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Representations of the Kauffman bracket skein algebra
of the punctured torus
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Jea-Pil Cho and Răzvan Gelca (Lubbock, TX)

Abstract. We describe the action of the Kauffman bracket skein algebra on some
vector spaces that arise as relative Kauffman bracket skein modules of tangles in the punc-
tured torus. We show how this action determines the Reshetikhin–Turaev representation
of the punctured torus. We rephrase our results to describe the quantum group quantiza-
tion of the moduli space of flat SU(2)-connections on the punctured torus with fixed trace
of the holonomy around the boundary.

1. Introduction. Skein modules and skein algebras [19], [23] have been
studied intensively, especially in connection with the Witten–Reshetikhin–
Turaev theory [2], [17], [8] and the Jones polynomial [12]. The skein algebras
of surfaces and their action of skein modules of handlebodies have been
studied in [6], [10], and [11] in relation to the quantization of moduli spaces
of connections on surfaces, which is part of the Witten–Reshetikhin–Turaev
theory [26]. Extensive studies have been performed in the case of the torus.

In this note we go one step further and examine the punctured torus. We
do this because the basic data of the modular functor of the Reshetikhin–
Turaev topological quantum field theory is contained entirely in the punc-
tured torus and in the sphere with four punctures [8].

We describe below the representations of the Kauffman bracket skein
algebra that are relevant to the quantization problem. Then we show how
the Reshetikhin–Turaev representations of the mapping class group of the
punctured torus, which form the basic data on the punctured torus, can be
recovered explicitly from these representations.

2. The Kauffman bracket skein algebra of the punctured torus.
In what follows we will use the notations and results from [14], with t
standing for A. Let Σ1,1 be the punctured torus, that is, the torus with
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one open disk removed. For a curve that is a smooth embedding of a circle
in Σ1,1× [0, 1], a framing is a smooth vector field along the curve always or-
thogonal to it. We are concerned with families of such curves, called framed
links. The framing can always be made parallel to Σ1,1, the blackboard fram-
ing. As such we will represent framed links by curves, the framing being
self-understood.

It is standard [19] to define the Kauffman bracket skein module Kt(Σ1,1×
[0, 1]) as the quotient of the free C[t, t−1]-module with basis the set of isotopy
classes of framed links in Σ1,1× [0, 1] by the Kauffman bracket skein relation
shown in Figure 1. The links that show up in this figure are supposed to
be equal except in an embedded ball. Also, every trivial link component is
replaced by a factor of −t2 − t−2.

+t t
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Fig. 1

The topological operation of gluing one cylinder over the punctured torus
on top of another induces a multiplication on Kt(Σ1,1×[0, 1]), which turns it
into an algebra. This is the Kauffman bracket skein algebra of the punctured
torus.

Simple closed curves on the punctured torus are defined by pairs (p, q) of
coprime integers with p ≥ 0, with q/p being the slope of the curve, together
with a curve ∂ that is parallel to the boundary. As shown in [3], the Kauffman
bracket skein algebra of the punctured torus is generated by the curves (1, 0),
(0, 1), (1, 1), depicted in Figure 2. Let ∂ denote the boundary curve.

(1,0) (0,1) (1,1)

Fig. 2

As a C[t, t−1]-module, Kt(Σ1,1 × [0, 1]) is free with basis (p, q)T∂
k,

p, k ≥ 0, q ∈ Z, where ∂ is a curve parallel to the boundary and (p, q)T =
Tn(p/n, q/n), with n = gcd(p, q) and Tn(x) the Chebyshev polynomial of
the first kind (Tn+1(x) = xTn(x)− Tn−1(x), T0(x) = 2, T1(x) = x).

That multiplication of curves on the punctured torus is significantly dif-
ferent from that on the torus is illustrated by the second of the following
formulas.
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Proposition 2.1. In Kt(Σ1,1 × [0, 1]),

(2, 0)T (0, 1)T = t2(2, 1)T + t−2(2,−1)T ,

(2, 1)T (0, 1)T = t2(2, 2)T + t−2(2, 0)T + ∂ + t2 + t−2.

