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Locally unbounded topological fields
with topological nilpotents

by

J. E. Marcos (Valladolid)

Abstract. We construct some locally unbounded topological fields having topologi-
cally nilpotent elements; this answers a question of Heine. The underlying fields are sub-
fields of fields of formal power series. In particular, we get a locally unbounded topological
field for which the set of topologically nilpotent elements is an open additive subgroup.
We also exhibit a complete locally unbounded topological field which is a topological ex-
tension of the field of p-adic numbers; this topological field is a missing example in the
classification of complete first countable fields given by Mutylin.

1. Introduction. A topological ring (R, T ) is a ring R provided with a
topology T such that the algebraic operations (x, y) 7→ x±y and (x, y) 7→ xy
are continuous. A topological field (K, T ) is a field K equipped with a ring
topology T such that the inversion x 7→ x−1 is also continuous. For an
introduction to topological fields, the books [10, 12, 13] are recommended.

We recall that a subset S of a commutative topological ring R is bounded
if given any neighborhood V of zero, there exists a neighborhood U of zero
such that SU ⊆ V . If R is a nondiscretely topologized field, this is equivalent
to saying that given any neighborhood V of zero, there exists a nonzero
element x ∈ R such that Sx ⊆ V (see [1, p. 94], [10, Theorem 3, p. 42] or
[13, Lemma 12, p. 26]). A ring topology on R is locally bounded if there is
a bounded neighborhood of zero. Each field topology induced by a norm is
locally bounded. An element x of a topological ring is called topologically
nilpotent if the sequence (xn)n∈N converges to zero.

In [5, 6] Heine wrote: “I do not know whether there exist locally un-
bounded topological fields which admit topologically nilpotent elements”.
We construct some topological fields satisfying both conditions. The un-
derlying fields are subfields of some fields K((X)) of formal power series.
In some cases we get locally unbounded topological fields in which the set
of topological nilpotents is an open additive subgroup. This complements
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the topological characterization of normed fields by Cohn [3] (see Theo-
rem 4.3 below). Our construction is somewhat similar to the topological
fields given in [2, Lemma 3], but the latter are normed fields, and therefore
locally bounded. The reader may also compare our examples with the locally
unbounded topologies given by Gould [4].

In Section 5, we exhibit a complete locally unbounded topological field
which is a topological extension of the p-adic number field Qp. This is a
missing example in the classification of complete first countable topological
fields given by Mutylin [9, Table 1] (see also [13, p. 256]). In [8] Mutylin gave
an example of a locally bounded nonnormable field extension of the p-adic
number field.

We recall that for a family {Ui}i∈I of subsets of a commutative ring R
to be a fundamental system of neighborhoods of zero for a Hausdorff ring
topology T on R, it suffices that the following properties hold:

(1) For all i ∈ I, 0 ∈ Ui, Ui = −Ui.
(2) For all i ∈ I there exists k ∈ I such that Uk + Uk ⊆ Ui.
(3) For all i ∈ I there exists k ∈ I such that UkUk ⊆ Ui.
(4) For all i ∈ I and x ∈ R there exists k ∈ I such that xUk ⊆ Ui.
(5)

⋂

i∈I
Ui = {0}.

If, in addition, R is a field, then T is a field topology if {Ui}i∈I also satisfies
the following condition:

(6) For all i ∈ I there exists k ∈ I such that (1 + Uk)−1 ⊆ 1 + Ui.

See [7], [10, p. 4], [12, p. 79] or [13, p. 3], for instance.
Throughout this paper, log denotes the natural logarithm.

2. A size function on a field. To get some bounds for defining certain
subrings and subfields of fields of formal power series, we make the following
definition.

Definition 2.1. Let K be a field. We say that a function N : K → R≥0
is a size function if the following conditions are satisfied:

(N1) N(a) ≥ 2 for all a ∈ K, and N(0) = N(1) = N(−1) = 2.
(N2) N(a± b) ≤ N(a) +N(b) for all a, b ∈ K.
(N3) N(ab) ≤ N(a) +N(b) for all a, b ∈ K.
(N4) For each m ∈ N there exists a ∈ K such that N(a) ≥ m.

In some cases we will consider the following stronger conditions:

(N2′) N(a± b) ≤ max{N(a), N(b)} for all a, b ∈ K.
(N3′) N(ab) ≤ max{N(a), N(b)} for all a, b ∈ K.
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If both (N2′) and (N3′) are satisfied, then the set {a ∈ K : N(a) ≤ m}
is a subring of K for each m ≥ 2 (see [2] and Example 4). In this case, (N1)
can be replaced by

(N1′) N(a) ≥ 1 for all a ∈ K, and N(0) = N(1) = N(−1) = 1.

