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Abstract. Little is known about the global topology of the Fatou set U(f) for holo-
morphic endomorphisms f : CPk → CPk, when k > 1. Classical theory describes U(f)
as the complement in CPk of the support of a dynamically defined closed positive (1, 1)
current. Given any closed positive (1, 1) current S on CPk, we give a definition of linking
number between closed loops in CPk \ suppS and the current S. It has the property that
if lk(γ, S) 6= 0, then γ represents a non-trivial homology element in H1(CPk \ suppS).

As an application, we use these linking numbers to establish that many classes of
endomorphisms of CP2 have Fatou components with infinitely generated first homology.
For example, we prove that the Fatou set has infinitely generated first homology for
any polynomial endomorphism of CP2 for which the restriction to the line at infinity is
hyperbolic and has disconnected Julia set. In addition we show that a polynomial skew
product of CP2 has Fatou set with infinitely generated first homology if some vertical Julia
set is disconnected. We then conclude with a section of concrete examples and questions
for further study.

1. Introduction. Our primary interest in this paper is the topology
of the Fatou set for holomorphic endomorphisms of CPk (written as Pk in
the remainder of the paper). We develop a type of linking number that in
many cases allows one to conclude that a given loop in the Fatou set is
homologically non-trivial. One motivation is to find a generalization of the
fundamental dichotomy for polynomial (or rational) maps of the Riemann
sphere: the Julia set is either connected, or has infinitely many connected
components. Further, this type of result paves the way to an exploration of
a potentially rich algebraic structure to the dynamics on the Fatou set.

Given a holomorphic endomorphism f : Pk → Pk, the Fatou set U(f) is
the maximal open set on which the iterates {fn} form a normal family. The
Julia set J(f) is the complement, J(f) = Pk \ U(f). The standard theory
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[FS3, HP1, U] gives a convenient description of these sets in terms of the
Green’s current T . Specifically, T is a dynamically defined closed positive
(1, 1) current with the property that J(f) = suppT . We provide relevant
background about the Green’s current in Section 2. Throughout this paper
we assume the degree of f is at least two (i.e. that the components of a lift
of f to Ck+1, with no common factors, have degree at least two).

Motivated by this description of the Fatou set, in Section 3 we define a
linking number lk(γ, S) between a closed loop γ ⊂ Pk \ suppS and a closed
positive (1, 1) current S. In Proposition 3.2 we will show that it depends
only on the homology class of γ, and that it defines a homomorphism

lk(·, S) : H1(Pk \ suppS)→ R/Z.

In particular, a non-trivial linking number in R/Z proves that the homology
class of γ is non-trivial. The techniques are based on a somewhat similar
theory in [Ro].

This linking number can also be restricted to loops within any open
Ω ⊂ Pk \ suppS, giving a homomorphism lk(·, S) : H1(Ω) → R/Z. If Ω
is the basin of attraction for an attracting periodic point of a holomorphic
endomorphism f : Pk → Pk and S is the Green’s current, we will show in
Proposition 3.8 that the image of this homomorphism is contained in Q/Z.
This provides a natural setting to show that, under certain hypotheses, the
Fatou set U(f) has infinitely generated first homology:

Theorem 1.1. Suppose that f : Pk → Pk is a holomorphic endomor-
phism and Ω ⊂ U(f) is a union of basins of attraction of attracting periodic
points for f . If there are c ∈ H1(Ω) with linking number lk(c, T ) 6= 0 arbi-
trarily close to 0 in Q/Z, then H1(Ω) is infinitely generated.

(We prove Theorem 1.1 in Section 3.) In our applications, we often find
a piecewise smooth loop γ0 with non-trivial linking number, and then take
an appropriate sequence of iterated preimages γn under fn so that lk(γn, T )
→ 0 in Q/Z.

In order to apply this theory to specific examples, one needs a detailed
knowledge of the geometry of the Green’s current T . In the second half of
the paper we consider two situations in which it can be readily applied to
provide examples of endomorphisms f of P2 having Fatou set U(f) with
infinitely generated homology.

The first situation is for polynomial endomorphisms of P2, that is, holo-
morphic maps of P2 that are obtained as the extension a polynomial map
f(z, w) = (p(z, w), q(z, w)) on C2. Such mappings (and their generalizations
to Pk) were studied in [BJ]. Given a polynomial endomorphism f : P2 → P2,
the line at infinity, denoted by Π, is totally invariant and superattracting.
Therefore the restriction of T to Π can be understood using the dynamics of
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the resulting rational map of f|Π and its Julia set JΠ . In Section 4 we prove
the following theorem.

Theorem 1.2. Suppose that f is a polynomial endomorphism of P2 with
restriction f|Π to the line at infinity Π. If f|Π is hyperbolic and JΠ is dis-
connected, then the Fatou set U(f) has infinitely generated first homology.

This theorem provides for many examples of polynomial endomorphisms
f of P2 with interesting homology of U(f). We present one concrete family
in Example 4.6.

We then consider the special family of polynomial endomorphisms known
as polynomial skew products. While Theorem 1.2 applies to certain polyno-
mial skew products, we develop additional sufficient criteria for U(f) to have
interesting homology.

A polynomial skew product is a polynomial endomorphism having the
form f(z, w) = (p(z), q(z, w)), where p and q are polynomials. We assume
that deg(p) = deg(q) = d and p(z) = zd + O(zd−1) and q(z, w) = wd +
Oz(wd−1), where we have normalized the leading coefficients. Since f pre-
serves the family of vertical lines {z}×C, one can analyze f via the collection
of one variable fiber maps qz(w) = q(z, w), for each z ∈ C. In particular, one
can define fiberwise filled Julia sets Kz and Julia sets Jz := ∂Kz with the
property that w ∈ C \Kz if and only if the orbit of (z, w) escapes vertically
to a superattracting fixed point [0 : 1 : 0] at infinity.

