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Abstract. The one-term distributive homology was introduced in [Prz] as an atomic
replacement of rack and quandle homology, which was first introduced and developed
by Fenn–Rourke–Sanderson [FRS] and Carter–Kamada–Saito [CKS]. This homology was
initially suspected to be torsion-free [Prz], but we show in this paper that the one-term
homology of a finite spindle may have torsion. We carefully analyze spindles of block
decomposition of type (n, 1) and introduce various techniques to compute their homology
precisely. In addition, we show that any finite group can appear as the torsion subgroup of
the first homology of some finite spindle. Finally, we show that if a shelf satisfies a certain,
rather general, condition then the one-term homology is trivial—this answers a conjecture
from [Prz] affirmatively.

1. Introduction. For any set X, we can consider colorings of arcs of
a link diagram by elements of X. Motivated by a Wirtinger presentation of
the fundamental group of a link complement, we may assume that overcross-
ings preserve colors while undercrossings change them in a way described
by some binary operation ⋆ : X ×X → X, as shown in Fig. 1.
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Fig. 1. Propagation of colors at a crossing

The requirement that the Reidemeister moves change the coloring only
locally results in several conditions on (X, ⋆), making it a quandle [Joy]
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or a rack [FR] (1). However, the most important is the third Reidemeister
move, visualized in Fig. 2, because of its close connection to the Yang–Baxter
equation [CES, Eis, Prz]. This requires ⋆ to be distributive, i.e. (x ⋆ y) ⋆ z =
(x ⋆ z) ⋆ (y ⋆ z), and pairs (X, ⋆) satisfying this condition are called shelves.
If ⋆ is also idempotent, i.e. x ⋆x = x, then (X, ⋆) is a spindle [Cr].
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Fig. 2. Third Reidemeister move forces ⋆ to be distributive.

Link invariants come not only from counting colorings by racks or by
quandles, but also from their homologies (see [CJKLS, CJKS]). They have
a rich algebraic structure [NP-2] and they were computed completely for
some dihedral and Alexander quandles [Cla, EG, NP-1, Nos] and partially
for other families [Gr, NP-3]. We noticed in [Prz] that homology groups can
be defined similarly for any shelf or spindle. Even more, there is a chain com-
plex with a simpler differential, called a one-term distributive chain complex

C⋆(X) (see Section 2 for a definition). We showed in [Prz, PS] that if (X, ⋆)
is a rack, then C⋆(X) is acyclic.

More generally, to force C⋆(X) to be acyclic it is enough to have just one
element y ∈ X such that x 7→ x ⋆ y is a bijection. This is perhaps the reason
why this homology has never been examined before. At first, one would be
tempted to suspect that H⋆(X) is always trivial, but we quickly computed
the homology for a right trivial shelf (X,⊣), where a ⊣ y = y, and found it to
be a large free group [PS]. For a while all one-term homology we computed
was free; only in February of 2012 did we find two four-element spindles with
torsion in homology. More precisely, our examples are given by the following
tables:

⋆1 1 2 3 4

1 1 2 3 4

2 1 2 3 4

3 1 2 3 4

4 2 1 1 4

⋆2 1 2 3 4

1 1 2 4 3

2 1 2 4 3

3 2 1 3 4

4 2 1 3 4

Using Mathematica, we found that the first homology for both spindles has

(1) Involutive quandles, i.e. with (x ⋆ y) ⋆ y = x, were considered for the first time
in [Tak] under the name Kei ( ). Both [Car] and [Fe] provide a nice introduction to
the subject.
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Z2-torsion. Namely, we obtained the following groups:

H⋆1
0 (X) = Z2, H⋆2

0 (X) = Z2,

H⋆1
1 (X) = Z2 ⊕ Z2, H⋆2

1 (X) = Z2 ⊕ Z4
2,

H⋆1
2 (X) = Z8 ⊕ Z4

2, H⋆2
2 (X) = Z8 ⊕ Z12

2 .

In this paper, we compute the homology of the first spindle and, more gener-
ally, of other f -spindles, which are spindles given by a function f : X0→X0

where X = X0 ⊔ {b} and x ⋆ y = y, unless x = b, in which case b ⋆ y = f(y)
(see Definition 3.1). This family of spindles was introduced in [PS]. If X is
finite, we prove in Section 4 the following formulas for normalized homology
(see Section 2 for a definition of a normalized complex):

Theorem 4.3. Assume X is a finite f -spindle. Then its homology is

given by the formulas




H̃N
0 (X) = Zorb(f),

HN
1 (X) = Z(orb(f)−1)|X0|+2orb(f) ⊕ Z

init(f)
ℓ ,

HN
n (X) = (Z(orb(f)−1)|X|2+|X| ⊕ Z

init(f)|X|
ℓ )⊕(|X|−1)n−2

for n ≥ 2.

In particular, HN
n+1(X) = HN

n (X)⊕(|X|−1) for n ≥ 2.

Here, orb(f) and init(f) stand, respectively, for the number of orbits of f
and the number of elements that are not in the image of f . This shows that
any power of a cyclic group can appear as the torsion subgroup of H1(X) for
some spindle. The other finite abelian groups are realized by block spindles,
defined in Section 5. The idea is that we take several blocksXi and a function
fi : Xi → Xi for each of them, and we take as X their disjoint sum together
with a one-element block {b}. Then each X+

i := Xi ⊔ {b} is a subspindle,
which contributes some torsion to H1(X). We show that, in fact, there is no
more torsion.

