (2)

where f(g1, . . . , gn) is the function (x, y) 7→ f(g1(x, y), . . . , gn(x, y)).
Note that Û ∩ O(2) = U ∩ O(2), and U ⊆ Û .

3.4. Example. Let X = λ be a cardinal, so the small subsets of X are
exactly the bounded subsets of λ.

(1) The function min is almost unary: min ∈ U (2).
(2) The function max is not almost unary.
(3) The median function med, defined by

med(x, y, z) = max(min(x, y),min(y, z),min(x, z)),

is not almost unary, but it is easy to check that med respects all binary
almost unary functions, so med ∈ Û \U .

(4) Let pr∆ be defined by

pr∆(x, y) =
{

pr(x, y) if x > y,
0 otherwise,

where pr is a pairing function. Then pr∆ ∈ U .

The following was already observed by Davies and Rosenberg [DR85].
In the countable case, Gavrilov [Ga65, Theorem 4] showed that Pol U (2) is
precomplete.
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3.5. Conclusion. Assume C ∈ [O 〈1〉,O]. If pr∆ ∈ C (see 3.4), and if
C contains a binary function not in U (2), then C = O. Hence, Pol U (2) is
an example of a precomplete clone containing all unary functions.

Proof. Let p1, p2 : X → X be two 1-1 functions such that the ranges
of p1, p2, pr are disjoint. Since C contains a function which is not almost
unary, there is some H ∈ C (2) with H(x, p20) = x = H(p10, x) for all x in
the range of pr. Then the function

(x, y) 7→ H( p1(pr∆(x, y)), p2(pr∆(y, x)))

is a pairing function.

(We will meet a similar argument again in the proof of 5.10.)
We now show a kind of converse to this theorem: Pol U (2) is the unique

precomplete clone which contains all unary functions and only “almost
unary” binary functions.

3.6. Theorem. Assume that C ⊆ O is a precomplete clone, O (1) ⊆ C ,
and C (2) ⊆ U (2). Then C = Pol U (2).

We will prove this theorem below. We start by investigating which coor-
dinates are responsible for a function having a large range.

3.7. Definition. Let g∈O(n). We define a set Sg of subsets of {1, . . . , n}
as follows:

Sg = {s ⊆ {1, . . . , n} : ∃ā ∈ X{1,...,n}\s : |{g(ā ∪ x̄) : x̄ ∈ Xs}| = |X|}
(Here we write Xs for the set of all functions from s to X.)

3.8. Lemma. Assume cl(g)(2) ⊆ U . Then

∀r, t ∈ Sg : r ∩ t 6= ∅.
Proof. Choose r and t in Sg with r ∩ t = ∅. Using unary functions, we

will construct a binary function in cl(g) which is not in U (2).
Let s := {1, . . . , n} \ (r ∪ t), so {1, . . . , n} = r ∪̇ s ∪̇ t. So there is some

ā ∈ Xs∪t and a sequence (x̄α : α ∈ X) of elements of Xr such that all values
g(ā ∪ x̄α) are different. Similarly, there is some b̄ ∈ Xr∪s and a sequence
(ȳβ : β ∈ X) of elements of X t such that all values g(b̄ ∪ ȳβ) are different.

Now for l = 1, . . . , n define functions hl as follows: Fix some element
0 ∈ X and set

hl(α, β) =





x̄α(l) if l ∈ r, α 6= 0,
b̄(l) if l ∈ r, α = 0,
ā(l) if l ∈ s, α 6= 0,
b̄(l) if l ∈ s, α = 0,
ȳβ(l) if l ∈ t, β 6= 0,
ā(l) if l ∈ t, β = 0.
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Formally, the functions hl are in O(2), but each of them is essentially unary:
hl(α, β) depends only on α for l ∈ r∪s, and only on β for l ∈ t. This implies
that hl ∈ O〈1〉.

Now F = g(h1, . . . , hn), i.e., F (α, β) = g(h1(α, β), . . . , hn(α, β)), will be
a binary function in cl(g) but not in U (2), since the values F (α, 0) = g(x̄α∪ā)
are all different, as are the values F (0, β) = g(ȳβ ∪ b̄).

