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Zero-one laws for graphs with edge
probabilities decaying with distance. Part I

by

Saharon Shelah (Jerusalem and New Brunswick, NJ)

Abstract. Let Gn be the random graph on [n] = {1, . . . , n} with the possible edge
{i, j} having probability p|i−j| = 1/|i− j|α for j 6= i, i+ 1, i− 1 with α ∈ (0, 1) irrational.
We prove that the zero-one law (for first order logic) holds.

0. Introduction. On 0-1 laws see expository papers, e.g. Spencer [Sp].
In Łuczak–Shelah [LuSh 435] the following probabilistic context was inves-
tigated. Let p̄ = 〈pi : i ∈ N〉 be a sequence of probabilities, i.e. real numbers
in the interval [0, 1]R. For each n we draw a graph Gn,p̄ with set of nodes
[n] := {1, . . . , n}; for this we make the following independent drawing:

• for each (unordered) pair {i, j} of numbers from [n] we draw yes/no
with probabilities p|i−j| / 1− p|i−j|, and let

Rn = {{i, j} : i, j are in [n] and we draw yes}.
We view Rn as a symmetric irreflexive two-place relation. So we have ob-
tained a random modelM0

n,p̄ = ([n], Rn) (i.e. a graph), but we also consider
the graph expanded by the successor relation, M1

n,p̄ = ([n], S,Rn), where
S = {(l, l + 1) : l ∈ N} (more exactly we use Sn = S�[n]), and we may
also consider the graph expanded by the natural order on the natural num-
bers,M2

n,p̄ = ([n], <,Rn). (We will give a little background on this structure
below. But the question whether the 0-1 law holds is not discussed here.)
Though we shall start dealing generally with random models, the reader can
restrict himself to the case of graphs without losing comprehensibility.

In [LuSh 435] much information was obtained on when the 0-1 law holds
(see Definition 1.2(1)) and when the convergence law holds (see Definition
1.2(2)), depending on conditions such as

∑
i∈N pi <∞ and

∑
i∈N ipi <∞.
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The sequences p̄ considered in [LuSh 435] were allowed to be quite chao-
tic, and in those circumstances the theorems were shown to be the best
possible, e.g. counterexamples were obtained by replacing p̄ by p̄′ where for
some fast increasing sequence 〈ik : k ∈ N〉 we let

p′j =
{
pk, j = ik,
0, (∀k)j 6= ik.

In [Sh 463] a new version of the 0-1 law was introduced, the very weak
0-1 law (see 1.2(3); the h variant says that the difference between the proba-
bilities for n and for mn when |n−mn| ≤ h(n), converges to zero), and it was
proved for M2

n,p̄ when
∑

i pi < ∞ (we omit h when h(n) = 1, mn = n + 1
and investigate only the very weak 0-1 law). In [Sh 548] the very weak 0-1
law was proved for models with a random two-place function and for graphs;
Boppana and Spencer [BoSp] continue this by determining the best h for
which it holds.

Naturally arises the question what occurs if the pi’s are “well behaved”.
As in Shelah–Spencer [ShSp 304] this leads to considering pi = 1/iα (inde-
pendently of n). By the results of [LuSh 435], and (essentially) [ShSp 304],
the “real” cases are (for the definition of Ml

n,p̄ see above):

(A) M0
n,p̄ where pi = 1/iα for i > 1, α ∈ (0, 1)R irrational and p1 = p2,

(B) M1
n,p̄ where pi = 1/iα, α ∈ (0, 1)R irrational,

(C) M2
n,p̄ where pi = 1/iα, α ∈ (1, 2)R.

The main aim of this work is to show that in case (A) we have the 0-1 law,
also in case (B) we prove the convergence law but at present we do not know
the answer to problem (C) (actually analysis indicates that the problem is
whether there is a formula ϕ(x) which holds inM2

n for x small enough and
fails for n − x, x small enough). Here we do not consider the linear order
case. For external reasons the work is divided into two parts, the second is
[Sh 517]. Note: if we let pi = 1/iα for i ≥ 1, surely {l, l+ 1} is an edge, so it
is fine, but case (A) essentially becomes case (B). To preserve the distinction
between (A) and (B) we set p1 = 1/2α in case (A). This is one of many ways
to preserve this distinction; the choice does not matter.

Main and original context: Random graph on [n], with pi = 1/iα

for i > 1 and p1 = p2; i.e. probability of the edge {i, j} is p|i−j| and α ∈
(0, 1)R \Q, i.e. is irrational.

But the proofs apply to a wider family of cases. We can make a case such
that both [ShSp 304] and [LuSh 435] are particular cases: the probability for
{i, j} being an edge of Mn for i, j ∈ [n] is pni,j . So in [ShSp 304], pni,j = pn
and in [LuSh 435], pni,j = p|i−j|. We can consider pni,j = pn|i−j|. We shall show
in another paper that we shall get the same theory as in case (A) above
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in the limit, while simplifying the probabilistic arguments, if we change the
context to:

Second context: Mn (graph on {1, . . . , n}) with probability of {i, j}
being an edge equal to

pni,j =
1
nα

+
1

2|i−j|
.

So the probability basically has two parts:

1) 1/2|i−j|: depends only on the distance, but decays fast, so the average
valency it contributes is bounded.

2) 1/nα: does not depend on the distance, is locally negligible (i.e. for any
particular {i, j}) but has “large integral”. Its contribution to the valency of
a node i is on the average “huge” (still � n).

We can think of this as two kinds of edges. The edges of the sort n−α

are as in [ShSp 304]. The other ones still give large probability for some i to
have valency with no a priori bound (though not compared to n, e.g. logn).
In this second context the probability arguments are simpler (getting the
same model theory), but we shall not deal with it here.

Note: If we look at all the intervals [i, i+k), and want to get some graph
there (see on H below) and the probability depends only on k (or at least
has a lower bound > 0 depending only on k), then the chance that for some i
we get this graph (by “second kind edges”) is ∼ 1; essentially this behaviour
stops where k ≈ (logn)b for some appropriate b > 0 (there is no real need
here to calculate it). Now for any graph H on [k] the probability that for a

particular i < n−k the mapping l 7→ i+ l embeds H intoMn is ≥ (1/kα)(
k
2)

but is ≤ (1/(k/3)α)(k/3)2
(exactly

∏

{l,m}∈J1

1
|l −m|α ·

∏

{l,m}∈J2

(
1− 1
|l −m|α

)
p
|{l : (l,l+1) is an edge}|
1

×(1− p1)|{l : (l,l+1) is not an edge}|

where l,m ≤ k and J1 = {{l,m} : (l,m) is an edge and |l − m| > 1},
J2 = {{l,m} : (l,m) is not an edge and |l −m| > 1}. Hence the probability
that for no i < bn/kc does the mapping l 7→ ki+ l embed H into Mn is

≤
(

1−
(

1
kα

)(k2))n/k
.

Hence if βkα(k2) = n/k, that is, β = n/kα(k2)+1 then this probability is ≤ e−β.
This is because e−β ∼ (1− β/n)n. We obtain

kβ

n
≤ 1

kα(k2)
.
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So the probability is small, i.e. β large, if k ≥ ( 2
α logn)1/2; note that the

bound for the other direction has the same order of magnitude. So with
parameters, we can interpret, using a sequence of formulas ϕ̄ and parame-
ter ā, a quite long initial segment of the arithmetic (see definition below).
This is very much unlike the irrational case in [ShSp 304], where a first or-
der formula ϕ(x̄) really says little about x̄: normally it says just that the
clk-closure of x̄ is x̄ itself or something about the few elements which are in
clk(x̄) (so the first order sentences say not little about the model, but inside
a model the first order formula says little). So this sounds more like the α
rational case of [ShSp 304]. This had seemed like a sure sign of failure of the
0-1 law, but if one goes in this direction one finds it problematic to define ā0
such that ϕ̄ with the parameter ā0 defines a maximal such initial segment of
arithmetic, or at least find ψ(ȳ) such that for random enough Mn, there is
ā0 satisfying ψ(ȳ) and if ā0 satisfies ψ(ȳ) then ϕ with this parameter defines
an initial segment of arithmetic of size, say, > log log logn. For ϕ̄ and ā0,
to interpret an initial segment of arithmetic of size k in Mn means that
ϕ̄ = 〈ϕ1(x̄0, ȳ), ϕ2(x̄1, ȳ), ϕ3(x̄2, ȳ)〉 is a sequence of (first order) formulas,
and ā0 is a sequence of length lg(ȳ) such that the set {x :Mn |= ϕ0(x, ā0)}
has k elements, say {b0, . . . , bk−1}, satisfying:

Mn |= ϕ1(x0, x1, ā0)⇔ ∨
l<m<k

(x0, x1) = (bl, bm),

Mn |= ϕ2(x0, x1, x2, ā0)⇔ ∨
l0,l1,l2<k, l2=l0+l1

(x0, x1, x2) = (bl0 , bl1 , bl2),

Mn |= ϕ3(x0, x1, x2, ā0)⇔ ∨
l0,l1,l2<k, l2=l0l1

(x0, x1, x2) = (bl0 , bl1 , bl2).

But it is not a priori clear whether our first order formulas distinguish
between large size and small size in such interpretation.

Note: all this does not show why the 0-1 law holds; we just explain the
situation, and show we cannot prove the theory is too nice (as in [ShSp 304])
on the one hand but that this is not sufficient for failure of the 0-1 law on
the other hand. Still what we say applies to both contexts, which shows that
results are robust. A nice result would be if we can characterize 〈pi : i ∈ N〉
such that Prob{i, j} = pi ⇒ 0-1 holds (see below).

Our idea (to show the 0-1 law) is that though the “algebraic closure”
(suitably defined) is not bounded, it is small and we can show that a first
order formula ϕ(x̄) is equivalent (in the limit case) to one “speaking” only
about the algebraic closure of x̄.

Model theoretically we do not get in the limit a first order theory which
is stable and generally “low in the stability hierarchy” (see Baldwin–Shelah
[BlSh 528]) for cases with probability ∼ n−α (the reason is of course that
restricted to “small” formulas in some cases there is a definable linear or-
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der (or worse)). However, we get a variant of stability over a predicate: on
“small” definable sets the theory is complicated, but for types with no small
formulas we are in the stable situation. In fact the model theoretic setting
is similar to the one in [Sh 463], but we shall not pursue this.

Note that Baldwin–Shelah [BlSh 528] deal with random models with
more relations R with probabilities nα(R) (satisfying the parallel to irra-
tionality of α). There, the almost sure theory is stable. In [Sh 550] we define
a family of 0-1 contexts where further drawings of relations give us a new
context in this family and in all such contexts, elimination of quantifiers to
the algebraic closure (as in [ShSp 304], [BlSh 528]) holds, but the context is
possibly “almost nice” not nice, i.e. we allow that every ā has a nontrivial
closure, as in the case in which we have the successor function. Here this is
dealt within the general treatment of the elimination, but not used in the
main case M0

n. Also here we could deal with an abstract version allowing
further drawing as in [Sh 550].

See more in [Bl96], [Sh 637].
We have chosen here a quite extreme interpretation of “p̄ is simple, sim-

ply defined”. It seems desirable to investigate the problem under more le-
nient conditions. A natural such family of p̄’s is the family of monotonic
ones. Can we in this family characterize

{p̄ : p̄ a monotone sequence, M0
n,p̄ satisfies the 0-1 law}?

This will be addressed and solved in [Sh 581].
The two cases considered above are protypes of some families with the 0-1

law, but there are some others, for example with the value of the exponent
α “in the appropriate neighbourhood” of a rational (and some degenerate
ones of course).

Let us review the paper.
Note: in §1–§3 we deal with general contexts. In these three sections

sufficient conditions are proven for the 0-1 law to hold in 0-1 context; for
notational simplicity we restrict ourselves to a vocabulary which contains
finitely many predicate relations (not only a symmetric irreflexive two-place
relation). The proof is based on elimination of quantifiers with the help of the
closure without using probability arguments. Note that in the application
we have in mind, the closure has order of magnitude up to ∼ log|Mn|. In
[ShSp 304] cl is bounded, i.e. |cl(A)| has a bound depending on |A| (and α
of course) only, while here it is not bounded. In the second part, §4–§6 deals
with M0

n and §7 deals with M1
n.

In §1 we give the basic definitions, including A <i B (intended to mean:
B is the algebraic closure of A but this closure has no a priori bound). The
restriction to: Mn has set of elements [n] (rather than some finite set) is
not important for the proof. In §1, A <i B and A <s B are defined in terms
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of the number of embeddings of B into Mn extending any embedding of A
into Mn in a sufficiently random model, and from <i we define clk(A,M).

In §2 a fundamental relation (i.e. given a priori) on structures M is clk.
From it the notions of A <i B and A <s B are defined in terms of embed-
dings f ⊆ g of A,B into a sufficiently randomMn and the relations between
g(B) and clkMn

(f(A),Mn). Then these definitions are reconciled with those
in §1, when the closure is chosen as in §1. Two axiomatic frameworks for
an abstract elimination of quantifiers argument are presented. (This gener-
alizes [BlSh 528].) These frameworks and further conditions on clk provide
sufficient conditions for 0-1 laws and convergence laws.

Note: in §2 we retain using “relation free amalgamation” (as in [BlSh 528],
but in [Sh 550] we will use a more general one). However we waive “random
A has no nontrivial closure”, hence use “almost nice” rather than nice (and
also waive the a priori bounds on closure).

In §3 we deal with the case where the natural elimination of quantifiers
is to monadic logic. This seems natural, although it is not used later.

We now proceed to describe part II. The main point of §4 is to introduce
a notion of weight w(A,B, λ) which depends on an equivalence relation λ
on B \ A. (Eventually such λ will be defined in terms of the “closeness” of
images of points in B under embeddings into Mn.) Relations A ≤∗i B and
A ≤∗s B are defined in terms of w. The intention is that ≤∗i is ≤i etc., thus
we will have a direct characterization of the latter.
§5 contains the major probability estimates. The appropriate λ is defined

and thus the interpretations of <∗i and <∗s in the first context (M0
n, pi =

1/iα for i > 1). Several proofs are analogous to those in [ShSp 304] and
[BlSh 528], so we treat them only briefly. The new point is the dependence
on distance, and hence the equivalence relations λ.

In §6 it is shown that the <∗i and <∗s of §5 agree with the <i and <s of
§1. Further, if clk is defined from the weight function in §4, these agree with
<i, <s as in §2 and we prove the “simple almost niceness” of Definition 2.13,
so the “elimination of quantifiers modulo quantification on (our) algebraic
closure” result applies. This completes the proof of the 0-1 law for the first
context. The model theoretic considerations in the proof of this version of
niceness (e.g. compactness) have been less easy than I expected.
§7 deals with the changes needed for M1

n,p̄ where only the convergence
law is proved.

