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Link invariants from finite racks
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Abstract. We define ambient isotopy invariants of oriented knots and links using the
counting invariants of framed links defined by finite racks. These invariants reduce to the
usual quandle counting invariant when the rack in question is a quandle. We are able to
further enhance these counting invariants with 2-cocycles from the coloring rack’s second
rack cohomology satisfying a new degeneracy condition which reduces to the usual case
for quandles.

1. Introduction. A rack is a generally non-associative algebraic struc-
ture whose axioms correspond to blackboard-framed isotopy moves on link
diagrams. Racks generalize quandles, an algebraic structure whose axioms
correspond to the three Reidemeister moves which combinatorially encode
ambient isotopy of knot diagrams.

Given a finite quandle T , the set of quandle homomorphisms from a knot
quandle Q(K) to T gives us an easily computed knot invariant, namely its
cardinality |Hom(Q(K), T )|. This is the quandle counting invariant, also
sometimes called the quandle coloring invariant since each homomorphism
f : Q(K)→ T can be pictured as a “coloring” of the knot diagram assigning
to each arc xi in a knot diagram the element f(xi) ∈ T such that a quandle
coloring condition is satisfied at every crossing. Indeed, Fox 3-coloring is the
simplest non-trivial example of a quandle coloring invariant for knots.

If T is a non-quandle rack, the set of colorings of arcs of a link diagram by
elements of T satisfying the coloring condition at every crossing is invariant
only under blackboard-framed isotopy—type I Reidemeister moves which
change the framing of the knot also change the number of colorings. In this
paper we will exploit a property of finite coloring racks to define computable
invariants of ambient isotopy of knots and links incorporating these framed
isotopy coloring invariants. The usual quandle coloring invariants then form
a special case of these more general rack coloring invariants.
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The paper is organized as follows. In Section 2 we review the basics
of racks, framed links and virtual links. In Section 3 we define finite rack
based counting invariants and give some examples. In particular, we show
that the writhe-enhanced invariant specializes to the integral invariant and
contains more information. In Section 4 we enhance the rack counting in-
variants with 2-cocycles in the style of [3]. We provide an example show-
ing that the cocycle-enhanced invariant contains more information than the
writhe-enhanced and integral rack counting invariants. In Section 5 we col-
lect questions for future research.

2. Basic definitions. In this section we review the basic definitions we
will need for the remainder of the paper.

2.1. Racks. We begin with a definition from [6].

Definition 1. A rack is a set R with a binary operation . : R×R→ R
satisfying

(i) for all x ∈ R, the map fx : R → R defined by fx(y) = y . x is
invertible, with inverse f−1x (y) denoted y .−1 x, and

(ii) for all x, y, z ∈ R, we have (x . y) . z = (x . z) . (y . z).

A rack in which x . x = x for all x ∈ R is a quandle. The operation .−1 is
the dual rack operation—it is also self-distributive, and the two operations
are mutually distributive. Note that in [6], x . y is denoted xy and x .−1 y
is denoted xy.

The rack axioms correspond to Reidemeister moves II and III, where we
think of rack elements as arcs in an oriented link diagram and . means
crossing under from right to left when looking in the positive direction of
the overcrossing strand. The dual operation .−1 can then be interpreted as
crossing under from left to right.
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Example 1. Perhaps the simplest example of a rack structure on a finite
set R = {x1, . . . , xn} is the constant action rack or permutation rack on R
associated to a permutation σ ∈ Sn. Specifically, set

xi . xj = xσ(i)

for all i = 1, . . . , n; then the action of y ∈ R on R remains constant as y
varies. It is easy to verify that this definition gives us a rack structure, since
xi .

−1 xj = xσ−1(i) and we have

(xi . xj) . xk = xσ2(i) = (xi . xk) . (xj . xk).

If a constant action rack is a quandle, then x . x = x and consequently
x.y = x for all x, y ∈ R; such a quandle is called trivial. There is one trivial
quandle for each cardinality n, denoted Tn. We will denote the constant
action rack associated to σ ∈ Sn by Tσ.

Example 2. A simple example of a non-trivial rack structure from [6]

is the (t, s)-rack structure: let Λ̈ be the ring Z[t, t−1, s] modulo the ideal
generated by s2 − (1 − t)s. Then any Λ̈-module M is a rack under the
operation

x . y = tx+ sy.