The previous lemma will allow us to relate any “almost unary” clone
to Pol U (2):

3.9. Lemma. Assume O(1) ⊆ C and C (2) ⊆ U (2). Then C ⊆ Pol U (2).
That is: whenever d1, . . . , dn ∈ U (2) and g ∈ C (n), then f := g(d1, . . . , dn)
∈ U (2).

Proof. Since each dl ∈ U (2), we can find a decomposition {1, . . . , n} =
r ∪ t, r ∩ t = ∅, and a function D mapping each α ∈ X to a small subset
D(α) ⊆ X such that:

• For all l ∈ r, all α, β ∈ X: dl(α, β) ∈ D(α).
• For all l ∈ t, all α, β ∈ X: dl(α, β) ∈ D(β).

By the previous lemma, we cannot have both r and t in Sg, so assume t 6∈ Sg.
Now fix any element 0 ∈ X. We will show that the set {f(0, β) : β ∈ X}

is small.
Let us consider f(0, β) = g(d1(0, β), . . . , dn(0, β)). Identifying Xn with

X{1,...,n}, we can write the tuple (d1(0, β), . . . , dn(0, β)) as aβ ∪ yβ , where
aβ ∈ Xr and yβ ∈ Xt. Now note that for l ∈ r we have dl(0, β) ∈ D(0), so
aβ ∈ D(0)r, which is a small set.

Hence

{f(0, β) : β ∈ X} ⊆ {g(a ∪ y) : a ∈ D(0)s, y ∈ Xt}.
For each fixed a ∈ D(0)s the set {g(a ∪ y) : y ∈ X t} is small (since t 6∈ Sg),
so, since D(0) is small, also

{g(a ∪ y) : a ∈ D(0)s, y ∈ Xt} =
⋃

a∈D(0)r
{g(a ∪ y) : y ∈ Xt}

is small.

Proof of Theorem 3.6. Assume that O (1) ⊆ C , C (2) ⊆ U (2), and C is
precomplete. Then by Lemma 3.9, we have C ⊆ Pol U (2). But since C is
precomplete, we must have C = Pol U (2).

4. Successors of regulars. We fix a set X of regular cardinality λ,
and for simplicity we write X = λ. We fix a pairing function pr : λ× λ→ λ
as in 1.2.
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We will use the following combinatorial principle Pr(λ, µ):

• There is a symmetric function c : λ × λ → µ with the following anti-
Ramsey property: For all sequences (ai : i < λ) of pairwise disjoint
finite subsets of λ, and for all c0 ∈ µ, there are i < j < λ such that
c�(ai × aj) is constant with value c0.

(See Section 6 for background.)
We fix a function c witnessing the above statement.

4.1. Definition. For any A ⊆ µ we define a function FA : λ × λ → λ
as follows:

FA(α, β) =

{
max(α, β) if α = 0 or β = 0 or α = β,
pr(α, β) if c(α, β) ∈ A,
0 otherwise.

4.2. Fact. If A ∪B = µ, then cl(FA, FB) = O.

Proof. We will show how to construct a pairing function from FA and FB.
Define

pr′(α, β) = FA(FA(α, β), FB(α, β)).

We claim that pr′(α, β) = pr(α, β) for all distinct α, β > 0. Indeed, if
c(α, β) ∈ A ∩B, then

pr′(α, β) = FA(pr(α, β),pr(α, β)) = pr(α, β),

if c(α, β) ∈ A \B, then

pr′(α, β) = FA(pr(α, β), 0) = pr(α, β),

and if c(α, β) ∈ B \ A, then

pr′(α, β) = FA(0,pr(α, β)) = pr(α, β).

Hence pr′ is a pairing function.

4.3. Main Lemma. Assume that A 6⊆ B1 ∪ . . . ∪Bk. Then

FA 6∈ cl(FB1 , . . . , FB1).

We will prove this lemma below, but first we will show how it can be
used.