3. The representations. First, fix a positive integer r > 1 and let
t = exp πi

2r . Let also [n] = sin(nπ/r)/sin(π/r) be the quantized integer. The
vector spaces on which we represent the Kauffman bracket skein algebra of
the punctured torus are parametrized by the integers n with 0 ≤ 2n ≤ r−2.
These are the vector spaces Vr,n which will be defined in what follows.

Consider a solid torus with 2n disjoint marked points on the boundary,
which will be numbered by 1, . . . , 2n. For computational purposes, we can
consider these points to lie, in increasing order, on a diameter of the punc-
turing disk. Consider the free C[t, t−1]-module with basis the set of isotopy
classes of framed tangles with ends the 2n marked points. Such a tangle
consists of several embedded circles together with n embedded arcs whose
ends are the 2n points. The framing consists of a normal continuous vector
field on each of the components of the tangle, with the convention that the
vectors that belong to the endpoints lie on the specified diameter of the
puncturing disk. We will always draw our tangles in the blackboard fram-
ing, that is, so that the vector field is parallel to the plane of the paper. An
example for n = 2 is shown in Figure 3(a).

n+1 n1

n

n+1[ ]

[ ]

n 1

1n

b)a)

Fig. 3

We define the Kauffman bracket skein module of the solid torus with
2n points on the boundary, Kt(S

2 × D2, 2n), to be the quotient of this free
module by the Kauffman bracket skein relations.

The topological operation of gluing the cylinder over the punctured torus
Σ1,1 × [0, 1] to the complement of the puncturing disk in the boundary of
the solid torus gives rise to an action of Kt(Σ1,1× [0, 1]) on Kt(S

1×D2, 2n).

For k < n, we will define a family of inclusions of Kt(S
1 × D2, 2k) into

Kt(S
1 × D2, 2n). To this end, let δ be the data consisting of a function f :

{1, . . . , 2k} → {1, . . . , 2n} such that f(i)−f(i−1) is odd for i = 2, 3, . . . , 2k,
and a pairing of the 2n− 2k numbers in the complement of Im f such that
if (p, q) is a pair then p and q belong to the same interval (f(i − 1), f(i))
and for any two pairs (p, q) and (r, s), (r − p)(r − q)(s− p)(s− q) > 0. For
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each such δ we define the inclusion

iδ : Kt(S
1 × D2, 2k)→ Kt(S

1 × D2, 2n)

by identifying the 2k boundary points of Kt(S
1×D2, 2k) with the boundary

points of Kt(S
2×D2, 2n) indexed by f(i), i = 1, . . . , 2k, for each pair (p, q),

connecting these points by an arc isotopic to the segment [p, q] (1).
Next we factor Kt(S

1×D2, 2n) by the skein relation f r−1 = 0, where fn,
n ≥ 1, are the Jones–Wenzl idempotents [25] defined recursively in Fig-
ure 3(b), with f1 being just one strand. The result of this factorization is
a finite-dimensional space Kt,r(S

1 × D2, 2n) called the reduced Kauffman
bracket skein module. This space was first considered in [22]. The inclusions
iδ factor to maps between reduced Kauffman bracket skein modules. The
action of Kt(Σ1,1 × [0, 1]) factors to an action of the same algebra on the
reduced Kauffman bracket skein module.

For n ≤ m ≤ r − 2 − n, define the skein v2n,m as shown in Figure 4(a).
Here, there are m respectively 2n parallel strands, as specified, with the
corresponding Jones–Wenzl idempotents placed on them. At the trivalent
vertex there is the Kauffman triad described in Figure 4(b) (see [14]).

2n

m
a) 2

m m

nb)

Fig. 4

Lemma 3.1. The vector space Kt,r(S
1 × D2, 2n) is finite-dimensional

with basis iδ(v2k,m), where 0 ≤ k ≤ n, k ≤ m ≤ r− 2− k, and δ ranges over
all possible sets of data defined above.