Notice that log(x+y) ≤ log(x)+log(y) for all x ≥ 2, y ≥ 2. Consequently,
log(N(a + b)) ≤ log(N(a)) + log(N(b)) and log(N(ab)) ≤ log(N(a)) +
log(N(b)) for all a, b ∈ K.

We will give some examples for which it is easy to verify that conditions
(N1)–(N4) are satisfied.

Example 1. Let k(X) be a field of rational functions. If P (X), Q(X) ∈
k[X] and P (X)/Q(X) is an irreducible fraction we define

N(P (X)/Q(X)) = max{deg(P (X)),deg(Q(X)), 2}.
We can also define another size: Nd(P (X)/Q(X)) = max{deg(Q(X)), 2}.

Example 2. Let Q be the field of rational numbers. Let a/b ∈ Q be an
irreducible fraction, a, b ∈ Z. We define

N(a/b) = log(max{|a|, |b|}) + 2.

In this situation, another size function is Nd(a/b) = log(|b|) + 2.

Example 3. In the above situation, let P be the set of positive prime
numbers. We define

Np(a/b) = max({p ∈ P : p divides b} ∪ {2}).
Example 4. If a field F is the union of a strictly increasing sequence of

subfields, F =
⋃
n∈N Fn with Fn ⊂ Fn+1, then we define

N(a) = min{n : a ∈ Fn}.
This function N has been used in [2]. In Examples 3 and 4 the inequalities
(N2′) and (N3′) are satisfied.

Let K be a field. We recall that a norm is a function ‖ ‖ : K → R≥0
such that

• ‖0‖ = 0, and ‖x‖ > 0 for all x 6= 0;
• ‖x‖ = ‖−x‖;
• ‖x+ y‖ ≤ ‖x‖+ ‖y‖;
• ‖xy‖ ≤ ‖x‖ · ‖y‖.

A norm is nonarchimedean if ‖x+ y‖ ≤ max{‖x‖, ‖y‖}.
Example 5. Let (K, ‖ ‖) be a normed field such that, for each m ∈ N,

there exists x ∈ K such that ‖x‖ ≥ m. We define the size function

N(x) = log(max{‖x‖, e2}).
If the norm is nonarchimedean, then this size function satisfies (N2′).
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Example 6. Let Q be the algebraic closure of the rational number field.
For each α ∈ Q\{0} we let deg(α) be the degree of the minimal polynomial
of α over Q. We define

N(α) = max{log(deg(α)), 2} and N(0) = 2.

3. Construction of a topological field. In this section we define
a local subring of K[[X]] and its quotient field. Afterwards, we define the
corresponding ring and field topologies and we study their properties. Notice
that if a sequence (xn)n∈N of real numbers satisfies limn→∞ log(xn)/n = 0,
then

lim
n→∞

log(nk max{xi : i = 1, . . . , n})
n

= 0 for each k ∈ N.
Lemma 3.1. Let K be a field with a size function N . The set

A =
{ ∞∑

n=0

anX
n : an ∈ K, lim

n→∞
log(N(an))

n
= 0
}

is a local subring of the ring K[[X]] of formal series. Its maximal ideal is
generated by X.

Proof. It is clear thatA is a proper subset ofK[[X]]. Let α =
∑∞

n=0 anX
n,

β =
∑∞

n=0 bnX
n ∈ A. It is easy to see that α + β ∈ A. We consider their

product αβ =
∑∞

n=0 cnX
n, where cn =

∑
i+j=n aibj . We have the bound

N(cn) ≤ 2(n + 1) max{N(ai), N(bj) : i, j ∈ {0, 1, . . . , n}}. Consequently,
limn→∞ log(N(cn))/n = 0, and αβ ∈ A.

Let α =
∑∞

n=0 anX
n ∈ A with a0 6= 0. We are going to see that α−1 ∈ A.

Since a−1
0 α ∈ A, we assume that a0 = 1. We have α−1 =

∑∞
n=0 bnX

n ∈
K[[X]], where b0 = 1, and

bn = −
∑

i+j=n
0≤j<n

aibj for n ≥ 1.

We compute inductively
b1=−a1,

b2=−a2 + a2
1,

b3=−a3 + 2a2a1 − a3
1, . . .

