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Herbrand consistency and bounded arithmetic

by

Zofia Adamowicz (Warszawa)

Abstract. We prove that the Gödel incompleteness theorem holds for a weak arith-
metic Tm = I∆0 + Ωm, for m ≥ 2, in the form Tm 6` HCons(Tm), where HCons(Tm)
is an arithmetic formula expressing the consistency of Tm with respect to the Herbrand
notion of provability. Moreover, we prove Tm 6` HConsIm (Tm), where HConsIm is HCons
relativised to the definable cut Im of (m − 2)-times iterated logarithms. The proof is
model-theoretic. We also prove a certain non-conservation result for Tm.

In [PW] Paris and Wilkie asked the following question: does I∆0 prove
the cut free consistency of I∆0? Here we solve (negatively) an analogous
question with I∆0 + Ωm, m ≥ 2, in place of I∆0. The theory I∆0 + Ωm
can be considered as another version of bounded arithmetic and Herbrand
provability is a version of cut free provability (it is defined and formalized
in Section 2).

Pudlák [P] and Hájek–Pudlák [HP] proved Gödel’s Incompleteness The-
orem for weak arithmetic with the ordinary (Hilbert) notion of provability.

As Herbrand consistency of a theory is a weaker statement than its ordi-
nary consistency, proving its unprovability in some theory is more difficult.

In [P] Pudlák also proves that theories of the form I∆0 + Ωm do prove
their own Herbrand consistency relativised to a certain definable cut Jm.
Here we show that they do not prove their own Herbrand consistency rela-
tivised to Im. It follows that consistently Jm ( Im.

Pudlák [P] (see also Hájek and Pudlák [HP]) in his proof uses a provabil-
ity predicate Prov and its restriction Prov∗ to a definable initial segment
and shows that Prov and Prov∗ satisfy some derivability conditions from
which the main result is obtained in a routine way.

Our result for the case of I∆0 +Ω2 (m = 2) has been proved in [AZ] and
for m = 1 in [A1]. In [AZ] we applied an idea similar to that of [P] and [HP].
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In this paper we give a different proof, much more model-theoretic than the
former one.

The Paris–Wilkie problem has also been considered by Willard [W].
We use standard notation throughout. In particular, ∆0 denotes the class

of bounded arithmetical formulas and I∆0 is the system of weak arithmetic
with induction scheme for ∆0 formulas only. BΣ1 denotes the Σ1 collection
scheme. Addition and multiplication are regarded as relations.

Let ω0(x) = x2 and ωm+1(x) = 2ωm(log x) (arithmetical log denotes the
integral part of the logarithm). The axiom Ωm states the totality of the
function ωm. The axiom exp states the totality of the exponential function
y = 2x.

Generally formulas are always defined as elements of N or of a model M
under consideration. In other words we identify formulas with their Gödel
numbers.

Let Sat be a universal formula for ∆0. Thus Sat is Σ1 and

M |= Sat(ϕ) iff M |= ϕ,

for ϕ ∈ ∆0, in every model M of I∆0 + exp.
For each n ∈ N let

lognM = {a ∈M : ∃b ∈M (M |= (b = expn(a)))}.
Of course every lognM is a definable initial segment of M (“y = exp(x)” can
be expressed by a ∆0 formula—see [HP]). Thus we have IMm = logm−2M .

1. We shall express (in Sec. 2) the Herbrand consistency by a Π1 for-
mula HConsm(ϕ) (ϕ is Herbrand consistent with Tm). We shall also use an
auxiliary Π1 formula HConsImm (ϕ), obtained from HConsm by restriction of
the initial quantifier to the definable segment Im (in the standard model Im
is N). The formula HConsImm will have the following property:

(∗) For a bounded θ if

Tm + ∃x ∈ logm+1 θ(x) + HConsImm (“0 = 0”)

is consistent then so is

Tm + ∃x ∈ logm+2 θ(x).

Note that HConsm(“0 = 0”) expresses “Tm is Herbrand consistent”.
Now with HConsm and HConsImm as above we can prove the announced

result,
Tm 6` HConsImm (“0 = 0”).

