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The writhes of a virtual knot
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Abstract. Kauffman introduced a fundamental invariant of a virtual knot called
the odd writhe. There are several generalizations of the odd writhe, such as the index
polynomial and the odd writhe polynomial. In this paper, we define the n-writhe for each
non-zero integer n, which unifies these invariants, and study various properties of the
n-writhe.

1. Introduction. The writhe plays an important roll in classical knot
theory; it is the sum of the signs of all the crossings of a knot diagram.
Kauffman restricted the definition to the “odd” crossings in a virtual knot
diagram and proved that the sum of the signs of all the odd crossings is an
invariant of a virtual knot [9]. He called it the odd writhe of a virtual knot
K and denoted it by J(K). The odd writhe was generalized in two ways;
one is the index polynomial

QK(t) =
∑
n>0

an(tn − 1)

due to Henrich [4] and Im–Lee–Lee [6], and the other is the odd writhe
polynomial

fK(t) =
∑
n∈Z

b2nt
2n

due to Cheng [2]. We remark that J(K) = −QK(0) = fK(1).

The aim of this paper is to define a sequence {Jn(K)}n6=0 of invariants
of a virtual knot K and study their properties. We call Jn(K) the n-writhe
of K.

In Section 2, we prove that the n-writhe is a generalization of the index
polynomial and the odd writhe polynomial.
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Proposition 1.1. Let {an}n>0 and {b2n}n∈Z be the coefficients of the
index polynomial and the odd writhe polynomial as above. Then:

(i) an = Jn(K) + J−n(K) for any n > 0.
(ii) b2n = J1−2n(K) for any n ∈ Z.

(iii) J(K) =
∑

n∈Z J2n+1(K).

We also describe the index polynomial of a virtual “link” in terms of
n-writhes and the linking numbers (Corollary 2.5).

In Section 3, we consider the symmetries of a virtual knot. For a virtual
knot K, let −K denote the orientation-reversion of K, and K∗ and K† the
vertical and horizontal mirror images of K, respectively (cf. [5]).

Proposition 1.2. For any virtual knot K and n 6= 0,

Jn(−K) = J−n(K) and Jn(K∗) = Jn(K†) = −J−n(K).

Section 4 is devoted to giving a necessary and sufficient condition for a
sequence of integers to be that of the n-writhes of a virtual knot:

Theorem 1.3. Any virtual knot K satisfies
∑

n6=0 nJn(K) = 0. Con-
versely, for any sequence {cn}n6=0 of integers with

∑
n6=0 ncn = 0, there is a

virtual knot K such that Jn(K) = cn for any n 6= 0.

In Section 5, we consider the classical crossing number, c(K), which is
the minimal number of classical crossings for all the virtual knot diagrams
of K. Similarly to a classical knot, we have a lower bound of c(K) by the
span of the Jones polynomial VK(t) (cf. [11]). We give two kinds of lower
bounds in terms of the n-writhes (Proposition 5.2) and prove the following.

Theorem 1.4. For any n ≥ 3, there is a virtual knot K with c(K) = n
and VK(t) = 1.

We also give a lower bound for the virtual crossing number (Proposi-
tion 5.3).

In Section 6, we first consider the differences of the n-writhes under the
crossing change at a classical crossing. We describe the index polynomial of
a “flat” virtual knot due to Im–Lee–Son [7] in terms of the n-writhe (Propo-
sition 6.2). In general, the crossing change is not an unknotting operation
for virtual knots.

Theorem 1.5. Suppose that a virtual knot K can be transformed into
the trivial knot by a finite sequence of crossing changes. Then:

(i) Jn(K) = J−n(K) for any n 6= 0.
(ii) The minimal number of such crossing changes, u(K), satisfies

u(K) ≥
∑
n>0

|Jn(K)| =
∑
n<0

|Jn(K)|.
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Next, we consider a relationship between the n-writhes and ∆-moves.
By the property that Jn(K) is invariant under ∆-moves (Lemma 6.4), we
have the following.