Theorem 5.4. Assume a block spindle X has a one-element block {b}.
Then

H1(X) ∼= F ⊕
⊕

i∈I

H1(X
+
i ),

where F is a free abelian group of rank
∑

i 6=j orb(fi)|Xj |. In particular, every

finite abelian group can be realized as the torsion subgroup of H1(X) for some

spindle X.

This paper is arranged as follows. We provide basic definitions in Sec-
tion 2, including the construction of a distributive chain complex and its
variants: augmented, reduced, and related chain complexes. We also include
a discussion about degenerate and normalized complexes and how they are
related to each other.
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The next two sections are devoted to the calculation of homology groups
for f -spindles. In Section 3 we define an f -spindle, provide a few examples,
and then compute the first homology group. Then in Section 4 we generalize
these calculations for any homology groups. We conclude that section with
a presentation of homology groups in terms of generators and relations for
any f -spindle, not necessarily finite.

The final section is split into four parts. In the first, we give a presentation
of the relative homology groups with respect to the subspindle X0 ⊂ X.
The second part contains a proof of Theorem 5.4 and the third discusses
the Growth Conjecture from [PS]. The last part contains a result about the
acyclicity of a distributive chain complex under a small condition—all that
was known previously was that homology was annihilated by some number,
leaving it with a possibility to have torsion [Prz].

2. Distributive homology. A spindle (X, ⋆) consists of a set X equip-
ped with a binary operation ⋆ : X ×X → X that is

(i) idempotent, x ⋆ x = x, and
(ii) self-distributive, (x ⋆ y) ⋆ z = (x ⋆ z) ⋆(y ⋆ z).

A (one-term) distributive chain complex C⋆(X) of X is defined as follows
(see also [Prz, PS]):

C⋆
n(X) := ZXn+1 = Z〈(x0, . . . , xn) | xi ∈ X〉,(1)

∂n :=

n∑

i=0

(−1)idi,(2)

where the maps di are given by the formulas

d0(x0, . . . , xn) = (x1, . . . , xn),(3)

di(x0, . . . , xn) = (x0 ⋆xi, . . . , xi−1 ⋆ xi, xi+1, . . . , xn).(4)

We check that didj = dj−1di whenever i < j, which implies ∂2 = 0. The ho-
mology of this chain complex is called the (one-term) distributive homology

of (X, ⋆) and will be denoted by H⋆(X). There is also an augmented version,

C̃(X), with C̃⋆
n(X) = C⋆

n(X) for n ≥ 0, but C̃⋆
−1(X) = Z and ∂0(x) = 1. Its

homology, called the augmented distributive homology H̃⋆(X), satisfies the
following, as in the classical case:

(5) H⋆
n(X) =

{
Z⊕ H̃⋆

n(X), n = 0,

H̃⋆
n(X), n > 0.

For simplicity, we will omit ⋆ and write C(X) and H(X) for the dis-
tributive chain complex and its homology, and similarly for the augmented
versions. Furthermore, we will use the shorthand notation x := (x0, . . . , xn)
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for a sequence or a subsequence of elements, omitting brackets in the lat-
ter case (2), and occasionally a multilinear notation (3) (. . . , xi + x′i, . . .) :=
(. . . , xi, . . .) + (. . . , x′i, . . .). In particular, (0, x) = 0.

Assume Y ⊂ X is a subspindle of X, i.e. x ⋆ y ∈ Y whenever x, y ∈ Y .
It follows directly from the definition above that the chain complex C(Y )
is a subcomplex of C(X). The quotient C(X,Y ) := C(X)/C(Y ) is called
the relative chain complex of X modulo Y . It is spanned by sequences x
where not all entries are from Y . Clearly, there is a long exact sequence of
homology

(6) · · · → Hn(Y ) → Hn(X) → Hn(X,Y ) → Hn−1(Y ) → · · ·

and an analogous sequence when we replace the homologies of Y and X
with their augmented versions.

Let f : X → Y be a homomorphism of spindles, i.e. f(x ⋆x′)=f(x)⋆f(x′).
Then there is an induced chain map f♯ : C(X) → C(Y ) sending a sequence
(x0, . . . , xn) to (f(x0), . . . , f(xn)). In the case where r : X → X is a retrac-
tion on a subspindle Y (i.e. r(X) = Y and r|Y = id), one has a decomposi-
tion C(X) ∼= C(Y )⊕C(X,Y ). In particular, for any element b ∈ X one has
C(X) ∼= C(b)⊕C(X, b), so that C(X, b) is independent of the choice of b. It
is called the reduced chain complex (see [PP-1]). As a subcomplex of C(X),
it is generated by differences x− b.

Idempotency of the spindle operation in X implies that its distributive
chain complex C(X) is in fact a weak simplicial module (see [Prz, PP-1]).
In particular, there are notions of degenerate and normalized complexes.
Indeed, if x has a repetition, say xi = xi+1, so does each entry in ∂x,
as dix = di+1x cancel each other and other faces preserve the repetition.
Hence, sequences with repetition span a subcomplex CD(X) ⊂ C(X), called
the degenerate complex of X. Explicitly,

(7) CD
n (X) := Z〈x | xi = xi+1 for some 0 ≤ i < n〉.