We need the following theorem:
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1.1. Theorem. For m,n ∈ N there is a bounded formula θ(x) (where x
is a finite string of variables) such that

I∆0 + Ωn + ∃x ∈ logm θ(x)

is consistent and
I∆0 + Ωn + ∃x ∈ logm+1 θ(x)

is inconsistent.
In particular , for m ∈ N there is a bounded formula θm(x) such that

I∆0 + Ωm + ∃x ∈ logm+1 θm(x)

is consistent and

I∆0 + Ωm + ∃x ∈ logm+2 θm(x)

is inconsistent.

The theorem can be considered as a certain non-conservation result and
may be interesting in its own right. We prove it later in this section.

Now the proof of the main result is as follows. Let θm be given by The-
orem 1.1. We shall show that

Tm + ∃x ∈ logm+1 θm(x) + HConsImm (“0 = 0”)

is inconsistent.
Suppose that this theory is consistent. Then, by (∗),

Tm + ∃x ∈ logm+2 θm(x)

is consistent. But this violates the choice of θm. Hence

Tm + ∃x ∈ logm+1 θm(x) + HConsImm (“0 = 0”)

is inconsistent. Thus, in view of the consistency of Tm+∃x ∈ logm+1 θm(x),
we have

Tm 6` HConsImm (“0 = 0”),

which completes the proof.

We have shown that to prove our main result it is sufficient to construct
formulas HConsm, HConsImm with the properties stated above. This will be
done in subsequent sections.

Now let us prove Theorem 1.1.
Let m,n ∈ N. Suppose that for every bounded formula θ such that

I∆0 + Ωn + ∃x ∈ logm θ(x) is consistent, I∆0 + Ωn + ∃x ∈ logm+1 θ(x) is
consistent. Fix a bounded formula θ0 such that

I∆0 + Ωn + ∃x ∈ logm θ0(x)

is consistent, x = x1, . . . , xk. Hence

I∆0 + Ωn + ∃x ∈ logm+1 θ0(x)
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is consistent. Therefore

I∆0 + Ωn + ∃y ∈ logm ∃x ≤ y
( ∧

i=1,...,k

y ≥ 2xi ∧ θ0(x)
)

is consistent.
Let θ1(y) be ∃x ≤ y (

∧
i=1,...,k y ≥ 2xi∧θ0(x)). Applying our supposition

to θ1 we infer

I∆0 + Ωn + ∃y ∈ logm+1 ∃x ≤ y
( ∧

i=1,...,k

y ≥ 2xi ∧ θ0(x)
)

is consistent. Hence

I∆0 + Ωn + ∃x ∈ logm+2 θ0(x)

is consistent. Continuing we infer that

I∆0 + Ωn + ∃x ∈ logm+n′ θ0(x)

is consistent for all n′ ∈ N. Thus there is a model M of I∆0 and an a ∈M
such that M |= θ0(a) and M |= (expn

′
(max a) exists) for n′ ∈ N. Consider

the initial segment M ′ of M determined by the elements expn
′
(max a) for

n′ ∈ N. Then M ′ |= I∆0 + exp and M ′ |= θ0(a). It follows that the theory
I∆0 + exp + ∃x θ0(x) is consistent.

Thus, for every bounded θ, if I∆0 + Ωn + ∃x ∈ logm θ(x) is consistent
then so is I∆0 + exp +∃x θ(x).

Also, for any bounded θ1, . . . , θl, if

I∆0 + Ωn +
∧

i=1,...,l

∃x ∈ logm θi(x)

is consistent then so is

I∆0 + exp +
∧

i=1,...,l

∃x θi(x)

because the sentence
∧
i=1,...,l ∃x θi(x) can be presented as

∃x1, . . . , xl
∧

i=1,...,l

θi(xi).

Let Σ∗1 denote the collection of all sentences of the form ∃x ∈ logm θ(x),
where θ is bounded. Let T ∗ ⊆ Σ∗1 be maximal (with respect to Σ∗1) consistent
with I∆0 + Ωn. It follows that I∆0 + exp + T ∗ is consistent.