If n ≥ 2, the coefficient bn is a sum of less than n2 terms, each a product of
up to n coefficients from {ai : i = 1, . . . , n}. Hence, N(bn) ≤ n3 max{N(ai) :
i = 0, 1, . . . , n}, and therefore lim log(N(bn))/n = 0. We have proven that
α−1 ∈ A. We conclude that

(X) =
{ ∞∑

n=1

anX
n ∈ A

}

is the only maximal ideal of the ring A.
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We denote by A× the set of invertible elements of the ring A. A series∑∞
n=0 anX

n is in A× if and only if a0 6= 0.

Lemma 3.2. The ring A is Noetherian. Its only nonzero ideals are (Xn),
n ∈ N ∪ {0}.

Proof. The first part is a consequence of the second. Let I 6= A be a
nontrivial ideal and let α =

∑∞
n=m anX

n ∈ I be a nonzero element with
minimum additive X-adic valuation; that is, vX(α) = m = min{vX(β) : β ∈
I \{0}}. Since γ =

∑∞
n=m anX

n−m ∈ A× is a unit, we have Xm = αγ−1 ∈ I.
Now it is clear that I = (Xm).

The quotient field of A is

E =
{ ∞∑

n=m

anX
n : m ∈ Z, lim

n→∞
log(N(an))

n
= 0
}
.

For each m ∈ N we define a subset of A:

Um =
{ ∞∑

n≥m
anX

n ∈ A :
log(N(an))

n
≤ 1
m

}
.

Lemma 3.3. The family B = {Um}m∈N is a neighborhood base at zero for
a Hausdorff ring topology on A. Furthermore, the inversion is continuous
in A×.

Proof. We check that B has properties (1)–(5). Properties (1) and (5)
are trivial. It is easy to verify that U2m + U2m ⊆ Um for all m ∈ N, and
therefore condition (2) holds.

To check (3), for each k ≥ 2, we take m = 4k2 ≥ 16 and show that
UmUm ⊆ Uk. Let α =

∑∞
n=m anX

n, β =
∑∞

n=m bnX
n ∈ Um. Then αβ =∑∞

n=2m cnX
n, where cn =

∑
i+j=n aibj . Let

r = max{N(ai), N(bj) : i, j ∈ {m,m+ 1, . . . , n}}.
We get the bound N(cn) ≤ 2nr. Recalling that log(2n)/n ≤ 1/

√
n for n ≥ 9,

we obtain
log(N(cn))

n
≤ log(2n)

n
+

log(r)
n
≤ 1√

n
+

1
4k2 ≤

1
2k

+
1

4k2 ≤
1
k
.

So αβ ∈ Uk.
To prove (4), we first consider a polynomial β =

∑t
n=0 bnX

n ∈ K[X] ⊂ A
and a neighborhood of zero Um ∈ B. Let r = max{N(bn) : n = 0, . . . , t}.
There exists s ≥ 3m such that

log(r)
n
≤ 1

3m
and

log(t+ 1)
n

≤ 1
3m

for all n ≥ s.(7)

We now take the neighborhood Us ∈ B and check that βUs ⊆ Um. Given
α =

∑∞
n=s anX

n ∈ Us, we write βα =
∑∞

n=0 cnX
n, where cn =

∑t
i=0 bian−i
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for n ≥ t. Then

N(cn) ≤ (t+ 1)(r + max{N(ai) : i = s, s+ 1, . . . , n}).
Applying (7), we get the bound

log(N(cn))
n

≤ log(t+ 1)
n

+
log(r)
n

+
log(max{N(ai) : i = s, . . . , n})

n

≤ 1
3m

+
1

3m
+

1
3m

=
1
m
.

Thus βα ∈ Um.
Second, let δ =

∑∞
n=0 dnX

n ∈ A be an arbitrary element, and Um ∈ B.
We have seen that there exists Ul ∈ B such that UlUl ⊂ U2m. We split δ into
a polynomial δ1 =

∑t
n=0 dnX

n and δ2 =
∑∞

n=t+1 dnX
n ∈ Ul. By the above

we get a neighborhood Us ∈ B (with s ≥ l) such that δ1Us ⊂ U2m. So

δUs ⊆ δ1Us + δ2Us ⊆ U2m + UlUl ⊆ U2m + U2m ⊂ Um.
To show that inversion is continuous in A×, it suffices to show that it is

continuous at 1 (see [12, p. 106]). For this purpose, we now check that, given
a zero neighborhood Um ∈ B, there exists Uk ∈ B such that (1 + Uk)−1 ⊆
1 + Um. We choose k ≥ 2m such that 3 log(n)/n ≤ 1/(2m) for all n ≥ k.