Note: our choice “Mn has set of elements [n]” is just for simplicity (and
tradition), we could have Mn with set of elements a finite set (not even
fixed) and replace nε by ‖Mn‖ε as long as “for each k for every random
enough Mn we have ‖Mn‖ > k”. Also the choice of nε in Definition 1.4
is the most natural but not unique. The paper is essentially self contained,
assuming only basic knowledge of first order logics and probability.
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Notation 0.1. • N is the set of natural numbers ({0, 1, 2, . . .}).
• R is the set of reals.
• Q is the set of rationals.
• i, j, k, l,m, n, r, s, t are natural numbers.
• p, q are probabilities.
• α, β, γ, δ are reals.
• ε, ζ, ξ are positive reals (usually quite small) and also c (for constant

in inequalities).
• λ is an equivalence relation.
• M,N,A,B,C,D are graphs or more generally models (that is, struc-

tures, finite of fixed finite vocabulary, for notational simplicity with predi-
cates only, if not said otherwise; the reader can restrict himself to graphs).
• |M | is the set of nodes or elements of M , so ‖M‖ is the number of

elements.
• M denotes a random model.
• µ denotes a distribution (in the probability sense).
• [n] is {1, . . . , n}.
• A ⊆ B means A is a submodel of B, i.e. A is B restricted to the

set of elements of A (for graphs: induced subgraph). We shall not always
distinguish strictly between a model and its set of elements. If X is a set of
elements of M , then M�X is M restricted to X.
• a, b, c, d are nodes of graphs / elements of models.
• ā, b̄, c̄, d̄ are finite sequences of nodes/elements.
• x, y, z are variables.
• x̄, ȳ, z̄ are finite sequences of variables.
• X, Y , Z are sets of elements.
• τ is a vocabulary for simplicity with predicates only (we may restrict

a predicate to being symmetric and/or irreflexive (as for graphs)).
• K is a family of models of fixed vocabulary, usually τ = τK.
• The vocabulary of a model M is τM .
• āˆb̄ or āb̄ is the concatenation of the two sequences, āˆb or āb is āˆ〈b〉.
• The extensions g1, g2 of f are disjoint if x1 ∈ dom(g1) \ dom(f),

x2 ∈ dom(g2)⇒ x1 6= x2.

Acknowledgements. We thank John Baldwin and Shmuel Lifsches
and Çiğdem Gencer and Alon Siton for helping in various ways and stages
to make the paper more user-friendly.

1. Weakly nice classes. We interpret here “few” by: “for each ε for
every random enough Mn, there are (for each parameter) < nε”. We could
use other functions as well.
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General Context 1.1. (i) Let τ be a fixed vocabulary which for sim-
plicity is finite and has only predicates, i.e. symbols for relations.

(ii) Let K be a class of finite τ -models closed under isomorphism and
submodels. For n ∈ N, Kn is a set of τ -models which usually have universe
[n] = {1, . . . , n} (just for notational simplicity).

(iii) Let Mn be a random model in a fixed vocabulary τ which is an
element of Kn, that is, we have a function µn : Kn → [0, 1]R such that∑{µn(M) : M ∈ Kn} = 1. Then µn is called a distribution and Mn the
random model for µn; we restrict ourselves to finite or countable Kn. We
omit µn when clear from the context.

(iv) We call (K, 〈(Kn, µn) : n < ω〉) a 0-1 context and denote it by K and
usually consider it fixed; we may “forget” to mention K. So,

(v) The probability of Mn |= ϕ is

Prob(Mn |= ϕ) =
∑
{µn(M) : M ∈ Kn, M |= ϕ}.

(vi) The meaning of “for every random enough Mn we have Ψ” is

〈Prob(Mn |= Ψ) : n < ω〉 converges to 1;

alternatively, we may write “almost surely Mn |= Ψ”.

Definition 1.2. (1) The 0-1 law (for K) says: whenever ϕ is a f.o.
(= first order) sentence in vocabulary τ ,

〈Prob(Mn |= ϕ) : n < ω〉 converges to 0 or to 1.

(2) The convergence law says: whenever ϕ is a f.o. sentence in τ ,

〈Prob(Mn |= ϕ) : n < ω〉 is a convergent sequence.

(3) The very weak 0-1 law says: whenever ϕ is a f.o. sentence in τ ,

lim
n

[Prob(Mn+1 |= ϕ)− Prob(Mn |= ϕ)] = 0.

(4) The h-very weak 0-1 law for h : N → N \ {0} says: whenever ϕ is a
f.o. sentence in τ ,

0 = lim
n

max
l,k∈[0,h(n)]

|Prob(Mn+k |= ϕ)− Prob(Mn+l |= ϕ)|

Notation 1.3. f : A ↪→ B means: f is an embedding of A into B (in the
model theoretic sense, for graphs: isomorphism onto the induced subgraph).

Definition 1.4. (1) Let

K∞ = {A : A is a finite τ -model, 0 < lim sup
n

[Prob((∃f)(f : A ↪→Mn))]}.

Recall (1.1(v)) that Prob((∃f)(f : A ↪→Mn)) =
∑{µn(Mn) :M ∈ Kn and

there is an embedding f : A ↪→Mn}, n < ω.
Also let T∞ := {ϕ : ϕ is a f.o. sentence in the vocabulary of K such that

every random enough Mn satisfies it}.
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(2) A ≤ B means: A,B ∈ K∞ and A is a submodel of B; of course A < B
means A ≤ B and A 6= B, and similarly for others below.

(3) A ≤i B means: A ≤ B and for each ε ∈ R+ we have:

1 = lim
n


Prob




if f0 : A ↪→Mn

then the number of f1 satisfying

f0 ⊆ f1 : B ↪→Mn is ≤ nε.





 .

Also let ex(f0, B,M) = ex(f0, A,B,M) := {f : f is an embedding of B into
M extending f0}.

(4) A ≤s B means: A ≤ B and there is no C with A <i C ≤ B.
(5) A <pr B means: A <s B and there is no C with A <s C <s B (pr

abbreviates primitive).
(6) A <a B means: A ≤ B and, for some ε ∈ R+ for every random

enoughMn, for no f : A ↪→Mn do we have nε pairwise disjoint extensions
g of f satisfying g : B ↪→Mn.

(7) A ≤sm B means: A ⊆ B are from K and for every X ⊆ B with ≤ m
elements, we have A�(A ∩X) ≤s B�X.

(8) A ≤ik,m B means: A ⊆ B are from K and for every X ⊆ B with ≤ k
elements there is Y with X ⊆ Y ⊆ B and with ≤ m elements such that
A�(A ∩ Y ) ≤i B�Y .

(9) For h : N × R+ → R+, we define A ≤hi B as in part (3) replacing
nε by h(n, ε), and similarly A ≤ha B (in part (6)), hence A ≤hs B, A ≤hpr B,

A <ha B, A ≤s,hm B, A ≤i,hk,m B.

Remark 1.5. (1) In these circumstances the original notion of algebraic
closure is not well behaved. A ≤i B provides a reasonable substitute for
A ⊆ B ⊆ acl(A).

(2) Note: for ≤hi to be transitive we need: for every ε1 > 0 for some
ε2 > 0 for every n large enough h(n, ε2) · h(n, ε2) ≤ h(n, ε1).

(3) Why do we restrict ourselves to K∞ (in 1.4(1)–(6))? The relations
in 1.4(1)–(6) describe the situation in the limit. So why in 1.4(7), (8) we
do not restrict ourselves to A,B ∈ K∞? Because for A ∈ K∞, for quite
random Mn, and f : A ↪→ Mn the set clk(f(A),Mn) may be quite large,
say with logn elements, so it (more exactly the restriction of Mn to it) is
not necessarily in K∞; this is a major point here.

Let us expand. If A ∈ K has a copy in a random enough Mn and we
have the 0-1 law then T∞ (see 1.4(1)) says that copies of A occur. But
if Mn is random enough, and for example A = {a1, a2, a3} ≤ Mn, and
B = Mn�clk({a1, a2, a3},Mn) has, say, logn elements then it does not
follow that T∞ |= “a copy of B occurs”, asMn may not be random enough
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for B. Still for statements like

(∃x1, x2, x3)(clk({x1, x2, x3}) |= ϕ)

the modelMn may be random enough. The point is that the size of B could
be computed only after we have Mn.

Another way to look at it: models M∞ of T∞ are very random in a sense,
but cl({a1, a2, a3},M∞) is infinite, may even be uncountable, so randomness
concerning it becomes meaningless.

Definition 1.6. For A ⊆M and k < ω define:

(a) clk(A,M) =
⋃{B : B ⊆M, B ∩A ≤i B, and |B| ≤ k},

(b) clk,0(A,M) = A,
(c) clk,m+1(A,M) = clk(clk,m(A,M),M).

Observation 1.7. (1) For all l, k ∈ N and ε ∈ R+ we have

1 = lim
n

[Prob(A ⊆Mn, |A| ≤ l⇒ |clk(A,Mn)| < nε)].

(2) Moreover , for every k ∈ N and ε ∈ R+ for some ζ ∈ R+ (actually ,
any ζ < ε/(k + 1) will do) we have

1 = lim
n

[Prob(|A| ≤ Mn, |A| ≤ nζ ⇒ |clk(A,Mn)| < nε)].

Remark 1.8. True for clk,m too, but we can use Claim 1.16 instead.

Definition 1.9. K = 〈Mn : n < ω〉 is weakly nice if whenever A <s B
(so A 6= B), there is ε ∈ R+ with

1 = lim
n


Prob




if f0 : A ↪→Mn then there is F with |F| ≥ nε and

(i) f ∈ F ⇒ f0 ⊆ f : B ↪→Mn,

(ii) f ′ 6= f ′′ ∈ F ⇒ Rang(f ′) ∩ Rang(f ′′) = Rang(f0)





.

If clause (ii) holds we say the f ∈ F are pairwise disjoint over f0 or over A.
In such circumstances we say that ε witnesses A <s B.

Remark 1.10. Being weakly nice means there is a gap between being
pseudo-algebraic and nonpseudo-algebraic (both in our sense), so we have a
strong dichotomy.

Fact 1.11. For A,B,C in K∞:

(1) A ≤i A,
(2) A ≤i B, B ≤i C ⇒ A ≤i C,
(3) A ≤s A,
(4) if A1 ≤ B1, A2 ≤ B2, A1 ≤ A2, B1 ≤ B2, B1 \ A1 = B2 \ A2 then

A2 ≤s B2 ⇒ A1 ≤s B1 and A1 ≤i B1 ⇒ A2 ≤i B2,
(5) A <i B iff for every C we have A ≤ C < B ⇒ C <a B
(6) if A ≤ C then for some B, A ≤i B ≤s C; in fact , it is unique.
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Proof. Easy (e.g. 1.11(5) by the ∆-system argument (for fixed size of the
sets and many of them); note |B| is constant). 1.11

Claim 1.12. If A <s B <s C then A <s C.

First proof. If not, then for some B′ we have A <i B
′ ≤ C. If B′ ⊆ B

we get a contradiction to A <s B, so assume B′ * B. By 1.13(1) below
we have B′ ∩ B <i B

′ so by 1.11(4) we have B <i B ∪ B′, hence we get a
contradiction to B <s C.

Second proof. (Assuming K is weakly nice, i.e. if we define <s by 1.9.)
Let ε > 0 witness A <s B in Definition 1.9 and let ζ > 0 witness B <s C
in Definition 1.9. Choose ξ = min{ε/2, ζ/2} (actually just ξ < ε ∧ ξ < ζ
suffices). Let n be large enough, in particular nε > |C|, and let f0 : A ↪→Mn.
So we have (almost surely) {f i1 : i < i∗}, where i∗ ≥ nε, and f0 ⊆ f i1 and
f i1 : B ↪→Mn and the f i1’s are pairwise disjoint over A.

Now, almost surely for every i we have {f i,j2 : j < j∗i } with f i1 ⊆ f i,j2

and f i,j2 : C ↪→Mn and, fixing i, the f i,j2 ’s are pairwise disjoint over B and
j∗i ≥ nζ .

Clearly (when the above holds) for l∗ = nξ we can find {jk : k ≤ l∗}
such that {fk,jk2 : k < l∗} are pairwise disjoint over A: just choose jk by
induction on k such that Rang(f k,jk2 �(C \B)) is disjoint from

⋃
{Rang(f i1�(B \ A)) : i < l∗} ∪

⋃
{Rang(f i,ji2 �(C \B)) : i < k};

at stage k, the number of inappropriate j < nζ is

≤ |C \B| · k + |B \A| · l∗ ≤ |C| · l∗ = |C| · nξ. 1.12

Fact 1.13. Suppose A ≤ B ≤ C.

(1) If A ≤i C then B ≤i C.
(2) If A ≤s C then A ≤s B.
(3) If A <pr C and A ≤s B ≤s C then either B = A or B = C.

Proof. Reread the definitions.

Fact 1.14. (1) If A ≤s B then there is some n < ω and a sequence
〈Al : l ≤ n〉 such that A = A0 <pr A1 <pr . . . <pr An = B (possibly n = 0).

(2) If A <pr C and A < B < C then B <i C.

Proof. To prove (2), choose a maximal B′ such that B ≤i B′ ≤ C; it
exists as C is finite (being in K∞), and B ≤i B (by 1.11(1)). It follows that
if B′ < B′′ ≤ C then ¬B′ ≤i B′′ (by 1.11(2)). Hence B′ ≤s C. But A <pr C,
hence by Definition 1.4(5) we have A <s C so by 1.13(2), A <s B

′; so by
the definition of <pr we have B′ = C, so B ≤i B′ = C as required. Part (1)
is clear by the definition of ≤pr as B is finite (being in K∞). 1.14
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Claim 1.15. K is weakly nice iff whenever A <pr B there is ε ∈ R+ such
that

1 = lim
n

[
Prob

(
if f0 : A ↪→Mn then there is F with |F| ≥ nε and

f1 ∈ F ⇒ f0 ⊆ f1 : B ↪→Mn

)]
.

Proof. ⇒ is obvious (as A <pr B implies A <s B).
Let us prove⇐: we have A ≤s B and by Fact 1.14(1) there is a sequence

A = A0 <pr A1 <pr . . . <pr Ak = B. The proof is by induction on k. The
induction step for k > 1 is by the second proof of 1.12 and for k = 0 it is
1.11(3). So assume k = 1, hence A <pr B. By Fact 1.14(2) if A < B′ ≤ B
then B′ ≤i B. Fix p ∈ (0, 1)R. If n is large enough then the probability of
having both

(a) for every f0 : A ↪→Mn there are at least nε different extensions f i1
satisfying f0 ⊆ f i1 : B ↪→Mn and

(b) for every a ∈ B \ A and f+
0 : A ∪ {a} ↪→Mn there are at most nε/2

different extensions f i2 satisfying f+
0 ⊆ f i2 : B ↪→Mn

is ≥ 1− p (for clause (b) use A∪ {a} <i B for every a ∈ B \A, which holds
by 1.14(2)). Let f0 : A ↪→ Mn, and let 〈f j1 : j < j∗〉 be a maximal family
of pairwise disjoint extensions of f0 to an embedding of B into Mn. Let
F = {f : f is an embedding of B into Mn extending f0}. By (b) we have

nε ≤ |F| ≤ j∗ · |B \A| · |B \A| · nε/2.
Hence if n is large enough, then j∗ > nε/3 (with probability ≥ 1 − p), and
this is enough. 1.15

Claim 1.16. clk,m(A,M) ⊆ clk
∗
(A,M) where k∗ = km.

Proof. Define k(l) by induction on l ≤ m: k(0) = 1, k(1) = k and for
l < m (but l ≥ 1), k(l + 1) := k(l)k. For l ≤ m define Al = clk,l(A,M).
Now if x ∈ Am then there is some l < m such that x ∈ Al+1 \ Al. Let us
prove by induction on l ≤ m that x ∈ Al ⇒ x ∈ clk(l)(A,M). For l = 0 and
l = 1 this is clear. If x ∈ Al+1 \ Al then there is C with |C| ≤ k such that
x ∈ C and C∩Al <i C. By the induction hypothesis, for y ∈ C∩Al we have
y ∈ clk(l)(A,M), hence there is Cy with |Cy| ≤ k(l) such that y ∈ Cy and
Cy∩A ≤i Cy. Let C0 =

⋃
y∈C∩Al Cy∩A, C1 =

⋃
y∈C∩Al Cy and C2 = C1∪C.