Proof. There is a planar projection of the solid torus onto an annulus
such that the projections of all these elements have no crossings. To see
that they form a basis, note first that any skein in Kt,r(S

1 ×D2, 2n) can be
written as a linear combination of skeins of the form iδ(σ), where σ is a skein
in some Kt,r(S

1×D2, 2k) which in a tubular neighborhood of the puncturing
disk is just an 2k-strand decorated by the 2kth Jones–Wenzl idempotent.
Consequently, the set iδ(v2k,m), indexed by 0 ≤ k ≤ m, k ≤ m ≤ r − 2,
and δ, spans Kt,r(S

1×D2, 2n). Next, we can apply the arguments from [16],
to reduce everything to the case where the trivalent vertex has an admissible
coloring, namely to k ≤ m ≤ r−2−k, and then conclude that these elements
form a basis.

(1) If in a diagram a skein σ has no crossings, then iδ(σ) has no crossings either.
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As a corollary of the lemma we deduce that iδ factors to an inclusion of
reduced Kauffman bracket skein modules.

Because ∂ is in the center of Kt(Σ1,1 × [0, 1]), the eigenspaces of ∂ are
invariant subspaces of the above representation. The eigenvalues of ∂ are
−t4k+2 − t−4k−2, k ≤ n. The eigenspace of the eigenvalue −t4k+2 − t−4k−2
has a basis iδ(v2k,m) for all δ and m, k ≤ m ≤ r − 2 − k. Among these
we distinguish the ones with k = n. These are the spaces of interest to us
since they correspond to quantizations of moduli spaces of flat connections
on the punctured torus (see §4 below). Let therefore Vr,n be the eigenspace
of ∂ corresponding to the eigenvalue −t4n+2 − t−4n−2, n = 0, 1, . . . , r − 2.
A basis of this vector space consists of the vectors v2n,m, n ≤ m ≤ r−2−n.

Theorem 3.2. Let n be an integer such that 0 ≤ n ≤ (r − 2)/2. The
representation of Kt(Σ1,1 × [0, 1]) on Vr,n is given by

(1, 0)v2n,m = v2n,m+1 +
[m− n][m+ n+ 1]

[m][m+ 1]
v2n,m−1,

(0, 1)v2n,m = (−t2m+2 − t−2m−2)v2n,m,

(1, 1)v2n,m = (−t−2m−3)v2n,m+1 + (−t2m+1)
[m− n][m+ n+ 1]

[m][m+ 1]
v2n,m−1,

where n ≤ m ≤ r− 2−n, with the convention that v2n,n−1 = v2n,r−1−n = 0.

Proof. The second relation is standard (see [16]). To compute (1, 0)v2n,m,
we proceed as in Figure 5, with the notation from [14] where

∆n = (−1)n+1[n+ 1]

and θ(m,n, p) is the quantum invariant of the trivalent graph of the letter
θ with the edges colored by m,n, p. Here for the second equality we use the
Recoupling Theorem [14, Ch. 7] for one of the strands colored by m.
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Fig. 5

Next, by [14, Ch. 5, Lemma 7], this is nonzero if and only if j = k, and
in this case it is equal to the skein in Figure 6. Also, since the triple (1,m, k)
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is admissible only if k = m − 1 or k = m + 1, it follows that the sum has
only two terms. Substituting the values of the two quantum 6j-symbols we
obtain the formula from the statement.

The action of (1, 1) is computed using

(1, 1) =
1

t2 − t−2
[t(1, 0)(0, 1)− t−1(0, 1)(1, 0)].

Remark 3.3. A proof of the theorem given in [4] is based only on the
definition of Jones–Wenzl idempotents and Kauffman triads.

In the case where n = 0, we obtain the representation of the Kauff-
man bracket skein algebra of the torus on the reduced skein module of the
punctured torus from [6].

Remark 3.4. After this result was announced at Knots in Washington
XXXII, it was also announced by J. Marché and T. Paul in [18].

Corollary 3.5. The representation of Kt(Σ1,1 × [0, 1]) on Vr,n is irre-
ducible.

Proof. We prove this by showing that every nonzero vector is cyclic.
Let v =

∑
m cmv2n,m be a vector in Vr,n. Because v2n,m are eigenvectors of

(0, 1) with distinct eigenvalues, using linear combinations of elements of the
form (0, 1)nv we can produce any basis vector that appears with nonzero
coefficient in the expansion of v. Next, by applying (1, 0) repeatedly, we
can further generate from this vector a vector that contains any other basis
vector with nonzero coefficient. And again using (0, 1) we can separate that
basis vector. Consequently, from v we can produce every basis vector. This
proves that v is cyclic, and so the representation is irreducible.