4.4. Definition. We say that A = (Ai : i ∈ I) is an independent family
of subsets of X if every nontrivial Boolean combination of sets from A is
nonempty, i.e., whenever J0 and J1 are finite disjoint subsets of I, then

⋂

i∈J0

Ai ∩
⋂

i∈J1

(X \Ai) 6= ∅.
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The following theorem of Hausdorff is well known:

4.5. Theorem. If |X| = µ, then there is an independent family A =
(Ai : i ∈ I) of subsets of X with |I| = 2µ.

Proof. See [Ku83, Chapter VIII, Exercise A6] or [Ko89, Example 9.21].

4.6. Theorem. Assume Pr(λ, µ). Then there are at least 22µ precom-
plete clones above the unary functions on the set λ. (Hence: If λ = κ+, κ
regular uncountable, then there are 22λ precomplete clones above O(1).)

Proof. Let (Ai : i ∈ 2µ) be an independent family of subsets of µ. Write
−Ai for µ \Ai. For each J ⊆ 2µ we let

CJ = the clone generated by {FAi : i ∈ J} ∪ {F−Ai : i 6∈ J} ∪ O(1).

We will now show that

(1) CJ 6= O for all J ⊆ 2µ.
(2) Whenever J1 6= J2, then CJ1 ∪ CJ2 already generates O.

This will conclude the proof, because (1) together with Fact 4.2 implies that
each CJ can be extended to a precomplete clone, and (2) implies that no
single precomplete clone can contain CJ1 ∪ CJ2 for distinct J1, J2.

Proof of (1): We can assume there is some i 6∈ J . By independence, Ai
cannot be covered by any finite union from {Aj : j ∈ J} ∪ {−Aj : j 6∈ J}.
So by the main lemma, FAi is not in the clone CJ .

Proof of (2): If J1 6= J2, then there is some i ∈ J1\J2, say. Now FAi ∈ CJ1 ,
F−Ai ∈ CJ2 , and by Fact 4.2, {FA, F−A} generates O.

We now prepare for the proof of the main lemma 4.3. Our situation is
the following: We have a function c witnessing Pr(λ, µ). Using c and our
fixed pairing function pr we have defined functions FA : λ×λ→ λ for every
A ⊆ µ in 4.1. We are given sets A,B1, . . . , Bk ⊆ µ, A 6⊆ B1 ∪ . . . ∪Bk. Pick
c0 ∈ A \ (B1 ∪ . . . ∪Bk).

We want to show that FA 6∈ cl(FB1 , . . . , FBk), i.e., FB1 , . . . , FBk , together
with all unary functions, do not generate FA.

4.7. Definition. Terms over λ are defined inductively as follows:

(1) The formal variables x, y are terms, as well as every element of λ.
(2) If σ is a term and f : λ→ λ a unary function, then (f, σ) is a term.
(3) If σ1 and σ2 are terms and 1 ≤ i ≤ k, then (FBi , σ1, σ2) is a term.

Every term τ induces (in the obvious way) a function τ : λ × λ → λ in
cl({FB1 , . . . , FBk}). Conversely, every binary function in cl({FB1 , . . . , FBk})
is represented by a term.

We call a term constant if it is an element of λ, and x-unary if y does
not appear in it; similarly for y-unary . A term is unary if it is x-unary or
y-unary. (By definition, constant terms are both x-unary and y-unary.)
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For the following discussion, fix a term τ0. Our aim is to find a large set
on which all subterms of τ0 behave like unary functions. We will first explain
how to find (terms for) these unary functions, and then we show they are
indeed realized on some large set.

4.8. Definition. Let S ⊆ λ. For any term τ we will try to define a
unary term τS . Whenever σS is undefined for a subterm σ of τ , then also
τS will be undefined. Our definition proceeds by induction on the structure
of τ . “B” will stand for any of the sets B1, . . . , Bn.

(1) τ = x or τ = y or τ = c ∈ λ. In this case, τS = τ .
(2) τ = (f, σ), and σS = c ∈ λ. In this case, τS is also a constant,

namely f(c).
(3) τ = (f, σ), σS = (g, x). If f ◦ g is 1-1 on S, then τS := (f ◦ g, x). If

f ◦ g is constant with value d on S, then τS := d. If f ◦ g is neither 1-1 nor
constant, then τS will be undefined.