As |C| ≤ k, we get

|C2| ≤ k(l) · |C ∩Al|+ |C \ Al| ≤ k(l) · k ≤ k(l + 1),

so (as x ∈ C2) it suffices to show that C0 ≤i C2 and by transitivity (i.e.
by 1.11(2)) it suffices to show that C0 ≤i C1 and that C1 ≤i C2. Why
C1 ≤i C2? Because C ∩ Al ≤i C and C ∩ Al ⊆ C1 ⊆ Al and hence C1 ≤i
C1 ∪ C = C2 by 1.11(4). Why C0 ≤i C1? Let C ∩ Al = {ys : s < r}. Now
C0 ≤i C0 ∪ Cy0 by 1.11(4) because A ∩ Cy0 ≤i Cy0 and A ∩ Cy0 ⊆ C0 and
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similarly by induction

C0 ≤i C0 ∪ Cy0 ≤i C0 ∪ Cy0 ∪ Cy1 ≤i . . . ≤i C0 ∪
⋃

s<r

Cys = C1.

So as ≤i is transitive (1.11(2)) we are done.

Claim 1.17. For every ε ∈ R+ and l, k,m we have

1 = lim
n

[
Prob

(
if A ∈ K∞, |A| ≤ l and f : A ↪→Mn

then |clk,m(f(A),Mn)| < nε

)]
.

Proof. By the previous claim 1.16, we can assume m = 1. Then this
holds by Definitions 1.4(3) and 1.6. 1.17

Fact 1.18. (1) For every A and m,k, for any M ∈ K if f : A ↪→ M
then

(α) clk,m(f(A),M) ≤i1,k clk,m+1(f(A),M),
(β) for some m′ = m′(k,m) we have

f(A) ≤ik,m′ clk,m(f(A),M)

(we can get more),
(γ) f(A) ≤i clk,m(f(A),Mn) or the second is not in K∞.

(2) For every m, k, l for some r we have: for any A ∈ K∞,

1 = lim
n

[Prob(if f : A ↪→Mn then f(A) ≤il,r clk,m(f(A),Mn))].

Remark 1.19. In our main case K = K∞.
Recall for 1.18(1)(γ) that clk,m(f(A),Mn) is in general not necessarily

in K∞.

Proof. (1) We leave the proof of (α) and (β) to the reader. To prove
clause (γ), let A0 = f(A) and for l ≤ m let Al = clk,l(f(A),M), and assume
Al ∈ K∞. So for l < m we have Al+1 = Al ∪

⋃
j<ml

Cl,j with |Cl,j| ≤ k and
Al+1 ∩ Cl,j ≤i Cl,j . It follows by 1.11(4) that 〈Al ∪

⋃
i<j Cl,i : j ≤ ml〉 is

≤i-increasing and Al ≤i Al+1. By induction we get A0 ≤i Am, which is the
desired conclusion.

(2) Read the proofs of 1.18(1) + 1.16. 1.18

Remark 1.20. In a more general context the previous conclusion is part
of the definition of “K is nice” and also

⋃
of 1.23 below is a basic property

(on the latter see [Sh 550]).

Fact 1.21. K∞ is closed under isomorphisms and taking submodels.

Fact 1.22. For every l, k,m there is a first order formula ϕ(y, x0, . . . ,
xl−1) such that for every M ∈ K and b, a0, . . . , al−1 in M for any f : A ↪→M

M |= ϕ(b, a0, . . . , al−1) iff b ∈ clk,m({a0, . . . , al−1},M).
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Proof. By finiteness of τ (as τK has no function symbols); or see proof
of clause (β) of 2.6.

Definition 1.23. C1
D⋃
B
C2 means: they are all submodels of D ∈ K, and

C1 ∩ C2 ⊆ B and for every relation symbol R in τ , if ā ⊆ C1 ∪ B ∪ C2 and
R(ā) holds then ā ⊆ C1 ∪B or ā ⊆ C2 ∪B (possibly both).

When D is clear from the context we may omit it.

2. Abstract closure context. Here we are inside the 0-1 context but
without the ≤i and ≤s as defined in §1, however clk is given. The main
result is a sufficient condition for having the 0-1 law or at least convergence.
We have here some amount of freedom, so we give two variants of the main
result of this section: 2.16, 2.17; we shall use 2.17. Thus on a first reading
one may skip Definitions 2.8 (“possible”), 2.9 and 2.10, Remark 2.11 and
Lemma 2.16 in favour of the alternative development in Definitions 2.12, 2.13
and Lemma 2.17. Lemma 2.15 is needed in both cases and we have made
the two independent at the price of some repetition. We want to “eliminate
quantifiers” in a restricted sense: in the simple form we quantify only on the
closure so each ϕ(x̄) is equivalent to some ψϕ in which quantifiers are over
clk,m(x̄); all this is for a random enough model where clk,m is “small”, still it
is not necessarily “tiny”. The closure does not need to be in K∞ (though in
our application it is). The quantifier elimination result generalizes the result
of [BlSh 528]. The chief additional ingredient in the proof here is the use of
the addition (= Feferman–Vaught) theorem to analyze a pair of models in
stable amalgamation; this is necessary as we do not have an a priori bound
on the size of the closure, whereas there we have. Moreover, the argument
in [BlSh 528] is simpler because <i is defined concretely from a dimension
function and moreover it deals with the “nice” rather than almost nice case.

Note that the “simply∗” version (2.20–2.24) is used in §7 (part II).
Note that in this section we could have forgotten about the probability

distribution: just deal with elimination of quantifiers. Note that the assump-
tion “cl is f.o. definable” (2.2(d)) is not serious: if it fails all we have to do
is to allow “y ∈ clk(x̄)” as atomic formulas in ψϕ.

Context 2.1. In this context in addition to K (defined in 1.1) we have
an additional basic operation cl which is a closure operation for K (see 2.2),
so cl is in general not defined by Definition 1.6 and ≤i, ≤s, ≤a are defined
by Definition 2.5 and in general are not the ones defined in Definition 1.4.
However, we use K∞ (from 1.4(1)). Lastly

⋃
is as in 1.23 (can be axiomatized

too and moreover generalized to the case of nonuniqueness, as in [Sh 550]).
For simplicity assume τK (the vocabulary of K) is finite with no function
symbols. In later sections (§4–§7 but not §3) saying K means cl is from §1.
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Definition 2.2. (1) We say cl is a closure operation for K if for M ∈ K
and k ∈ N the operation clk(X,M) is defined if and only if X ⊆M , and the
operation satisfies:

(a) X ⊆ clk(X,M) ⊆ M , and X ⊆ Y ⊆ M ⇒ clk(X,M) ⊆
clk(Y,M) ⊆M ,

(b) (i) if clk(X,M) ⊆ N ⊆M then clk(X,N) = clk(X,M),
(ii) if X ⊆ N ⊆M then clk(X,N) ⊆ clk(X,M),

(c) for k ≤ l, clk(X,M) ⊆ cll(X,M),
(d) the relation “b ∈ clk(A,M)” is preserved by isomorphism.

(2) We say that the closure operation cl is f.o. definable if (e) below is
true (and we assume this when not said otherwise):

(e) the assertion “b ∈ clk({a0, . . . , al−1},M)” is f.o. definable in K,
that is, there is a f.o. formula ψ(y, x0, . . . , xl−1) such that if M ∈
K and b, a0, . . . , al−1 ∈ M then b ∈ clk({a0, . . . , al−1},M) iff
M |= ψ[y, x0, . . . , xl−1].

(3) We say cl is transitive if for every k for some m, for every X ⊆M ∈ K
we have clk(clk(X,M),M) ⊆ clm(X,M).

Definition 2.3. (1) For X ⊆ M and k,m ∈ N we define clk,m(X,M)
by induction on m:

clk,0(X,M) = X, clk,1(X,M) = clk(X,M),

clk,m+1(X,M) = clk,1(clk,m(X,M),M)

(if we write clk,m−1(X,M) and m = 0 we mean clk,0(X,M) = X).
(2) We say the closure operation clk is (l, r)-local when: for M ∈ K,

X ⊆ M and Z ⊆ M if Z ⊆ clk(X,M), |Z| ≤ l then for some Y we have
Z ⊆ Y , |Y | ≤ r and clk(Y ∩X,M�Y ) = Y .

(3) We say the closure operation cl is local if for every k, for some r, clk

is (1, r)-local. We say that cl is simply local if clk is (1, k)-local for every k.

Remark 2.4. (1) Concerning “possible in K” (from Definition 2.8 be-
low), in the main case M0

n,p̄, it is degenerate, i.e. if ā ⊆ N ∈ K∞, B ⊆ N
then (N,B, ā, k,m) is possible. But for the case with the successor relation
it has a real role.

(2) Note: if clk is (1, r)-local and “y ∈ clk({x1, . . . , xr},M)” is f.o. de-
finable then for every m, s we have: “y ∈ clk,m({x1, . . . , xs},M)” is f.o.
definable.

(3) Clearly clk,m1(clk,m2(X,M)) = clk,m1+m2(X,M) and k1 ≤ k2 ∧
m1 ≤ m2 ⇒ clk1,m1(A,M) ⊆ clk2,m2(A,M).

(4) Note that if clk is (l1, r1)-local and r2 ≥ mr1 and l2 ≤ ml1 then clk

is (l2, r2)-local.
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Definition 2.5 (For our 0-1 context (K, cl) with cl as a basic operation).

(1) A ≤i B if and only if A ⊆ B ∈ K∞ and for some k,m ∈ N and
every random enough Mn and for every embedding g : B ↪→Mn we have
g(B) ⊆ clk,m(f(A),Mn).

(2) A <s B if and only if A ⊆ B ∈ K∞ and for every k,m ∈ N and
random enough Mn and f : A ↪→ Mn there is g such that f ⊆ g, and
g : B ↪→ Mn with g(B) ∩ clk,m(f(A),Mn) = f(A). We define ≤pr, ≤sm,
≤ik,m as in 1.4(5), (7), (8) respectively and A <a B means A < B and
¬(A <s B).

(3) (K, cl) is weakly nice if for every A ⊆ C ∈ K∞, for some B we have
A ≤i B ≤s C.

(4) We say K (more exactly (K, cl)) is smooth (1) when:

if A ⊆ B ⊆ N ∈ K∞, A ⊆ C ⊆ N, B
N⋃
A
C,

then B <i B ∪ C ⇔ A <i C

(note that ⇐ is always true).
(5) We say that clk is r-transparent if

A ≤i B & |B| ≤ r ⇒ clk(A,B) = B.

We say that cl is transparent if for every r for some k, clk is r-transparent.
We say that cl is simply transparent if for every k, clk is k-transparent.

Fact 2.6. Assume K is a 0-1 context (see 1.1) and cl is defined in 1.6.
Then:

(α) cl is a closure operation for K∞ (see Definitions 1.4(1) and 2.2(1)),
(β) cl is f.o. definable (for K),
(γ) clk,m as defined in 1.6(c) and in 2.3 are equal ,
(δ) cl is transitive,
(ε) cl is simply local (see Definition 2.3(2),(3)),
(ζ) cl is transparent , in fact clk is k-transparent for every k,
(η) ≤i as defined in 2.5(1) and in 1.4 are equal ,
(θ) If in §1, K is weakly nice (see Definition 1.9) then (K∞, cl) is weakly

nice (by Definition 2.5(3)); if so then ≤s as defined in 2.5(2) and 1.4(4) are
the same and <a as defined in 2.5(2) and in 1.4(6) are equal.

Proof. (α) We have to show that (K∞, cl) from §1 satisfies clauses (a)–(d)
from Definition 2.2(1).

(a) By the definition 1.6 of (K∞, cl) the following holds: trivially X ⊆
clk(X,M) ⊆ M . Assume X ⊆ Y ⊆ M . If b ∈ clk(X,M) then for some B
with |B| ≤ k and b ∈ B, X ∩ B ≤i B by Definition 1.6. As X ⊆ Y and

(1) Smoothness is not used in [Sh 550], but the closure there has an a priori bound,
so the definitions there will be problematic here. See more in [Sh:F192].
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X ∩ B ≤i B we obtain Y ∩ B ≤i B by Fact 1.13(1). So B ⊆ clk(Y,M)
witnessing that b ∈ clk(Y,M). Hence clk(X,M) ⊆ clk(Y,M).

(b) (i) First, let us show clk(X,N) ⊆ clk(X,M). If b ∈ clk(X,N) then
let B witness it and b ∈ B, B ⊆ N , B ∩ X ≤i B, |B| ≤ k. As N ⊆ M
the witness B is in M , B ∩X ≤i B so b ∈ clk(X,M). Second we will show
that clk(X,M) ⊆ clk(X,N). If b ∈ clk(X,M) then there is B witnessing it
such that b ∈ B ⊆ M , B ∩X ≤i B, |B| ≤ k. Now clearly B ⊆ clk(X,M),
hence by assumption B ⊆ N so b ∈ B ⊆ N , B ∩X ≤i B, |B| ≤ k and so B
witnesses b ∈ clk(X,N). So we get the result.

(ii) Included in the proof of clause (i).
(c) It follows immediately that (K, cl) holds by Definition 1.6.
(d) Easy.

(β) We show that (K, cl) is f.o. definable. By Definition 2.2(d) this
means that for each l, there is a formula ψ(y, x0, . . . , xl−1) such that if
M ∈ K and b, a0, . . . , al−1 ∈ M then: b ∈ clk({a0, . . . , al−1},M) iff M |=
ψ(b, a0, . . . , al−1). It suffices to restrict ourselves to the case of 〈a0, . . . , al−1〉
with no repetition.

Let B = {(B, b̄) : B ∈ K∞ has ≤ k elements, b̄ is a sequence of length
≤ k listing the elements of B without repetitions}. On B the relation ∼= (iso-
morphism) is defined. We say (B′, b̄′) ∼= (B′′, b̄′′) if there is an isomorphism
h from B′ onto B′′ mapping b̄′ onto b̄′′. Now ∼= is an equivalence relation
on B and B/∼= is finite. So let {(Bi, b̄i) : i < i∗} be a set of representa-
tives. Now i∗ is finite as τ is finite (actually locally finite suffices). When
ki + 1 = |Bi| = lg(b̄i) let

ϕi(x0, . . . , xki) =∧{θ(x0, . . . , xki) : θ is a basic formula (possibly with dummy variables)

and Bi |= θ[b0, . . . , bki ]}.
Lastly

ψ(y, x0, . . . , xl−1) =
∨
m<l

y = xm∨
∨
i<i∗

∨
r<ki

{(∃z0, . . . , zki)(
∧
t<r

∨
m<l

xm = zt ∧ y = zki ∧ ϕi(z0, . . . , zki)) :

Bi has exactly ki + 1 members and Bi�{bit : t < r} ≤i Bi}.
(γ) Trivial.
(δ) By 1.16.
(ε) Now, we will show that (K∞, cl) is simply local. For this we have

to show that clk is (1, k)-local for every k. Let X ⊆ M ∈ K be given and
Z ⊆ clk(X,M) be such that |Z| ≤ 1. If Z = ∅ let Y = ∅. So assume
Z = {y}. As y ∈ Z ⊆ clk(X,M) there is a witness set Y for y ∈ clk(X,M)
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so Y ∩ X ≤i Y , |Y | ≤ k. As Y ∩ X ≤i Y , clearly cl(X ∩ Y, Y ) = Y and
Z = {y} ⊆ Y and |Y | ≤ k so we are done.

(ζ) Trivial by the definition of cl (Definition 1.6) and of transparency
(Definition 2.5(5)).

(η) First assume A ≤i B according to Definition 2.5 and we shall prove
that A ≤i B according to Definition 1.4. So for some k,m we have:

(∗) for every random enough Mn and embedding g : B ↪→Mn we have
g(B) ⊆ clk,m(g(A),Mn).

Let ε > 0. Let Mn be random enough and f : A ↪→ Mn. By (∗) and
1.16 if g is an embedding of B into Mn extending f then we have g(B) ⊆
clk

m
(g(A),Mn), hence

|ex(f,B,Mn)| ≤ |clk
m

(g(A),Mn)||B\A|.
Let ζ = ε/(|B \A|+1); now ifMn is random enough, then by 1.17 for every
g : B ↪→ Mn we have |clk

m
(g(A),Mn)||B\A| ≤ nζ , hence |ex(f,B,Mn)| ≤

|nζ ||B\A| ≤ nε. As ε > 0 was arbitrary, we have proved that A ≤i B accord-
ing to Definition 1.4.