Let T ∗∗ ⊆ Σ1 consist of those Σ1 sentences φ of the form ∃x θ(x),
where θ is bounded, for which the sentence “∃x ∈ logm θ(x)” is in T ∗. We
shall show that T ∗∗ is maximal consisting of Σ1 sentences consistent with
I∆0 + exp.
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Let φ ∈ Σ1 of the form ∃x θ(x) be such that I∆0 + exp + T ∗∗ + φ is
consistent. Then

I∆0 + exp + T ∗∗ + ∃x ∈ logm θ(x)

is consistent. Hence

I∆0 + Ωn + T ∗ + ∃x ∈ logm θ(x)

is consistent. Hence, by the maximality of T ∗, the sentence “∃x ∈ logm θ(x)”
is in T ∗, whence φ ∈ T ∗∗. It follows that T ∗∗ is maximal consisting of Σ1

sentences consistent with I∆0 + exp.
Let M |= I∆0 + exp + T ∗∗ + BΣ1 be such that Σ1(M) (the set of Σ1

sentences true in M) is not coded in M . Such a model M exists (see [WP2],
the proof of Theorem 9). Note that by the maximality of T ∗∗, Σ1(M) = T ∗∗.

By another result of [WP2] (Theorem 5(2)), M has a proper end-exten-
sion to a model M ′ of I∆0 + Ωn+1. By the maximality of T ∗ with respect
to I∆0 + Ωn and Σ∗1, we have

M ′ |= φ ⇔ M |= φ,

for every φ ∈ Σ∗1. Let a ∈M ′ \M . We thus have

M |= φ ⇔ M ′ |= φa,

for every φ ∈ Σ∗1.
Since every φ ∈ Σ1 is equivalent in M (and so in M ′) in a canonical way

to an ∃Σb1 sentence (via the Matiyasevich theorem) and M ′ |= Ω1, we may
use the universal formula for ∃Σb

1 formulas available in M ′ to infer that

{φ ∈ Σ∗1 : M ′ |= φa}
is coded in M ′. Here Σb1 denotes Buss’s class (see [B], [HP]) and ∃Σb

1 denotes
the class of formulas of the form ∃x θ(x), where θ is Σb

1. The required
universal formula can be built using the formula µ1 from Theorem 4.18
of [HP] (see also the appendix of [A]). The notation φa denotes the formula
obtained from φ by bounding its unbounded existential quantifiers to a.

But then T ∗ is coded in M ′ and consequently so is T ∗∗; hence Σ1(M) is
coded in M ′, whence it is coded in M , contradiction.

Thus the theorem has been proved.

2. Let us recall what we mean by Herbrand type provability of a sen-
tence. Let ϕ be a sentence of the form

(2.1) ∃x1 ∀y1 . . .∃xm ∀ym ϕ(x1, y1, . . . , xm, ym),

where ϕ is open.
Extend the language by new function symbols f1, . . . , fm such that fk is

of arity k. The symbol fk can be treated as a symbol for a Skolem function
for the kth existential quantifier in ¬ϕ. Let T be the set of terms of the
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extended language. We call ϕ̃(t1, . . . , tm) a Herbrand variant of ϕ if ϕ̃ is of
the form

ϕ(t1, f1(t1), . . . , tm, fm(t1, . . . , tm))

for some t1, . . . , tm ∈ T .
We say that ϕ is Herbrand provable (in logic) if there is a finite T ′ ⊆ T

such that ∨

t1,...,tm∈T ′
ϕ̃(t1, . . . , tm)

is a propositional tautology.
Assume now that T = {φ1, φ2, . . .} is a fragment of arithmetic and +, ·

are treated as relations. Assume that φj is of the form

∀x1 ∃y1 . . .∀xm ∃ym φj(x1, y1, . . . , xm, ym),

where φ is open. We may assume that m ≤ j.
We are aiming at formulating Herbrand type consistency of T . To this

end we need to extend the language by some function symbols sjk such that
sjk is of arity k. The symbol sjk is a symbol for a Skolem function for the kth
existential quantifier in φj . We have k ≤ j. Let the language so obtained be
denoted by L̃. Then, by the above definition, a Herbrand variant of ¬φj is
a formula ¬φ̃j(t1, . . . , tk) of the form