The quotient CN(X) := C(X)/CD(X) is called the normalized complex and
is generated by sequences with no repetitions. Degenerate and normalized
homology are written, respectively, as HD(X) and HN(X). In classical ho-
mology theories (simplicial homology, group homology, etc.) the degener-
ate complex is acyclic, so that HN ∼= H. However, this does not hold for
a weak simplicial module and we can have nontrivial degenerate homology
in the distributive case, so that normalized homology HN(X) is usually dif-
ferent fromH(X). However, we can split the degenerate complex apart. This
was first shown in [LN] for quandles (for the two-term variant of distribu-
tive homology) and an explicit formula for the splitting map appeared for

(2) For instance, (a, x) stands for (a, x0, . . . , xn), not for (a, (x0, . . . , xn)).

(3) Think of (x0, . . . , xn) as an element x0 ⊗ · · · ⊗ xn in ZX⊗(n+1).
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the first time in [NP-1]. It was observed in [Prz, PP-1] that the same map
works for the one-term variant as well.

Theorem 2.1 (cf. [Prz, PP-1]). Let (X, ⋆) be a spindle. Then the exact

sequence of complexes

(8) 0 → CD(X) → C(X) → CN(X) → 0

splits. In particular, H(X) ∼= HN(X) ⊕HD(X).

Example 2.2. A normalized complex for a one-element spindle {b} has
a unique generator in degree 0. Since a retraction splits a normalized complex
as well, we obtain an isomorphism H̃N(X) ∼= HN(X, b) for any b ∈ X, so
that the normalized versions of reduced and augmented homologies coincide.
In fact, the inclusion CN(X, b) ⊂ C̃N(X) is a homotopy equivalence.

In [PP-2] we canonically decomposed the degenerate complex into a bunch
of copies of the normalized complex. Therefore, normalized homology carries
all information and there is no need to bother with the degenerate part.

Theorem 2.3 (cf. [PP-2]). Let (X, ⋆) be a spindle. Then the degenerate

complex decomposes as

(9) CD
n (X) =

⊕

p+q=n−2

C̃p(X) ⊗ CN
q (X)

with the differential acting only on the first factor: ∂(x⊗ y) = ∂x⊗ y.

In particular, HD
0 (X) = HD

1 (X) = 0 and HD
2 (X) = H̃0(X) ⊗ ZX.

3. A family of spindles with torsion. In this section we construct a
family of spindles that have torsion in their homology groups. Namely, we
can realize every power of a cyclic group as a torsion subgroup of H1.

Definition 3.1. Choose a set together with a basepoint, (X, b), and set
X0 = X−{b}. Any function f : X0 → X0 induces a spindle on X by defining

(10) x ⋆ y =

{
f(y) if x = p,

y if x 6= p.

We call (X, ⋆) an f -spindle and denote it by Xf .

The function f induces a discrete semidynamical system on X0. We can
visualize it as a graph Γf whose vertices are elements ofX0 and with directed
edges x → f(x). Every vertex in this graph has exactly one outcoming edge.
If a vertex v has no incoming edges, it is called an initial vertex or a source.
The initial vertices are precisely the elements of X0 that are not in the im-
age of f . The number of such elements will be denoted by init(f). Finally,
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connected components of Γf correspond to orbits of the semidynamical sys-
tem induced by f . Their number will be denoted by orb(f). The orbit of
an element x will be written as x̄.

Consider a connected component Γ 0
f of Γf . Then either Γ 0

f is an infinite

directed tree with no loops (so that f i(x) 6= x for any i > 0) or there
exists a number k > 0 such that for any vertex v ∈ Γ 0

f we have f i+k(v) =

f i(v) for i large enough. If we choose the smallest such k, then the set
{f i(v), . . . , f i+k−1(v)} is a unique cycle in Γ 0

f , which we call a soma of Γ 0
f .

Clearly, the component Γ 0
f consists of this cycle and dendrites, possibly

infinite, as can be seen in Fig. 3.

Fig. 3. A typical connected component of Γf . It has four dendrites and six initial vertices.

Finally, we choose a single vertex vi from any component of Γf and define
ℓ to be the greatest common divisor of the lengths of all cycles in Γf . If Γf

has no cycles at all, set ℓ = 0.

Example 3.2. Let X = {0, . . . , k + 1} for some k ≥ 1 and set b = 0
so that X0 = {1, . . . , k + 1}. Define σk : X0 → X0 as follows:

(11) σk(n) :=

{
n+ 1 if n < k,

1 if n = k, k + 1.

The graph for σ5 is shown in Fig. 4. It has one component with a cycle of
length k = 5 and a unique initial vertex.

1

2

3

4 5

6

Fig. 4. The graph of the function σ5 from Example 3.2

It appears that the first homology group of the spindle obtained from σk
has Zk as a direct summand. Indeed, we have the following formula:
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Proposition 3.3. Let X = {x0, . . . , xk+1} and σl : X0 → X0 be as in

Example 3.2. Then

(12) H1(Xσk
) = Z2 ⊕ Zk.

In particular, every finite cyclic group appears as the torsion of the first

homology of some spindle.

This proposition follows from a more general result, concerning any
f -spindle.

Theorem 3.4. The first homology group H1(Xf ) of an f -spindle Xf is

generated by

(1) pairs (f(y), y), one per each initial element y ∈ X0,

(2) pairs (vi, b) and (vi, y), where y ∈ X0 is not in the same orbit as vi,
and

(3) sums (b, c1) + · · ·+ (b, ck), one for each cycle (c1, . . . , ck) in Γf ,

subject to the relation ℓ · (f(y), y) ≡ 0. In particular,

(13) H1(Xf ) = Z|X0|(orb(f)−1)+2orb(f) ⊕ Z
init(f)
ℓ

if X is a finite set.