Next assume A ≤i B according to Definition 1.4 and we shall prove
that A ≤i B in the sense of Definition 2.5. Choose k = |B| and m = 1, so
clk,m = clk. So let Mn be random enough, and g : B ↪→ Mn. Recall that
clk(g(A),Mn) =

⋃{C : C ⊆ Mn, |C| ≤ k and C ∩ A ≤i C}, so g(B) can
serve as such C, hence g(B) ⊆ clk(g(A),Mn).

(θ) We shall use clause (η) freely. First assume that K is weakly nice
according to Definition 1.9 and we shall prove that (K, cl) is weakly nice in
the sense of Definition 2.5(3). So assume A ≤ B. We can find C such that
A ≤i C ≤ B and for no C ′, A ≤i C ′ ≤ B, C ⊂ C ′; it exists as A ≤i A ≤ B
and B is finite. By 1.11(2) for no C ′, do we have C <i C

′ ≤ B, hence C ≤s B
in the sense of Definition 1.4, so it is enough to prove that C ≤s B in the
sense of Definition 2.5(2), and we can assume C 6= B so C <s B. Let k,m
be given. As we are assuming that K is weakly nice according to Definition
1.9 and C <s B in the sense of Definition 1.4(4) we find that there is an
ε ∈ R+ such that

1 = lim
n


Prob




if f0 : C ↪→Mn then there is F with |F| ≥ nε and

(i) f ∈ F ⇒ f0 ⊆ f : B ↪→Mn,

(ii) f ′ 6= f ′′ ∈ F ⇒ Rang(f ′) ∩ Rang(f ′′) = Rang(f0)





.

AsMn is random enough and f : C ↪→Mn, there is F as above for B with
|F| ≥ nε; but by 1.16 also

|clk,m(f(C),Mn)| ≤ |cll(f(C),Mn)|



Zero-one laws for graphs 213

for l = km and by 1.7 we have

|clk
m

(f(C),Mn)| < nε

so |clk,m(f(C),Mn)| < nε.
As the sequence 〈Rang(g)\Rang(f) : g ∈ F〉 lists a family of ≥ nε >

|clk,m(f(C),Mn)| pairwise disjoint subsets ofMn, for some g ∈ F , we have:
Rang(g) ∩ Rang(f) is disjoint from clk,m(f(C),Mn). So g is as required
in Definition 2.5(2); so we have proved C ≤s B according to Definition
2.5, hence we have finished proving (K∞, cl) is weakly nice according to
Definition 2.5(3).

So we have proved the implication between the two versions of weakly
nice. Second, assuming K is weakly nice according to Definition 1.9, we still
have to say why the two versions of ≤s (by Definition 1.4(4) and 2.5(2)) are
equivalent. Now if C ≤s B in the sense of Definition 1.4(4) then C ≤s B
according to Definition 2.5(2) has been proved within the proof above that
K is weakly nice. Lastly assume A ≤s B according to Definition 2.5(2); now
if A <i C ≤ B we get a contradiction directly from Definition 2.5(2): but
this confirms A ≤s B according to Definition 1.4(4).

Lastly we leave the statement on <a to the reader. 2.6

Remark 2.7. (1) Note that the assumption “K is weakly nice” is very
natural in the applications we have in mind.

(2) Why have we not proved the equivalence of the two versions of weakly
nice in 2.6(θ)? We can define the following 0-1 context K: let Mn be M0

n,p̄

if n is even with pn = 1/nα, α ∈ (0, 1)R irrational (except p1 = 1/2α), and
let Mn be the random graph with probability 1/2 if n is odd. Now in §1,
K∞ is the family of finite graphs, and A ≤i B iff A = B (using the odd n’s).
Hence clk(A,M) = A so clearly A < B ⇒ A <s B according to 1.4, hence
weak niceness in the sense of 2.5(3) holds trivially but weak niceness in the
sense of Definition 1.9 fails.

(3) Note that in Definitions 2.8, 2.9, 2.12 below the “universal” demand
says about a given situation in random enough Mn whereas the “existen-
tial demand” implicit in goodness deals with extensions of an embedding
into Mn.

(4) We would like to show that for every formula ϕ(x̄) (f.o. in the vo-
cabulary τK) there are (f.o.) ψϕ(x̄) and k = kϕ, m = mϕ such that

(∗)ϕ for every random enoughMn and ā ∈ lg(x̄)Mn we haveMn |= ϕ[ā]
⇔Mn�clk,m(ā,Mn) |= ψϕ(x̄).

Naturally enough we shall do it by induction on the quantifier depth of
ϕ and the nontrivial case is ϕ(x̄) = (∃y)ϕ1(x̄, y), and we assume ψϕ1(x̄, y),
kϕ1 , mϕ1 are well defined. So we should analyze the situation: Mn is ran-
dom enough, ā ∈ lg(x̄)(Mn), Mn |= ϕ[ā] so there is b ∈ Mn such that
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Mn |= ϕ1[ā, b], and we split it into two cases according to the satisfaction of
a suitable statement on a suitable neighbourhood of ā, i.e., clk

′,m′(ā,Mn).
If b belongs to a small enough neighbourhood of ā this should be clear. If
not we would like to find a suitable situation (really a set of possible situa-
tions, with a bound on their number depending just on ϕ) to guarantee the
existence of an element b with clkϕ1 ,mϕ1 (āb,Mn) satisfying ψϕ1(ā, b). Now
in general the clkϕ1 ,mϕ1 can be of large cardinality (for ϕ, i.e. depending
on Mn). In the nice case we are analyzing, to find such a witness b out-
side a small neighbourhood of ā it will suffice to look at clkϕ1 ,mϕ1 (āb,Mn)
essentially with small cardinality. Why only essentially? Because maybe
clkϕ,mϕ(ā,Mn) is already large, so what we should have is something like:
clkϕ1 ,mϕ1 (āb,Mn) \ clkϕ,mϕ(ā,Mn) can be replaced by a set of small car-
dinality. For this we need

⋃
(the relation of free amalgamation) to hold,

possibly replacing clkϕ,mϕ(ā,Mn) by a subset (in §3 we can make it ar-
bitrary, here quite definable) and the amalgamation base has an a priori
bound. By the addition theorem (2.15) we may replace (B∗, b)b∈B by simi-
lar enough (B′, b)b∈B (in particular when B∗ ∈ K∞) so we need to express
in such a situation something like: B∗ exists over B (we can say such a
B exists by clause (b) of 2.8(4) using quantifiers on clk,m(ā,Mn)). Well,
B ≤s B∗ is a good approximation. But this does not say that cl(āb,Mn)
is suitable. So we need to say first that the closure of āb in essentially
B∗ ∪ B2, where B2 = clkϕ1 ,m2(ā,Mn), obeys a version of the addition the-
orem, and secondly that B∗ sits in Mn in such a way that the closure
is right. All this is carried out in Definition 2.8(4) (of “good” saying: we
have a tuple in a situation which exists whenever a copy of B as above
exists) and 2.9 (when there are B etc. as above). The proof is carried out
in 2.16.

(5) Defining “good”, by demanding the existence of the embedding g :
B∗ ↪→ Mn extending f : B ↪→ Mn, we demand on f just that it is an
embedding. We may impose requirements of the form clki,mi(f(Bi),Mn) ⊆
f(B) or clki,mi(f(Bi),Mn)∩f(B) = f(Ci) for some Bi,Ci ⊆ B. This makes
it easier for a tuple to be good, thus giving a version of almost nice covering
more cases. In another possible strengthening we do not replace B∗ by B′ ∈
K∞ of bounded cardinality but look at it as a family of possible ones all
similar in the relevant sense. On the other hand we may like simpler versions
which are pursued in 2.13, 2.17.

(6) Note that if clk is r-transparent and A ⊆ M ∈ K then clk(A,M) ⊇⋃{C ⊆ M : C ∩ A ≤i C and |C| ≤ r}. [Why? if C ⊆ M , C ∩ A ≤i C and
|C| ≤ r then: first clk(C ∩A,C) = C as clk is r-transparent; second clk(C ∩
A,C) ⊆ clk(C ∩A,M) by (b)(ii) of Definition 2.2(1), third clk(C ∩A,M) ⊆
clk(A,M) as C ∩ A ⊆ M by clause (a) of Definition 2.2(1); altogether we
are done.] Note that if clk is (1, r)-local we can prove the other inclusion. So
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obviously if (K, cl) is simply local and simply transparent (and τK is finite
or at least locally finite of course), then cl is f.o. definable.

Definition 2.8. (1) We say (N,B, B̄, k) is possible for (K, cl) if:

(a) B̄ = 〈Bi : i < lg(B̄)〉, Bi ⊆ N ∈ K∞, B ⊆ N and clk(Bi, N) ⊆
Bi+1 for i < lg(B̄)− 1,

(b) it is not true that: for every random enough Mn, for no embed-
ding f : N ↪→Mn, do we have: for i < lg(B̄)− 1,

clk(f(Bi),Mn) ⊆ f(clk(Bi), N) ∪ clk(f(B),Mn).

(2) If we write (N,C,B, k) we mean (N,C, 〈B, clk(B,N)〉, k).
(3) We say (N,B, ā, k,m) is possible for K if (N,B, B̄, k) is possible for

K where B̄ = 〈clk,i(ā, N) : i ≤ m〉.
(4) We say that the tuple (B∗, B,B0, B1, k,m1,m2) is good for (K, cl) if

(a) B ≤ B∗ ∈ K∞ and B0 ≤ B1 ≤ B∗ ∈ K∞,
(b) for every random enough Mn we have: if f : B ↪→ Mn then

there is an extension g of f satisfying g : B∗ ↪→Mn and

(α) g(B∗) ∩ clk,m2(f(B),Mn) = f(B),
(β) clk,m1(g(B0),Mn) ⊆ g(B1) ∪ clk,m2(g(B),Mn),

(γ) Mn�g(B∗)
Mn⋃

Mn�f(B)
Mn�clk,m2(f(B),Mn),

(δ) clk,m(g(B0), g(B∗)) = g(B∗)∩ clk,m(g(B0),Mn) for m ≤ m2;
if we omit B1 we mean clk,m2(B0, B

∗).

Definition 2.9. The 0-1 context K with closure cl (or the pair (K, cl)
or K when cl is understood) is almost nice if it is weakly nice and:

(A) the universal demand : for every k,m0 and l, l′ there are m∗ =
m∗(k,m0, l, l

′) > m0, k
∗ = k∗(k,m0, l, l

′) ≥ k and t = t(k,m0, l, l
′) such

that, for every random enough Mn we have: if ā ∈ l|Mn| and b ∈ Mn \
clk
∗,m∗(ā,Mn) then there are m2 ∈ [m0,m

∗] and m1 ≤ m∗ − m2 and
B ⊆ clk,m1(ā,Mn) and B∗ ⊆Mn such that:

(α) |B| ≤ t and ā ⊆ B,
(β) B∗ = [clk,m0(āb,Mn) \ clk,m2(B,Mn)]∪B so necessarily b ∈ B∗

and ā ⊆ B∗ (see 2.11 below),
(γ) B <s B

∗ or at least:
for every first order formula ϕ = ϕ(. . . , xa, . . .)a∈B of quantifier
depth ≤ l′ there is B′ such that B <s B

′ (so B′ ∈ K∞) and

B∗ |= ϕ(. . . , a, . . .)a∈B iff B′ |= ϕ(. . . , a, . . .)a∈B ,

(δ) Mn�B∗
Mn⋃

Mn�B
Mn�clk,m2(B,Mn),
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(ε) (B∗, B, āb, B∗ ∩ clk,m0(āb,Mn), k,m0,m2) is good for (K, cl) or
at least for some B′, B′′ we have (2):

(i) (B′, B, āb, B′′, k,m1,m2) is good for (K, cl),
(ii) (B∗, clk,m0(āb,Mn) ∩B∗), b, c)c∈B ≡l′ (B′, B′′, b, c)c∈B,

(ζ) for m ≤ m2 we have

clk,m(āb, B∗) = B∗ ∩ clkϕ1 ,m(āb,Mn).

[So by clause (ζ), in clause (ε) we can omit B∗ ∩ clk,m0(āb,Mn) and B′′, at
the expense of increasing l′.]

Definition 2.10. If in Definition 2.9 above, k∗ = k in clause (A) then
we say: K is almost nice k-preserving.

Remark 2.11. (1) Note that if K = K∞ and cl is local (or just clk is
(lk, rk)-local for each k) (which holds in the cases we are interested in) then
in clauses (γ), (ε) of (A) in Definition 2.9 above the two possibilities are close.

(2) Why in 2.9(A)(β) do we have “necessarily b ∈ B∗”? Because

b ∈ Rang(āb) ⊆ clk,m0(āb,Mn)

and

clk,m2(B,Mn) ⊆ clk,m2(clk,m1(ā,Mn)) ⊆ clk,m1+m2(ā,Mn)

⊆ clk,m
∗
(ā,Mn) ⊆ clk

∗,m∗(ā,Mn)

and b does not belong to the latter.
(3) Why do we use clk,m2(B,Mn)? Part of our needs is that this set is

definable from B without b.
(4) In Definition 2.9(A)(γ), there is one B ′ for all such ϕ (why? because

the set of f.o. formulas of quantifier depth l is closed under Boolean combina-
tions) so for some B′ ∈ K∞ we have B ≤s B′, and (B′, c)c∈B ≡l (B∗, c)c∈B.
So we could have phrased clause (ii) of (A)(ε) in the same way as clause (γ).

In our main case, also the following variant of the property applies (see
2.18 below).

Definition 2.12. (1) We say that the quadruple (N,B, 〈B0, B1〉, k) is
simply good for (K, cl) if (B,B0, B1 ≤ N ∈ K∞ and) for every random
enough Mn, for every embedding f : B ↪→Mn there is an extension g of f
satisfying g : N ↪→Mn such that:

(i) g(N) ∩ clk(f(B),Mn) = f(B),
(ii) g(N)

⋃

f(B)
clk(f(B),Mn),

(iii) clk(g(B0),Mn) ⊆ g(B1) ∪ clk(g(B),Mn)

(2) M1 ≡l′ M2 means: M1,M2 satisfy the same f.o. sentences of quantifier depth ≤ l′.
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(natural but not used is clk(g(B0),Mn)∩g(N) = g(clk(B0, N))). If we write
B0 instead 〈B0, B1〉, we mean B1 = N .

(2) We say that (N,B, 〈B0, B1〉, k, k′) is simply good if part (1) holds
with (iii) replaced by

(iii)′ clk(g(B0),Mn) ⊆ g(B1) ∪ clk
′
(g(B),Mn).

Definition 2.13. (1) The 0-1 context with closure (K, cl) is simply al-
most nice if it is weakly nice and:

(A) the universal demand : for every k and l, l′ there are m∗ = m∗(k, l, l′),
k∗ = k∗(k, l, l′) ≥ k and t = t(k, l, l′) such that for every random enough
Mn we have: if ā ∈ l|Mn| and b ∈ Mn \ clk

∗,m∗(ā,Mn) then there are
B ⊆ clk

∗,m∗(ā,Mn) and B∗ ⊆Mn such that:

(α) |B| ≤ t and ā ⊆ B and clk(B,Mn) ⊆ clk
∗,m∗(ā,Mn),

(β) B∗=[clk(āb,Mn)\clk(B,Mn)]∪B (or at least B∗⊇ [clk(āb,Mn)
\ clk(B,Mn)] ∪B),

(γ) B <s B
∗ (so B∗ ∈ K∞) or at least for every first order formula

ϕ = ϕ(xb, . . . , xa, . . .)a∈B of quantifier depth ≤ l′ there is B′

such that B <s B
′ (so B′ ∈ K∞) and

B∗ |= ϕ(b, . . . , c, . . .)c∈B iff B′ |= ϕ(b, . . . , c, . . .)c∈B,

or even, but actually equivalently,

(B∗, b, . . . , c, . . .)c∈B ≡l′ (B′, b, . . . , c, . . .)c∈B,

(δ) Mn�B∗
Mn⋃

Mn�B
Mn�clk(B,Mn),

(ε) B∗ ∈ K∞ and (Mn�B∗, B, āb, k) is simply good for (K, cl) or at
least for some B′, b′ we have:

(i) (B′, B, āb′, k) is simply good for (K, cl),
(ii) (B∗, b, . . . , c, . . .)c∈B ≡l′ (B′, b′, . . . , c, . . .)c∈B.