Theorem 1.6. For any n ≥ 1, there are infinitely many virtual knots K
with u(K) = n such that K cannot be transformed into the trivial knot by
∆-moves.

In Section 7, we define a local move on a virtual knot diagram called
a Ξ-move. Each n-writhe Jn(K) can be changed by Ξ-moves, but the odd
write J(K) =

∑
n6=0 Jn(K) cannot (Lemma 7.1). Furthermore, we have the

following.

Theorem 1.7. For virtual knots K and K ′, the following are equivalent:

(i) K can be transformed into K ′ by a finite sequence of Ξ-moves.
(ii) J(K) = J(K ′).

We remark that Ohyama and Yoshikawa of Tokyo Woman’s Christian
University obtained the result of Theorem 1.7 independently.

2. Definitions. A Gauss diagram G consists of an oriented circle S1

together with signed, oriented m chords (m ≥ 0) connecting 2m points on

S1. Let γ =
−−→
PQ be a chord in G with sign ε(γ) such that γ is oriented from

P to Q. We give signs to the endpoints P and Q, denoted by ε(P ) and ε(Q),
respectively, so that

ε(P ) = −ε(γ) and ε(Q) = ε(γ).

Definition 2.1. (1) For a chord γ =
−−→
PQ in a Gauss diagram G, the

specified arc of γ is the arc α in S1 with endpoints P and Q oriented from
P to Q with respect to the orientation of S1. See the left of Figure 1.

(2) The index of γ is the sum of the signs of all the points on α except
P and Q. We denote it by Ind(γ).

(3) For an integer n, the n-writhe of G is the sum of the signs of all the
chords with index n and denoted by Jn(G) =

∑
Ind(γ)=n ε(γ).

(4) The parity of a chord γ is that of Ind(γ); γ is odd or even if Ind(γ)
is odd or even, respectively.

(5) The odd writhe of G is the sum of the signs of all the odd chords in
G and denoted by J(G).

Example 2.2. The Gauss diagram G in Figure 1 (right) has four chords
γ1, . . . , γ4 with ε(γ1) = 1 and ε(γ2) = ε(γ3) = ε(γ4) = −1. Since the indices
are

Ind(γ1) = −1, Ind(γ2) = 3, Ind(γ3) = Ind(γ4) = −2,
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Fig. 1

we have

J3(G) = −1, J−1(G) = 1, J−2(G) = −2, Jn(G) = 0 (n 6= 3,−1,−2).

Since γ1 and γ2 are odd chords, the odd writhe J(G) is 0.

A virtual knot diagram is a knot diagram which may have virtual cross-
ings as well as classical crossings. A virtual knot is an equivalence class of
virtual knot diagrams under the three kinds of classical Reidemeister moves
together with the four kinds of virtual Reidemeister moves. Refer to [8] for
more details. Throughout this paper, all the virtual knots are oriented.

For a virtual knot diagram D, we take an immersion S1 → R2 whose
image is the plane curve obtained from D by ignoring classical/virtual cross-
ing information. If D has m classical crossings, then the preimage consists
of 2m points on S1. For each classical crossing c, we connect the preimages

{P,Q} of c by a chord γ =
−−→
PQ, where P is the preimage of the overcrossing

and Q is that of the undercrossing. We define the sign ε(γ) of the chord γ
to be that of c so that we obtain a Gauss diagram. We denote it by G(D).

Lemma 2.3. If D and D′ are related by a finite sequence of Reidemeister
moves, then Jn(G(D)) = Jn(G(D′)) for any n 6= 0.

Proof. For a virtual Reidemeister move, we have G(D) = G(D′) by
definition.

For a Reidemeister move I, the new classical crossing corresponds to
a chord with index zero. For a Reidemeister move II, the pair of the new
chords have the same index with opposite signs. For a Reidemeister move
III, it is sufficient to check the special case with signs and orientations as
shown in Figure 2.