(4) τ = (FB, σ1, σ2), and σS1 and σS2 are constant (say, with values c1
and c2). In this case we let τS := FB(c1, c2).

(5) τ = (FB, σ1, σ2), and σS1 = (f, x), σS2 = d (a constant). If the function
h : x 7→ FB(f(x), d) is 1-1 or constant (say, with value c) on S, then we let
τS be (h, x) or c, respectively. (If h is neither constant nor 1-1 on S, then
τS is again undefined.)

(6) τ = (FB, σ1, σ2), and σS1 = (f1, x), σS2 = (f2, x). If the function
h : x 7→ FB(f1(x), f2(x)) is 1-1 or constant (say, with value d), then we let
τS be (h, x) or d, respectively. (Otherwise, τS is again undefined.)

(7) τ = (FB, σ1, σ2), and σS1 = (f1, x), σS2 = (f2, y). We let τS := 0. This
is the crucial case of our definition.

(8) Repeat all the above items with x and y interchanged, and/or σ1 and
σ2 interchanged.

4.9. Fact. Whenever τS is defined , then τS is either constant , or of the
form (f, x) or (f, y), where f is 1-1 on S.

4.10. Fact. (1) If τS is defined and S′ ⊆ S, then τS
′

is defined.
(2) Fix a finite set T of terms which is closed under subterms. Then for

every set S of regular infinite cardinality there a set S′ ⊆ S of the same
cardinality such that for all τ ∈ T , τS

′
is well defined.

Proof. Proceed by induction on the complexity of the terms. We have
to thin out the set S finitely many times in order to make finitely many
functions 1-1 or constant.

4.11. Lemma. Assume that τS is defined and |S| = λ. Then there are
α < β in S such that τ(α, β) = τS(α, β) and c(α, β) = c0.
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Proof. Let T be the set of subterms of τ (including τ itself). Collect all
the 1-1 functions appearing in σS for σ ∈ T , i.e.,

F := {f : ∃σ ∈ T σS = (f, x) or σS = (f, y)}.
The set F is finite, the identity function is in F , and all functions in F
are 1-1. We may thin out the set S so that the family

({f(α) : f ∈ F} : α ∈ S)

is pairwise disjoint. So since c witnesses Pr(λ, µ), we can find α < β such
that for all f, g ∈ F , c(f(α), g(β)) = c0 (and f(α) 6= g(β)). This implies
FBi(f(α), g(β)) = 0.

Now we can prove by induction on the complexity of the subterms σ of
τ that σS(α, β) = σ(α, β).

Proof of Lemma 4.3. Let c0 ∈ A \ (B1 ∪ . . . ∪ Bk), and let τ be a term.
We will find α, β such that τ(α, β) 6= FA(α, β).

We can find a set S such that τS is defined. Let F be again the finite
set of 1-1 functions used in defining τS . We can thin out the set S so that
for all f ∈ F ,

∀α, β ∈ S : α 6= β ⇒ f(α) 6= pr(α, β) 6= f(β).

[Why? For each f ∈ F define a partial function f̄ such that f̄(α) = β
whenever f(α) = pr(α, β), α 6= β. f̄ is well defined, since pr is a pairing
function. We can thin out S to get f̄(α) 6∈ S for all α ∈ S. This is sufficient.]

Now thin out S so that for all α ∈ S, f(α) 6∈ S or f(α) = α, and that
none of the finitely many constants appearing as τS is equal to pr(α, β) for
α, β ∈ S.

By Lemma 4.11, we can find α < β with τ(α, β) = τS(α, β) and c(α, β)
= c0. Now we have FA(α, β) = pr(α, β) (as c(α, β) = c0 ∈ A). On the other
hand, τS is either constant or of the form (f, x) or (f, y) for some f ∈ F .
So τS(α, β) 6= FA(α, β).

This concludes the proof of Lemma 4.3 and hence also of Theorem 4.6.

5. Weakly compact cardinals. In this section we deal with clones on
infinite sets whose cardinality λ satisfies λ→ (λ)2

2 (so either λ = ℵ0 or λ is
weakly compact).