Corollary 3.5. Every power of a finite cyclic group can be realized as

torsion of the first homology for some spindle. Namely, let X0={1, . . . , k+r}
and define σk,r : X0 → X0 by the formula

(14) σk,r(n) :=

{
n+ 1 if n < k,

1 if n ≥ k.

Then the torsion subgroup H1(Xσk,r
) is isomorphic to Zr

k.

We need one technical, but useful, fact before we prove Theorem 3.4. It
will be an important tool for the calculation of higher homology groups in
the next section.

Lemma 3.6. Choose y ∈ CN
n (X) with y0 6= b and an orbit ā of a ∈

X0. Let V ⊂ CN
n+2(X) and W ⊂ CN

n+1(X) be the subgroups spanned by all

sequences (b, x, y) and (x, y) respectively, with x ∈ ā. If ā 6= ȳ0 we also add

(f(y0), y) to the list of generators of W . The restricted differential ∂ : V →W
is injective and coker ∂ is generated by (a, y), if ā 6= ȳ0, and (f(y0), y) subject
to the relation k · (f(y0), y) ≡ 0, if ȳ0 has a cycle of length k.

Proof. We will prove this lemma by computing Q := coker ∂/(f(y0), y).
Each element ∂(b, x, y) gives a relation in Q:

(15) (x, y) ≡ (f(x), y).

Hence, we can replace x with any other element from its orbit. In particular
Q = 0 if y0 and a are in the same orbit. Otherwise, it is freely generated by
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(a, y). On the other hand, the kernel of the composition

(16) V
∂
−→ coker ∂ → Q

is trivial if the orbit of a is a directed tree, and one-dimensional otherwise,
generated by a sum (b, c1, y)+· · ·+(b, ck, y), where (c1, . . . , ck) is a cycle in ā.
The latter is mapped by ∂ to k(f(y0), y). Hence, ker ∂ = 0 and the cokernel
is as expected.

Proof of Theorem 3.4. Because for a spindle we have H1(X) = HN
1 (X),

we will consider only sequences without repetitions. The first differential
∂ : CN

1 (Xf ) → CN
0 (Xf ) is given by the formula

(17) ∂(x, y) = y − x ⋆ y =

{
0 if x 6= b,

y − f(y) if x = b.

Hence, the kernel of ∂ is freely generated by

• pairs (x, y) with x 6= b, and
• sums (b, c1) + · · ·+ (b, ck), where (c1, . . . , ck) is a cycle in Γf .

Now consider relations introduced by ∂(x, y, z). If x, y 6= b, then ∂(x, y, z) =
(z, z) = 0. When only y 6= b, the relations are

(f(y), z) ≡ (y, z) + (f(z), z) if z 6= b,(18)

(f(y), b) ≡ (y, b).(19)

According to Lemma 3.6, this restricts pairs (x, y) to (vi, y), where vi and
y are from different orbits, and to (f(y), y) (with y 6= b). The latter is
annihilated by the length of any cycle in the graph Γf .

If y is initial, there are no more relations among the generators (x, y).
Otherwise, for y = f(z) we have ∂(x, b, z) = (z, f(z)) = (z, y), which forces
(f(y), y) to be zero:

(20) (f(y), y) ≡ (z, y) + (f(y), y) ≡ (f(z), y) = (y, y) ≡ 0.

This fulfils all relations. In particular, each cycle c in Γf contributes a free
generator to HN

1 (Xf ), and sequences (f(y), y) have order ℓ.

Corollary 3.7. The first homology of an f -spindle Xf has torsion if

and only if the following three conditions hold:

(1) f has an initial element,

(2) f has a cycle,

(3) the lengths of the cycles of f are not co-prime, i.e. they have a com-

mon divisor d > 1.

The second condtition is automatic if X is finite, but not the others.
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4. Higher homology groups for f -spindles. We will now compute
higher homology groups for an f -spindle, and for simplicity we will restrict
to the normalized part. Doing so already determines the whole homology,
as explained in Theorem 2.3 (see Corollary 5.7).

In this section, X will always stand for an f -spindle induced by a fixed
function f : X0 → X0, where X = X0∪{b}. Recall from the previous section
that each connected component Γ 0

f of the graph Γf is represented by some

vertex vi and either it is an infinite directed tree, or it contains a unique
cycle c = (c1, . . . , ck) of length k. In particular, the set of distinguished
vertices {vi} parametrizes the set of orbits in X different from {b}. Finally,
ℓ denotes the greatest common divisor of the lengths of all cycles in Γf (we
set ℓ = 0 if Γf has no cycles).

According to Theorem 3.4, the generators ofH1(X) split into two groups:
sequences with two entries from the same orbit or from two different orbits.
The first generate the torsion subgroup and the latter are free. A similar
phenomenon occurred in Lemma 3.6, where we compare the orbits of the first
two entries in a sequence. This observation motivates the following splitting
of CN(X).

Let CND(X) be spanned by sequences x of length at least two, with x0
and x1 from the same orbit. Clearly, for such a sequence djx = 0 if j ≥ 2
and d0x = d1x. Hence, CND(X) is a subcomplex of CN(X) and has a trivial
differential. The quotient complex CNN(X) := CN(X)/CND(X) is freely
spanned by sequences x of length 1 or with x0 and x1 lying in two different
orbits (in particular, we can take b as one of them). Since djx ∈ CND(X)
for any sequence x as long as j ≥ 2, the differential in CNN(X) has only two
terms: ∂ = d0 − d1.