For this reason, polynomial skew products provide an accessible general-
ization of one variable dynamics to two variables and have been previously
studied by many authors, including Jonsson in [J2] and DeMarco, together
with the first author of this paper, in [DHr]. In Section 5 we provide the
basic background on polynomial skew products and prove:

Theorem 1.3. Suppose f(z, w) = (p(z), q(z, w)) is a polynomial skew
product.

• If Jz0 is disconnected for any z0 ∈ Jp, then W s([0 : 1 : 0]) has infinitely
generated first homology.
• Otherwise, W s([0 : 1 : 0]) is homeomorphic to an open ball.

The first statement is obtained by using Theorem 1.1, while the second is
obtained using Morse Theory.

For any endomorphism of P2 there is also the measure of maximal entropy
µ = T ∧ T . Thus another candidate for the name “Julia set” is J2 := suppµ.
The Julia set that is defined as the complement of the Fatou set is sometimes
denoted by J1, to distinguish it from J2.

The condition from Theorem 1.3 that, for some z0 ∈ C, Jz0 is discon-
nected might seem somewhat unnatural. A seemingly more natural condition
might be that J2 is disconnected, since for polynomial skew products it is
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known (see [J2]) that J2 =
⋃
z∈Jp Jz. However, in Example 6.1 we present

certain polynomial skew products with J2 connected, but with the Fatou set
having infinitely generated first homology. (These examples are obtained by
applying Theorem 1.3 to examples from [J2] and [DHr].) In fact, some of
these examples persist over an open set within a one-variable holomorphic
family of polynomial skew products. Therefore, for polynomial skew prod-
ucts, connectivity of the fiber Julia sets Jz is at least as important as the
connectivity of J2 to understanding the homology of the Fatou set.

In Section 6.2 we provide an example of a family of polynomial skew
products fa depending on a single complex parameter a with the following
property: if a is in the Mandelbrot set M, then the Fatou set U(fa) is
homeomorphic to the union of three open balls, while if a is outside of M
then H1(U(fa)) is infinitely generated.

Since neither of the sufficient conditions from Theorems 1.2 and 1.3 ex-
tend naturally to general endomorphisms of Pk, it remains a mystery what is
an appropriate condition for an endomorphism to have non-simply connected
Fatou set. We conclude Section 6, and this paper, with a discussion of a few
potential further applications of the techniques of this paper to holomorphic
endomorphisms of Pk.

2. The Green’s current T . We provide a brief reminder of the prop-
erties of the Green’s current that will be needed later in this paper. We refer
the reader who would like to see more details to [FS3, HP1, U]. While the
following construction works more generally for generic (algebraically stable)
rational maps having points of indeterminacy, we restrict our attention to
globally holomorphic maps of Pk.

Suppose that f : Pk → Pk is holomorphic and that the Jacobian of f does
not identically vanish on Pk. Then f lifts to a polynomial map F : Ck+1 →
Ck+1 each of whose coordinates is a homogeneous polynomial of degree d
and so that the coordinates do not have a common factor. It is a theorem
that

G(z) = lim
n→∞

1
dn

log ‖Fn(z)‖(2.1)

converges to a plurisubharmonic (1) function G : Ck+1 → [−∞,∞) called
the Green’s function associated to f . Since f is globally well-defined on Pk
we have F−1(0) = 0. It has been established that G is Hölder continuous
and locally bounded on Ck+1 \ {0}.

If π : Ck+1 \ {0} → Pk is the canonical projection, there is a unique
positive closed (1, 1) current T on Pk satisfying π∗T = (2π)−1ddcG. (This

(1) We will often use the abbreviation PSH in place of plurisubharmonic and we use
the convention that PSH functions cannot be identically equal to −∞.
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normalization is not uniform—many authors do not divide by 2π.) More
explicitly, consider any open set V ⊂ Pk that is “small enough” so that a
holomorphic section σ : V → Ck+1 of π exists. Then, on V , the current T is
given by T = (2π)−1ddc(G ◦ σ). By choosing appropriate open sets covering
Pk and sections of π on each of them, the result extends to all of Pk producing
a single closed positive (1, 1) current on Pk independent of the choice of open
sets and sections used. See [S, Appendix A.4]. By construction, the Green’s
current satisfies the invariance f∗T = d ·T . (See Section 3.3 for the definition
of the pull-back f∗T .)

Recall that the Fatou set U(f) is the maximal open set in Pk where the
family of iterates {fn} form a normal family and that the Julia set of f is
given by J(f) = Pk \ U(f). A major motivation for studying the Green’s
current is the following.

Theorem 2.1. Let f : Pk → Pk be a holomorphic endomorphism and let
T be the Green’s current corresponding to f . Then J(f) = suppT .

See, for example, [FS3, Proposition 4.5] or [U, Theorem 2.2].

Remark 2.2. If f is a polynomial endomorphism, another form of
Green’s function, given by

Gaffine(z) = lim
1
dn

log+ ‖fn(z)‖(2.2)

is often considered in the literature. (Here log+ = max{log, 0}.) The result
is again a PSH function G : Ck → [0,∞).

We can relate Gaffine to G in the following way. Consider the open set
V = Ck ⊂ Pk. Using the section σ(z1, . . . , zk) = (z1, . . . , zk, 1), we find
Gaffine(z1, . . . , zk) = G ◦ σ(z1, . . . , zk) because ‖F k ◦ σ‖ only differs from
‖fk‖ by a bounded amount for each iterate k.