4. The action of the mapping class group. In this section we will
show how the Reshetikhin–Turaev representation of the mapping class group
of the punctured torus, which appears in Reshetikhin–Turaev theory [20],
can be computed from the representation of the Kauffman bracket skein
algebra described in Theorem 3.2. The Reshetikhin–Turaev representation
of the punctured torus is part of the basic data of the modular functor (see
[24], [8], [7]). It is known that the representation of the skein algebra of the
punctured torus determines this representation, see for example [21]; here
we show, with explicit formulas, how this was done in [9] for the torus.
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The mapping class group of the punctured torus, with fixed boundary,
is generated by the maps S, T , and T1, where S exchanges the curves (1, 0)
and (0, 1), T is the positive Dehn twist along the curve (0, 1), and T1 is the
positive twist of the boundary. The Reshetikhin–Turaev representation of
the mapping class group associates to S, T , and T1 unitary operators on Vr,n,
referred to as the S-matrix, the T -matrix, and the T1-matrix. These unitary
operators interpolate the action of the mapping class group on Kt(Σ1,1 ×
[0, 1]). Below we show how they can be derived from the representation
described in the previous section.

4.1. The S-matrix. For a number λ and a sequence (xl)l≥1 define the
sequence Pn(λ, (xl)l≥1) recursively by

Pn+1(λ, (xl)l≥1) = λPn(λ, (xl)l≥1)− xnPn−1(λ, (xl)l≥1),
P0(λ, (xl)l≥1) = 1, P1(λ, (xl)l≥1) = λ.

Let S = (ajk), for 0 ≤ j, k ≤ r− 2n− 2, be the S-matrix. The equations

(1, 0)Sv2n,n+j = S(0, 1)v2n,n+j , (0, 1)Sv2n,n+j = S(1, 0)v2n,n+j

yield respectively the recursive relations

aj−1,k = (−t2n+2k+2 − t−2n−2k−2)aj,k −
[j + 1][2n+ j + 2]

[n+ j + 1][n+ j + 2]
aj+1,k,

aj,k−1 = (−t2n+2j+2 − t−2n−2j−2)aj,k −
[k + 1][2n+ k + 2]

[n+ k + 1][n+ k + 2]
aj+1,k.

Thus akj can be obtained by a backward double recursion. Normalizing by
setting ar−2n−2,r−2n−2 = 1, we obtain

Proposition 4.1. For 0 ≤ k, j ≤ r − 2n− 2,

ar−2n−2−j,r−2n−2−k = Pj(λr−n, (xl)l≥1) · Pk(λr−n−j , (xl)l≥1),

where

xl =
[r − n− 1− l][n+ r − l]

[r − l − 1][r − l]
, l ≥ 1,

λm = −t2m−2 − t−2m+2, m ≥ 0.

Remark 4.2. This formula should be contrasted with those in [21]
and [8].

4.2. The T -matrix and the twist on the boundary. Because T (0, 1)
= (0, 1)T and (0, 1) has 1-dimensional eigenspaces, it follows that T is diag-
onal, say T = (bj,j)j , 0 ≤ j ≤ r − 2n− 2. The equality

(1, 0)Tv2n,n+j = T (1, 1)v2n,n+j
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yields the recursive relation bj,j = −t2n+2j+1bj−1,j−1. As T is only projec-

tively defined, we are free to choose b1,1, and we set it equal to (−1)ntn
2−1.

Then bj,j = (−1)n+jt(n+j)
2−1, the well known formula.

The twist T1 on the boundary commutes with all operators in
Kt(Σ1,1 × [0, 1]). Because the representation of Kt(Σ1,1 × [0, 1]) on Vr,n is
irreducible, T1 acts as multiplication by a scalar, which we may choose to
be t(2n)

2−1.

5. The quantum group quantization of the moduli space of
flat su(2)-connections on the punctured torus. As explained in [10]
and [11], we are actually concerned with the quantum group setting, since it
is our paradigm that the quantum group quantization of the moduli space
of flat connections on a surface is an analogue of Weyl quantization.