¬φj(t1, sj1(t1), . . . , tk, s
j
k(t1, . . . , tk)),

where t1, . . . , tk are terms of L̃.
Then T is Herbrand inconsistent if a finite disjunction of some Herbrand

variants
¬φ̃j(t1, . . . , tk)

is provable in the propositional calculus.
Hence, T is Herbrand consistent if every finite conjunction of some

φ̃j(t1, . . . , tk) is consistent with the propositional calculus.
To formalize the property “T is Herbrand consistent” in arithmetic we

have to encode the language L̃ in arithmetic. So we number all terms of
L̃ in the following natural order. Let the constants 0, 1 be terms of rank 0
and let the terms of rank at most i+ 1 consist of all terms of rank at most
i and of all terms of the form sjk(t1, . . . , tk) for j ≤ i + 1 − (k − 1), with
t1, t2, . . . , tk of rank i − (k − 1), i − (k − 2), . . . , i respectively. We number
terms of rank 0, then of rank 1 etc. by consecutive natural numbers leaving
some numbers not used. Let the numbers left aside serve to number logical
symbols of the language L̃. The exact form of our numbering is given below
in this section. Then terms of rank at most i are numbered by numbers less
than li, for some recursive function i 7→ li.
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As a matter of fact in our numbering every term has a lot of numbers. If
t1, . . . , tk are of rank i0 then they are also of rank at most i for every i ≥ i0,
and so the term sjk(t1, . . . , tk) is a term of rank at most i+1 for every i ≥ i0.

There are recursive uniformly definable functions Si,jk such that Si,jk :
[0, li−(k−1))× [0, li−(k−2))× . . .× [0, li)→ [0, li+1) and the following holds: if
the terms t1, . . . , tk are numbered by a1, . . . , ak then the term sjk(t1, . . . , tk)
as a term of rank i+ 1 is numbered by Si,jk (a1, . . . , ak).

Let the encoded language be denoted by L∗. Let Ei denote the collection
of encoded atomic and negated atomic formulas on terms of rank at most i.

We shall call a function p : Ei → {0, 1} a T -evaluation of rank i if
p(¬ϕ) = 1 − p(ϕ) for ϕ ∈ Ei. Each such p extends uniquely (in a routine
way) to open sentences of L∗ with terms < li. We assume further that
p(ϕ) = 1 for every axiom of equality ϕ and that p makes

φj(t1, s
j
1(t1), . . . , tk, s

j
k(t1, . . . , tk))

true for every Herbrand variant of φj with terms of rank at most i, i.e. p
takes value 1 at the formula

φj(a1, S
i1,j
1 (a1), . . . , ak, S

ik,j
k (a1, . . . , ak))

of L∗, for a1 < li1 , a2 < li2 , . . . , ak < lik , j < i1 < i2 < . . . < ik < i.
Note that every T -evaluation of rank i+1 makes true every conjunction of

some φ̃j(t1, . . . , tk) with t1, . . . , tk of rank at most i−(k−1), i−(k−2), . . . , i
respectively.

Thus, T is Herbrand consistent if for every i there is a T -evaluation of
rank i.

To be able to define all the required notions at stage i we need exp3 i to
exist. This is because the numbers li and Ei are roughly of size exp2 i and
any T -evaluation of rank i is roughly of size exp3 i.

The whole formalization is available in I∆0 + Ωm. In particular we have
a ∆1 formula V T (p, i) expressing “p is a T -evaluation of rank i”. Then we
may formulate Hcons(T ) as

∀i ∈ log3 ∃p V T (p, i).

This may be considered a weak form of Herbrand consistency, but it makes
our negative results even stronger.

Here is the exact definition of our coding. Let M be a model of Tm.
Define

l0 = 2,

li+1 = li + (i+ 1)li + ilili−1 + . . .+ li . . . l0.