Therefore, if f is a polynomial endomorphism of Pk, one can compute T
on Ck using the formula T = (2π)−1ddcGaffine.

Remark 2.3. Note that formulae (2.1) and (2.2) are independent of
the norm ‖ · ‖ that is used since any two norms are equivalent up to a
multiplicative constant.

Remark 2.4. When k = 1, the resulting Green’s current is precisely the
measure of maximal entropy µf whose support is the Julia set J(f) ⊂ P1.
If f is a polynomial, then µf also coincides with the harmonic measure on
K(f), taken with respect to the point at infinity.

3. Linking with a closed positive (1, 1) current in Pk. Suppose
that S is an (appropriately normalized) closed positive (1, 1) current on
Pk and γ ⊂ Pk \ suppS is a piecewise smooth closed loop. We will define
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a linking number lk(γ, S) ∈ R/Z, depending only on the homology class
[γ] ∈ H1(Pk \ suppS).

3.1. Classical linking numbers in S3. Classically one considers the
linking number of two oriented loops c and d in S3. The linking number
lk(c, d) ∈ Z is found by taking any oriented surface Γ with oriented boundary
c and defining lk(c, d) to be the signed intersection number of Γ with d as
in Figure 3.1. For this and many equivalent definitions of linking number in
S3 see [Rl, pp. 132–133], [BoT, pp. 229–239], and [M2, Problems 13 and 14].

Γ

c

d

Fig. 1. Here lk(c, d) = +2.

To see that this linking number is well-defined notice that assigning
lk(c, d) = [Γ ] · [d], where · indicates the intersection product on H∗(S3, c),
coincides with the classical definition. (For background on the intersection
product on homology, see [Bd, pp. 366–372].) If Γ ′ is any other 2-chain with
∂Γ ′ = c then ∂(Γ − Γ ′) = [c] − [c] = 0 and Γ − Γ ′ represents a homology
class in H2(S3). Since H2(S3) = 0, [Γ − Γ ′] = 0, forcing [Γ − Γ ′] · [d] = 0.
Therefore [Γ ] · [d] = [Γ ′] · [d], so that lk(c, d) is well-defined.

3.2. Generalization. Given any closed positive (1, 1) current S on Pk
and any piecewise smooth 2-chain σ in Pk with ∂σ disjoint from suppS, we
can define

〈σ, S〉 =
�

σ

ηS

where ηS is a smooth approximation of S within its cohomology class in Pk−
∂σ (see [GHr, pp. 382–385]). The resulting number 〈σ, S〉 will depend only
on the cohomology class of S and the homology class of σ within H2(Pk, ∂σ).
(Note that if S is already a smooth form, one need not require that ∂σ be
disjoint from suppS.)

Notice that H2(Pk) is generated by the class of any complex projective
line L ⊂ Pk. Since S is non-trivial, 〈L, S〉 6= 0, so that after an appropriate
rescaling we can assume that 〈L, S〉 = 1. In the remainder of the section
we assume this normalization. (It is satisfied by the Green’s current from
Section 2.)

What made the linking numbers in S3 well-defined, independent of the
choice of Γ , is that H2(S3) = 0. One cannot make the immediately analogous
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definition that lk(γ, S) = 〈Γ, S〉 in Pk, since H2(Pk) 6= 0 implies that 〈Γ, S〉
can depend on the choice of Γ . For example, given Γ with ∂Γ = γ then
∂Γ ′ = γ for Γ ′ = Γ + L, but 〈Γ ′, S〉 − 〈Γ, S〉 = 〈L, S〉 = 1 6= 0.

There is a simple modification: Given any Γ and Γ ′ both with boundary γ,
[Γ ′ − Γ ] ∈ H2(Pk) so that [Γ ′ − Γ ] ∼ k · [L] for some k ∈ Z. Since S is
normalized, this gives that 〈Γ ′, S〉 = 〈Γ, S〉 (mod 1).

Definition 3.1. Let S be a normalized closed positive (1, 1) current on
Pk and let γ be a piecewise smooth closed curve in Pk \ suppS. We define
the linking number lk(γ, S) by

lk(γ, S) := 〈Γ, S〉 (mod 1)

where Γ is any piecewise smooth 2-chain with ∂Γ = γ.

Unlike linking numbers between closed loops in S3, it is often the case that
〈Γ, S〉 6∈ Z, resulting in non-zero linking numbers (mod 1). See Subsection
3.4 for an explicit example.

Proposition 3.2. If γ1 and γ2 are homologous in H1(Pk \ suppS), then
lk(γ1, S) = lk(γ2, S).

Proof. Let Γ be any piecewise smooth 2-chain contained in Pk \ suppS
with ∂Γ = γ1−γ2. Then, since Pk\suppS is open and Γ is a compact subset,
Γ is bounded away from the support of S. Consequently, for any smooth
approximation ηS of S supported in a sufficiently small neighborhood of S,
we have lk(γ1, S)− lk(γ2, S) =

	
Γ ηT = 0.

Corollary 3.3. If γ ∈ Pk \ suppS with lk(γ, S) 6= 0, then γ is a homo-
logically non-trivial loop in Pk \ suppS.

Since lk(γ, S) depends only on the homology class of γ, and the pairing
〈·, S〉 is linear in the space of chains σ (having ∂σ disjoint from suppS), the
linking number descends to a homomorphism

lk(·, S) : H1(Pk \ suppS)→ R/Z.

Similarly lk(·, S) : H1(Ω)→ R/Z for any open Ω ⊂ Pk \ suppS.