For instance, we can takeM = Zn and choose t, s∈M such that gcd(n, t) = 1
and s2 = (1− t)s, e.g. M = Z8 with t = 3 and s = 2. If s = 1− t then M is
a quandle, known as an Alexander quandle.

One useful way to describe a rack operation . on a finite set {x1, . . . , xn}
is to encode its operation table as a matrix M whose entry in row i column
j is k where xk = xi .xj . Thus, the constant action rack on R = {x1, x2, x3}
defined by σ = (123) has matrix

M(123) =

 2 2 2

3 3 3

1 1 1


and the (t, s)-rack M = Z8 with t = 3 and s = 2 has matrix

M(Z8,3,2) =



5 7 1 3 5 7 1 3

8 2 4 6 8 2 4 6

3 5 7 1 3 5 7 1

6 8 2 4 6 8 2 4

1 3 5 7 1 3 5 7

4 6 8 2 4 6 8 2

7 1 3 5 7 1 3 5

2 4 6 8 2 4 6 8


.

Rack axiom (i) requires the columns of a rack matrix to be permutations.
See [8] for more.
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2.2. Framed links. Recall that a framed link is a link L with a choice
of framing curve Fi for every component Ci of L, i.e. Fi is a longitude of
a regular neighborhood of Ci. Framing curves are determined up to isotopy
by their linking numbers with Ci. In terms of diagrams, we can bestow a
canonical framing on every component of a link via the blackboard fram-
ing, i.e. drawing a framing curve for each Ci parallel to Ci. This gives a
framing with linking number given by the writhe w(Ci) =

∑
x∈Si sign(x),

where Si is the set of crossings where Ci crosses itself, sign
( )

= 1 and

sign
( )

= −1.

Combinatorially, blackboard-framed links can be regarded as equivalence
classes of link diagrams under the equivalence relation generated by Reide-
meister moves II and III together with a doubled type I move which preserves
the framing of each component (see [11, 6]).

2.3. Virtual links. Virtual knot theory is a combinatorial generaliza-
tion of ordinary classical knot theory; geometrically, a virtual link is an

ordinary link in which the ambient space is not S3 or R3 but Σ × [0, 1]
for some compact orientable surface Σ, considered up to stabilization (see
[9, 4]). More formally, we have:

Definition 2. A virtual link is an equivalence class of link diagrams
with an extra crossing type known as a virtual crossing, , under the equiv-
alence relation determined by the usual Reidemeister moves together with
the four virtual moves
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We can summarize the rules for virtual moves with the detour move,
which says that any strand with only virtual crossings can be replaced by
any other strand with the same endpoints with only virtual crossings. That
is, a strand with only virtual crossings can move past any virtual tangle:

←→

Virtual crossings have no intrinsic over- or under-sense, as they are ar-
tifacts of drawing non-planar link diagrams on planar paper. Classical links
are then virtual links whose underlying surface Σ is S2. Replacing the clas-
sical Reidemeister I move with the doubled version yields framed virtual
links. For the remainder of this paper, we will use “link diagram” to mean
“oriented blackboard-framed virtual or classical link diagram”. See [9] for
more.

2.4. The fundamental rack(s) of a link. Associated in [6] to a
framed link L is a rack known as the fundamental rack of L, which we
will denote by FR(L) (1).

Geometrically, elements of FR(L) are homotopy classes of paths in the
link complement X = S3 \ (L × Int(B2)) from the framing curves⋃
Fi ⊂ ∂(X) to a fixed base point x0 ∈ X where the terminal point is fixed

but the initial point is permitted to wander along the framing curve Fi dur-
ing the homotopy. Any such path α : [0, 1] → X has an associated element
π(α) of the fundamental group π1(X,x0) defined by traveling backwards
along α, then going around the canonical meridian in ∂(X) intersecting
α(0), then going forwards along α. The rack operation is then

[β] . [α] = [β ∗ π(α)],

where ∗ is concatenation of paths.

(1) Does the notation “FR” stand for “fundamental rack” or “Fenn and Rourke”?
Perhaps both!
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Combinatorially, given a diagram of L, the fundamental rack of L consists
of equivalence classes of rack words in generators corresponding to arcs in the
diagram of L under the equivalence relation generated by the rack axioms
together with the relations imposed at each crossing. If L is a virtual link,
we simply ignore the virtual crossings.