Lemma 4.1. The homology HNN(X) is freely generated by three types of

chains:

• type I: (vi, x1, . . . , xn), where x1 and vi are in different orbits,

• type II: (b, x1, x2, . . . , xn), where x1 and x2 are in the same orbit,

• type III:
∑k

i=1(b, ci, x2, . . . , xn), where (c1, . . . , ck) is a cycle from be-

yond the orbit of x2.

In all cases, neighboring entries are never equal.

Proof. The only case for which ∂x 6= 0 is when x0 = b and the orbits of
x1 and x2 are not the same (or simply x = (b, x1)). In that case

(21) ∂(b, x1, y) = (x1, y)− (f(x1), y).

This has two consequences:

(i) cycles are the chains listed in the lemma, except that in the first
case all sequences x with x0 6= b are allowed,
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(ii) boundaries (21) only restrict type I generators: we can replace x0 in
x by any other element from the same orbit; in particular by vi.

This gives the desired presentation of HNN(X).

The chain complexes described above induce a long exact sequence of
homology

(22) · · · → CND
n (X) → HN

n (X) → HNN
n (X)

δn→ CND
n−1(X) → · · ·

where δn([a]) =
∑n

i=2(−1)idna = ∂a is induced by the full differential in
CN(X). Due to Lemma 4.1 the groups HNN

n (X) are free, and so are ker δn,
which results in a splitting formula

(23) HN
n (X) ∼= ker δn ⊕ coker δn+1.

It remains to compute both summands.

Lemma 4.2. The cokernel of δn is a free Zℓ-module with basis consisting

of all sequences (f(x), x, . . . ) and (f2(x), f(x), x, . . . ), where x is initial in

both cases.

Proof. Since CND
n (X) = 0 for n ≤ 1, coker δn = 0 as well. This agrees

with the statement above, as there are no such sequences of length smaller
than 2. Hence, we will assume n ≥ 2.

According to Lemma 3.6, the generators of HNN
n (X) of the second type

are crucial: they are orthogonal to ker δn and their images restrict generators
of coker δn to sequences (f(y), y, . . .). Type III generators, in turn, show that
the length of any cycle in Γf annihilates coker δn:

(24) 0 ≡ ∂
( k∑

i=1

(b, ci, x2, z)
)
= k(f(x2), x2, z),

so that coker δn is a Zℓ-module. To restrict the set of generators even further,
take a type I generator with x1 = b and x2, x3 ∈ X0 (or just x2 ∈ X0 if
n = 2). Then

(25) 0 ≡ ∂(vi, b, x2, x3, z) = (x2, f(x2), x3, z)− (x3, f(x3), x3, z)

makes it possible to replace (f2(x), f(x), y, . . .) with (f2(y), f(y), y, . . .), or
to kill (f2(x), f(x)) in case n = 2, as we did in Theorem 3.4. Also, y must be
initial—otherwise (25) forces (f2(y), f(y), y, . . .) ≡ 0, if we pick x3 = y and
x2 such that f(x2) = y. All the remaining relations are induced by sequences
of the form

(26) x = (vi, b, z0, b, z1, b, . . . , b, zk, zk+1, . . .),

perhaps ending at the b before zk or at zk. Because ∂x is independent of vi,
we can choose one particular element. Then ∂x determines x completely, so
that all these boundaries are linearly independent. Each of them allows us
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to eliminate one more sequence from the list of generators: (z0, f(z0), b, . . .)
can be expressed as a linear sum of sequences of type (y, f(y), y, . . .) ≡
(f2(y), f(y), y, . . .). This results in the desired presentation of coker δn.

If X is finite, every component of Γf must have a cycle. Therefore,
Lemma 3.6 implies that δn, when restricted to type II generators, is an iso-
morphism over Q. Hence, it is enough to count the other generators to find
the rank of the distributive homology of X.

Theorem 4.3. Assume X is a finite f -spindle. Then its homology is

given by the formulas

(27)





H̃N
0 (X) = Zorb(f),

HN
1 (X) = Z(orb(f)−1)|X0|+2orb(f) ⊕ Z

init(f)
ℓ ,

HN
n (X) = (Z(orb(f)−1)|X|2+|X| ⊕ Z

init(f)|X|
ℓ )⊕(|X|−1)n−2

for n ≥ 2.

In particular, HN
n+1(X) = HN

n (X)⊕(|X|−1) for n ≥ 2.

Proof. Clearly, rk H̃NN
0 (X) = orb(f), since the only possible generators

are (vi). For higher n, the generators are counted in Table 1. The last two

Table 1. Numbers of generators in HN
n (X)

Type of generators n = 1 n ≥ 2

(vi, x, . . . ), x ∈ X0 (orb(f)−1)|X0| (orb(f)−1)(|X| − 1)n

(vi, b, . . . ) orb(f) orb(f)(|X| − 1)n−1

k∑

i=1

(b, ci, x, . . . ), x̄ 6= c̄i, x ∈ X0 orb(f) (orb(f)−1)(|X| − 1)n−1

k∑

i=1

(b, ci, b, . . . ) 0 orb(f)(|X| − 1)n−2

(f(y), y, . . .), y initial init(f) init(f)(|X| − 1)n−1

(f2(y), f(y), y, . . .), y initial 0 init(f)(|X| − 1)n−2

rows correspond to the torsion part. Summing up these numbers results in
the formula (27).