In any cases, the signs and the indices of the other chords do not change
under the moves.

Definition 2.4. Let n be a non-zero integer. For a virtual knot K and
its diagram D, Jn(G(D)) is called the n-writhe of K and denoted by Jn(K).

Kauffman defines the odd writhe J(K) of a virtual knot K by J(K) =
J(G(D)) for any diagram D of K [9].



The writhes of a virtual knot 331

Fig. 2

Proof of Proposition 1.1. (i) The index polynomial of a virtual knot K
is given by

QK(t) =
∑
c

ε(c)(t|i(c)| − 1),

where the sum is taken over all the classical crossings of a diagram D and i(c)
is the “virtual intersection index” of a classical crossing c [6]. By definition,
it holds that |i(c)| = |Ind(γc)| for the chord γc of G(D) corresponding to c.
Therefore,

QK(t) =
∑
n>0

{Jn(K) + J−n(K)}(tn − 1).

(ii) The odd writhe polynomial of a virtual knot K is given by

fK(t) =
∑
c odd

ε(c)tN(c),

where the sum is taken over all the odd crossings of D; a classical crossing
c is odd if the corresponding chord γc is odd. Refer to [2] for the definition
of the integer N(c). Since N(c) = 1− Ind(γc) for any c, we have

fK(t) =
∑
n∈Z

J1−2n(K)t2n.

(iii) This follows from the definition immediately.

For a virtual link L =
⋃
iKi, let `(Ki,Kj) be the linking number of the

ordered pair (Ki,Kj), which is the sum of the signs of all the classical cross-
ings between Ki and Kj such that the overcrossing and the undercrossing
belong to Ki and Kj , respectively. In general, we have `(Ki,Kj) 6= `(Kj ,Ki).
Then the index polynomial of L is described in terms of the n-writhes and
the ordered linking numbers as shown in the following. The proof is easy
and we leave it to the reader.

Corollary 2.5. The index polynomial of a virtual link L =
⋃
iKi is

given by

QL(t) =
∑
i

∑
n>0

{Jn(Ki) + J−n(Ki)}(tn − 1)

+
∑
i<j

{`(Ki,Kj) + `(Kj ,Ki)}(t|`(Ki,Kj)−`(Kj ,Ki)| − 1).
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3. Orientation-reversion and mirror images. For a Gauss dia-
gram G, we denote by −G the one obtained from G by reversing the orienta-
tion of the circle S1 while keeping the orientation and the sign of each chord.
We denote by G∗ the diagram obtained by changing both the orientation
and the sign of each chord while keeping the orientation of S1, and by G†

the one obtained by changing the sign of each chord only.

Lemma 3.1. For a Gauss diagram G, we have:

(i) Jn(−G) = J−n(G).
(ii) Jn(G∗) = −J−n(G).

(iii) Jn(G†) = −J−n(G).

Proof. For a chord γ in G with the specified arc α, let γ′ be the chord
in −G, G∗, or G† corresponding to γ, and α′ the specified arc of γ′.

(i) The arc α′ is complementary to α in S1, and the signs of the chords
and the points on S1 do not change, so that Ind(γ′) = − Ind(γ) with ε(γ′) =
ε(γ). We remark that the sum of the signs of all the points on S1 is equal
to zero.

(ii) The arc α′ is complementary to α, the signs of the chords change,
and the signs of the points on S1 do not change, so that Ind(γ′) = − Ind(γ)
with ε(γ′) = −ε(γ).

(iii) The arcs α and α′ are the same, and the signs of the chords and the
points on S1 change, so that Ind(γ′) = − Ind(γ) with ε(γ′) = −ε(γ).

Let D be a diagram of a virtual knot K. We denote by −D the orienta-
tion-reversion of D. The vertical mirror image D∗ is obtained from D by
switching over/under-information at all the classical crossings, and the hor-
izontal mirror imageD† is obtained by reflectingD across a vertical plane [5].
We denote by −K, K∗, and K† the virtual knots represented by −D, D∗,
and D†, respectively. In general, the eight virtual knots ±K, ±K∗, ±K†,
and ±K∗† are mutually distinct (cf. [10]).