Example 3. The pictured blackboard-framed virtual link has funda-
mental rack with generators x, y and relation x . y = x . (y . x):

FR(L)

= 〈x, y, z, w | y . x = z, x . z = w, x . y = w〉
= 〈x, y, w | x . y = w, x . (y . x) = w〉
= 〈x, y | x . y = x . (y . x)〉.

For each framing of a given link, we have a fundamental rack, generally
distinct from the racks of the other framings. All of these racks have a
common quotient quandle obtained by setting a . a = a for all elements
a ∈ FR(L), which is the knot quandle Q(L) of the unframed link L. Elements
of the knot quandle may be interpreted geometrically as homotopy classes
of paths where the initial point is permitted to wander not just along the
framing curve but along all of ∂(X). See [6] for more.

3. Racks and counting invariants. Let L be an unframed link with
an ordering on the components. If L has n components, then the framings
of L may be indexed by n-tuples w ∈ Zn, each with its own a priori distinct
fundamental rack. At the most basic level, then, there are infinitely many
rack counting invariants for a given link with respect to any choice of finite
target rack T . However, we can make a useful observation which enables us
to get computable ambient isotopy invariants from the Zn-set of racks of L.

Definition 3. Let T be a rack. For any x ∈ T , let x.n for n ∈ Z+ be
defined recursively by

x.1 = x . x and x.(k+1) = x.k . x.k.

For each element x ∈ T , the rack rank of x ∈ T , denoted N(x), is the
minimal natural number N ∈ Z+ such that x.N = x, or N(x) = ∞ if
x.N 6= x for all N ∈ N. The rack rank of T , denoted N(T ) or just N if T is
understood, is the least common multiple of the rack ranks of the elements
of T ,

N(T ) = lcm{N(x) | x ∈ T}.

To see that N(x) is well defined for all x ∈ T , we first need a lemma.
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Lemma 1. Let T be any rack and x, y ∈ T . Then y . (x . x) = y . x.

Proof. We compute

y . (x . x) = [(y .−1 x) . x] . (x . x) = [(y .−1 x) . x] . x = y . x.

Example 4. Two elements x, y ∈ T are operator equivalent if z.x = z.y
for all z ∈ T . If T is a finite rack, then two elements are operator equivalent
iff their columns in the matrix of T are identical. Lemma 1 says that the
.-powers of x ∈ T are all operator equivalent. Indeed, the set of operator
equivalence classes of a rack forms a quandle under the natural operation
[x] . [y] = [x . y].

Corollary 2. Let T be a rack. If x . x = y . y, then x = y.

Proof. Suppose x . x = y . y = z. We have x . x = x . (x . x) = x . z and
y . y = y . (y . y) = y . z. Then x . x = y . y implies x . z = y . z and rack
axiom (i) implies x = y.

In terms of rack matrices, Corollary 2 says that like the columns of a
rack matrix, the diagonal of a rack matrix must be a permutation. Indeed, if
we define π : T → T by π(x) = x.x then the diagonal of a rack matrix tells
us the permutation π. It then easily follows that N(x) < |T | for any x ∈ T
where T is a finite rack—indeed, N(T ) is just the exponent of π ∈ S|T |. This
fact also follows from [10, Proposition 7.3].

We will also need the following standard result (see e.g. [6] or [11]):

Theorem 3. If D and D′ are ambient isotopic link diagrams, we can
modify D′ to obtain a diagram D′′ which is framed isotopic to D by selecting
an arc on each component of D′ and adding positive or negative kinks until
the framings match.

The proof of Theorem 3 involves taking any Reidemeister move sequence
starting with D and ending with D′, and replacing every type I move with
a double I move to adjust the framed isotopy class; at the end, we can then
slide the extra crossings along the component until they arrive at the chosen
arc. Note that this argument applies to virtual links as well as classical links,
since we can slide a classical kink past a virtual crossing using a detour move.
Note also that without loss of generality we can assume that all kinks added
have positive winding number since we need not preserve the regular isotopy
class, only the blackboard-framed isotopy class.