Remark 3.4 (Topological versus geometric linking numbers). The clas-
sical linking number, and also Definition 3.1, depend only on the homology
class of the loop γ (in the complement of some other loop of the support of
some current, respectively).

A linking number depending on the geometry of γ is given by

l̂k(γ, S) := 〈Γ, S −Ω〉 ∈ R,

where ∂Γ = γ and Ω is (the normalization of) the Kähler form defining the
Fubini–Study metric on Pk. Given any Γ and Γ ′ both having boundary γ we
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have 〈Γ −Γ ′, S−Ω〉 = 0, since S and Ω are cohomologous. (In the language
of [Ro, p. 132], we say that S −Ω is in the “linking kernel of Pk”.)

Because suppΩ = Pk, the statement of Proposition 3.2 does not apply.
Rather, l̂k(γ, S) depends on the geometry of γ ⊂ Pk \ suppS. In fact, similar
linking numbers were used in [HvL1, HvL2] to determine if a given real-
analytic γ has the appropriate geometry to be the boundary of a positive
holomorphic 1-chain (with bounded mass).

Remark 3.5 (Other manifolds). Suppose that M is some other com-
pact complex manifold with H2(M) of rank k, generated by σ1, . . . , σk.
If 〈σ1, S〉, . . . , 〈σk, S〉 are rationally related, then S can be appropriately
rescaled so that Definition 3.1 provides a well-defined linking number be-
tween any piecewise smooth closed curve γ ∈ M \ suppS and S. If H2(M)
has rank k > 1, this provides a rather restrictive cohomological condition on
S. (It is similar to the restriction of being in the “linking kernel” described
in [Ro].)

3.3. Invariance and restriction properties of 〈·, ·〉. Suppose that
Ω,Λ are open subsets of Cj and Ck, and f : Ω → Λ is a (possibly ramified)
analytic mapping. Let S be a closed positive (1, 1) current given on Λ by
S = ddcu for some PSH function u. If f(Ω) is not contained in the polar
locus of u, then the pull-back of S under f is defined by pulling back the
potential: f∗(S) := ddc(u ◦ f). Since u ◦ f is not identically equal to −∞,
it is also a PSH function, and f∗(S) is a well-defined closed positive (1, 1)
current.

Suppose that M and N are complex manifolds and that S is a closed
positive (1, 1) current on N . If f : M → N is a holomorphic map with f(M)
not entirely contained in the polar locus of S, then the pull-back f∗S can be
defined by taking local charts and local potentials for S. See [S, Appendix
A.7] and [HP1, pp. 330–331] for further details.

Proposition 3.6. Suppose that S is a closed positive (1, 1) current on
N and f : M → N , with f(M) not contained in the polar locus of S. If σ
is a piecewise smooth 2-chain in M with ∂σ disjoint from supp f∗S, then
〈f∗σ, S〉 = 〈σ, f∗S〉.

Proof. Since f(M) is not contained in the polar locus of S, f∗S is well-
defined. Since ∂σ is disjoint from supp f∗S, ∂f(σ) is disjoint from suppS. Let
ηS be a smooth approximation of S in the same cohomology class as S and
having support disjoint from ∂f(σ). Then 〈f∗σ, S〉 =

	
f∗σ

ηS =
	
σ f
∗ηS =

〈σ, f∗S〉, since f∗ηS is a smooth approximation of f∗S.

In the case thatM is an analytic submanifold of N not entirely contained
in the polar locus of S, the restriction of S to M is defined by S|M := ι∗S,
where ι : M → N is the inclusion. When computing linking numbers, we
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will often choose Γ within some one-complex dimensional curve M in N ,
with M not contained in the polar locus of S. In that case S|M is a positive
measure on M and we can use the following:

Corollary 3.7. Let S be a positive closed (1, 1) current on N , and M
be an analytic curve in N that is not entirely contained in the polar locus
of S. If Γ is a piecewise smooth 2-chain in M with ι(∂Γ ) disjoint from
suppS, then

〈ι(Γ ), S〉 =
�

Γ

S|M .(3.1)

Proof. Proposition 3.6 gives 〈ι(Γ ), S〉 ≡ 〈ι∗Γ, S〉 = 〈Γ, ι∗S〉 = 〈Γ, S|M 〉.
Any positive (1, 1) current on M is a positive measure. Thus,

	
Γ S|M is

defined, and coincides with the result obtained by first choosing a smooth
approximation to S|M . Thus 〈Γ, S|M 〉 =

	
Γ S|M .

In the remainder of the paper, we will not typically distinguish between
Γ and ι(Γ ).

3.4. Linking with the Green’s current. We conclude the section with
some observations specific to the Green’s current T , including the proof of
Theorem 1.1, as well as an example illustrating the definitions given above.
It is worth noting that the Green’s current has empty polar locus, since G
is locally bounded on Ck+1 \ {0}, so that the hypotheses of Proposition 3.6
and Corollary 3.7 are easy to check.

Proposition 3.8. Suppose that f : Pk → Pk, W s(ζ) ⊂ U(f) is the basin
of attraction of some attracting periodic cycle ζ, and T is the Green’s current
of f . Then

lk(·, T ) : H1(W s(ζ))→ Z[1/d]/Z ⊂ Q/Z.

Proof. Suppose that ζ is of period N . Then the basin of attractionW s(ζ)
contains a union of small open balls B0, . . . , BN−1 centered at each point
ζ, . . . , fN−1(ζ) of the orbit ζ. Since H1(W s(ζ)) is generated by the classes of
piecewise smooth loops, it is sufficient to consider a single such loop γ. Since
γ is a compact subset of W s(ζ), there is some n such that fn(γ) is contained
in
⋃
Bi, implying that fn(γ) has trivial homology class in H1(W s(ζ)). In

particular, lk(fn(γ), T ) = 0 (mod 1), so that for any Γ with ∂Γ = γ we have
〈fn(Γ ), T 〉 = k for some integer k.