We have

(2.2) li ≤ 22i
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for each i ∈ log3. For,

li+1 = li(1 + (i+ 1) + ili−1 + . . .+ li−1 . . . l0) = li(1 + (i+ 1) + li − li−1)

and hence, assuming (2.2) for a given i > 0, we obtain

li+1 ≤ 22i(1 + (i+ 1) + 22i − li−1) = (22i)2 + 22i(1 + (i+ 1)− li−1) ≤ 22i+1

since, obviously, lj ≥ 1 + (j + 2) for each j ≥ 1.
The graph of the function l (as a function of i) is definable in Tm (with the

help of an ordinary technique, see e.g. [WP1] or [HP]), so that the domain
of l is an initial segment. From (2.2) it follows that l is defined at least on
log3. An easy estimation shows that

logm−1M =
⋃

i∈logm+1M

[li, li+1)

(where [a, b) is the interval {x : a ≤ x < b}), but we do not use this fact.
Define also (i, j will denote elements of logm throughout)

Si,jk (a1, . . . , ak) = li + (i+ 1)li + ilili−1(2.3)

+ . . .+ ((i+ 1)− (k − 2))li . . . li−(k−2)

+ jli . . . li−(k−1) + (a1, . . . , ak)i for k ≥ 2,

Si,j1 (a1) = li + jli + (a1)i

for 1 ≤ k ≤ i, j ≤ i and a1 < li−(k−1), . . . , ak < li (otherwise set Si,jk = 0;
also let S0,0

1 (0) = 2 and S0,0
1 (1) = 3). Here (a1, . . . , ak)i denotes the position

(a number ≤ li . . . li−(k−1)) of (a1, . . . , ak) in the lexicographical ordering of
the product

[0, li−(k−1))× . . .× [0, li).

The graph of Si,jk is (uniformly in i, j, k) definable in Tm. The values
Si,jk (a1, . . . , ak) as in (2.3) fill the interval [li, li+1) for each i ∈ log3M .
Thus, (2.3) constitutes a numbering of logM (except 0 and 1).

The inner language L∗, encoded in Tm in the usual way, is obtained from
the ordinary arithmetical language L (in which addition and multiplication
are treated as relations) by adding elements a ∈ log as terms (except the
Si,jk (a1, . . . , ak)’s with j = 0, which may serve to define other primitive
notions and formulas of L∗).

Let T be a set of sentences of L∗. An evaluation p on Ei is a T -evaluation
if p satisfies the following condition (denoted briefly by p ∗ ϕ):

(2.4) for each axiom ϕ of T in its prenex form, ∀x1 ∃y1 . . .∀xm ∃ymϕ,
if ϕ has index j ≥ 1 (in a fixed enumeration of T ), then for all
i1 < . . . < im < i (ϕ < i1) and arbitrary a1 < li1 , . . . , am < lim , p
assumes the value 1 at ϕ(a1, S

i1,j
1 (a1), . . . , am, Sim,jm (a1, . . . , am)).
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It is understood here that all terms occurring in the axioms of T are less
than li. Notice that, roughly, we have p ≤ 2li for each evaluation p on Ei.

The condition (2.4) generalizes in a natural way as follows. For an evalu-
ation p on Ei and a sentence ϕ of L∗ as in (2.1), which contains parameters
c and is of the form ψ(c), where ψ ∈ N and c < lj , write p  ϕ if

∀i1 ∈ [j + 1, i) ∀a1 < li1 ∃b1 < li1+1 . . .

∀im ∈ [im−1 + 1, i) ∀am < lim ∃bm < lim+1

such that p is 1 at
ϕ(a1, b1, . . . , am, bm).

For open ϕ we assume that p  ϕ if p(ϕ) = 1. Thus, we have p  ϕ for
each standard axiom ϕ of T and each T -evaluation p.