Proof of Proposition 1.2. Since G(−D) = −G(D), G(D∗) = G(D)∗, and
G(D†) = G(D)†, we have the conclusion by Lemma 3.1.

The following is a generalization of [2, Corollary 4.7] and [6, Corollary
4.7].

Corollary 3.2. Let K be a virtual knot.

(i) If there is an integer n 6= 0 with Jn(K) 6= J−n(K), then K 6= −K.
(ii) If there is an integer n 6= 0 with Jn(K) 6= −J−n(K), then K 6=

K∗,K†.

4. Characterization of writhes. Let γ =
−−→
PQ and γ′ =

−−→
P ′Q′ be two

chords in a Gauss diagram. We say that the pair of γ and γ′ is intersecting



The writhes of a virtual knot 333

if the specified arc α of γ contains exactly one of P ′ and Q′, and otherwise
non-intersecting. We define δ(γ, γ′) ∈ {−1, 0, 1} such that

δ(γ, γ′) =

{
ε(γ)ε(γ′) if α contains Q′,

−ε(γ)ε(γ′) if α contains P ′,

for any intersecting ordered pair (γ, γ′), and δ(γ, γ′) = 0 for any non-
intersecting pair. We see that δ(γ′, γ) = −δ(γ, γ′) for any ordered pair.
See Figure 3.

Fig. 3

Lemma 4.1. For any chord γ in a Gauss diagram, we have

ε(γ) Ind(γ) =
∑
γ′ 6=γ

δ(γ, γ′),

where the sum is taken over all the chords γ′ other than γ.

Proof. Let Γ+ and Γ− be the sets of chords γ′ =
−−→
P ′Q′ intersecting γ such

that the specified arc α of γ contains Q′ and P ′, respectively. By definition,

Ind(γ) =
∑
γ′∈Γ+

ε(Q′) +
∑
γ′∈Γ−

ε(P ′) =
∑

γ′∈Γ+(γ)

ε(γ′)−
∑

γ′∈Γ−(γ)

ε(γ′).

Therefore,

ε(γ) Ind(γ) =
∑
γ′∈Γ+

ε(γ)ε(γ′)−
∑
γ′∈Γ−

ε(γ)ε(γ′) =
∑

γ′∈Γ+∪Γ−

δ(γ, γ′),

which is equal to
∑

γ′ 6=γ δ(γ, γ
′).

Proposition 4.2. For any Gauss diagram G, we have
∑

n6=0 nJn(G)=0.

Proof. By Lemma 4.1,∑
n6=0

nJn(G) =
∑
γ

ε(γ) Ind(γ) =
∑
γ

∑
γ′ 6=γ

δ(γ, γ′).

Since δ(γ′, γ) = −δ(γ, γ′), the sum is equal to zero.

For two Gauss diagrams G1 and G2 with base points, the connected sum
G1 # G2 is obtained by removing small arcs near the base points from the
diagrams and connecting them, keeping the orientations. While G1 # G2

depends on the positions of base points, the n-writhe of G1 #G2 does not:
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Lemma 4.3. Jn(G1 #G2) = Jn(G1) + Jn(G2).

Proof. Since the sum of the signs of all the points on Gi is equal to zero
(i = 1, 2), the index of any chord in Gi is equal to that in G1#G2.

Lemma 4.4. For any n, c ∈ Z with n 6= 0,−1, there is a Gauss diagram
G = G(n, c) which satisfies the condition

Jn(G) = c, J−1(G) = nc, and Jk(G) = 0 (k 6= n,−1).