We can enhance the theorem above by giving an actual presentation
of homology, including the case of infinite f -spindles. Indeed, since im δn is
a free group, there is a decompositionHNN

n (X) = ker δn⊕Vn with Vn
∼= im δn

and we can naturally identify ker δn with HNN
n (X)/Vn. To construct such

a Vn, we first assume vi belongs to a cycle, if its orbit has one, and we
choose a section g : f(X0) → X0 of f . Furthermore, if ℓ 6= 0, we choose
cycles c1, . . . , cr and nonzero numbers α1, . . . , αr such that

∑r
i=1 αik

i = ℓ,
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where ki is the length of the cycle ci. We then use the chosen cycles to
construct a base cycle

(28) c :=
r∑

i=1

αi(ci1 + · · ·+ ciki).

Notice that ∂(b, c, x2, . . . , xn) = ℓ · (f(x2), x2, . . . xn).

Lemma 4.4. Fix an element v0 from among vi’s and let Vn ⊂ HNN
n (X)

be generated by the sequences

(1) (b, x1, . . . , xn) with x̄1 = x̄2, unless x1 = vi or x1 = f(vi), if already
x2 = vi,

(2) (v0, b, g(y), x3, . . . , xn) with x3 = b or y 6= f(x3), and
(3) if Γf has cycles, chains (b, c, x2, . . . , xn) with either an initial x2 or

x2 = f(x3) and an initial x3.

Then δn|Vn is injective and δn(Vn) = im δn.

Proof. Injectivity follows from Lemma 3.6 and carefully choosing the
other generators. Indeed, since we removed one sequence (b, x1, x2, . . .) for
every cycle in the orbit of x2, the quotient by the first group of generators
is freely generated by sequences (f(y), y, . . .). Then, as seen in the proof of
Lemma 4.2, every sequence (v0, b, g(y), x3, . . . , xn) lowers the rank of the cok-
ernel by one and each chain from the last group turns one of the remaining
generators into torsion of order ℓ. This also shows δn(Vn)= im δn.

Corollary 4.5. Let X be an f -spindle, not necessarily finite. Construct

Vn as above and choose a cycle c0, if Γf has one. Then the generators of

the free part of HN
n (X) are given modulo Vn by the following chains:

(1) sequences (b, f(vi), vi, x3, . . . , xn) and (b, vi, x2, . . . , xn) with v̄i = x̄2,
(2) sequences (vi, x1, . . . , xn) with v̄i 6= x̄1 and x1 6= b,
(3) sequences (vi, b, x2, . . . , xn) with vi 6= v0 or x2 /∈ g(X ′

0), and

(4) sums
∑k

i=1(b, ci, x2, . . . , xn), one per cycle (c1, . . . , ck) from a differ-

ent orbit than x2, except c
0, when x2 is initial or x2 = f(x3) and x3

is initial.

The torsion subgroup (4) of HN
n (X) is a Zℓ-module generated by sequences

(f(y), y, x2, . . . , xn) and (f2(y), f(y), y, x3, . . . , xn), where y is initial.

IfX is finite, this presentation is coherent with Theorem 4.3: although we
restrict free generators in the last two groups, we include the same number
of generators in the first group that have not been counted before.

(4) If ℓ = 0, these generators also contribute to the free part and there is no torsion.
In the other extreme case ℓ = 1 the torsion subgroup is trivial.
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5. Odds and ends

Relative homology. IfX is an f -spindle, thenX0 = X−{b} is a trivial
spindle (i.e. x ⋆ y = y), so that HN(X0) = CN(X0). This makes it easy to
compute the relative homology HN(X,X0). Indeed, the long exact sequence

(29) · · · → CN
n (X0)

in−→ HN
n (X) → HN

n (X,X0) → CN
n−1(X0)

in−1
−−−→ · · ·

implies HN
n (X,X0) ∼= ker in−1 ⊕HN

n (X)/im in, since ker in−1 is free. Hence,
we can obtain a presentation for HN

n (X,X0) as follows:

(1) Take a presentation for HN
n (X).

(2) Remove the generators (vi, x) with x ∈ CN
n−1(X0). Notice that this

kills both free and torsion generators.
(3) Add the free generators coming from ker in−1.

Although this procedure results in a presentation of relative homology, it
misses a very nice structure of these groups. Every sequence from CN(X,X0)
can be written uniquely as (x, b, y), where each yi is different from b (both
x and y might be empty). Because b ⋆ yi 6= b, higher faces vanish so that in
the quotient complex we have

(30) ∂(x, b, y) =

{
0 if x = ∅ or x = (x0),

(∂x, b, y) otherwise.

In particular, the sequence y is preserved. This proves the decomposition

(31) CN
n+1(X,X0) =

⊕

p+q=n

CN,b
p (X) ⊗ C̃N

q (X0),

where CN,b(X) is spanned by sequences ending with b. Notice that the dif-

ferential in C̃N(X0) is trivial, so the formula above shows CN(X,X0) is

a shifted total complex of the bicomplex CN,b(X)⊗ C̃N(X0).