Our main result here is that (in addition to the precomplete clone from
Section 3) there is only one more precomplete clone containing all unary
functions. This result was proved for the case λ = ℵ0 already by Gavrilov
[Ga65].

The proof we give here is self-contained and does not rely on Gavrilov’s
paper; however, many of the notions we use (in particular the case distinction
depending on the behaviour of f�∆, f�∇) have obvious parallels in [Ga65].
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Recall that λ → (λ)2
2 implies λ → (λ)nk for all n, k < ω, i.e., whenever

h : [λ]n → {1, . . . , k}, then there is a subset S ⊆ λ with |S| = λ such that
h�[S]n is constant.

5.1. Definition. Let H : λn → λ.

(1) We say that H depends on the kth coordinate if there is an (n− 1)-
tuple (a1, . . . , ak−1, ak+1, . . . , an) such that the set

{H(a1, . . . , ak−1, x, . . . , an) : x ∈ λ}
has more than one element. In this case we may also write H symbolically as
H(x1, . . . , xn) and say H depends on xk. For n = 2 we may also say H(x, y)
depends on x or on y.

(2) We say that H(x1, . . . , xn) depends heavily on the kth coordinate (or:
on xk) if there is an (n− 1)-tuple (a1, . . . , ak−1, ak+1, . . . , an) such that the
set

{H(a1, . . . , ak−1, x, . . . , an) : x ∈ λ}
has λ elements.

(3) We say that C ⊆ O is heavily binary if there exists H(x, y) ∈ C
which depends heavily on x and which also depends heavily on y.

Thus, the functions which are not heavily binary are exactly the almost
unary functions of Definition 3.1, and the heavily binary clones are exactly
those C ⊆ O which satisfy C (2) 6⊆ U .

5.2. Example. Let H : λ× λ→ λ be a function satisfying

(∗) ∀α > 0 : H(α, 1) = α = H(0, α).

[E.g., the max function has this property.] Then H depends heavily on x
and y.

Conversely, if C is a clone containing all unary functions and at least one
heavily binary function, then C contains a function H satisfying (∗) above.

The following example shows that there are nontrivial heavily binary
clones above O(1).

5.3. Example. We will write [X]<n for the family of subsets of X of
size < n, and [X]<ℵ0 for the family of finite subsets of X.

(1) Let Q be the set of all functions f ∈ O such that f : Xn → X for
some n, and there is a function Q : X → [X]<ℵ0 satisfying

∀x1, . . . , xn : f(x1, . . . , xn) ∈ Q(x1) ∪ . . . ∪Q(xn).

(2) Let P be the set of all functions f ∈ O such that f : Xn → X for
some n, and there is some k and a function P : X → [X]<k satisfying

∀x1, . . . , xn : f(x1, . . . , xn) ∈ P (x1) ∪ . . . ∪ P (xn).
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Then:

(A) P and Q are clones.
(B) P ⊆ Q ⊆ O.
(C) P contains a heavily binary function, as well as all unary functions.
(D) If X is finite, then trivially P = Q = O.
(E) If X is countably infinite, then P ( Q = O.
(F) If X is uncountable, then P ( Q ( O.

We leave the verification of this fact to the reader.

5.4. Theorem. Assume that λ → (λ)2
2, i.e., λ is weakly compact or

λ = ℵ0. Then there is a unique precomplete clone which contains all unary
functions and is heavily binary.

By Example 5.3 there are nontrivial heavily binary clones above O (1),
so by Fact 1.3(3) there must be at least one precomplete such clone. So it
is enough to show the following: Whenever C1, C2 are heavily binary clones
on λ and O(1) ⊆ C1 ∩ C2, then cl(C1 ∪ C2) = O implies C1 = O or C2 = O.

In 5.11 we will give an explicit description of this precomplete clone.
To make the proof clearer, we need a few definitions and lemmas.

5.5. Definition. For S ⊆ λ, let

∆S = {(α, β) ∈ S × S : α > β}, ∇S = {(α, β) ∈ S × S : α < β}.
We let ∇∆S := ∇S ∪∆S = {(α, β) ∈ S × S : α 6= β}.

We will write ∆, ∇ and ∇∆ as abbreviations for ∆λ, ∇λ and ∇∆λ, re-
spectively.