Let α = 1 +
∑∞

n=k anX
n ∈ 1 + Uk. Then α−1 = 1 +

∑∞
n=k bnX

n. Using
the same reasoning as in the proof of Lemma 3.1, we get

N(bn) ≤ n3 max{N(ai) : i = k, . . . , n}.
Consequently,

log(N(bn))
n

≤3 log(n)
n

+
log(max{N(ai) : i = k, . . . , n})

n

≤ 1
2m

+
1
k
≤ 1
m
.

Thus α−1 ∈ 1 + Um.

We denote this ring topology on A by TN . It is clear that the maximal
ideal (X) is open. Notice that, for all k,m ∈ N, the following inclusions hold:

Um+k ⊂ XkUm ⊂ Um, Um+k ⊂ X−kUm+k ⊂ Um.(8)

Lemma 3.4. The same family B = {Um}m∈N is a neighborhood base at
zero for a Hausdorff field topology on the quotient field E of A. We also
denote this topology by TN .

Proof. We have proven in the previous lemma that B has properties (1),
(2), (3), (5) and (6). It remains to prove (4). We have also shown in the
previous lemma that, for each δ ∈ A and each Um ∈ B, there exists Us such
that δUs ⊆ Um. This fact together with (8) shows that property (4) holds
in E.
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If condition (N2′) is satisfied, then the neighborhoods Um are open ad-
ditive subgroups of (A,+).

Lemma 3.5. The ring of polynomials K[X] is a dense subring of (A, TN ).

Proof. Given α =
∑∞

n=0 anX
n ∈ A and a zero neighborhood Um ∈ B,

since
lim
n→∞

log(N(an))/n = 0,

there exists t ≥ m such that log(N(an))/n ≤ 1/m for all n ≥ t. Hence
α−∑t−1

n=0 anX
n ∈ Um. Thus (α+ Um) ∩K[X] 6= ∅.

We consider in K[X] the subspace topology inherited from (A, TN ); we
denote this topology also by TN . A fundamental system of zero neighbor-
hoods is B′ = {U ′m}m∈N, where U ′m = Um ∩K[X]. We are going to see that
(A, TN ) is the completion of the topological ring (K[X], TN ). We construct
the completion as the quotient ring of the ring of Cauchy sequences by the
ideal of all sequences converging to zero. We say that two Cauchy sequences
are equivalent if they represent the same element in this quotient ring.

Lemma 3.6. Let (αm)m∈N be a Cauchy sequence in (K[X], TN). There
exists a sequence (bn)n≥0 of elements of K such that the sequence (ωm)m∈N
of polynomials defined by ωm =

∑m
n=0 bnX

n is a Cauchy sequence equivalent
to (αm)m∈N.

Proof. Passing to subsequences we may assume that αi−αj ∈ U ′m+1 for
all i, j ≥ m. We write αi =

∑di
n=0 ai,nX

n. Hence ai,n = aj,n for i, j ≤ n,
and we define bn = an,n. Given a neighborhood U ′m ∈ B′, for any index
k > max{deg(α2m), 2m}, we take

αk − ωk = (αk − α2m) + (α2m − ωk).(9)

Notice that if
∑t

n=s cnX
n ∈ U ′s and s ≤ l < t, then

∑l
n=s cnX

n ∈ U ′s
as well. Since αk − α2m ∈ U ′2m+1 and k > deg(α2m), we see that also
ωk − α2m ∈ U ′2m+1. Using (9), we obtain αk − ωk ∈ U ′2m+1 + U ′2m+1 ⊂ U ′m.
Thus (ωm)m∈N is a Cauchy sequence equivalent to (αm)m∈N.

Lemma 3.7. The topological ring (A, TN ) is a completion of (K[X], TN).

Proof. We have seen in Lemma 3.5 that K[X] is a dense subring of
(A, TN ). Let (αm)m∈N be a Cauchy sequence in (K[X], TN ). Using the pre-
vious lemma, we get an equivalent Cauchy sequence (ωm)m∈N such that
ωm =

∑m
n=0 bnX

n. Given a neighborhood U ′k ∈ B′, there exists s ∈ N such
that ωi − ωj ∈ U ′k for all i, j ≥ s. In particular, ωi − ωs ∈ U ′k for all i ≥ s.
Hence log(N(bn))/n ≤ 1/k for all n ≥ s; that is, limn→∞ log(N(bn))/n = 0.
Thus

∑∞
n=0 bnX

n ∈ A is the limit in (A, TN ) of the sequence (ωm)m∈N.