All quantifiers in the above definition are bounded by li ∈ log (i.e. exp(li)
exists). Hence, using the universal formula Sat we can find a ∆0 formula F
with an additional parameter b (bounding the unrestricted quantifier in Sat)
such that

p  ϕ iff F (p, i, ϕ, b)

for every evaluation p on Ei, standard ϕ with terms < li and any b such
that b ≥ 2l

ϕ
i (cf. Lessan [L] and Theorem 2 of [DP]). It follows that

(2.5) p  ϕ iff ∀b (b ≥ 2l
ϕ
i ⇒ F (p, i, ϕ, b))

for every evaluation p on Ei and a standard sentence ϕ with terms < li.
Assume that T is ∆0 definable in Tm. We construct a ∆1 formula V T

such that

(2.6) p is a T -evaluation on Ei iff V T (p, i)

iff ∀b (b ≥ 2ω1(li) ⇒ V T0 (p, i, b)) with bounded V T0 .
Let M be a (non-standard) model of Tm and let i′ = i+j ∈ log3M , where

j > N. Every T -evaluation p ∈ M on EMi+j determines a model M(p, i) as
follows. Put

a =p b ≡ p(“a = b”) = 1

for a, b < li+N. Clearly, =p is an equivalence relation on the initial segment
[0, li+N) of M . Let

M(p, i) = {[a] : a < li+N}
consist of equivalence classes and define

[a] + [b] = [c] iff p(“a+ b = c”) = 1

and similarly for multiplication and ordering. It follows immediately that

M(p, i) |= ϕ iff p(ϕ) = 1

for arbitrary open ϕ with parameters < li+N (a is a name for [a]).
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Also, directly from the above definition, we obtain the following:

(2.7) If p  ϕ(c1, . . . , cn), then M(p, i) |= ϕ([c1], . . . , [cn])

for arbitrary standard ϕ with parameters c1, . . . , cn < li+N. In particular,
M(p, i) is a model of T ∩ N for every T -evaluation p. The converse of (2.7)
is in general not true.

Therefore the formula HConsm(ϕ), expressing the Herbrand consistency
of ϕ with Tm, can be assumed to have the form

∀i ∈ log3 ∃p V Tm+ϕ(p, i).

More precisely, HConsm(ϕ) looks like

(2.8) ∀y ∀i ≤ y [i ≤ log3y ∧ y ≥ 2ω1(li) ⇒ ∃p ≤ y V Tm+ϕ
0 (p, i, y)].

Finally, HCons(Tm) is HConsm(“0 = 0”).

3. In order to prove that HConsm and HConsImm have the required prop-
erties we need some auxiliary lemmas.

Lemma 3.2 and Corollary 3.3 show that the models M(p, i) are end-
extensions of the initial segment ≤M i of M . Theorem 3.4 is the main step
in proving (∗) of the introduction. It shows that M(p, i) is a stretching of M
in the sense that an element i of logm+1M gets an additional exponent in
M(p, i) (falls into logm+2M(p, i)). Finally we prove (∗) of the introduction.

3.1. Definition. Let M |= Tm be given and i0 ∈ log3M . Let p be a
Tm-evaluation on Ei0 . For i < i0 we define a numeral i determined by p.
The sentence ∀x ∃y (y = x+ 1) is an axiom of Tm and we may assume that
this is the first axiom in a fixed enumeration of Tm. It follows that

∀a < li ∃b < li+1 p  (b = a+ 1)

for all i < i0. Hence there exists a sequence 〈ci : i < i0〉 of names such that

p  (c0 = 0) and p  (ci+1 = ci + 1) for all i < i0.

Let i = ci for i < i0.

In the next lemma and corollary we shall show that i is a name of the
ith integer in the models M(p, j) with j < i0 − N, in the case where i0 is
non-standard.

3.2. Lemma. Let p, i0 be as before. If , for some name a, p  (a ≤ i),
then there is a j ≤ i such that p  (a = j). Moreover ,

(∗∗) ϕ(i1, . . . , in), where i1, . . . , in < i0, implies p  ϕ(i1, . . . , in),

for open ϕ all of whose terms are as indicated.