Proof. If c = 0, we take the Gauss diagram with no chord. We consider
the case c > 0. Let G(n, 1) (n 6= 0,−1) be the Gauss diagram as shown in
Figure 4, and G(n, c) be the connected sum of c copies of G(n, 1). Since

Jn(G(n, 1)) = 1 and J−1(G(n, 1)) = n,

G(n, c) satisfies the desired condition by Lemma 4.3. For c < 0, the Gauss
diagram G = −G(n,−c)∗ satisfies the condition by Lemma 3.1.

Fig. 4

Proposition 4.5. Let {cn}n6=0 be a sequence of integers. If
∑

n6=0 ncn
= 0, then there is a Gauss diagram G such that Jn(G) = cn for any n 6= 0.

Proof. Let G = #n6=0,−1G(n, cn) be the connected sum of the Gauss
diagrams G(n, cn) for n 6= 0,−1. By Lemmas 4.3 and 4.4, we have Jn(G) =
cn (n 6= 0,−1). Moreover,

J−1(G) =
∑

n6=0,−1
ncn = c−1

by the assumption
∑

n 6=0 cn = 0.

Proof of Theorem 1.3. This follows from Propositions 4.2 and 4.5.

We remark that the characterization of the odd writhe polynomial given
in [2, Theorem 5.1] follows from Theorem 1.3. Also, we can give a charac-
terization of the index polynomial, which is left to the reader.

Corollary 4.6 (cf. [2]). The odd writhe J(K) is even.

Proof. By Proposition 1.1(iii) and Theorem 1.3, we have

J(K) ≡
∑
n 6=0

nJn(K) = 0 (mod 2).
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5. Classical crossing number. For a Gauss diagram G, let c(G) de-
note the number of chords in G.

Lemma 5.1. Let G be a Gauss diagram with c(G) > 0.

(i) c(G) ≥
∑

n6=0 |Jn(G)|.
(ii) c(G) ≥ max{|n| | Jn(G) 6= 0}+ 1.

Proof. (i) Since the number of chords with index n is greater than or
equal to |Jn(G)|, the total number of chords in G is greater than or equal
to

∑
n 6=0 |Jn(G)|.

(ii) If G has a chord with index n, then there are at least |n| chords
intersecting that chord by definition.

The number of classical crossings of a virtual knot diagram D is equal to
c(G(D)). The classical crossing number of a virtual knot K is the minimum
of c(G(D)) over all the diagrams of K, and is denoted by c(K). There are
several lower bounds of c(K), such as the span of the Jones polynomial [11]
and the weighted degree of the Miyazawa polynomial [14].

By Lemma 5.1, we have the following immediately. The inequality (ii) is
a generalization of [2, Proposition 4.2].

Proposition 5.2. Let K be a non-trivial virtual knot.

(i) c(K) ≥
∑

n6=0 |Jn(K)|.
(ii) c(K) ≥ max{|n| | Jn(K) 6= 0}+ 1.

Let VK(t) be the Jones polynomial of a virtual knot K. It is known that
a local move on a virtual knot diagram D as shown in Figure 5 (left) does
not change the Jones polynomial [8]. The local move changes the orientation
of a chord in the corresponding Gauss diagram G(D), while keeping the sign
of any chord; see Figure 5 (right).

Fig. 5

Proof of Theorem 1.4. For a positive integer n, let Kn be the virtual knot
represented by the Gauss diagram in Figure 6. In particular, K1 and K2 are
the trivial knot. It is easy to see that Jk(Kn) = 0 (k 6= n− 1,±1, 0) and

Jn−1(Kn) = 1, J1(Kn) = −n− 1

2
, J−1(Kn) =

n− 1

2
for odd n ≥ 3, and

Jn−1(Kn) = 1, J1(Kn) = −n
2
, J−1(Kn) =

n

2
− 1

for even n ≥ 4. Therefore, c(Kn) = n by either Proposition 5.2(i) or (ii).
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Fig. 6

On the other hand, we change the orientations of some vertical chords so
that all the vertical chords are oriented in the same direction. We can apply
Reidemeister moves II on the chords to obtain the trivial knot K1 or K2.
Since the Jones polynomial does not depend on the orientations of chords,
we have VKn(t) = 1 for any n.