(2) If above always k∗ = k we say: K is simply almost nice depth pre-
serving.

(3) We say that (K, cl) is simply nice (i.e. without “almost”) if 2.13(1)
holds but we omit clause (ε) and add:

(B) If B <s B
∗ and k ∈ N then (B∗, B,B∗, k) is simply good.

(C) K∞ = K (or at least if A ∈ K∞ and k,m ∈ N then for any
random enough Mn for any f : A ↪→Mn, clk,m(A,Mn) ∈ K∞.

Similarly in Definition 2.9 for “nice”.

Remark 2.14. (1) In 2.13(1) we can weaken the demands (and call
(K, cl) simply⊗ almost nice): get also k⊗ = k⊗(k, l, l′) ∈ N, replace in clause
(β) clk(B,Mn) by clk

⊗
(b,Mn) and replace (ε) by
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(ε′) (B′, B, āb, k, k⊗) is simply good for (K, cl) (see 2.12(2)) or at least
for some B′, b′ we have:

(i) (B′, B, āb′, k, k⊗) is simply⊗ good,
(ii) (B∗, b, . . . , c, . . .)c∈B ≡l′ (B′, b′, . . . , c, . . .)c∈B.

The parallel change in 2.13(2) (that is, defining simply⊗ good) is

(B)′ for every k, l ∈ N for some k⊗ = k⊗(k, l) ∈ N we have: if B <s B
∗

and |B| ≤ l, then (B∗, B,B∗, k, k⊗) is simply good.

This does not change the conclusions, i.e. 2.13, 2.17, 2.18, 2.19.
(2) We can change Definition 2.9 as we have changed Definition 2.13(1)

in 2.13(3) and/or in 2.14(1).
(3) We can demand in 2.13(1)(A) that m∗(k, l, l′) = 1 at the expense

of increasing k∗, because if clk
∗∗

(ā,M) ⊇ clk
∗,m∗(ā,M) whenever ā ∈ l|M |,

M ∈ K then k∗∗ will do.
(4) In Definition 2.13 we can omit m∗ if cl is transparent by increasing

k∗ (that is, m∗ = 1).

Lemma 2.15 below (the addition theorem, see [CK] or [Gu] and see more
[Sh 463]) is an immediate corollary of the well known addition theorem; this
is the point where

⋃
is used.

Lemma 2.15. For a finite vocabulary τ and f.o. formula ψ(z̄, z̄1, z̄2)
(in τ), z̄=〈z1, . . . , zs〉, there are i∗∈N and τ -formulas θ1

i (z̄, z̄
1)=θ1

i,ψ(z̄, z̄1),
θ2
i (z̄, z̄

2) = θ2
i,ψ(z̄, z̄2) for i < i∗, each of quantifier depth at most that of ψ,

such that : if N is a τ -model ,

N1
N⋃

N0

N2, N1 ∩N2 = N0, N1 ∪N2 = N

and the set of elements of N0 is {c1, . . . , cs}, c̄ = 〈c1, . . . , cs〉 with s = lg(z̄)
and c̄1 ∈ lg(z̄1)(N1) and c̄2 ∈ lg(z̄2)(N2) then

N |= ψ[c̄, c̄1, c̄2] iff for some i < i∗, N1 |= θ1
i [c̄, c̄

1] and N2 |= θ2
i [c̄, c̄

2].

Main Lemma 2.16 (Context as above). Assume (K, cl) is almost nice
and cl is f.o. definable.

(1) Let ϕ(x̄) be a f.o. formula in the vocabulary τK. Then for some mϕ ∈
N and k = kϕ ≥ lg(x̄) + q.d.(ϕ(x̄)) (3) and for some f.o. ψϕ(x̄) we have:

(∗)ϕ for every random enough Mn and ā ∈ lg(x̄)|Mn| we have

(∗∗) Mn |= ϕ(ā) if and only if Mn�clkϕ,mϕ(ā,Mn) |= ψϕ(ā).

(2) Moreover , if for simplicity we will consider “y ∈ clk,m(x̄,M)” as an
atomic formula when computing the q.d. of ψϕ (and so can omit the assump-

(3) q.d. stands for quantifier depth.
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tion “cl is f.o. definable”) then we can demand : the number of alternations
of quantifiers of ψϕ is ≤ those of ϕ, more precisely if ϕ is Πn (or Σn) then
so is ψϕ.

Proof. We shall ignore (2) (which is not used and is obvious if we un-
derstand the proof below). We prove the statement in (1) by induction on
r = q.d.(ϕ(x̄)) and first note (by clause (e) of Definition 2.2 as “y ∈ clk,m(x̄)”
is f.o. definable in K) that (∗)ϕ implies

(∗)+
ϕ in (∗)ϕ, possibly changing ψϕ, one can replaceMn�clkϕ,mϕ(ā,Mn)

by any N with clkϕ,mϕ(ā,Mn) ⊆ N ⊆Mn.

Case 1: ϕ atomic. Trivial [Proof: If ϕ(x̄) is an atomic formula we let
mϕ = 0, kϕ = 0 or whatever. So clkϕ,mϕ(ā,Mn) = ā for our kϕ, mϕ. Assume
Mn |= ϕ(ā) and let ψϕ = ϕ. Now as ā ⊆ Mn�clkϕ,mϕ(ā,Mn) ⊆ Mn we
have Mn |= ϕ(ā) iff clkϕ,mϕ(ā,Mn) |= ψϕ(ā) as required.]

Case 2: ϕ a Boolean combination of atomic formulas and formulas of the
form (∃x)ϕ′(x, ȳ) with q.d.(ϕ′) < r. Clearly follows by cases 3 and 1.

Case 3: r > 0 and ϕ(x̄) = (∃y)ϕ1(x̄, y). Let

(∗)1 m
∗ = m∗(kϕ1 ,mϕ1 , lg(x̄), l′), kϕ = k∗(kϕ1,mϕ1 , lg(x̄), l′),

t = t(kϕ1,mϕ1 , lg(x̄), l′)

be as guaranteed in Definition 2.9 with l′ suitable (see its use below (4)) and
let mϕ := m∗ +mϕ1 . Let ψ1

ϕ1
witness (∗)ϕ1 , and let ψ2

ϕ1
witness (∗)ϕ1 .

So it is enough to prove the following two statements:

Statement 1. There is ψ1
ϕ(x̄) (f.o.) such that :

(�)1 for every random enough Mn and for every ā ∈ lg(x̄)|Mn| we have
(α)1 ⇔ (β)1 where:

(α)1 Mn�clkϕ,mϕ(ā,Mn) |= ψ1
ϕ(ā),

(β)1 Mn |= “there is b ∈ clkϕ,m
∗
(ā,Mn) such that ϕ1(ā, b) holds”

(i.e. b belongs to a small enough neighbourhood of ā).

Statement 2. There is ψ2
ϕ(x̄) (f.o.) such that :

(�)2 for every random enough Mn and for every ā ∈ lg(x̄)|Mn| we have
(α)2 ⇔ (β)2 where:

(α)2 Mn�clk,m
∗
(ā,Mn) |= ψ2

ϕ(ā),
(β)2 Mn |= “there is b ∈ Mn \ clkϕ,m

∗
(ā,Mn) such that ϕ1(ā, b)

holds” (i.e. b is far from ā).

(Note: (β)1, (β)2 are complementary, but it is enough that always at
least one of them holds.)

(4) Recall that l′ should be larger than the quantifier depth of the formulas used, not
their length, so the use of t is O.K.
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Note that as “y ∈ clkϕ,m
∗
(x̄)” is f.o. definable and mϕ = m∗+mϕ1 ≥ m∗,

by clause (e) from 2.2, we can in (α)2 replace m∗ by mϕ, changing ψ2
ϕ

to ψ2.5
ϕ .

Clearly these two statements are enough and ψ1
ϕ(x̄) ∨ ψ2.5

ϕ (x̄) is as re-
quired.

Proof of Statement 1. Easy, recalling that kϕ ≥ kϕ1 by clause (A) of
Definition 2.9, by the induction hypothesis as

clkϕ1 ,mϕ1 (āb,Mn) ⊆ clkϕ,m
∗+mϕ1 (ā,Mn) = clkϕ,mϕ(ā,Mn)

and by the fact that the closure is sufficiently definable.

Proof of Statement 2. We will use a series of equivalent statements ⊗l.
⊗1 is (β)2.
⊗2 There are m2 ∈ [mϕ1 ,m

∗], m1 ≤ m∗−m2, b, B and B∗, B′ such that:

(α) b ∈ Mn, b 6∈ clkϕ,m
∗
(ā,Mn), ā ⊆ B ⊆ clkϕ1 ,m1(ā,Mn), |B| ≤ t,

(β) B∗ = B ∪ [clkϕ1 ,mϕ1 (āb,Mn) \ clkϕ1 ,m2(B,Mn)] [hence B = B∗∩
clkϕ1 ,m2(B,Mn)],

(γ) B ≤s B′ ∈ K∞ and B′ = B∗ or at least (B∗, b, c)c∈B ≡l′
(B′, b, c)c∈B (see 2.11(4)),

(δ) B∗
Mn⋃

B
clkϕ1 ,m2(B,Mn),

(ε) (B′, B, āb, k,m0,m2) is good,
(ζ) for m ≤ mϕ1 we have clkϕ1 ,m(āb, B∗) = B∗ ∩ clkϕ1 ,m(āb,Mn),
⊕2 Mn |= ϕ1(ā, b).

Then we have

(∗)2 ⊗1 ⇔ ⊗2.

Why? The implication ⇐ is trivial as ⊕1 is included in ⊗2, the implica-
tion ⇒ holds by clause (A) in the definition of almost nice 2.9, except
b 6∈ clkϕ,m

∗
(ā,Mn) which is explicitly demanded in (β)2.

Next, let

⊗3 like ⊗2 but with ⊕2 replaced by

⊕3 Mn�clkϕ1 ,mϕ1 (āb,Mn) |= ψ1
ϕ1

(ā, b).

Then

(∗)3 ⊗2 ⇔ ⊗3.

Why? By the induction hypothesis.
Next, let

⊗4 like ⊗3 but with ⊕3 replaced by

⊕4 Mn�[B∗ ∪ clkϕ1 ,m2(B,Mn)] |= ψ2
ϕ1

(ā, b).
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Again, we have

(∗)4 ⊗3 ⇔ ⊗4.

Why? By (∗)+
ϕ1

at the beginning of the proof, the definition of B∗ and the
choice of ψ2

ϕ1
. (Let ⊗3 be true. Since by the choice of B∗ and B

above, clkϕ1 ,mϕ1 (āb,Mn) ⊆ clkϕ1 ,mϕ1 (āb,Mn) ∪ clkϕ1 ,m2(B,Mn) = B∗ ∪
clkϕ1 ,m2(B,Mn) ⊆Mn we have Mn |= ϕ1(ā, b) iff B∗ ∪ clkϕ1 ,m2(B,Mn) |=
ψ2
ϕ1

(āb) by (∗)+
ϕ1

. So (∗)4 holds.)
For notational simplicity we assume B 6= ∅, and similarly assume ā is

with no repetition; we shall apply Lemma 2.15 several times.
First for m ≤ mϕ1 we apply 2.15 to the case s = t, z̄ = 〈z1, . . . , zt〉, z̄1 =

〈z1
1, z

1
2〉, z̄2 empty and the formula “z1

2 ∈ clkϕ1 ,m(z̄, z1
1)” and get i∗1,m ∈ N

and formulas θ1
1,m,i(z̄, z

1
1, z

1
2) and θ2

1,m,i(z̄) for i < i∗1,m. Let

u∗1 = {(m, i) : m ≤ mϕ1 , i < i∗1,m}.
Second for m ≤ mϕ1 we apply 2.15 to the case s = t, z̄2 = 〈z2

1〉, z̄1 = 〈z1
1〉,

z̄ = 〈z1, . . . , zt〉 and the formula “z2
1 ∈ clkϕ1 ,m(z̄, z1

1)” and get i∗2,m ∈ N and
formulas θ1

2,m,i(z̄, z̄
1) and θ2

2,m,i(z̄, z
2
1) for i < i∗2,m.

Let τ ′ = τK ∪ {P1, P2}, with P1, P2 new unary predicates: for θ ∈ L[τ ′K]
let θ[Pl] be θ with the quantifiers restricted to Pl. Let ψ∗ = ψ∗1 ∧ ψ∗2 ∧ ψ∗3
where

ψ∗1 := ψ2
ϕ1

(z1, . . . , zlg(x̄), z
1
1)

ψ∗2 :=
∧

m≤mϕ1

(∀y)[y ∈ clkϕ1 ,m({z1, . . . , zlg(x̄), z
1
1})

≡ (ψ∗,12,m(z1, . . . , zt, z
1
1, y) ∨ ψ∗,22,m(z1, . . . , zt, z

1
1 , y))],

where

ψ∗,12,m(z1, . . . , zt, z
1
1 , y)

:=
∨

i<i∗1,m

(θ1
1,m,i(z1, . . . , zt, z

1
1, y)[P1] ∧ θ2

1,m,i(z1, . . . , zt)[P2]),

ψ∗,22,m(z1, . . . , zt, z
1
1 , y)

:=
∨

i<i∗2,m

(θ1
2,m,i(z1, . . . , zt, z

1
1)[P1] ∧ θ2

2,m,i(z1, . . . , zt, y)[P2]),

and let

ψ∗3 := (∀y)(P1(y) ≡ [
t∨
l=1

y = zl ∨

(y ∈ clkϕ1 ,mϕ1 ({z1, . . . , zlg(x̄), z
1
1} ∧ y 6∈ clkϕ1 ,m2{z1, . . . , zlg(x̄)})]).

So we have defined ψ∗. Now we apply 2.15 the third time, with the
vocabulary τK ∪ {P1, P2}, to the case s = t, z̄2 empty, z̄1 = 〈z1

1〉, z̄ =
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〈z1, . . . , zlg(x̄)〉, and ψ(z̄, z̄1, z̄2) = ψ(z̄, z1
1) = ψ∗(〈z1, . . . , zlg(x̄)〉, z1

1) and get
i∗, θ1

3,i(z̄, z̄
1) and θ2

3,i(z̄, z̄
2) for i < i∗ as there. Let

⊗5 like ⊗4 but with ⊕4 replaced by

⊕5 letting c1, . . . , ct list B possibly with repetitions but such that
〈c1, . . . , clg(x̄)〉 = ā and letting

P ∗1 = B∗ and P ∗2 = clkϕ1 ,m2({c1, . . . , ct},Mn)

we have

(∗) (Mn�(P ∗1 ∪ P ∗2 ), P ∗1 , P
∗
2 ) |= ψ∗[c1, . . . , ct, b] (the model is a

τ ′-model).

Now

(∗)5 ⊗4 ⇔ ⊗5.
Why? Look at what the statements mean recalling

Mn�P ∗1
Mn⋃

B
Mn�P ∗2 .