Corollary 3.8. The topological ring (A, TN ) is complete.
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Corollary 3.9. The topological field (E, TN ) is complete.

Proof. Let (αm)m∈N be a Cauchy sequence in (E, TN ). We take the neigh-
borhood U1 ∈ B. There exists s ∈ N such that αi − αj ∈ U1 for all i, j ≥ s.
Since U1 ⊂ A, we have αi − αs ∈ A for all i ≥ s. The sequence (αi − αs)i≥s
is Cauchy in (A, TN ), hence it has a limit γ. Therefore γ +αs is the limit of
(αm)m∈N in (E, TN ).

The topological field (E, TN ) is a completion of K(X) endowed with the
subspace topology. Let R be a complete metrizable ring with identity. If R×

is open, then inversion is continuous [12, Theorem 14.10]. Since both (A, TN )
and (E, TN ) are Hausdorff and satisfy the first axiom of countability, both
are metrizable. We deduce again that inversion is continuous in A and E.

In order to prove our main result we need the following easy lemma.

Lemma 3.10. Let (F, T ) be a locally bounded topological field with a topo-
logically nilpotent element b ∈ F \ {0}. There exists a zero neighborhood V
such that {bkV }k∈N is a neighborhood base at zero for the topology T .

Proof. Let B be a fundamental system of zero neighborhoods. For every
a ∈ F \{0} and U ∈ B the set aU is also a zero neighborhood. Let V ∈ B be
a bounded neighborhood of zero. Hence {UV }U∈B is another neighborhood
base at zero. For each U ∈ B there exists bk ∈ U , and so bkV ⊂ UV . Since
each bkV is a zero neighborhood, the collection {bkV }k∈N is a fundamental
system of zero neighborhoods.

Theorem 3.11. The topological field (E, TN ) is locally unbounded and
has topologically nilpotent elements.

Proof. It is obvious that X ∈ E is topologically nilpotent. Using the
previous lemma, we only need to prove that for each Um ∈ B the family
{XkUm}k∈N is not a neighborhood base at zero. For this purpose it suffices
to show that XkUm 6⊆ U2m for all k,m ∈ N. Assume that there are s,m
such that XsUm ⊆ U2m. Using property (N4), we get a ∈ K ⊂ E and n ∈ N
such that

n ≥ m, n ≥ 4s,
3

4m
<

log(N(a))
n

≤ 1
m
.

Hence aXn ∈ Um, and aXs+n ∈ XsUm ⊆ U2m. Since n ≥ 4s, we have
n+ s ≤ n+ n/4 = 5n/4. Consequently,

log(N(a))
n+ s

≥ log(N(a))
5n/4

>
3

4m
· 4

5
=

3
5m

>
1

2m
.

Thus aXs+n 6∈ U2m, and we have got a contradiction.

4. An additive subgroup consisting of topological nilpotents.
In this section we deal with fields with a size function that satisfies condi-
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ton (N2′) (see Examples 3, 4, and Example 5 in case the norm is nonar-
chimedean). We will present a result slightly stronger than Theorem 3.11.

Theorem 4.1. Let K be a field with a size function N that satisfies
condition (N2′). The set of topologically nilpotent elements of the topological
ring (A, TN ) is the maximal ideal (X) ⊂ A.

Proof. It is clear that if an element does not belong to (X), then it is not
topologically nilpotent. Let α =

∑∞
n=1 anX

n ∈ (X). For each s ∈ N we take
the power αs =

∑∞
n=s bn,sX

n. Each coefficient bn,s is a sum of products of s
terms (possibly repeated) taken from {a1, . . . , an−s+1}. Applying condition
(N2′), we obtain N(bn,s) ≤ smax{N(a1), . . . , N(an)}, and hence

log(N(bn,s))
n

≤ log(s) + log(max{N(a1), . . . , N(an)})
n

.(10)

Given a neighborhood of zero Um ∈ B, since limn→∞ log(N(an))/n = 0,
there exists nm ≥ m such that

log(max{N(a1), . . . , N(an)})
n

≤ 1
2m

(11)

for all n ≥ nm. We take sm ≥ nm such that log(s)/s ≤ 1/(2m) for all
s ≥ sm. Therefore

log(s)
n
≤ 1

2m
(12)

for all n ≥ s and s ≥ sm. From (10)–(12), we conclude that

log(N(bn,s))
n

≤ 1
m

for all s ≥ sm and n ≥ s. Thus αs ∈ Um for all s ≥ sm. We have proved
that α is topologically nilpotent.