Recall that f∗T = dT , where d is the algebraic degree of f . Proposi-
tion 3.6 gives that k = 〈fn(Γ ), T 〉 = 〈Γ, (f∗)nT 〉 = dn〈Γ, T 〉. In particular,
lk(γ, T ) ≡ k/dn (mod 1).

Together with Proposition 3.8, Theorem 1.1 presents a general strategy
for showing that H1(U(f)) is infinitely generated.
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Proof of Theorem 1.1. Since Ω is a union of basins of attraction for
attracting periodic points of f , Proposition 3.8 gives that lk(·, T ) : H1(Ω)→
Q/Z. There are homology classes c ∈ H1(Ω) with lk(c, T ) 6= 0 arbitrarily
close to zero, so, since lk(·, T ) is a homomorphism, the image of lk(·, T ) :
H1(Ω) → Q/Z is dense in Q/Z. Because any dense subgroup of Q/Z is
infinitely generated, the image of lk(·, T ) is infinitely generated, henceH1(Ω)
is as well.

Example 3.9. Consider the polynomial skew product (z, w) 7→ (z2, w2+
0.3z), for which the Fatou set consists of the union of the basins of attraction
for three superattracting fixed points: [0 : 1 : 0], [0 : 0 : 1], and [1 : 0 : 0]. In
Figure 2 we show a computer generated image of the intersection of W s([0 :
1 : 0]) (lighter grey) and W s([0 : 0 : 1]) (dark grey) with the vertical line
z = z0 = 0.99999. In terms of the fiberwise Julia sets that were mentioned
in the introduction, Kz0 is precisely the closure of the dark grey region and
Jz0 is its boundary.

Γ2

γ
Γ1

Fig. 2. Both choices Γ1 (inside of γ) and Γ2 (outside of γ) yield the same lk(γ, T ).

We will see in Proposition 5.1 that T |z=z0 is precisely the harmonic mea-
sure on Kz0 . Using this knowledge, and supposing that the computer image



Linking with the Green’s current 83

is accurate, we illustrate how the above definitions can be used to show that
the smooth loop γ shown in the figure represents a non-trivial homology
class in H1(W s([0 : 1 : 0])).

Suppose that we use the 2-chain Γ1 that is depicted in the figure to com-
pute lk(γ, T ). The harmonic measure on Kz0 is supported in Jz0 and equally
distributed between the four symmetric pieces with total measure of Kz0

being 1. Therefore (using Corollary 3.7) we see that lk(γ, T ) =
	
Γ1
T |z=z0 =

1/4 (mod 1), because Γ1 covers exactly one of these four pieces of Kz0 .
If instead we use Γ2, the disc “outside of γ” within the projective line z =

z0 with the orientation chosen so that ∂Γ2 = c as depicted, then lk(γ, T ) =	
Γ2
T |z=z0 = −3/4 (mod 1) (because Γ2 covers three of the four symmetric

pieces of Kz0 , but with the opposite orientation than that of Γ1). However,
−3/4 (mod 1) = 1/4 (mod 1), so we see that the computed linking number
does come out the same.

Since lk(γ, T ) 6= 0 (mod 1), Corollary 3.3 gives that it is impossible to
have any 2-chain Λ within W s([0 : 1 : 0]) (even outside of the vertical line
z = z0) such that ∂Λ = c. Thus [γ] 6= 0 ∈ H1(W s([0 : 1 : 0])).

4. Application to polynomial endomorphisms of P2. Now that we
have developed the linking numbers in Section 3, Theorem 1.2 will be a
consequence of the following well-known result:

Theorem 4.1 ([Be, Thm. 5.7.1]). Let g : P1 → P1 be a rational map.
Then, if J(g) is disconnected, it contains uncountably many components,
and each point of J(g) is an accumulation point of infinitely many distinct
components of J(g).

Let us begin by studying the Fatou set of one-dimensional maps:

Proposition 4.2. If g : P1 → P1 is a hyperbolic rational map with
disconnected Julia set J(g), then the Fatou set U(g) has infinitely generated
first homology.

Remark 4.3. When reading the proof of Proposition 4.2, it is helpful to
keep in mind two examples. The first is the polynomial r(z) = z3 − 0.48z +
(0.706260+0.502896i) for which one of the critical points escapes to infinity,
while the other is in the basin of attraction for a cycle of period 3. The result
is a filled Julia set with infinitely many non-trivial connected components,
each of which is homeomorphic to Douady’s rabbit. (See [M3].)

The second example are maps of the form f(z) = zn + λ/zh, which were
considered in [Mc]. For suitable n, h, and λ the Julia set is a Cantor set of
nested simple closed curves.

Proof of Proposition 4.2. Since g is hyperbolic, U(g) consists of the basins
of attraction of finitely many attracting periodic points. Therefore, according



84 S. L. Hruska and R. K. W. Roeder

to Theorem 1.1, it is sufficient to find elements of H1(U(g)) having non-zero
linking numbers with T = µg that are arbitrarily close to 0.

Theorem 4.1 will allow us to find a sequence of piecewise smooth 2-chains
Γ1, Γ2, . . . such that 0 < 〈Γn−1, µG〉 < 〈Γn, µG〉 < 1 and ∂Γn ⊂ U(g), as
follows.