Definition 4. Let N ∈ N. We say two blackboard-framed oriented
link diagrams are N -phone cord equivalent if one may be obtained from the
other by a finite sequence of Reidemeister II and III moves and the following
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N -phone cord move, where N is the number of loops:

Proposition 4. Let T be a finite rack with rack rank N . If two link
diagrams D and D′ are N -phone cord isotopic then |Hom(FR(D), T )| =
|Hom(FR(D′), T )|.

Proof. From the definition of rack rank, it is easy to see that N -phone
cord moves induce a bijection on the set of colorings as illustrated:

For two n-tuples v,w ∈ Zn, let us write v ≡ w mod N if for all compo-
nents i = 1, . . . , n we have vi ≡ wi mod N .

Corollary 5. Let T be a finite rack with rack rank N . If two link
diagrams D and D′ are ambient isotopic and have writhe vectors congruent
modulo N , then |Hom(FR(D), T )| = |Hom(FR(D′), T )|.

Note that if T is a finite rack with rack rank N , and L is a link, the set
of writhes of each component of L modulo N can be indexed by w ∈ (ZN )c,
where c is the number of components of L. For ease of notation, when N
and c are understood let us write (ZN )c = W and denote by (D,w) a
blackboard-framed diagram of D with writhe vector w ∈W .

We can now define computable unframed knot and link invariants using
these cardinalities.

Definition 5. Let T be a finite rack and L a link with c components.
The integral rack counting invariant of L with respect to T is

ΦZ
T (L) =

∑
w∈W

|Hom(FR(D,w), T )|.

Note that if T is a quandle, then we have N(T ) = 1 and ΦZ
T (L) is

the ordinary quandle counting invariant |Hom(Q(L), T )|. Hence the integral
rack counting invariant is the natural generalization of the quandle counting
invariant to the finite rack case.



Link invariants from finite racks 251

Example 5. If T = {x1, . . . , xn} is a constant action rack defined by
an n-cycle, an undercrossing color τ becomes σ(τ) if going right-to-left and
σ−1(τ) if going left-to-right, so pushing a color around the knot yields an
ending color of σw(K)(τ), where w(K) is the writhe of K and our start-
ing color was τ . Thus, there is a rack coloring of a framed knot K by T
if and only if the writhe of K is zero modulo n. Indeed, there are n such
colorings for the 0-framing modulo n and none for the others, and we have
SR(K,T ) = n + (n − 1)0 = n for any knot K. This generalizes the fact
that |Hom(K,T )| = n for T a trivial quandle of cardinality n and K a
knot.

Example 6. Let T∗ be the rack with matrix

MT∗ =



1 3 2 1 1 1 1

3 2 1 2 2 2 2

2 1 3 3 3 3 3

4 4 4 6 4 6 4

5 5 5 5 7 5 7

6 6 6 4 6 4 6

7 7 7 7 5 7 5


.

The integer rack counting invariant with respect to T∗ distinguishes the
trefoil 31 from the unknot U1 with ΦZ

T∗
(U1) = 10 and ΦZ

T∗
(31) = 22, as

the reader can verify from the tables of colorings listed in Table 1. Here
N(T∗) = 2, so we need only consider one diagram of each of U1 and 31 with
odd writhe and one of each with even writhe.

Table 1. Rack colorings of 31 and U1 by T∗

D Colorings by T∗

x 1 1 1 2 2 2 3 3 3

y 1 2 3 1 2 3 1 2 3

z 1 3 2 3 2 1 2 1 3

x 1 1 1 2 2 2 3 3 3 6 4 5 7

y 1 2 3 1 2 3 1 2 3 4 6 7 5

z 1 3 2 3 2 1 2 1 3 6 4 5 7

w 1 1 1 2 2 2 3 3 3 4 6 7 5
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Table 1 (cont.)

D Colorings by T∗

x 1 2 3 4 5 6 7

x 1 2 3

We can enhance the integer rack counting invariant by keeping track
of which framings contribute which colorings. For a writhe vector w =
(w1, . . . , wc) ∈ W = (ZN )c let us denote the product qw1

1 . . . qwcc by qw.
Then we have:

Definition 6. Let T be a finite rack and L a link with c components and
writhe vector w = (w1, . . . , wc) ∈ W . The writhe-enhanced rack counting
invariant of L with respect to T is given by

ΦWT (L) =
∑
w∈W

|Hom(FR(L,w), T )|qw.