Next let

⊗6 like ⊗5 but with ⊕5 replaced by

⊕6 letting c1, . . . , ct list B possibly with repetitions but such that
〈c1, . . . , clg(x̄)〉 = ā and letting

P ∗1 = B∗ and P ∗2 = clkϕ1 ,m2({c1, . . . , ct},Mn)

there is i < i∗ such that:

(i) (Mn�P ∗1 , P ∗1 , P ∗2 ∩ P ∗1 ) |= θ1
3,i[〈c1, . . . , ct〉, b],

(ii) (Mn�P ∗2 , P ∗1 ∩ P ∗2 , P ∗2 ) |= θ2
3,i[〈c1, . . . , ct〉].

Now

(∗)6 ⊗5 ⇔ ⊗6.

Why? By the choice of θ1
3,i, θ

2
3,i (i < i∗).

However in the two τ ′-models appearing in ⊕6, the predicates P1, P2
are interpreted in a trivial way: as the whole universe of the model or as
{c1, . . . , ct}.

So let:

(a) θ1
4,i(z1, . . . , zt, y) be θ1

3,i(z1, . . . , zt, y) with each atomic formula of the
form P1(σ) or P2(σ) replaced by σ = σ or

∨t
r=1 σ = zr respectively,

(b) θ2
4,i(z1, . . . , zt) be θ2

3,i(z1, . . . , zt) with each atomic formula of the form
P1(σ) or P2(σ) replaced by

∨t
r=1 σ = zr or σ = σ respectively.
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Then let (recall B′ is mentioned in ⊗2, a “replacement” for B∗)

⊗7 like ⊗6 but with ⊕6 replaced by

⊕7 letting c1, . . . , ct list B possibly with repetitions but such that
〈c1, . . . , clg(x̄)〉 = ā, there is i < i∗ such that

(i) Mn�B′ |= θ1
4,i[〈c1, . . . , ct〉, b] and

(ii) Mn�clkϕ1 ,m2(〈c1, . . . , ct〉,Mn) |= θ2
4,i(〈c1, . . . , ct〉).

We have

(∗)7 ⊗6 ⇔ ⊗7.

Why? By the choice of the θ1
4,i, θ

2
4,i and the property of B′ (stated in ⊗2).

Let P = {(N, c1, . . . , ct) : N ∈ K∞, with the set of elements {c1, . . . , ct}}.
Let {(Nj, c

j
1, . . . , c

j
t) : j < j∗} list the members of P up to isomorphism, so

with no two isomorphic. For every j < j∗ and i < i∗ choose if possible
(Nj,i, c

j
1, . . . , c

j
t , b

j
i ) such that:

(i) Nj ≤s Nj,i (in K∞),
(ii) bji ∈ Nj,i \Nj ,

(iii) Nj,i |= θ1
4,i(〈cj1, . . . , cjt 〉, bji ),

(iv) (Nj,i, B, {cji : i = 1, . . . , lg(x̄)} ∪ {bji}, k,m0,m2) is good for K.

Let

w = {(i, j) : i < i∗, j < j∗ and (Nj,i, c
j
1, . . . , c

j
t , b

j
i ) is well defined}.

Let

⊗8 There are m2 ≤ m∗, m1 ≤ m∗ −m2 such that m2 ≥ mϕ1 , and there
are b, B such that:

ā ⊆ B ⊆ clk
∗,m2(ā,Mn), |B| ≤ t(kϕ1,mϕ1 , lg(x̄)), b 6∈ clk

∗,m∗(ā,Mn),

b ∈Mn, and

⊕8 for some c1, . . . , ct listing B such that ā = 〈c1, . . . , clg(x̄)〉 there
are i < i∗, j < j∗ such that (i, j) ∈ w and:

(i) (Mn�B, c1, . . . , ct) ∼= (Nj , c
j
1, . . . , c

j
t), i.e. the mapping cj1 7→c1,

cj2 7→ c2 embeds Nj into Mn,
(ii) Mn�clkϕ1 ,m2(B,Mn) |= θ2

4,i(〈c1, . . . , ct〉).
Then

(∗)8 ⊗7 ⇔ ⊗8.

Why? To prove ⊗7 ⇒ ⊗8 let c1, . . . , ct as well as i < i∗ be as in ⊕7, and let
j < j∗ be such that (Mn�B, c1, . . . , ct) ∼= (Nj , c

j
1, . . . , c

j
t). The main point is

that B′ exemplifies that (i, j) ∈ w.



224 S. Shelah

To prove ⊗8 ⇒ ⊗7 use the definition of goodness in clause (ε) (see ⊗2)
and Definition 2.8(4).

We have now finished as ⊗8 can be expressed as a f.o. formula straight-
forwardly. So we have carried out the induction step on the quantifier depth,
thus finishing the proof. 2.16

Lemma 2.17. (1) Assume (K, cl) is simply almost nice and cl is f.o. de-
finable. Let ϕ(x̄) be a f.o. formula in the vocabulary τK. Then for some
k = kϕ and f.o. formula ψϕ(x̄) we have:

(∗) for every random enough Mn and ā ∈ lg(x̄)|Mn|,
(∗∗) Mn |= ϕ(ā) if and only if Mn�clkϕ(ā,Mn) |= ψϕ(ā).

(2) The number of alternations of quantifiers of ψϕ in (1) is ≤ the number
of alternations of quantifiers of ϕ if we consider “y ∈ clk,m(x̄,M)” as atomic
(so we can omit the assumption “cl is f.o. definable”). More precisely , if ϕ
is Πn (or Σn) then so is ψϕ.

Remark 2.18. (1) Of course we do not need to assume that the closure
operation is definable, it is enough if there is a variant cl∗ which is definable
and for every k,m there are k1,m1, k2,m2 such that always

clk,m(A,M) ⊆ clk
1,m1

∗ (A,M) ⊆ clk
2,m2

(A,M).

(2) Similarly in 2.16 (using Definition 2.10).
(3) We can weaken “simply almost nice” as in Definition 2.14(1) and still

part (1) is true, with essentially the same proof.
(4) The proof of 2.17 is somewhat simpler than the proof of 2.16.

Proof. (1) We prove the statement by induction on r = q.d.(ϕ(x̄)). First
note (by clause (e) of 2.2)

(∗)+
ϕ in (∗) (of 2.17) one can replace Mn�clkϕ(ā,Mn) by any N with

clkϕ(ā,Mn) ⊆ N ⊆Mn

(possibly changing ψϕ).

Case 1: ϕ atomic. Trivial.

Case 2: ϕ a Boolean combination of atomic formulas and formulas of
quantifier depth ≤ r. Clearly follows by cases 3 and 1. Trivial.

Case 3: r > 0 and ϕ(x̄) = (∃y)ϕ1(x̄, y). Let (the functions are from
2.13(1))

m∗ = m∗(kϕ1 , lg(x̄), l′), k∗ = k∗(kϕ1 , lg(x̄), l′), t = t(kϕ1 , lg(x̄), l′)

with l′ suitable (just the quantifier depth of ψ2
ϕ1

defined below) and let kϕ
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be (5) such that:

(∗)1 |A| ≤ lg(x̄)+1 & A ⊆ N ∈ K ⇒ clkϕ1 (clk
∗,m∗(A,N), N) ⊆ clkϕ(A,N).

Let ψ1
ϕ1

(x̄, y) witness (∗)ϕ1 , and let ψ2
ϕ1

(x̄, y) witness (∗)+
ϕ1

.
It is enough to prove the following two statements (see below):

Statement 1. There is ψ1
ϕ(x̄) (f.o.) such that :

(�)1 for every random enough Mn and for every ā ∈ lg(x̄)|Mn| we have
(α)1 ⇔ (β)1 where:

(α)1 Mn�clkϕ(ā,Mn) |= ψ1
ϕ(ā),

(β)1 Mn |= “there is b ∈ clk
∗,m∗(ā,Mn) such that ϕ1(ā, b) holds.”

Statement 2. There is ψ2
ϕ(x̄) (f.o.) such that :

(�)2 for every random enough Mn and for every ā ∈ lg(x̄)|Mn| we have
(α)2 ⇔ (β)2 where:

(α)2 Mn�clk
∗,m∗(ā,Mn) |= ψ2

ϕ(ā),
(β)2 Mn |= “there is b ∈ Mn \ clk

∗,m∗(ā,Mn) such that ϕ1(ā, b)
holds”.

(Note: (β)1, (β)2 are complementary, but it is enough that always at
least one holds.)

Note that as “y ∈ clk
∗,m∗(x̄)” is f.o. definable, by 2.2(e) and the choice

of kϕ we can in (α)2 replace clk
∗,m∗ by clkϕ , changing ψ2

ϕ to ψ2.5
ϕ (just as

from (∗)ψ we have deduced (∗)+
ϕ ).

Clearly these two statements are enough because if ψ1.5
ϕ expresses (α)1

then ψ1.5
ϕ (x̄) ∨ ψ2.5

ϕ (x̄) is as required.

Proof of Statement 1. Easy, by the induction hypothesis as

clkϕ1 (āb,Mn) ⊆ clkϕ1 (clk
∗,m∗(ā,Mn),Mn) ⊆ clkϕ(ā,Mn)

and by the fact that the closure is sufficiently definable. So in this case ψ1
ϕ(x̄)

can be chosen as (∃y)[ψ2
ϕ1

(x̄, y) ∧ y ∈ clk
∗,m∗(x̄)].

Proof of Statement 2. We will use a series of equivalent statements ⊗l.
⊗1 is (β)2.
⊗2 There are b, B and B∗, B′ such that:

(5) If we change clause (A) of 2.13(1) a little, kϕ = k∗ will be O.K.: instead of assuming
b 6∈ clk

∗,m∗(ā,Mn) assume just clk(āb,Mn) 6⊆ clk
∗,m∗(ā,Mn). Allowing m∗ to increase,

the two versions are equivalent. Set m∗∗ = m∗∗(k, l, l′) = m∗(k, l, l′) + k. Now by 2.4(3)
we have b ∈ clk

∗,m∗(ā,Mn) and c ∈ clk(āb,Mn) ⇒ c ∈ clm
∗+k(ā,Mn) = clm

∗∗
(ā,Mn),

hence b ∈ clk
∗,m∗(ā,Mn) ⇒ clk(āb,Mn) ⊆ clk,m

∗∗
(ā,Mn), hence clk(āb,Mn) *

clk,m
∗∗

(ā,Mn) ⇒ b 6∈ clk
∗,m∗(ā,Mn), so our new assumption for m∗∗ implies our old

one for m∗. Of course our new assumption for m∗ implies the old one for m∗. See Sec-
tion 3 where this is done.
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(α) b ∈ Mn, b 6∈ clk
∗,m∗(ā,Mn),

(β) ā⊆B⊆clk
∗,m∗(ā,Mn), moreover clkϕ1 (B,Mn)⊆clk

∗,m∗(ā,Mn),
and |B| ≤ t,

(γ) B∗ ⊇ B ∪ [clkϕ1 (āb,Mn) \ clkϕ1 (B,Mn)],
(δ) B ≤s B′ ∈ K∞ and: B′ = B or just (B∗, b, c)c∈B ≡l′ (B′, b, c)c∈B

(see 2.11(4)),

(ε) B∗
Mn⋃

B
clkϕ1 (B,Mn) (and so B = B∗ ∩ clkϕ1 (B,Mn)),

(ζ) (B′, B, āb, k) is simply good,
(η) clk(āb, B∗) \ B = B∗ ∩ clk(āb,Mn) \ clk(B,Mn), actually this

follows from clauses (ε), (β) if cl is “reasonable” (6),
⊕2 Mn |= ϕ1(ā, b).

We have

(∗)2 ⊗1 ⇔ ⊗2.

Why? The implication ⇐ is trivial as ⊕1 is included in ⊗2, the implication
⇒ holds by clause (A) in Definition 2.13 of simply almost nice.

Next, let

⊗3 like ⊗2 but with ⊕2 replaced by

⊕3 Mn�clkϕ1 (āb,Mn) |= ψ1
ϕ1

(ā, b).

Then

(∗)3 ⊗2 ⇔ ⊗3.

Why? By the induction hypothesis and our choices.
Next, let

⊗4 like ⊗3 but with ⊕3 replaced by

⊕4 Mn�[B∗ ∪ clkϕ1 (B,Mn)] |= ψ2
ϕ1

(ā, b).

Then

(∗)4 ⊗3 ⇔ ⊗4.

Why? By (∗)+
ϕ1

at the beginning of the proof, the requirements on B∗ and
the choice of ψ2

ϕ1
.

For notational simplicity we assume B 6= ∅, and similarly assume ā has
no repetitions and apply Lemma 2.15 with the vocabulary τK to the case
s = t, z̄2 empty, z̄1 = 〈z1

1〉, z̄ = 〈z1, . . . , zt〉, and ψ(z̄, z̄1, z̄2) = ψ(z̄, z1
1) =

ψ2
ϕ1

(〈z1, . . . , zlg(x̄)〉, z1
1) and get i∗, θ1

i (z̄, z̄
1) and θ2

i (z̄) for i < i∗ as there; in

(6) Which means: if A ⊆ B ⊆ D, B
D⋃
A
C, B′ ⊆ B, then clk(B′, B∪C)∩B = clk(B′, B).
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particular the quantifier depth of θ1
i , θ

2
i for i < i∗ is at most the quantifier

depth of ψ2
ϕ1

.
Next, let

⊗5 like ⊗4 but with ⊕4 replaced by

⊕5 letting c1, . . . , ct list B possibly with repetitions but such that
〈c1, . . . , clg(x̄)〉 = ā, there is i < i∗ such that:

(i) B∗ |= θ1
i [〈c1, . . . , ct〉, b],

(ii) clk(B,Mn) |= θ2
i [〈c1, . . . , ct〉].

Now

(∗)5 ⊗4 ⇔ ⊗5.

Why? By the choice of θ1
i , θ

2
i for i < i∗, so by Lemma 2.15.

Let P = {(N, c1, . . . , ct) : N ∈ K∞, with the set of elements {c1, . . . , ct}}.
Let {(Nj, c

j
1, . . . , c

j
t) : j < j∗} list the members of P up to isomorphism, so

with no two isomorphic. For every j < j∗ and i < i∗ choose if possible
(Nj,i, c

j
1, . . . , c

j
t , b

j
i ) such that:

(i) Nj ≤s Nj,i (in K∞),
(ii) bji ∈ Nj,i \Nj ,

(iii) Nj,i |= θ1
i (〈cj1, . . . , cjt 〉, bji ),

(iv) (Nj,i, {cj1, . . . , c
j
t}, {cj1, . . . , c

j
lg(x̄), b

j
i}, k) is simply good for K.

Let
w = {(i, j) : i < i∗, j < j∗ and (Nj,i, c

j
1, . . . , c

j
t , b

j
i ) is well defined}.

Let

⊗6 like ⊗5 but with ⊕5 replaced by

⊕6 like ⊕5 adding

(iii) for some j, (i, j) ∈ w and (B∗, c1, . . . , ct) ∼= (Nj,i, c
j
1, . . . , c

j
t )

Then we have

(∗)6 ⊗5 ⇔ ⊗6.

Why? By the definition of w.
Let

⊗7 there is B such that: b ∈ Mn, ā ⊆ B ⊆ clk
∗,m∗(ā,Mn), clkϕ1 (B,Mn)

⊆ clk
∗,m∗(ā,Mn), |B| ≤ t, and

⊕7 for some c1, . . . , ct listing B such that ā = 〈c1, . . . , clg(x̄)〉 there
are i < i∗, j < j∗ such that (i, j) ∈ w and:

(i) (Mn�B, c1, . . . , ct) ∼= (Nj , c
j
1, . . . , c

j
t), i.e. the mapping cj1 7→c1,

cj2 7→ c2 embeds Nj into Mn,
(ii) Mn�clkϕ1 (B,Mn) |= θ2

i (〈c1, . . . , ct〉).
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Now

(∗)7 ⊗6 ⇔ ⊗7.