Corollary 4.2. The topological field (E, TN ) is locally unbounded and
the set of topologically nilpotent elements is an open additive subgroup.

Since an open additive subgroup is a neighborhood of zero, our last result
is in a sense complementary to the following result of Cohn:

Theorem 4.3 ([3], [11], [10, p. 66], [13, p. 74]). Let T be a proper ring
topology on a field. The following statements are equivalent :

(1) T is induced by a norm.
(2) T is locally bounded and there exists a nonzero topologically nilpotent

element.
(3) The set of topologically nilpotent elements is a bounded open neigh-

borhood of zero.

The following formulation of Warner is more related to our result:
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Theorem 4.4 ([12, p. 132]). Let F be a nontrivial topological field. The
following statements are equivalent :

(1) The set of topological nilpotents is a bounded open additive subgroup.
(2) The topology of F is given by a spectral ultranorm.

5. A locally unbounded complete extension of the p-adic number
field. In [9, Table 1] Mutylin raised the question if there exists a complete,
non-locally bounded and first countable field extension of the p-adic number
field Qp (see also [13, p. 256]). In this section we exhibit a topological field
with the above features. We omit the proofs because they are completely
analogous to the corresponding ones in the previous sections.

Let P (X) ∈ Z[X]. Any greatest common divisor of the coefficients of
P (X) is called a content of P (X). We write c(P ) for a content of P (X). We
fix a prime p and define a local subring S of Q(X) by

S = Z[X](p) =
{
P (X)
R(X)

: P (X), R(X) ∈ Z[X] and p - c(R)
}
.

That is, S is the ring of polynomial fractions whose denominator has content
coprime to p. We define the following ring of formal power series, where N
is the size function in Q(X) defined in Example 1:

Ap =
{ ∞∑

n=0

fn(X)pn : fn(X) ∈ S, lim
n→∞

log(N(fn))
n

= 0
}
.

The sum and product are performed in the following way: Given

α =
∞∑

n=0

fn(X)pn, β =
∞∑

n=0

gn(X)pn

in Ap, we set

(13)

α+ β =
∞∑

n=0

(fn(X) + gn(X))pn,

αβ =
∞∑

n=0

( ∑

i+j=n

fi(X)gj(X)
)
pn.

Notice that the representation of elements in Ap is not unique. The ring Ap
is local with the maximal ideal pAp = {∑∞n=1 fn(X)pn ∈ Ap}. The field of
fractions of Ap is

Ep =
{ ∞∑

n=0

fn(X)pn :
f0(X) ∈ Q(X),

fn(X) ∈ S if n ≥ 1,
lim
n→∞

log(N(fn))
n

= 0
}
,

where the operations are performed as in (13). We have the inclusions
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Zp[X] ⊂ Ap, Qp(X) ⊂ Ep. For each m ∈ N we define a subset of Ap by

Wm =
{ ∞∑

n≥m
fn(X)pn ∈ Ap :

log(N(fn))
n

≤ 1
m

}
.

The collection BW = {Wm}m∈N is a fundamental system of zero neigh-
borhoods for a Hausdorff ring topology on Ap; furthermore the inversion
is continuous in A×p . This family BW is also a fundamental system of zero
neighborhoods for a Hausdorff field topology on Ep. We use the notation
TW for both topologies.

We denote by the same symbol TW the subspace topology that Q(X)
inherits from (Ep, TW ), as well as the subspace topology that the subring
S inherits from the two topological rings (Q(X), TW ) and (Ap, TW ). The
topological ring (Ap, TW ) is the completion of (S, TW ), and (Ep, TW ) is the
completion of (Q(X), TW ). Hence (Ep, TW ) is a complete topological field.
In addition, following the same reasoning as in Section 3, we deduce that
the topological field (Ep, TW ) is locally unbounded and has topologically
nilpotent elements.

The subspace topology that the field Qp of p-adic numbers inherits from
(Ep, TW ) is just the p-adic topology Tp. Hence we have the following result,
which is an answer to the aforementioned question of Mutylin.

Theorem 5.1. The topological field (Ep, TW ) is a complete first countable
locally unbounded topological extension of the p-adic number field (Qp, Tp).
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