To compute HN,b
p (X) we note first that the normalized complex CN(X)

splits into two copies of CN,b(X). Indeed, consider the homomorphism h :
CN(X) → CN(X)[1] given by h(x) = (x, b). It commutes with differen-
tials (5) and CN,b(X) = kerh. Moreover, the image of h is the shifted re-

duced complex C̃N,b(X, b)[1], because we can use h to obtain all sequences
except (b). Finally, the short exact sequence

(32) 0 → CN,b(X) → CN(X)
h
−→ CN,b(X, b)[1] → 0

splits via a homomorphism u : CN,b(X, b)[1] → CN(X) that forgets the b

standing at the end. Hence, HN
n (X) ∼= HN,b

n (X) ⊕ H̃N,b
n+1(X) and the group

HN,b
n (X) = kerh∗ is generated by classes represented by sequences with

(5) Recall that in the shifted complex C[1]n = Cn+1 and ∂[1]n = −∂n+1 changes sign.
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b at the end. This, together with (31), results in another presentation for
HN(X,X0).

We finish this part by computing HN,b(X) for a finite X. This can be
easily done using the split exact sequence (32) and Theorem 4.3.

Proposition 5.1. Assume X is a finite f -spindle. Then

(33)





HN,b
0 (X) = Z,

HN,b
1 (X) = Zorb(f),

HN,b
n (X) = (Zorb(f)|X|−|X|+1 ⊕ Z

init(f)
ℓ )⊕(|X|−1)n−2

for n ≥ 2.

Proof. Clearly, HN,b
0 (X) = Z, generated by (b). Directly from (32) we

compute

rkHN,b
1 (X) = rkHN

0 (X) − rkHN,b
0 (X) = orb(f),(34)

rkHN,b
2 (X) = rkHN

1 (X) − rkHN,b
1 (X) = orb(f)|X| − (|X| − 1).(35)

We observe that HN
0 (X) is free, so is HN,b

1 (X), and the torsion subgroup

of HN,b
2 (X) is equal to the one of HN

1 (X). For higher n we use induction:

(36) rkHN,b
n+3(X) = rkHN

n+2(X)− rkHN
n+2(X)

= (|X| − 1)n
(
(orb(f)− 1)|X|2 + |X| − orb(f)|X|+ |X| − 1

)

= (|X| − 1)n(orb(f)|X|(|X| − 1)− (|X|2 − 2|X|+ 1))

= (|X| − 1)n+1(orb(f)|X| − |X|+ 1), n ≥ 0.

Torsion is even simpler to check.

Realization of any finite abelian group. We prove that every finite
abelian group can be realized as the torsion subgroup of H1(X) for some
spindleX. For this, we will first generalize Definition 3.1 to several functions
(see [PS]).

Definition 5.2. Choose a family {Xi}i∈I of sets, not necessarily finite,
and functions fi : Xi → Xi. Define the spindle product on X :=

∐
i∈I Xi for

x ∈ Xi and y ∈ Xj by the formula

(37) x ⋆ y :=

{
y if i = j,

fj(y) if i 6= j.

The subsets Xi ⊂ X are called the blocks of the spindle X and fi’s are called
the block functions. We will write f : X → X for the function induced by all
block functions.

Example 5.3. Consider an f -spindle which has two blocks, X0 and {b}.
The block functions are given by f : X0 → X0 and a constant function
on {b}.
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From now on we assume X has a one-element block {b}. Then for every
other block Xi, the sum X+

i := Xi ⊔ {b} is an fi-spindle that is a rectract
of X, where the retraction r : X → X+

i is the identity on Xi and maps
everything else onto b. Hence, CN(X+

i ) is a direct summand of CN(X).

Theorem 5.4. Assume a block spindle X has a one-element block {b}.
Then

(38) H1(X) ∼= F ⊕
⊕

i∈I

H1(X
+
i ),

where F is a free abelian group of rank
∑

i 6=j orb(fi)|Xj |. In particular, every

finite abelian group can be realized as the torsion subgroup of H1(X) for some

spindle X.

Proof. We will assume there are at least two blocks different than {b}—
otherwise the statement is trivial. Since H1(X) = H1(X, b), we will compute
reduced homology. Each of C(X+

i , b) is still a direct summand of C(X, b),
but now they have trivial intersections: no two of them have a generator in
common. This implies

(39) C(X, b) ∼= Q⊕
⊕

i∈I

C(X+
i , b),

where Q is a chain complex isomorphic to the quotient of C(X, b) by the big
direct sum. To compute H1(Q), we first notice that Q0 = 0. Therefore, all
1-chains are cycles and H1(Q) = coker ∂. Pick any sequence (x, y, z) ∈ Q2.
Its boundary is equal to

(40) ∂(x, y, z) =

{
0 if x and y are from the same block,

(y, z) − (f(y), z) otherwise.

The induced relation only identifies some generators and does not introduce
torsion. Namely, we can replace (y, z) by any other pair (y′, z) with y′ from
the same orbit as y. A simple counting results in the desired rank ofH1(Q).

Remark 5.5. The homology groups Hn(Q) are usually not free when
n > 1, and the same holds for their normalized versions HN

n (Q).

Remark 5.6. The method of this paper can be applied to the more
general case of block spindles, even with no one-element block {b}. The
proof is, however, much more involved and is postponed for future work.