For each n, Γn will be a union of disjoint positively oriented closed discs
in P1, each counted with weight one. Since J(g) is disconnected, we can find
a piecewise smooth oriented loop γ1 ⊂ U(g) that separates J(g). Let Γ1 be
the positively oriented disc in P1 having γ1 as its oriented boundary. Since
µg is normalized and γ1 separates J(g) = suppµg, we have 0 < 〈Γ1, µg〉 < 1.
Now suppose that Γ1, . . . , Γn−1 have been chosen. Since 〈Γn−1, µg〉 < 1, we
have J(g) ∩ (P1 \ Γn−1) 6= ∅. Then according to Theorem 4.1, there is more
than one component of J(g)∩ (P1 \Γn−1), so we can choose an oriented loop
γn ⊂ U(g)∩ (P1 \Γn−1) so that at least one component of J(g)∩ (P1 \Γn−1)
is on each side of γn. Then we let Γn be the union of oriented discs in P1

consisting of the points inside of γn and any discs from Γn−1 that are not
inside of γn.

Considering the homology class [∂Γn − ∂Γn−1] ∈ H1(U(g)) we find that

lk([∂Γn − ∂Γn−1], µg) = 〈Γn, µG〉 − 〈Γn−1, µG〉 (mod 1)

is non-zero for each n. However, since∑
n

(〈Γn, µG〉 − 〈Γn−1, µG〉)

is bounded by 1, we have lk([∂Γn − ∂Γn−1], µg) → 0 in Q/Z. Theorem 1.1
then gives that H1(U(g)) is infinitely generated.

Let f : P2 → P2 be a polynomial endomorphism given in projective
coordinates by

f([Z : W : T ]) = [P (Z,W, T ) : Q(Z,W, T ) : T d].(4.1)

Since f : P2 → P2 is assumed globally holomorphic, P (Z,W, T ), Q(Z,W, T ),
and T d have no common zeros other than (0, 0, 0).

The (projective) line at infinity Π := {T = 0} is uniformly super-
attracting and the restriction fΠ is given in homogeneous coordinates by

fΠ([Z : W ]) = [P0(Z,W ) : Q0(Z,W )](4.2)

where P0 := P (Z,W, 0) and Q0 := Q(Z,W, 0).
Let U(f) be the Fatou set for f and U(fΠ) the Fatou set for fΠ . The

former is an open set in P2, while the latter is an open set in the line at
infinity Π.

Lemma 4.4. If fΠ is hyperbolic then U(fΠ) ⊂ U(f).
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Proof. Since fΠ is hyperbolic, U(fΠ) is in the union of the basins of
attraction W s

Π(ζi) of a finite number of periodic attracting points ζ1, . . . , ζk.
The line at infinity Π is transversally superattracting, so each ζi is super-
attracting in the transverse direction to Π and (at least) geometrically at-
tracting within Π. LetW s(ζi) ⊂ P2 be the basin of attraction for ζi under f .
Then W s

Π(ζi) ⊂W s(ζi), giving U(fΠ) ⊂ U(f).

Let T be the Green’s current for f and let µΠ be the measure of maximal
entropy for the restriction f|Π .

Lemma 4.5. The restriction T|Π coincides with µΠ .

Proof. Consider the lift FΠ : C2 → C2 of the rational map fΠ : P1 → P1.
As observed in Remark 2.4,

GΠ(Z,W ) = lim
1
dn

log ‖FnΠ(Z,W )‖

is the potential for µΠ , meaning that π∗µΠ = (2π)−1ddcGΠ .
The restriction T|Π is obtained by restricting of the potential G

to π−1(Π) = {(Z,W, 0) ∈ C3}. Specifically, it is defined by π∗(T|Π) =
(2π)−1ddc(G(Z,W, 0)). Therefore, it suffices to show that G(Z,W, 0)
= GΠ(Z,W ). However, this follows directly from the fact that F (Z,W, 0)
= FΠ(Z,W ). (Here F is the lift of f to C3, as given by (4.1) when considered
in non-projective coordinates [Z,W, T ].)

Proof of Theorem 1.2. As in the proof of Proposition 4.2, we can find a
sequence of 1-cycles cn in U(fΠ) having linking numbers with µΠ arbitrarily
close to 0 in Q/Z. Since f|Π is hyperbolic, Lemma 4.4 gives that each cn is
in the union of the basins of attraction for finitely many attracting periodic
points of f . In particular, lk(ci, T ) is well-defined for each n. Lemma 4.5
gives that T|Π = µΠ , so that lk(cn, T ) (considering cn in P2) coincides with
lk(cn, µΠ) (considering cn in the projective line Π). Therefore, lk(cn, T ) 6= 0
and lk(cn, T )→ 0 in Q/Z. Theorem 1.1 gives that the union of these basins
has infinitely generated first homology, and hence U(f) does as well.

Example 4.6. We embed the polynomial dynamics of r(z) from Re-
mark 4.3 as the dynamics on the line at infinity Π for a polynomial endo-
morphism of P2. Let R(Z,W ) = Z3−0.48ZW 2 +(0.706260+0.502896i)W 3

be the homogeneous form of r, and let P (Z,W, T ) and Q(Z,W, T ) be any
homogeneous polynomials of degree 2. Then

f([Z : W : T ]) = [R(Z,W ) + T · P (Z,W, T ) : W 3 + T ·Q(Z,W, T ) : T 3]

is a polynomial endomorphism with fΠ = r. In this case, Theorem 1.2 gives
that the basin of attraction of [1 : 0 : 0] for f has infinitely generated first
homology.
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Remark 4.7. Suppose that f : Pk → Pk is a holomorphic endomorphism
having an invariant projective line Π. Lemma 4.5 can be extended to give
that T|Π = µΠ , where µΠ is the measure of maximal entropy for the one-
dimensional map f|Π . If Π is at least geometrically attracting transversally,
f|Π is hyperbolic, and J(f|Π) is disconnected, then essentially the same proof
as that of Theorem 1.2 gives that the Fatou set U(f) has infinitely generated
first homology.