5.6. Definition. For ᾱ = (α1, α2, α3, α4) ∈ λ4, β̄ = (β1, β2, β3, β4) ∈ λ4

we define ᾱ ∼ β̄ iff ∀i, j ∈ {1, 2, 3, 4} : (αi < αj ⇔ βi < βj).

5.7. Definition. Let F : ∇∆S → λ. We say that F is canonical on S if
for all ᾱ ∼ β̄: If F (α1, α2) < F (α3, α4), then F (β1, β2) < F (β3, β4).

[This also implies, for all ᾱ ∼ β̄: If F (α1, α2) = F (α3, α4), then F (β1, β2)
= F (β3, β4).]

5.8. Fact. Let F : ∇∆→ λ. If λ→ (λ)2
2, then

∀S ∈ [λ]λ ∃S′ ∈ [S]λ : F is canonical on S′.

The proof uses the partition relation λ → (λ)4
n for some large n. We

leave the details to the reader. See also Fact 6.2.
Given a finite set F1, . . . , Fn of functions from ∇∆→ λ, we can apply the

lemma repeatedly and get a single set S ∈ [λ]λ on which all Fi are canonical.
This yields Lemma 15 of II, §2 in [Ga65].
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5.9. Lemma. Assume that F is canonical on ∇∆S , where S ∈ [λ]λ. Then:

(1) F �∆S has one of the following properties:

• F �∆S is 1-1 [typical examples: pr, pr∆S
].

• F �∆S depends injectively on the first coordinate: F (x, y) = g(x)
for some 1-1 function g [typical examples: π2

1, max].
• F �∆S depends injectively on the second coordinate: F (x, y) = g(y)

for some 1-1 function g [typical examples: π2
2, min].

• F �∆S is constant.

(2) Similarly for F �∇S.
(3) If at least one of F �∆S, F �∇S is 1-1, then F [∆S]∩F [∇S] = ∅, or F

is symmetrical on S × S (i.e., F (x, y) = F (y, x)).

Proof. We may assume S = λ.
(1) and (2) are easy. For (3), assume that F (α, β) = F (δ, γ) with α < β,

γ < δ. We have to distinguish several cases:

Case 1: α = γ, β = δ. Since F (α, β) = F (β, α), and F is canonical, we
have F (x, y) = F (y, x) for all x, y, so F is symmetrical.

Case 2: α = γ < β < δ. So F (α, β) = F (δ, α). Pick any β ′, δ′ with
δ < β′ < δ′. Then (α, β, γ, δ) ∼ (α, β, γ, δ′), so F (α, β) = F (δ, α) im-
plies F (α, β) = F (δ′, α); this means F (δ′, α) = F (δ, α). Similarly we find
F (α, β) = F (α, β′). So F is neither 1-1 on ∆ nor 1-1 on ∇.

Other cases: Similar to case 2.

5.10. Lemma. Let C be a clone containing all unary functions. If C
contains a heavily binary function H and also a canonical function F which
is 1-1 on ∆ (or even: canonical on some ∇∆S and 1-1 on ∆S, for some
S ∈ [λ]λ), then C = O.

Proof. By 1.3, it is enough to find a function g ∈ C which is 1-1 on ∇∆.
If F is symmetrical and 1-1 on ∆ (and also 1-1 on ∇, of course), then

we may assume (replacing F by h ◦ F for some appropriate h ∈ O (1), if
necessary), that F (x, y) > max(x, y) for all x, y. We claim that the function

(x, y) 7→ F (x, F (x, y))

is 1-1 on ∇∆. Indeed, if F (x, F (x, y)) = F (x′, F (x′, y′)), then

either x = x′, F (x, y) = F (x′, y′), or x = F (x′, y′), F (x, y) = x′.

In the first case we get either y = y′ directly, or x = y′, y = x, so
again y = y′. The second case leads to a contradiction: x = F (x′, y′) > x′,
x < F (x, y) = x′.

So we assume now that F : λ× λ→ λ is canonical but not symmetrical.
By Lemma 5.9, we know that F [∆] ∩ F [∇] = ∅. Replacing F by h ◦ F for
an appropriate h ∈ O(1), we may assume that
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• F �∆ is constantly 0.
• F �∇ takes only even values > 0, and is 1-1.