Let v(K) denote the virtual crossing number of a virtual knot K, which
is the minimal number of virtual crossings of all the virtual knot diagrams
of K. There are several lower bounds of v(K) in [1, 3, 6, 12]. The following
is a generalization of [6, Corollary 4.14].

Proposition 5.3. For any virtual knot K, we have

v(K) ≥ max{|n| | Jn(K) 6= 0}.
Proof. Let D be a virtual knot diagram of K. Assume that the Gauss

diagramG(D) has a chord γ with index n. Let α be the specified arc of γ, and
α′ the complementary arc of α in S1. We use the same notations to indicate
the closed paths in D corresponding to α and α′. The classical crossings
between α and α′ contribute n to the algebraic intersection number of α
and α′. Since the intersection number is equal to zero, the virtual crossings
contribute −n, which implies that D has at least |n| virtual crossings.

We remark that the virtual knot Kn in the proof of Theorem 1.4 has
virtual crossing number v(Kn) = n− 1 by Proposition 5.3. See Figure 7.

Fig. 7

6. Crossing change and ∆-move. We consider the crossing change
at a classical crossing of a virtual knot diagram D. The move changes the
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orientation and the sign of the chord of G(D) corresponding to the crossing.
We remark that the signs of the endpoints of the chord do not change. See
Figure 8.

Fig. 8

Lemma 6.1. Let γ be a chord in a Gauss diagram G with index n and
sign ε, and G′ the one obtained from G by changing the orientation and the
sign of γ.

(i) If n 6= 0, then

Jk(G
′) = Jk(G)− ε (k = ±n) and Jk(G

′) = Jk(G) (k 6= ±n).

(ii) If n = 0, then

J0(G
′) = J0(G)− 2ε and Jk(G

′) = Jk(G) (k 6= 0).

Proof. This is similar to the proof of Lemma 3.1(ii).

A flat virtual knot [8] is an equivalence class of virtual knots under cross-
ing changes at classical crossings. In [7], the index polynomial of a flat virtual
knot K,

QK(t) =
∑
n>0

a′n(tn − 1),

is defined. On the other hand, it follows from Lemma 6.1 that Jn(K) −
J−n(K) is also an invariant of a flat virtual knot for any n > 0. Then we
have the following relationship between these invariants, which is proved by
using an “extended” Gauss diagram whose chords correspond to both the
classical and virtual crossings. We leave the precise proof to the reader as
an exercise.

Proposition 6.2. Let {a′n}n>0 be the coefficients of the index polyno-
mial of a flat virtual knot as above. Then for any n > 0, we have

a′n = 2n{Jn(K)− J−n(K)}.
Assume that two virtual knots K and K ′ define the same flat virtual

knot; that is, K can be transformed into K ′ by a finite sequence of crossing
changes. Let dG(K,K ′) denote the minimal number of crossing changes
which transform K into K ′. We call it the Gordian distance between K
and K ′. The following is a generalization of Theorem 1.5.

Theorem 6.3. Suppose that K and K ′ are related by crossing changes.

(i) Jn(K)− Jn(K ′) = J−n(K)− J−n(K ′) for any n 6= 0.
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(ii) The Gordian distance satisfies

dG(K,K ′) ≥
∑
n>0

|Jn(K)− Jn(K ′)| =
∑
n<0

|Jn(K)− Jn(K ′)|.

Proof. (i) By Proposition 6.1, we have Jn(K) − J−n(K) = Jn(K ′) −
J−n(K ′).

(ii) This follows from Lemma 6.1.

Recall that a ∆-move on a virtual knot diagram is the local move as
shown in Figure 9 (left). It is known that the ∆-move is an unknotting oper-
ation for classical knots [13]. On the other hand, the following lemma implies
that the ∆-move is not an unknotting operation for virtual knots in general.