Using this observation, one can inductively create sequences of polyno-
mial endomorphisms fk : Pk → Pk, for every k, each having Fatou set with
infinitely generated first homology. One begins with a hyperbolic polynomial
endomorphism f1 of the Riemann sphere P1 having disconnected Julia set.
Then, for each k, one can let fk : Pk → Pk be any polynomial endomorphism
whose dynamics on the hypersurface Pk−1 at infinity is given by fk−1. (When
k = 2, the construction of f2 : P2 → P2 is similar to that from Example 4.6.)
The resulting maps each have a totally invariant projective line Π that is
transversally superattracting with fk |Π = f1 hyperbolic with disconnected
Julia set. Thus, the Fatou set U(fk) has infinitely generated first homology.

5. Application to polynomial skew products. A polynomial skew
product is a polynomial endomorphism of the form

f(z, w) = (p(z), q(z, w))

with p and q polynomials of degree d where p(z) = zd + O(zd−1) and
q(z, w) = wd+Oz(wd−1). (See Jonsson [J2].) Theorem 1.2 can be applied to
many polynomial skew products f to show that H1(U(f)) is infinitely gen-
erated; for example, f(z, w) = (z2, w2 + 10z2), which has JΠ a Cantor set.
Next we will find alternative sufficient conditions under which a polynomial
skew product has Fatou set with infinitely generated first homology, proving
Theorem 1.3. This theorem will apply to many maps to which Theorem 1.2
does not apply; for example, f(z, w) = (z2, w2 − 3z), for which JΠ is equal
to the unit circle.

5.1. Preliminary background on polynomial skew products. The
Green’s current for any polynomial endomorphism can be computed in the
affine coordinates on C2 as T := (2π)−1ddcGaffine, where Gaffine is the (affine)
Green’s function defined in Remark 2.2. The “base map” p(z) has a Julia set
Jp ⊂ C and, similarly, a Green’s function Gp(z) := limn→∞ d

−n log+ ‖pn(z)‖.
Furthermore, one can define a fiberwise Green’s function (2) by

Gz(w) := Gaffine(z, w)−Gp(z).

(2) For the purist: the Green’s functions Gp and Gz should also have the subscript
“affine”, but it is dropped here for ease of notation. See Section 2 for the distinction.
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For each fixed z, Gz(w) is a subharmonic function of w and one defines the
fiberwise Julia sets by Kz := {Gz(w) = 0} and Jz := ∂Kz.

The extension of f to P2 is given by

f([Z : W : T ]) = [P (Z, T ) : Q(Z,W, T ) : T d],(5.1)

where P (Z, T ) and Q(Z,W, T ) are the homogeneous versions of p and q.
The point [0 : 1 : 0] that is “vertically at infinity” with respect to the
affine coordinates (z, w) is a totally invariant superattracting fixed point,
and (z, w) ∈W s([0 : 1 : 0]) if and only if w ∈ C \Kz.

Suppose that (z, w) ∈W s([0 : 1 : 0]) and (zn, wn) := fn(z, w). Then

Gaffine(z, w) = lim
1
dn

log+ ‖fn(z, w)‖∞ = lim
1
dn

log+ |wn|,(5.2)

Gz(w) = Gaffine(z, w)−Gp(z) = lim
1
dn

log+ |wn| − lim
1
dn

log+ |zn|,(5.3)

since |wn| > |zn| for all n sufficiently large.
As mentioned in Section 3.3, we can restrict the current T to any analytic

curve obtaining a measure on that curve. Of particular interest for skew
products is the restriction µz0 of T to a vertical line {z0}×P. The following
appears as [J2, Proposition 2.1(i)]; we repeat it here for completeness:

Proposition 5.1. The restriction T|z=z0 of the Green’s current T to a
vertical line {z0} × P coincides with the harmonic measure µz0 on Kz0.

Proof. Notice that

T|z=z0 =
1
2π
ddcGaffine|z=z0 =

1
2π
ddcGaffine(z0, w)

=
1
2π
ddc(Gaffine(z0, w)−Gp(z0)) =

1
2π
ddcGz0(w).

According to [J2, Thm. 2.1], Gz0 is the Green’s function for Kz with pole at
infinity. We have thus shown that µz0 is exactly the harmonic measure µz0
on Kz0 .

5.2. Topology of the basin of attraction W s([0 : 1 : 0])

Proposition 5.2. If ζ is a totally invariant (super)attracting fixed point
for a holomorphic f : CPk → CPk, then W s(ζ) is path connected.

We refer the reader to the proof of Theorem 1.5.9 from [HP2], which
can easily be adapted to give Proposition 5.2. In particular, for any skew
product, W s([0 : 1 : 0]) is path connected.

Although Gz(w) is subharmonic in w for any fixed z, it does not form a
PSH function of both z and w. Consider the points (z, w) ∈ W s([0 : 1 : 0])
for which z ∈ Jp. At these points Gaffine is pluriharmonic, i.e. ddcGaffine = 0,
but Gp(z) is not pluriharmonic, as ddcGp(z) > 0. Therefore, at these points
ddcGz(w) < 0, so Gz(w) is not PSH.
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Lemma 5.3. The function −Gz(w) is PSH at all points (z, w) ∈W s([0 :
1 : 0]) ∩ C2 and it extends to a PSH function on all of W s([0 : 1 : 0]). The
resulting function is pluriharmonic on W s([0 : 1 : 0]) except at points for
which Z/T ∈ Jp.