The writhe-enhanced rack counting invariant holds more information
than the simple version, as the next example shows.

Example 7. The constant action rack T with rack matrix
[
2
1

2
1

]
has

rack rank N(T ) = 2. The Hopf link H and the two-component unlink U2

both have integral rack counting invariant value ΦZ
T (L) = 4 with respect

to T , but the writhe-enhanced rack counting invariants are distinct, with
ΦWT (H) = 4q1q2 and ΦWT (U2) = 4 as the reader can easily verify from Table 2.

Indeed, generalizing the preceding example we have

Proposition 6. Let L be a two-component classical link and T = Tσ
a constant action rack with σ ∈ SN an N -cycle. Then the writhe-enhanced
rack counting invariant has the form

ΦWTσ(L) = N2ql1q
l
2

where l is the negative of the linking number lk(L1, L2) of L modulo N .

Proof. Traveling around a component, to get a valid coloring, the end
color must match the initial color, so we must go through N crossings
(counted algebraically). Since lk(L1, L2) of these are multi-component
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Table 2. Numbers of colorings of H and U2 by T(12)

0 0 0 4

4 0 0 0

crossings which do not contribute to the component’s writhe, we must
have

l + lk(L1, L2) = N.

The same holds for both components if L is classical. There are N choices
of starting color for each component and every pair produces exactly one
coloring, so there are N2 total colorings.

Corollary 7. If L is a two-component link and T = Tσ a constant
action rack with σ ∈ SN an N -cycle such that the exponents of q1 and q2
differ in any term of ΦWTσ(L), then L is non-classical.

4. Rack cocycle invariants. In this section we generalize the quandle
2-cocycle invariants defined in [3] to the finite rack case.

The rack counting invariants described in the last section are cardinalities
of sets of homomorphisms which are unchanged by Reidemeister moves.
However, a set is more than a cardinality, and we would like to recover as
much information from these sets of homomorphisms as possible.

In [3], the idea is to associate a sum in an abelian group A called a Boltz-
mann weight to a quandle-colored knot diagram in such a way that the sum
does not change under Reidemeister moves. Then, instead of counting “1”
for each homomorphism, we count its Boltzmann weight, transforming the
set of colorings into a multiset of these weights. Such multisets are commonly
encoded as polynomials by taking a generating function, i.e. by converting
the multiset elements to exponents and multiplicities to coefficients of a
dummy variable, e.g. {1, 1, 1, 4, 4} becomes 3t+ 2t4.
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The Boltzmann weights are defined as follows: at every crossing in a
rack-colored link diagram, we want to count φ(a, b) at a positive crossing
or −φ(a, b) at a negative crossing, where b is the color on the overcrossing
strand and a is the color on the inbound understrand for positive crossings
and the outbound understrand for negative crossings:

This weighting rule has the advantage that the contributions from the
two crossings in a Reidemeister type II move cancel, so the sum is automat-
ically invariant under II moves:

We also note that the weighting rule gives invariance under the doubled type
I moves required for blackboard-framed isotopy:

The condition for the sum to be unchanged by Reidemeister III moves
is pictured below:
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This turns out to be the condition that φ is a cocycle in the second rack
cohomology H2

R(T ;A) of the rack T with coefficients in A. Specifically, the
A-module spanned by n-tuples of elements of T is the space of rack n-chains
CRn (T ;A) = A[Tn]; its dual is the space of rack n-cochains CnR(T ;A) =
Hom(CRn (T ;A), A). Note that CnR(T ;A) has A-generating set {χx | x ∈ Tn}
where

χx(y) =

{
1 for x = y,

0 otherwise,

for y ∈ Tn. Next, we define a coboundary map δn : CnR(T ;A)→ Cn+1
R (T ;A)

by

(δnφ)(x1, . . . , xn+1) =

n+1∑
i=1

(−1)i−1
(
φ(x1, . . . , xi−1, xi+1, . . . , xn+1)

− φ(x1 . xi, . . . , xi−1 . xi, xi+1, . . . , xn+1)
)
.

Then for φ to yield a Boltzmann weight, we need φ ∈ Ker(δ2).