The degenerate part and growth conjectures. We can easily com-
pute the distributive homology for an f -spindle X using formula (9) from
Theorem 2.3. Indeed, (9) implies the relation

(41) CD
n+1(X) ∼= CD

n (X)⊕(|X|−1) ⊕ C̃n−1(X)⊕|X|
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and assuming n ≥ 2, we can combine this with the formula for the normal-
ized part from Theorem 4.3 to obtain an isomorphism of homology

(42) Hn+1(X) ∼= Hn(X)⊕(|X|−1) ⊕Hn−1(X)⊕|X|

for n ≥ 2. In the case where X is an f -spindle, one has

rkH2(X) = rkHN
2 (X) + rkHD

2 (X)(43)

=
(
(orb(f)− 1)|X| + 1 + orb(f)

)
|X|

=
(
(orb(f)− 1)|X0|+ 2orb(f)

)
|X| = |X| rkH1(X),

which implies H1(X)⊕|X| ∼= H2(X), resulting in Hn+1(X) ∼= Hn(X)⊕|X| for
n ≥ 1.

Corollary 5.7. The whole distributive homology for an f -spindle X is

given by the formulas

(44)

{
H̃0(X) = Zorb(f),

Hn(X) = (Zorb(f)(|X|+1)−(|X|−1) ⊕ Z
init(f)
ℓ )⊕|X|(n−1)

for n ≥ 1.

In particular, Hn+1(X) ∼= Hn(X)⊕|X| for n ≥ 1.

In [PS] the following conjecture was stated:

Conjecture 5.8 (Rank Growth Conjecture). Let (X, ⋆) be a shelf.

Then for n ≥ |X| − 2 one has rkHn+1(X) = |X| rkHn(X).

Using formula (9) for the degenerate subcomplex one can show that
the rank of the normalized homology grows by a factor of |X|−1 (see [PP-2]).

Conjecture 5.9 (Normalized Rank Growth Conjecture). Let (X, ⋆) be
a spindle. Then rkHN

n+1(X) = (|X| − 1) rkHN
n (X) for n ≥ |X| − 1.

Conjecture 5.8 implies Conjecture 5.9, but not the other way round.
Indeed, we cannot expect more than formula (42). Although the authors do
not know of any example of a spindle that does not satisfy Conjecture 5.8,
there are spindles where Hn+1(X) 6∼= Hn(X)⊕|X| because of torsion.

Example 5.10. Let X = {1, 2, 3, 4} and define ⋆ : X × X → X by
the following table:

⋆ 1 2 3 4

1 1 2 4 3

2 1 2 4 3

3 2 1 3 4

4 2 1 3 4
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Computer calculations resulted in the following groups:

H0(X) = Z2, H3(X) = Z32 ⊕ Z52
2 ,

H1(X) = Z2 ⊕ Z4
2, H4(X) = Z128 ⊕ Z204

2 ,

H2(X) = Z8 ⊕ Z12
2 , H5(X) = Z512 ⊕ Z820

2 .

One can easily check that Hn(X) ∼= Hn−1(X)⊕3⊕Hn−2(X)⊕4 for 3 ≤ n ≤ 5
and that the Rank Growth Conjecture holds. However, the torsion subgroup
does not grow by the factor of 4.

This suggests the following Growth Conjecture for distributive homology,
including torsion.

Conjecture 5.11 (Growth Conjecture). Let (X, ⋆) be a shelf. Then for

n ≥ |X| − 2,

(45) Hn+1(X) ∼= Hn(X)⊕(|X|−1) ⊕Hn−1(X)⊕|X|.

Furthermore, if X is a spindle, then also HN
n+1(X) ∼= HN

n (X)⊕(|X|−1).

Theorem 4.3 shows f -spindles satisfy all of these conjectures. Also, the au-
thors tested plenty of other block spindles in attempts to find a counterex-
ample to these conjectures, but they did not succeed.

Acyclicity results. Let X be a shelf and A ⊂ X a subset such that X
acts on A from the right by permutations, i.e. a ⋆ x ∈ A whenever a ∈ A and
the map a 7→ a ⋆ x is a permutation of A for every x ∈ X. If such an A exists
and is finite, it was proved in [Prz] that H(X) is annihilated by |A|. It was
expected to be trivial as one-term distributive homology was supposed to
be torsion-free. However, we have already seen the latter is not true and it is
no longer obvious why homology groups of such a spindle should vanish. We
prove this below. To simplify notation, we will omit ⋆ and use the left-first
convention for bracketing:

(46) x1 · · · xn := ((x1 ⋆ x2) ⋆ · · · ) ⋆ xn.

One can easily check that distributivity of the operation ⋆ implies the gen-
eralized distributivity: (x1 · · · xn) ⋆ y = (x1 ⋆ y) · · · (xn ⋆ y).

Proposition 5.12. Let (X, ⋆) be a shelf with a subset A ⊂ X on which

X acts from the right by permutations. Then the complex C̃(X) is acyclic.

Proof. We will construct a contracting homotopy h : C̃n(X) → C̃n+1(X).
First, notice that for every element a ∈ A and x ∈ X we can find a unique
a′ ∈ A such that a = a′ ⋆ x. More generally, for a fixed a ∈ A there is a unique
solution ax to the equation a = axx0 · · · xn for any sequence x = (x0, . . . , xn).
Using the distributivity of ⋆ we can transform the right hand side by moving
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xi to the left, which results in the equality

(47) a = (ax ⋆xi) · · · (xi−1 ⋆ xi)xi+1 · · · xn.

This means that ax ⋆ xi = adix and the map h(x) := (ax, x) satisfies

(48) di+1h(x) = (ax ⋆ xi, d
ix) = h(dix)

for every 0 ≤ i ≤ n. Hence, ∂h(x) + h(∂x) = d0h(x) = x and the identity

homomorphism on C̃(X) is nullhomotopic.
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