Proof. Induction on i < i0. For i = 0 we have p  (a ≤ i), whence
p  (a ≤ 0). Since the sentence ∀x (x ≤ 0 ⇒ x = 0) can be assumed to be
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the axiom of Tm, we get p  (a = 0), whence p  (a = 0). In the inductive
step we apply, in a similar way, the axiom

∀x, y, z (y = z + 1 ∧ x ≤ y ⇒ x = y ∨ x ≤ z)

to p  (a ≤ i+ 1), i.e. to p  (a = i + 1), and obtain p  (a = i+ 1)
or p  (a ≤ i). In the latter case we use the inductive assumption to infer
p  (a = j) for some j ≤ i.

For the second assertion of the lemma we prove first p  (i+ j = i+ j)
for all i, j such that i + j < i0. We apply induction on j. Since p evaluates
i+0 as i+0, the axiom ∀x (x+0 = x) yields immediately p  (i+0 = i). For
the inductive step, notice that p evaluates i+ j + 1 as i+ j+ 1 and hence as
i+ j + 1, by the inductive assumption. On the other hand p  (i+ j + 1 =
i+ j + 1), by definition of the numerals, which yields the required result. In
a similar way we prove p  (i · j = i · j) for all i, j such that i, j < i0, and
also p  (i < j) whenever i ≤ j. This shows that (∗∗) holds for all atomic
(and therefore also for all open) sentences ϕ, which finishes the proof of the
lemma.

We have the following immediate corollary:

3.3. Corollary. Let M be a model of Tm, i0 ∈ log3M and p ∈ M
a Tm-evaluation on Ei0+j , where j > N. Then the initial segment ≤ i0 of
M is isomorphically embeddable into M(p, i0) as an initial segment. Conse-
quently , if a1, . . . , ak ∈ M , a1, . . . , ak ≤ i0, ϕ(x1, . . . , xk) is bounded (with
+ and · treated as relations) and

M |= ϕ(a1, . . . , ak),

then M(p, i0) |= ϕ([a1], . . . , [ak]).

Recall that Im = logm−2M .
Note that in the presence of Ωm, the segment logm+1M is closed under

addition. For, we have

expm+1(2a) = expm(22a) = expm((2a)2)

= expm(ω0(exp(a))) = expm−1(ω1(exp2(a)))

= expm−2(ω2(exp3(a))) = . . . = ωm(expm+1(a)).

So, if expm+1(a) exists in a model of I∆0+Ωm, then (by Ωm), ωm(expm+1(a))
exists, and thus expm+1(2a) exists. To see that expm+1(a + b) exists pro-
vided expm+1(a) and expm+1(b) exist, we show that expm+1(2 max(a, b))
exists, and then using the ∆0 minimum principle we infer the existence of
expm+1(a+ b).

It follows that Im is closed under ω2.
The following theorem implies the property (∗) of Section 1.



290 Z. Adamowicz

3.4. Theorem. Let M be a model of Tm and i0 ∈ logm+1M , i0 > N.
Let p ∈M be a Tm-evaluation on E2i0 . Then the model M(p, i0) satisfies

Tm + [i0] ∈ logm+2 .

Proof. Since Ωm is an axiom of Tm we have p  (∀x ∃y y = ωm(x)) and so

∀a < li ∃b < li+1 p  (b = ωm(a))

for each i < i0. From (2.5) it follows that, for a fixed ϕ, the relation p  ϕ
is ∆0 over M . Thus, there is a (code of a) sequence 〈wi : i ≤ i0〉 ∈ M of
names satisfying

∀i < i0 p  (wi+1 = ωm(wi)) and p  (w0 = expm 2).

Clearly there is a standard n0 (depending on the position of Ωm in the
enumeration of axioms) such that wi < li+n0 for each i ≤ i0.

Provably in Tm, we have

(3.6) expm+2(k) = ωkm(expm 2)

for each k ∈ logm+2 (the superscript k denotes the kth iteration). This can
be proved in Tm by straightforward induction on l ≤ k applied to the formula
expm+2(l) = ωlm(expm 2) which can be bounded by ωm(expm+2(k)).