Fig. 9

Lemma 6.4. For any n 6= 0, the n-writhe Jn(K) is invariant under
∆-moves.

Proof. It is sufficient to consider the change on Gauss diagrams as shown
Figure 9 (right). Then the sign and the index of any chord do not change.

Proof of Theorem 1.6. For positive integers n and r, let Knr be the
virtual knot represented by the Gauss diagram as shown in Figure 10. It is
easy to see that

Jr(Knr) = J−r(Knr) = n and Jk(Knr) = 0 (k 6= 0,±r).
Therefore, Knr cannot be transformed into the trivial knot by ∆-moves, by
Lemma 6.4.

Fig. 10
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On the other hand, we change the orientations and the signs of the n
vertical chords pointing upward so that we can apply Reidemeister moves
II to cancel all the vertical chords. Therefore, u(Knr) ≤ n. Since u(Knr) ≥
|Jr(Knr)| = n by Theorem 1.5(ii), we have u(Knr) = n.

7. Characterization of odd writhe. Let c1, c2, and c3 be consecu-
tive classical crossings of a virtual knot diagram D. A Ξ-move on D changes
the positions of c1 and c3, while keeping the over/under-information of the
crossings. See Figure 11 (left). The corresponding Ξ-move on a Gauss di-
agram is the transposition of two points P1 and P3 next but one to each
other on S1 as shown in Figure 11 (right).

Fig. 11

Recall that the odd writhe J(G) of a Gauss diagram G is the sum of the
signs of all the odd chords. Then we have the following.

Lemma 7.1. If G and G′ are related by Ξ-moves, then J(G) = J(G′).

Proof. The parity of three consecutive chords does not change by a
Ξ-move.

For an integer n, let G(n) be the Gauss diagram with 2|n| chords as
shown in Figure 12, where ε = +1 for n > 0 and ε = −1 for n < 0. In
particular, G(0) is the Gauss diagram with no chord.

Fig. 12

We use the notation γ = PQ for a chord with endpoints P and Q when
we do not care about the orientation.

Proposition 7.2. Any Gauss diagram G is related to G(n) for some
n ∈ Z by a finite sequence of Reidemeister moves and Ξ-moves.

Proof. Let γ = PQ be a chord in G. If γ is even, we apply Ξ-moves
related to γ so that P is next to Q, and remove it by a Reidemeister move I.
Therefore, we may consider the case where all the chords in G are odd.
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Since γ is odd, we apply Ξ-moves so that P is next but one to Q. Let
γ′ = P ′Q′ be the chord such that one of the endpoints, say P ′, lies between
P and Q. By applying Ξ-moves for γ′, we obtain a Gauss diagram where P ,
P ′, Q, and Q′ lie on S1 consecutively in this order. Moreover, we may assume

that they are oriented as
−−→
PQ and

−−→
P ′Q′ up to Ξ-moves.

By repeating this process, we obtain a Gauss diagram whose chords are
paired such that every pair of chords intersect each other; it is the same as
G(n) up to the signs of the chords.

If two chords have opposite signs, then we apply a Reidemeister move II
to cancel them. Also, if two consecutive pairs of chords have opposite signs,
then we apply Ξ-moves and Reidemeister moves II to eliminate the four
chords. See Figure 13. Therefore, G is equivalent to G(n) for some n ∈ Z.

Fig. 13

Proof of Theorem 1.7. Lemma 7.1 implies (i)⇒(ii). Assume that J(K) =
J(K ′). Let D and D′ be virtual knot diagrams of K and K ′, respectively.
By Proposition 7.2, there are integers n and n′ such that G(D) and G(D′)
are equivalent to G(n) and G(n′) up to Reidemeister moves and Ξ-moves,
respectively. Since J(K) = J(G(n)) = 2n and J(K ′) = J(G(n′)) = 2n′, we
have n = n′. This implies (ii)⇒(i).
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