To get invariance under the Reidemeister I move in the quandle case,
we require that φ(x, x) = 0 for all x ∈ T . This condition also turns out
to have a homological interpretation—the cocycles we want to kill live in a
subcomplex called the degenerate cochains. In the non-quandle rack case,
however, a weaker condition suffices.

Definition 7. Let T be a finite rack with rack rank N , A an abelian
group and φ ∈ C2

R(T ;F ). Say φ is N -reduced if

N∑
k=1

φ(a.k, a.k) = 0

for all a ∈ T.

Now we can define an enhanced version of the polynomial rack counting
invariant:

Definition 8. Let L be an oriented blackboard-framed link, T a fi-
nite rack and φ an N -reduced rack 2-cocycle. For a rack-colored fram-
ed diagram (D,w) of L, the Boltzmann weight BW(f) of the coloring
f ∈ Hom(FR(D,w), T ) is the sum over the crossings in D of the crossing
weights,

BW(f) =
∑

c a crossing

sign(c)φ(a, b).

Then the rack cocycle invariant of L with respect to T is

ΦφT (L) =
∑
w∈W

( ∑
f∈Hom(FR(D,w),T )

zBW(f)
)
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and the writhe-enhanced rack cocycle invariant is

Φφ,WT (L) =
∑
w∈W

( ∑
f∈Hom(FR(D,w),T )

zBW(f)
)
qw.

Note that if T is a quandle, then N(T ) = 1 and φ is 1-reduced iff
φ(x, x) = 0 for all degenerate cycles (x, x) ∈ CR2 (T ;A); in this case we
also have W = {(0, . . . , 0)}. Indeed, in the quandle case this rack cocycle
invariant becomes the usual CJKLS quandle 2-cocycle invariant from [3].

Specializing z = 1 in Φφ,WT (L) recovers the writhe-enhanced rack count-
ing invariant, and likewise in the integral case. To see that the rack cocycle
invariant is stronger than ΦZ

T (L), consider the following simple example.

Example 8. The rack T with rack matrix

MT =


3 1 3 1

2 4 2 4

1 3 1 3

4 2 4 2


has a reduced cocycle φ = χ(12) + χ(14) + χ(32) + χ(34) with Z13 coefficients.
Then the (4, 2)-torus link is distinguished from the two-component unlink
by Φφ:

Φφ = 16 Φφ = 8 + 8z12

Our final example illustrates a pair of virtual links with equal writhe-
enhanced rack counting invariant values which are distinguished when we
include the rack cocycle information.

Example 9. Again let T be the rack with rack matrix

MT =


3 1 3 1

2 4 2 4

1 3 1 3

4 2 4 2


and φ = χ(1,2) + χ(1,4) + χ(3,2) + χ(3,4) ∈ C2

R(T ;Z13). Then Φφ distinguishes

the two virtual links pictured below, both of which have ΦWT (L) = 8 + 8q1.
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Note that the subscripts on q correspond to the component ordering.

Φφ,WT = 4 + 4z + 8q1 Φφ,WT = 4z + 4z2 + 8q1

5. Questions. In this section we collect a few questions for future re-
search.

Rack and quandle (co)homology has been generalized in various ways
including twisted quandle (co)homology in [2], quandle (co)homology with
coefficients in quandle modules in [1], and more. How does the rack cocycle
invariant change in these cases?

Quandle 3-cocycles have been used to enhance quandle counting invari-
ants of surface knots, i.e. embeddings of compact orientable 2-manifolds
in S4. How do the rack counting and cocycle invariants extend to the sur-
face knot case?

Other ways of enhancing the quandle counting invariants include using
quandle polynomials and exploiting any extra structure the quandle may
have (symplectic vector space, R-module, etc.); generalizing these ideas to
the rack case will be the subject of future papers.

Replacing the arcs in the combinatorial motivation for the rack axioms
with semiarcs yields biracks, also known as invertible switches or Yang–
Baxter sets (see [7, 5]). The birack analogues of the simple and polynomial
rack counting invariants will be the subject of another future paper.

A Python code for computing rack counting invariants, reduced rack
2-cocycles with Zn coefficients, and rack cocycle invariants is available for
download from www.esotericka.org.
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