In fact the right hand side of (3.6), i.e. y = ωkm(expm 2) can be defined by
an arithmetical formula with the help of the Gödel β-function: let ψ(x, y, a, b)
be

β(a, b, 0) = expm 2 ∧ β(a, b, x) = y ∧ ∀i < x β(a, b, i+ 1) = ωm(β(a, b, i))

where β(a, b, i) = r stands for

∃q (a = q(b(i+ 1) + 1) + r ∧ r < b(i+ 1) + 1).

Now, y = ωxm(expm 2) can be defined by the formula ∃a, b ψ(x, y, a, b).
In order to find a small enough name for a sequence corresponding to

the wis, let M be the model M(p, i0) determined by p over M and consider
the sequence s of iterations

s = 〈expm 2, ωm(expm 2), . . . , ω[k]
m (expm 2)〉

of ωm in M, where [k] is the maximal j with the property ωjm(expm 2) ≤
[wi0 ] in M. Since the length and terms of s are relatively small, a standard
reasoning shows that s has a β-code (a, b) in M, i.e.

∀i ≤ [k] β(a, b, i) = ωim(expm 2)

in M. Since M = M(p, i0), the elements a, b have names A and B, respec-
tively, with A,B < li0+n1 (for some standard n1 ∈ N).

Moreover, there are names qi, ri < li0+ni for an ni ∈ N such that

(3.7) p  (A = qi(B(i+ 1) + 1) + ri ∧ ri < B(i+ 1) + 1),

for each i ≤ k.
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We shall show that there is a sequence 〈qi, ri : i ≤ k〉 in M such that
qi, ri < li0+ni for an ni ∈ N and (3.7) holds.

For, we have in M

∀i ≤ k ∃qi, ri p  (A = qi(B(i+ 1) + 1) + ri ∧ ri < B(i+ 1) + 1).

Choose now qi, ri in M , for i ≤ k, so that qi, ri satisfy (3.7) and the least
j such that qi, ri < li0+j is the least possible j for which suitable qi, ri exist.
Then j∈N and the sequence 〈qi, ri : i≤k〉 is ∆0 definable in M , so it is in M .

An easy induction in M shows that

(3.8) p  (ri = wi)

for each i ≤ k. For, assume (3.8) for a given i < k. Thus

M |= [ri] = [wi].

By construction of the w’s, p  (wi+1 = ωm(wi)). Hence [wi+1] = ωm([ri])
= [ri+1] in M, which proves (3.8).

In particular we have
[rk] = [wk].

Suppose k < i0. Then p  (wk+1 = ωm(wk)), whence in M,

ω
[k+1]
m (expm 2) = ωm(ω[k]

m (expm 2)) = ωm([rk])

= ωm([wk]) = [wk+1] ≤ [wi0 ],

which contradicts the maximality of k. Hence k = i0, and therefore (3.8)
holds for each i ≤ i0.

Note that
M |= [ri] = ω[i]

m (expm 2),

by the choice of a, b and A,B. Hence

M |= [wi0 ] = ω[i0]
m (expm 2) = expm+2[i0].

Thus the proof of the theorem is complete.

Now we shall show (∗) of Section 1. Consider first a model M of

Tm + ∃x ∈ logm+1 ϕ(x) + HConsIm(“0 = 0”).

Let a ∈ logm+1M , a = a1, . . . , ak, be such that M |= ϕ(a). Let i0 =
max a. Since logm+1M is closed under addition we infer

M |= ∃p V Tm(p, 2i0).

Fix p. By Corollary 3.3, M(p, i0) |= ϕ([a1], . . . , [ak]). By Theorem 3.4,

M(p, i0) |= Tm + ϕ([a1], . . . , [ak]) + [a1], . . . , [ak] ∈ logm+2 .

Hence the theory
Tm + ∃x ∈ logm+2 ϕ(x)

is consistent and (∗) follows.
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Added in proof. Recently two new manuscripts on a similar subject
have appeared: [W1]—a solution of the original version of the Paris–Wilkie
problem, and [S]—a new partial solution.
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