Since C contains a heavily binary function, C contains some function H
with H(0, x) = x = H(x, 1) for all x > 0. Now check that the map (x, y) 7→
H(Fxy, Fyx+ 1) is a pairing function.

Proof of Theorem 5.4. Assume that τ is a term for a function in
cl(C1 ∪ C2) representing a 1-1 function on λ× λ. Find a set S ⊆ λ of size λ
such that τ�S is canonical (see Definition 5.7). Since C contains all unary
functions, C also contains a monotone bijection between S and λ, so we will
assume that τ , as well as every subterm of τ , is canonical on λ.

Let Θ be the set of subterms of τ .
Let U∆ ⊆ Θ (and U∇ ⊆ Θ) be the set of those terms σ which induce

unary functions on ∆ (∇, respectively), i.e.,

U∆ = {σ ∈ Θ : ∃f ∈ λλ, [∀(α, β) ∈ ∆ : σ(α, β) = f(α)] or

[∀(α, β) ∈ ∆ : σ(α, β) = f(β)]}.
Let σ be a minimal subterm of Θ which is not in U∆ ∩ U∇, say σ 6∈ U∇.

Let G be the outermost function in the term σ, say G ∈ C1, G n-ary. It
remains to show that C1 contains a pairing function.

All proper subterms of σ represent unary functions, so there are n func-
tions f1, . . . , fn and some k ≤ n with

∀α < β : σ(α, β) = G(f1(α), . . . , fk−1(α), fk(β), . . . , fn(β)).

So the function induced by σ (which we again call σ) is in C1. Now σ�∆
is not essentially unary. But σ is canonical, so by Lemma 5.10 we have a
pairing function in C1.

This concludes the proof of Theorem 5.4.

Gavrilov [Ga65] gave the following explicit description of the precomplete
heavily binary clone for the case of a countable base set. It turns out that
the same description works also on weakly compact cardinals.

5.11. Example. Let T2 := {g ∈ O(2) : ∀S ∈ [λ]λ: neither g�∆S nor
g�∇S are 1-1}. Equivalently, let T2 be the set of all g ∈ O(2) such that:

For all 1-1 functions h1, h2: g(h1, h2) is neither 1-1 on ∆ nor 1-1 on ∇.

Let T := PolT2. Then:

(1) T is a clone, T ⊇ T2.
(2) All unary functions are in T .
(3) The binary function pr∆ (see 3.4) is not in T .
(4) The binary function max is in T .
(5) T is a precomplete clone.
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Hence, T is the unique precomplete clone which is heavily binary and con-
tains all unary functions.

Proof. (1)–(4) are easy (use Fact 5.8).
Proof of (5): Let C be a clone properly containing T . So C contains

a function which is 1-1 on some set ∆S. Now use Lemma 5.10 to see that
C = O.

6. Appendix: set-theoretic assumptions

6.1. Definition. Let λ, µ, n, c be cardinals (usually: λ and µ infinite,
n finite). The partition symbol

λ→ (µ)nc
says: Whenever [λ]n, the set of subsets of λ of cardinality n, is partitioned
into c classes (i.e., whenever f : [λ]n → C, where |C| = c), then there is a
subset A ⊆ λ with at least µ elements such that all subsets of A of size n are
in the same equivalence class (i.e., the restriction of f to [A]n is a constant
function).

For example, the infinitary Ramsey theorem

ℵ0 → (ℵ0)2
2

says: whenever the edges of a complete (undirected) graph on countably
many vertices are colored with 2 colors, then there is an infinite complete
subgraph, all of whose edges have the same color.

We will be mainly interested in the situation λ→ (λ)2
2. If λ→ (λ)2

2, and
λ is an uncountable cardinal, then λ is called weakly compact .

6.2. Fact. If λ→ (λ)2
2, then for all finite n, c we have λ→ (λ)nc .

(In Fact 5.8, we use this property in the particular case of n = 4 and
some large number c, approximately c = 3256.)