Why? To prove ⊗6 ⇒ ⊗7 let c1, . . . , ct as well as i < i∗, j < j∗ be as in ⊕6,
and let j < j∗ be such that (Mn�B, c1, . . . , ct) ∼= (Nj , c

j
1, . . . , c

j
t ). The main

point is that B′ exemplifies that (i, j) ∈ w (remember: B′ is from ⊗2, and
if B∗ ∈ K∞, we normally could have chosen B′ = B∗).

To prove ⊗7 ⇒ ⊗6 use the definition of simply good tuples in Definition
2.12(1).

We have now finished as ⊗7 can be expressed as a f.o. formula straight-
forwardly. So we have carried out the induction step on the quantifier depth,
thus finishing the proof.

(2) Similar. 2.17

Conclusion 2.19. (1) Assume (K, cl) is almost nice or simply almost
nice and cl is f.o. definable. Then: K satisfies the 0-1 law iff for any k, m
we have

(∗)k,m 〈Mn�clk,m(∅) : n < ω〉 satisfies the 0-1 law (7).

(2) Similarly for the convergence law and the very weak 0-1 law.

Proof. (1) We first prove the “only if”. There is a f.o. formula θ(x) such
that for every random enough Mn, θ(x) defines clk,m(∅,Mn). Hence for
every f.o. sentence ϕ there is a f.o. sentence ψϕ which is the relativization
of ϕ to θ(x), call it ψϕ; hence, for every model M ∈ K, M |= ψϕ ⇔M�{a :
M |= θ[a]} |= ϕ. Now for every random enough Mn we have a ∈ Mn ⇒
Mn |= θ[a]⇔ a ∈ clk,m(∅,Mn), hence together

Mn |= ψϕ ⇔ Mn�clk,m(∅,Mn) |= ϕ.

As we are assuming that K satisfies the 0-1 law, for some truth value t for
every random enough Mn,

Mn |= “ψϕ ≡ t”,
hence (as required)

Mn�clk,m(∅,Mn) |= “ϕ = t”.

The other direction is similar by the main lemma 2.16 when (K, cl) is almost
nice, 2.17 when (K, cl) is simply almost nice.

(2) Similar, so left to the reader. 2.19

Definition 2.20. (1) The tuple (N, b̄, ψ(x̄), 〈B0, B1〉, k, k1) is simply∗

good for (K, cl) if: B0, B1 ≤ N ∈ K∞, clk(B0, N) ⊆ B1, b̄ ∈ lg(x̄)N , ψ(x̄) a
f.o. formula and k, k1 ∈ N and for every random enoughMn, for every b̄′ ∈
lg(x̄)(Mn) such that Mn�clk1(b̄′,Mn) |= ψ(b̄′), letting B′ = Mn�Rang(b̄′),
there is an embedding g of N into Mn such that:

(7) Here we even allow empty models.
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(i) g(b̄) = b̄′,
(ii) g(N) ∩ clk1(b̄′,Mn) = B′,
(iii) g(N)

⋃

B′
clk1(b̄′,Mn),

(iv) clk(g(B0),Mn) ⊆ g(B1) ∪ clk1(B′,Mn).

(2) We may write B0 instead of 〈B0, B1〉 if B1 = N .
(3) We say normally simply∗ good if (iv) is replaced by

(iv)′ clk1(B′,Mn) = g(clk(B0, N)) \B.

Definition 2.21. The 0-1 context with closure (K, cl) is (normally)
simply∗ almost nice if:

(A) for every k, l, l′ there are m∗ = m∗(k, l, l′), k∗ = k∗(k, l, l′), t =
t(k, l, l′), k0 = k0(k, l, l′), k1 = k1(k, l, l′) such that for every random enough
Mn we have: if ā ∈ l|Mn| and b ∈ Mn \ clk

∗,m∗(ā,Mn) then there are
B ⊆ clk

∗,m∗(ā,Mn) and B∗ ⊆Mn such that:

(α) |B| ≤ t, ā ⊆ B, clk1(B,Mn) ⊆ clk
∗,m∗(ā,Mn),

(β) B∗ ⊇ B ∪ [clk(āb,Mn) \ clk1(B,Mn)],
(γ) B <s B

∗ (so B∗ ∈ K∞) or at least there is B′ such that B <s B
′,

(B′, b, c̄) ≡l′ (B∗, b, c̄),

(δ) Mn�B∗
Mn⋃

B∗
Mn�clk1(B,Mn),

(ε) letting c̄ list the elements of B and

ψ(x̄) =
∧{ϕ(x̄) :Mn�clk1(c̄,Mn) |= ϕ(x̄) and q.d.(ϕ(x̄)) ≤ k0}

we have: (Mn�B∗, c̄, ψ(x̄), āb, k, k1) is (normally) simply∗ good
or at least for some B′, b′ we have:

(i) (B′, c̄, ψ(x̄), āb, k, k1) is (normally) simply∗ good,
(ii) (B∗, b, c̄) ≡l′ (B′, b, c̄).

Remark 2.22. We may restrict ψ, e.g. demand that it is Π1 (most nat-
ural in the cases we have).

Claim 2.23. In 2.17 we can replace simply by simply∗, i.e.:

(1) Assume that (K, cl) is simply∗ almost nice. Let ϕ(x̄) be a f.o. for-
mula. Then for some ψϕ(x̄) we have: for every random enough Mn and
ā ∈ lg(x̄)|Mn|,

(∗) Mn |= ϕ(ā) if and only if Mn�clkϕ(ā,Mn) |= ψϕ(ā).

(2) We have [ϕ ∈ Πn ⇒ ψϕ ∈ Πn], [ϕ ∈ Σn ⇒ ψϕ ∈ Σn].

Conclusion 2.24. (1) Assume that (K, cl) is (normally) simply∗ almost
nice. Then K satisfies the 0-1 law iff 〈Mn�clk,m(∅) : n < ω〉 satisfies the 0-1
law for any k, m.
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(2) Assume (K, cl) is simply∗ almost nice. Then K satisfies the conver-
gence law and the very weak 0-1 law iff for every k, m, 〈Mn�clk,m(∅) : n < ω〉
satisfies the convergence law and the very weak 0-1 law.

3. Further abstract closure context. The context below is not used
later so it can be skipped but it seems natural. In this section we are led
to deal with the 0-1 law holding for monadic second order logic (i.e. we
quantify over the sets). For this purpose we will use similar tools to those in
§2. Looking again at Definition 2.9 or 2.12(2)(A), we note that there is an
asymmetry: we try to represent clk,m(āb,Mn) and some C ⊆ clk

∗,m∗(ā,Mn)
as free amalgamation over some B, small enough (with a priori bound de-
pending on lg(ā) and k only, there C = clk(B,Mn)). Now this basis, B, of
free amalgamation is included in clk

∗,m∗(ā,Mn) so it is without elements
from clk,m(āb,Mn)\clk

∗,m∗(ā,Mn). Suppose we allow this and first we deal
with the case where Mn is a graph. Hence a member d of clk,m(āb,Mn)
may code a subset of clk

∗,m∗(ā,Mn): the set

{c ∈ clk
∗,m∗(ā,Mn) : the pair {c, d} is an edge}.

So though we are interested in f.o. formulas ϕ(x̄) saying about Mn, we
are drawn into having ψϕ(x̄), a formula saying about clkϕ,mϕ(x̄), which is
a monadic formula. Once we allow also three-place relations and more, we
have to use second order logic (but still we can say which quantifiers we
need because witnesses for the elimination will come from extensions of
the clk,m(ā,Mn)). For this elimination, thinking of an Mn, we need that
any possible kind of extension of clk,m(ā,Mn) occurs; so in the most natural
cases, |clk,m+1(ā,Mn)| may be with 2|clk,m(ā,Mn)| elements, so in the natural
case which we expect to be able to understand the situation is when there
|clk,m(ā,Mn)| < log∗(|Mn|). Still possibly clk,m+1(ā,Mn) is not larger than
clk,m(ā,Mn).

However there is a big difference between the monadic case (e.g. graph
where the relations coded on clk

∗,m∗(ā,Mn) by members of clk(āb,Mn) are
monadic) and the more general case. For monadic logic addition theorems
like 2.15 are known, but those are false for second order logic.

So we have good enough reason to separate the two cases. For readability
we choose here to generalize the “simply almost nice with K=K∞” case only.

Context 3.1. As in §2 for (K, cl).

Definition 3.2. (1) The 0-1 context with a closure operation, (K, cl), is
s.m.a. (simply monadically almost) nice if K = K∞, cl is transitive smooth
local transparent (see Definitions 2.3(3), 2.5(2),(3) and 2.9(4),(5)) and:

(A) for every k and l, there are r = r(k, l), k∗ = k∗(k, l) and t1 =
t1(k, l), t2 = t2(k, l) such that for every Mn random enough we
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have: if ā ∈ l(Mn), b ∈ Mn, clk(āb,Mn) * clk
∗
(ā,Mn) then

there are B∗, B1, B2 such that:

(α) ā ⊆ B1, clr(B1,Mn) ⊆ clk
∗
(ā,Mn) and |B1| ≤ t1, |B2 \B1|

≤ t2 − t1,
(β) B1 ⊆ B2, B2 ∩ clr(B1,Mn) = B1, |B2| ≤ t2, b ∈ B2,
(γ) B∗ ⊇ [clk(āb,Mn) \ clr(B1,Mn)] ∪ B2 and clk(āb,Mn) \

cl2(B1,Mn) ⊆ B∗ (hence clk(āb, B∗ ∪ cl2(B1,Mn)) =
clk(āb,Mn)),

(δ) Mn�B∗
Mn⋃

Mn�B2
Mn�(B2 ∪ clr(B1,Mn))

(also here
⋃

is the relation of being in free amalgamation),
(ε) if Q is a predicate from τK andMn |= Q(c̄), c̄ ⊆ clr(B1,Mn)
∪B2 then Rang(c̄)∩B2 ⊆ B1 or Rang(c̄)\B2 has at most one
member; if this holds we say B2 is monadic over clr(B1,Mn)
inside Mn,

(ζ) (B∗, B1, B2, ā, b, k, r) is m.good (see below, m stands for
monadically), so clearly B∗ ∈ K∞.

(2) We say (B∗, B1, B2, ā, b, k) is m.good when: B∗, B1, B2 ∈ K∞ and
B1 ≤ B2 ≤ B∗, ā ⊆ B1, b ∈ B2 and for every random enough Mn, and
f : B1 ↪→ Mn, and C1 ∈ K such that Mn�clr(f(B1),Mn) ⊆ C1, and
f+ : B2 ↪→ C1 extending f such that C1 = f+(B2) ∪ clr(f(B1),Mn)
and f+(B2) is monadic over clr(f(B1),Mn) inside C1 (see above, but not
necessarily C1 ⊆ Mn) there are g+ : C1 ↪→ Mn and g : B∗ ↪→ Mn such
that g�B2 = (g+ ◦ f+)�B2 and

g(B∗)
⋃

g(B2)
g+(C1) and clk(g(āb),Mn) ⊆ g(B∗) ∪ clr(g(B1),Mn).

(3) Assume E ⊆ {(C,B1, B2) : B1 ≤ B2 ≤ C ∈ K} is closed under
isomorphism. We say B2 is E-over D inside N if B2 ≤ N ∈ K, D ≤ N and
(N�(B2 ∪D), B2 ∩D,B2) ∈ E.

(4) We say (B∗, B1, B2, ā, b, k, r) is E-good when B∗, B1, B2 ∈ K∞ and
B1 ≤ B2 ≤ B∗, ā ⊆ B1, b ∈ B2 and for every random enough Mn and
f : B1 ↪→ C1 ∈ K extending f such that C1 = f+(B2) ∪ clr(f(B1),Mn)
and f+(B2) is E-over clr(f(B1),Mn) inside C1 (see above but not nec-
essarily C1 ⊆ Mn) there are g+ : C1 ↪→ Mn and g : B∗ ↪→ Mn such
that g�B2 = (g+ ◦ f+)�B2 and g(B∗)

⋃

g(B2)
g+(C1) and clk(g(āb),Mn) ⊆

g(B∗) ∪ clr(g(B1),Mn).
(5) We say K is s.E.a. nice if in 3.2(1) we replace clauses (ε), (ζ) by

(ε)′ B2 is E-over clr(B1,Mn) inside Mn,
(ζ)′ (B∗, B1, B2, ā, b, k, r) is E-good.
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(6) We say E is monadic if it is as in part (3) and (C,B1, B2) ∈ E implies

ā ∈ QC ⇒ (Rang(ā) ∩B2 ⊆ B1) ∨ (|Rang(ā) \B2| ≤ 1).

(7) We say E as in 3.2(3) is simply monadic if it is monadic and for any
B1 ≤ B2 ∈ K, letting

ΓB2 = {θ(y, b̄) : b̄ ⊆ B2 is with no repetition, θ(y, x̄) is a basic formula,

each variable actually appearing}
we have: the class

{(D,Rθ(y,b̄), c)θ(y,b̄)∈ΓB2 , c∈B1 : D ∈ K, B1≤D, Rθ(y,b̄) is a subset of D \B1,
there are C1, f such that: (C1, f(B1), f(B2))
∈ E, D ≤ C1 ∈ K, f : B2 ↪→ C1, f(B2)∩D =
B1, f�B1 = idB1 , and for θ(y, b̄) ∈ ΓB2 we
have Rθ(y,b̄) = {d ∈ D\B1 : C1 |= θ[d, f(b̄)]}}

is definable by a monadic formula (8).
(8) We say that cl is monadically definable for K if for each k, letting x̄ =

〈xl : l < k〉, for some monadic formula Θk(y, x) we have: y ∈ clk(x̄,Mn)⇔
Mn�clk(x̄,Mn) |= Θk(x̄, y) holds for every random enough Mn.

(9) We say that E is trivial if it is {(C,B1, B2) : C
⋃

B1
B2, B1≤B2 ≤ C}.

Lemma 3.3. Assume (K, cl) is s.E.a. nice and E is simply monadic and
cl is f.o. definable or at least monadically definable (see 3.2(7)). Then for
every f.o. formula ϕ(x̄) there are k and a monadic formula ψϕ(x̄) such
that :

(∗)ϕ(x̄) for every random enough Mn, for every ā ∈ lg(x̄)|Mn| we have

Mn |= ϕ(ā) ⇔ Mn�clk(ā,Mn) |= ψϕ(ā).

Discussion 3.4. Some of the assumptions of 3.3 are open to manipula-
tions; others are essential.

(1) As said above, the “monadic” is needed in order to use an addi-
tion theorem (see 3.5), the price of removing it is high: essentially above
we need that after finding the copy g(B2) realizing the required type over
clk(B1,Mn), we need to find g(B∗), or a replacement like B′ in the proofs in
§2 but only the validity of some formula ϕ(. . . , b, . . .)b∈B2 in B∗ is important.
Now what if the requirements on the type of g(B2) over clr(B1,Mn) are
not coded by some subsets of clr(B1,Mn) but e.g. by two-place relations on
clr(B1,Mn)? So naturally we allow quantification over two-place relations
in the formulas ψϕ(x̄). But then even though

(8) We can restrict ourselves to the cases C = clk(B,C).
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B∗
⋃

B2
clr(B1,Mn) ∪B2

not only the small formulas satisfied by (B2, b)b∈B1 are important but also
e.g. the answer to B∗ ∼= clr(B1,Mn).

It is natural to demand that all possibilities for the set of small formulas
in second order logic satisfied by B∗∪clr(B1,Mn) occur so this may include
cases where B∗ has to be of cardinality much larger than clk(ā,Mn). So we
do not formulate such a lemma. Of course some specific information may
help to control the situation. We may however consider adding (in 3.2) the
demand:

�s if Y ⊆ B∗ ∪ clr(B1,Mn) and Y ∩B∗ * B2, Y ∩ clr(B1,Mn) * B1,
then Y is not s-connected, that is, for some Y1, Y2, we have Y =
Y1 ∪ Y2, |Y1 ∩ Y2| ≤ s and

Y1
⋃

Y1 ∩ Y2

Y2 (i.e. Mn�Y1
⋃

Mn�Y1 ∩ Y2

Mn�Y2).