We look at quantization in Heisenberg’s formalism. In this formalism,
to a symplectic manifold, which is the phase space of a classical system,
one associates a Hilbert space, which is the space of states of a quantum
system. Then, to C∞ functions on the manifold, which are the classical
observables, one associates linear operators on the Hilbert space, which are
the quantum observable. This construction is done for a specified value of
Planck’s constant.

In our situation, the space that is quantized is the moduli space of flat
su(2)-connections on the punctured torus, with fixed connection on the
boundary. It is a well known fact of Chern–Simons theory that this is a
compact symplectic manifold, which topologically is a ball. There is a stan-
dard procedure for producing the Hilbert space of the quantization, called
geometric quantization. In this procedure the Hilbert space is obtained as
the space of holomorphic sections of a holomorphic line bundle obtained in
turn as a tensor product between a line bundle of curvature (1/h)ω and the
metaplectic correction. Here h is the reduced Planck’s constant, and ω is the
symplectic form. Since (1/h)ω needs to be an integral class in cohomology,
this puts a constraint on Planck’s constant.

In Chern–Simons theory with gauge group SU(2), h is already con-
strained to be the reciprocal of an even integer 2r. This then imposes a
constraint on the “size” of the moduli space, which becomes a constraint
on the holonomy around the boundary. It was explained in [5] that in our
situation the holonomy is constrained to be, modulo a gauge transformation,(

e2πin/r 0

0 e−2πin/r

)
, n = 0, 1, . . . , r − 2.

This is equivalent to requiring that the trace of the holonomy is one of the
numbers 2 cos(2πin/r), n = 0, 1, . . . , r − 2.
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The operators are quantizations of Wilson lines. Recall that for a simple
closed curve γ on the punctured torus, the Wilson line Wγ is the function
on the space of su(2)-connections on the punctured torus obtained by taking
the trace of the holonomy of the connections along γ.

There is a quantization scheme performed using quantum groups, as
explained in [11] and [1]. This quantization is of combinatorial nature, and
both the Hilbert space and the operators are described by graphs/knots
decorated by irreducible representations. The fact that this construction is
indeed a quantization, namely that it satisfies Dirac’s requirements, is a
consequence of the properties of the R-matrix, and was proved in [1].

The vector space has an orthogonal basis specified by the same diagrams
as those for v2n,m, this time with strands colored by the m + 1- respec-
tively 2n+ 1-dimensional irreducible representations of the quantum group
of SU(2).

The quantum group quantization can be described using skein modules
(this is done in [11] using the skein modules with skein relations derived
in [15]); the skein associated to a Wilson line Wγ is γ itself. The formulas
for this action are the same as the ones derived above, except that the minus
sign in front of t is deleted in each of the formulas for (0, 1) and (1, 1).

For each γ, Wγ is real valued, so the associated operator Op(Wγ) must
be self-adjoint. This shows that, while the vectors v2n,m are orthogonal, they
are not unit vectors. We normalize them to

w2n+1,m+1 =

( m∏
j=n+1

[j − n][j + n+ 1]

[j][j + 1]

)−1/2
v2n,m,

which are now unit vectors. The shift in the indices is such that they agree
with the dimensions of the corresponding irreducible representation of the
quantum group. We thus have

Proposition 5.1. The quantum group quantization at h = 1/(2r) of
the moduli space of flat su(2)-connections on the punctured torus with the
trace of the holonomy on the boundary equal to 2 cos(2πin/r), for some
n ∈ {0, 1, . . . , r − 2}, has the Hilbert space Hr,n with orthonormal basis
w2n+1,m, n+1 ≤ m ≤ r−1−n, and with the algebra of quantum observables
acting by

Op(W(1,0))w2n+1,m =

√
[m− n][m+ n+ 1]

[m][m+ 1]
w2n+1,m+1

+

√
[m− 1− n][m+ n]

[m− 1][m]
w2n+1,m−1,
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Op(W(0,1))w2n+1,m = (t2m + t−2m)w2n+1,m,

Op(W(1,1))w2n+1,m = t−2m−1

√
[m− n][m+ n+ 1]

[m][m+ 1]
w2n+1,m+1,

+ t2m−1

√
[m− 1− n][m+ n]

[m− 1][m]
w2n+1,m−1.
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