The property λ → (λ)2
2 is a rather strong statement, i.e., it has many

interesting consequences. Therefore, its mere negation,

λ 6→ (λ)2
2

or explicitly:

• There is a map f : [λ]2 → {0, 1} such that for any A ⊆ λ of cardinality
λ the function f�[A]2 is not constant [i.e., is onto {0, 1}]

is a rather weak property of λ. There is, however, a strengthening of this
negative partition relation which already yields interesting consequences.

6.3. Definition. The statement λ 6→ [λ]2λ, the negative square bracket
partition relation, means:
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• There is a map f : [λ]2 → λ such that for any A ⊆ λ of cardinality λ
the function f�[A]2 is onto λ.

We will now consider an even stronger property of λ:

6.4. Definition. Let λ ≥ ℵ0 and µ be cardinals. The statement (or,
depending on your point of view, the “principle” or “axiom”) Pr(λ, µ) is
defined as follows:

• There is a symmetric c : λ × λ → µ with the following property: For
all k ∈ ω, for all sequences (ai : i < λ) of pairwise disjoint subsets of λ
of size k, and for all c0 ∈ µ,

there are i < j < λ such that c�(ai × aj) is constant with value c0.

Note that if we consider the case µ = λ, and weaken the conclusion by
allowing only k = 1, we get just λ 6→ [λ]2λ.

This statement as well as several variants of it are discussed in [Sh:g,
III.4 and appendix 1]. What we call Pr(λ, µ) corresponds to Pr1(λ, λ, µ,ℵ0)
there.

While the property Pr(λ, λ) is quite strong (in particular: sufficiently
strong to prove the result in Section 4), it turns out that it is not so rare:
Pr(λ, λ) holds for many successor cardinals already in ZFC without extra
axioms. More general results (with proofs) can be found in Chapter III of
[Sh:g], and also in [Sh 535] and [Sh 572].

(1) If there is a nonreflecting S ⊆ {δ < ℵ2 : cf(δ) = ℵ0}, then Pr(λ, λ)
holds. See [Sh:g, III.4.6C(6)].

(2) If κ ≥ ℵ1 is regular, then Pr(κ+, κ+). See [Sh:g, III.4.8(1)], and
[Sh 572, Theorem 1.1] for the proof of Pr(ℵ2,ℵ2). For κ > 2ℵ0 there is a
proof in [Sh 280].

(3) If κ is singular, and the set of Jonsson cardinals (= cardinals without
a Jonsson algebra) is bounded in κ, then Pr(κ+, κ+) holds. In particular,
Pr(ℵω+1,ℵω+1) holds. See [Sh 535, 1.18].

References

[CN2] W. W. Comfort and S. Negrepontis, The Theory of Ultrafilters, Grundlehren
Math. Wiss. 211, Springer, Berlin, 1974.

[DR85] R. O. Davies and I. G. Rosenberg, Precomplete classes of operations on an
uncountable set , Colloq. Math. 50 (1985), 1–12.

[Ga65] G. P. Gavrilov, On functional completeness in countably-valued logic, Probl.
Kibernetiki 15 (1965), 5–64 (in Russian).

[Ko89] S. Koppelberg, Handbook of Boolean Algebras, Vol. 1, North-Holland, 1989.
[Ku83] K. Kunen, Set Theory : An Introduction to Independence Proofs, Stud. Logic

Found. Math. 102, North-Holland, 1983.



20 M. Goldstern and S. Shelah

[Ro76] I. G. Rosenberg, The set of maximal closed classes of operations on an infinite

set A has cardinality 22|A| , Arch. Math. (Basel) 27 (1976), 561–568.
[Sh:g] S. Shelah, Cardinal Arithmetic, Oxford Logic Guides 29, Oxford Univ. Press,

1994.
[Sh 280] —, Strong negative partition above the continuum, J. Symbolic Logic 55 (1990),

21–31.
[Sh 535] —, Further on colouring , Arch. Math. Logic, submitted; math.LO/9808138 (1).
[Sh 572] —, Colouring and non-productivity of ℵ2-cc, Ann. Pure Appl. Logic 84 (1997),

153–174; math.LO/9609218.
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