In this case we can allow e.g. quantification on two-place relations R such
that Mn�Dom(R) is not s-connected.

(2) If E is monadic but not simply monadic, not much is changed:
we should allow new quantifiers in ψϕ. Let C1 <E

B C2 if B ≤ C1 ≤
C2 and (C2, B,B ∪ (C2 \ C1)) ∈ E. We want the quantifier to say for
(C1, Rθ(y,b̄), c)θ(ȳ,b̄)∈Γ,c∈B that it codes C2 with C1 ≤E

B C2 where Γ =
ΓB∪(C2\C1), but then the logic should be defined such that we would be
able to iterate.

The situation is similar to the case where in §2, we have: cl is definable
or at least monadically definable.

(3) In 3.3 we essentially demand

(∗) for each t, for random enough Mn, for every B ⊆ Mn with |B|
≤ t, if Mn�clk(B,Mn) <E

B C then C is embeddable into Mn over
clk(B,Mn).

Of course we need this just for a dense set of such C’s, dense in the sense
that a monadic sentence is satisfied, just like the use of B ′ in 2.12. That is,
we may replace clause (3) of Definition 3.2(1)(A) by

(ζ)′ there is B′ such that (B′, c, b)c∈B2 ≡′l (B∗, c, b)c∈B2 and (B′, B1, B2,
ā, k) is m. good (and l′ large enough, e.g. quantifier depth of ψϕ1 in
the main case).

(4) As we have done in 2.16(2), 2.17(2), we can add that the number
of alternations of quantifiers of ϕ and the number of (possible) alternations
of monadic quantifiers of ψϕ are equal as long as the depth of the formulas
from “simply monadic” is not counted. (Always we can trivially increase
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the q.d. so we may ask about ψϕ with minimal number.) But for a specific
〈Mn : n < ω〉 we may get better. We can though look at minimal q.d. on
all cases then it should be trivial.

(5) Can we find a reasonable context where the situation from 3.3 and
3.4(1) above holds? Suppose we draw edges as here inM0

n and redraw in the
neighbourhood of each edge. Let us describe the drawing fully, for a model
on [n]. For each i < j from [n] we flip a coin Ei,j on whether we have (i, j)
as a pre-edge, with probability pni,j . If we succeed for Ei,j then for any pair
(i′, j′) from [n] we flip a coin Ei,j,i′,j′ with probability pni,j,i′,j′ . The flippings
are independent and finally for i′ < j′, (i′, j′) is an edge if and only if for
some i < j, (i, j) is a pre-edge, that is, we succeed in Ei,j and we also succeed
in Ei,j,i′,j′ . For our case let (α ∈ (0, 1)R is irrational):

Distribution 1.

pni,j = p|i−j| =
{

1/|i− j|α when |i− j| > 1,
1/2α if |i− j| = 1,

and pni,j,i′,j′ = 1/2|i−i
′|+|j−j′|.

Distribution 2. pni,j is as above and

pni,j,i′,j′ =
{

1/2|i−i
′|+|j−j′| if i = i′ ∨ j = j′,

0 otherwise.

Now distribution 2 seems to give us an example as in Lemma 3.3, dis-
tribution 1 fits the nonmonadic case. Distribution 1 will give us, for some
pre-edges (i, j), a lot of edges in their neighbourhood; of course for the av-
erage pre-edge there will be few. This gives us a lot of ≤i extensions in
that neighbourhood. We may wonder whether actually the 0-1 law holds. It
seems to me intuitively clear that for distribution 2 the answer is “yes”, for
distribution 1 the answer is “no”.

(6) Why we think that in distribution 1 from (5) the 0-1 law should
fail (in fact fails badly)? It seems to me that for distribution 1 we can find
A ⊆ B such that for every random enough Mn, for some f : A ↪→ Mn,
the number of g : B ↪→ Mn extending f is quite large, and on the set
of such g we can interpret an initial segment Nf of arithmetic even with
f(A) a segment, Nf in its neighbourhood. The problem is to compare such
Nf1 , Nf2 with possibly distinct parameters, which can be done using a path
of pre-edges from f1(A) to f2(A). But this requires further thoughts.

The case of distribution 2 should be similar to this paper.
We intend to return to this.
(7) If E is trivial, then the claim above becomes (a variant of) the main

claim in Section 2 (the variant fulfils promises there).
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Proof of 3.3. This proof is similar to that of Lemmas 2.16 and 2.17.
We say in the claim that ψϕ(x̄) or ψϕ(x̄), kϕ witness (∗)ϕ(x̄). We prove
the statement by induction on q.d.(ϕ(x̄)) and first note (by clause (d) of
Definition 2.2) that (∗)ϕ(x̄) ⇒ (∗)+

ϕ(x̄) where ψϕ(x̄) will be monadic logic
and

(∗)+
ϕ(x̄) for every random enough Mn, for every ā ∈ lg(x̄)(Mn) and N , if

Mn�clkϕ(ā,Mn) ⊆ N ⊆Mn then Mn |= ϕ[ā]⇔ N |= ψϕ[ā].

Case 1: ϕ(x̄) an atomic formula. Trivial.
Case 2: ϕ(x̄) a Boolean combination of atomic formulas and formu-

las ϕ(x̄) of the form (∃y)ϕ′(x̄, y), ϕ′ of quantifier depth < r, such that
(∗)(∃y)ϕ′(x̄,y) holds. Clearly follows by cases 3 and 1.

Case 3: ϕ(x̄) = (∃y)ϕ1(x̄, y). Let kϕ1 , ψϕ1 witness (∗)ϕ(x̄) of 3.3 and let
kϕ1 ψ2

ϕ1
witness that (∗)+

ϕ1(x̄) holds for it (for ϕ1). Let r = r(kϕ1, lg(x̄)),
k∗ = k∗(kϕ1 , lg(x̄)), t1 = t1(k, lg(x̄)) and t2 = t2(k, lg(x̄)) be as in Definition
3.2(1)(A), more exactly its 3.2(3) variant. Let kϕ be k∗.

It is enough to prove the following two statements:

Statement 1. There is a monadic formula ψ1
ϕ(x̄) such that :

(∗)1 for every random enough Mn and for every ā ∈ lg(x̄)|Mn| we have
(α)1 ⇔ (β)1 where:

(α)1 Mn�clk
∗
(ā,Mn) |= ψ1

ϕ(ā),
(β)1 Mn |= “there is b satisfying clkϕ1 (āb,Mn) ⊆ clk

∗
(ā,Mn) such

that ϕ1(ā, b) holds.”

Statement 2. There is a monadic formula ψ2
ϕ(x̄) such that :

(∗)2 for every random enough Mn and for every ā ∈ lg(x̄)|Mn| we have
(α)2 ⇔ (β)2 where:

(α)2 Mn�clk
∗
(ā,Mn) |= ψ2

ϕ(ā),
(β)2 Mn |= “there is b satisfying clkϕ1 (āb,Mn) * clk

∗
(ā,Mn) such

that ϕ1(ā, b) holds.”

(Note: (β)1, (β)2 are complementary, but it is enough that always at
least one holds.)

Note that as “y ∈ clk
∗
(x̄)” is monadically definable, by 3.2(7)(d) and by

the choice of kϕ we can in (α)2 replace clk
∗

by clkϕ , changing ψ2
ϕ to ψ2.5

ϕ ,
and similarly in (α)1 replace clk

∗
by clk

∗
ϕ changing ψ1

ϕ to ψ1.5
ϕ .

Clearly these two statements are enough and ψ1.5
ϕ (x̄) ∨ ψ2.5

ϕ (x̄) is as re-
quired.

Proof of Statement 1. Easy, by the induction hypothesis and by the fact
that the closure is sufficiently definable.
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Proof of Statement 2. We will use a series of equivalent statements ⊗l.
⊗1 is (β)2.
⊗2 There are b, B and B∗, B1, B2 such that: b ∈ Mn, clkϕ1 (āb,Mn) *

clk
∗
(ā,Mn), ā ⊆ B1 ⊆ clk

∗
(ā,Mn), clr(B1,Mn) ⊆ clk

∗
(ā,Mn),

|B1| ≤ t1, |B2| ≤ t2, |B2 \ B1| ≤ t2 − t1, B1 ≤ B2 ≤ B∗, b ∈ B2,
B∗ \B1 is disjoint from clr(B1,Mn) and (9) B1 ≤s B∗ ∈ K∞ and

B∗
Mn⋃

B2

B2 ∪ clr(B1,Mn)

and clkϕ1 (āb,Mn) \ cl2(B1,Mn) ⊆ B∗ (therefore we have clkϕ1 (āb,
B∗ ∪ cl2(B1,Mn)) = clkϕ1 (āb,Mn)) and (B∗, B1, B2, ā, b, k, r) is E-
good, and

⊕2 Mn |= ϕ1(ā, b).

We have

(∗)2 ⊗1 ⇔ ⊗2.

Why? The implication ⇐ is trivial, the implication ⇒ holds by clause (A)
in Definition 3.2.

Next, let

⊗3 like ⊗2 but with ⊕2 replaced by

⊕3 Mn�clkϕ1 (āb,Mn) |= ψϕ1(ā, b).

Then

(∗)3 ⊗2 ⇔ ⊗3.

Why? By the induction hypothesis, i.e. choice of kϕ1 , ψϕ1 .
Next, let

⊗4 like ⊗3 but with ⊕3 replaced by

⊕4 Mn�[B∗ ∪ clr(B1,Mn)] |= ψ2
ϕ1

(ā, b).

Then

(∗)4 ⊗3 ⇔ ⊗4.

Why? By (∗)+
ϕ1

being witnessed by ψ2
ϕ1

, kϕ1 (see the beginning of the proof),
the definition of B∗ and the choice of ψ2

ϕ1
.

For notational simplicity we assume B 6= ∅, and similarly assume ā is
with no repetition and apply Lemma 3.5 below with the vocabulary τK to
the case s = t2, z̄2 empty, z̄1 = 〈z1

1〉, z̄ = 〈z1, . . . , zt2〉, and ψ(z̄, z̄1, z̄2) =
ψ(z̄, z1

1) = ψ2
ϕ(〈z1, . . . , zlg(x̄)〉, z1

1) and get i∗, θ1
i (z̄, z̄

1) and θ2
i (z̄) for i < i∗ as

there.

(9) The B′ does not appear for simplicity of exposition only.
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Next, let

⊗5 like ⊗4 but with ⊕4 replaced by

⊕5 letting c1, . . . , ct2 list B2 possibly with repetitions but such that
{c1, . . . , ct1} = B1 and 〈c1, . . . , clg(x̄)〉 = ā, there is i < i∗ such
that:

(i) B∗ |= θ1
i [〈c1, . . . , ct2〉, b],

(ii) Mn�(B2 ∪ clk(B1,Mn)) |= θ2
i [〈c1, . . . , ct2〉].

Now

(∗)5 ⊗4 ⇔ ⊗5.

Why? By the choice of θ1
i , θ

2
i (i < i∗).

Let P={(N, c1, . . . , ct2) :N ∈ K∞, with the set of elements {c1, . . . , ct2}}.
Let {(Nj, c

j
1, . . . , c

j
t2

) : j < j∗} list the members of P up to isomorphism,
so with no two isomorphic. For every j < j∗ and i < i∗ choose if possible
(Nj,i, c

j
1, . . . , c

j
t2 , b

j
i ) such that:

(i) Nj ≤s Nj,i (in K∞),
(ii) bji ∈ Nj,i \Nj ,

(iii) Nj,i |= θ1
i (〈cj1, . . . , cjt2〉, b

j
i ),

(iv) (Nj,i, {cj1, . . . , cjt1}, {c
j
1, . . . , c

j
t2}, {c

j
1, . . . , c

j
lg(x̄), b

j
i}, k) is E-good.

Let

w = {(i, j) : i < i∗, j < j∗ and (Nj,i, c
j
1, . . . , c

j
t , b

j
i ) is well defined}.

Let Γ = {θ(y, x̄) : θ is a basic formula, x̄ ⊆ {x1, . . . , xt2}}.
As E is simply monadic (see Definition 3.2(7)) we have: for some monadic

formula θ3
i , if {d1, . . . , dt1} ≤ C ∈ K and Γ := {θ(y, . . . , xi(l), . . .)l<l(∗) : θ an

atomic formula for τK, every variable actually appears and i(l)∈{1, . . . , t2}},
then the following are equivalent:

(a) There are subsets Rθ of C for θ ∈ Γ and there are C1, dt (t = t1 + 1,
. . . , t2) satisfying Rϕ(y,x̄) ⊆ C and C ≤ C1 ∈ K, C1 \ C = {dt1+1, . . . , dt2},
and

Rθ(y,...,xi,...) = {e ∈ C : C1 |= θ[e, . . . , di, . . .]} for θ(y, . . . , xi, . . .) ∈ Γ
and C1 |= θ2

i [d1, . . . , dt2].
(b) C |= θ3

i [d1, . . . , dt1 ].

Let

⊗6 There are b, B1 such that: b ∈Mn, clkϕ1 (āb,Mn) * clk
∗
(ā,Mn), ā ⊆

B1 ⊆ clk
∗
(ā,Mn), clr(B1,Mn) ⊆ clk

∗
(ā,Mn), |B| ≤ t1(kϕ1, lg(x̄)),

and
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⊗6 for some c1, . . . , ct1 listing B1 such that ā = 〈c1, . . . , clg(x̄)〉 there
are i < i∗, j < j∗ such that:

(i) (Mn�B1, c1, . . . , ct1) ∼= (Nj , c
j
1, . . . , c

j
t1), i.e. the mapping

cj1 7→ c1, cj2 7→ c2 embeds Nj into Mn,
(ii) Mn�clr(B1,Mn) |= θ3

i (〈c1, . . . , ct1〉).
Then

(∗)6 ⊗5 ⇔ ⊗6.

Why? To prove ⊗5 ⇒ ⊗6 let c1, . . . , ct2 as well as i < i∗ be as in ⊕5, and let
j < j∗ be such that (Mn�B1, c1, . . . , ct1) ∼= (Nj , c

j
1, . . . , c

j
t1). A main point is

that B∗ exemplifies that (i, j) ∈ w.
To prove ⊗6 ⇒ ⊗5 use part (B) of Definition 2.9.
Now we have finished as ⊗6 can be expressed as a monadic formula

straightforwardly. So we have carried out the induction step on the quantifier
depth, thus finishing the proof. 3.3

The following is the parallel of 2.15 for monadic logic (see Gurevich [Gu],
more [Sh 463]).

Lemma 3.5. For a finite vocabulary τ and a monadic formula (in the
vocabulary τ) ψ(z̄, z̄1, z̄2), z̄ = 〈z1, . . . , zs〉, there are i∗ ∈ N and monadic
τ -formulas θ1

i (z̄, z̄
1) = θ1

i,ψ(z̄, z̄1), θ2
i (x̄, z̄) = θ2

i,ψ(z̄, z̄2) for i < i∗, each of
quantifier depth at most that of ψ, such that if

N1
N⋃

N0

N2, N1 ∩N2 = N0, N1 ∪N2 = N

and the set of elements of N0 is {c1, . . . , cs}, c̄ = 〈c1, . . . , cs〉 and c̄1 ∈
lg(z̄1)(N1) and c̄2 ∈ lg(z̄2)(N2), then

N |= ψ[c̄, c̄1, c̄2] iff for some i < i∗, N1 |= θ1
i [c̄, c̄

1] and N2 |= θ2
i [c̄, c̄

2].
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