Proof. Since −Gz(w) = Gp(z)−Gaffine(z, w), with Gaffine(z, w) plurihar-
monic in W s([0 : 1 : 0]) and Gp(z) PSH everywhere, the result is PSH in
W s([0 : 1 : 0]) ∩ C2.

Jonsson proves in [J2, Lemma 6.3] that Gz(w) extends as a PSH function
in a suitable neighborhood of Π \{[0 : 1 : 0]} and his proof immediately gives
that the result is pluriharmonic in a (possibly smaller) neighborhood within
W s([0 : 1 : 0]) of Π \ {[0 : 1 : 0]}. Therefore, −Gz(w) is also pluriharmonic
in the same neighborhood.

Thus, −Gz(w) extends to a PSH function on W s([0 : 1 : 0]) \ {[0 : 1 : 0]}
and, if we assign −∞ to [0 : 1 : 0], gives the desired extension to all of
W s([0 : 1 : 0]). The result will be pluriharmonic except at [0 : 1 : 0] and at
the points in W s([0 : 1 : 0])∩C2 where ddc(−Gz(w)) > 0, that is, the points
where Z/T ∈ Jp.

Proof of Theorem 1.3. We first suppose that Jz0 is disconnected for some
z0 ∈ Jp. Let z1, z2, . . . be any sequence of iterated preimages of z0 such that
pn(zn) = z0.

Consider the vertical line {z0} × C. Since Jz0 is disconnected, so is Kz0 ,
and we can choose two disjoint positively oriented piecewise smooth loops
η1, η2 ⊂ {z0} × (C \Kz0) each enclosing a proper subset of Kz0 .

Perturbing η1, η2 within {z0} × (C \ Kz0) if necessary, we can suppose
that none of the d − 1 critical values of f |{z1}×C : {z1} × C → {z0} × C
(counted with multiplicity) are on η1 or η2. Since the regions enclosed by
η1 and η2 are disjoint, at least one of them contains at most d − 2 of these
critical values. Let γ0 be this curve.

Since γ0 ⊂ {z0} × (C \Kz0), γ0 ⊂W s([0 : 1 : 0]). Because γ0 is compact,
it is bounded away from suppT , and the linking number lk(γ0, T ) is a well-
defined invariant of the homology class [γ] within H1(W s([0 : 1 : 0])). We
let Γ0 be the closed disc in ({z0} × C) having γ0 as its oriented boundary.
Since Γ0 contains some proper subset ofKz0 (and hence of Jz0) with suppµz0
= Jz0 , we have

0 < 〈Γ0, T 〉 =
�

Γ0

µz0 < 1.

Therefore, lk(γ0, T ) = 〈Γ0, T 〉(mod 1) 6= 0 (mod 1), implying that [γ0] is
non-trivial.

Consider the preimages D1, . . . , Dj of Γ0 under f |{z1}×C : {z1} × C →
{z0} × C. Since at most d − 2 critical values of the degree d ramified cover
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f |{z1}×∪Di are contained in Γ0, it is a consequence of the Riemann–Hurwitz
Theorem that the Euler characteristic of

⋃
Di is greater than or equal to 2.

Because each Di is a domain in C, at least two components D1 and D2 are
discs.

The total degree of f |{z1}×C :
⋃
Di → Γ0 is d, so f |{z1}×C : Di → Γ0 is

a ramified covering of degree ki ≤ d − 1 for each i. Proposition 3.6 and the
basic invariance f∗T = d · T for the Green’s current give

〈Di, T 〉 =
1
d
〈Di, f

∗T 〉 =
1
d
〈f∗Di, T 〉 =

1
d
〈kiΓ0, T 〉 ≤

d− 1
d
〈Γ0, T 〉(5.4)

for each i.
As before, we can perturb the boundaries of D1 and D2 within {z1} ×

(C\Kz1) so that none of the critical values of f |{z2}×C lie on their boundaries
and so that D1 and D2 remain disjoint. (It will not affect the pairings given
by (5.4).) At least one of the discs D1, D2 contains at most d − 2 critical
values of f |{z2}×C . We let Γ1 be that disc and γ1 = ∂Γ1. Then

0 < 〈Γ1, T 〉 ≤
d− 1
d
〈Γ0, T 〉 ≤

d− 1
d

.

Continuing in the same way, we can find a sequence of discs Γ0, Γ1, . . . so
that

• Γn ⊂ {zn} × C,
• γn = ∂Γn ⊂W s([0 : 1 : 0]),
• Γn contains at most d − 2 critical values of f |{zn+1}×C (counted with

multiplicity),
• 〈Γn, T 〉 ≤ d−1

d 〈Γn−1, T 〉.
Consequently,

0 < 〈Γn, T ≤
(
d− 1
d

)n
,

showing that lk(γn, T ) → 0 in Q/Z. Therefore, Theorem 1.1 implies that
H1(W s([0 : 1 : 0])) is infinitely generated.

We will now show that if Jz is connected for every z ∈ Jp, then W s([0 :
1 : 0]) is homeomorphic to an open ball. Consider the local coordinates
z′ = Z/W , t′ = T/W , chosen so that (z′, t′) = (0, 0) corresponds to [0 : 1 : 0].
In these coordinates

f(z′, t′) =
(

P (z′, t′)
Q(z′, 1, t′)

,
t′d

Q(z′, 1, t′)

)
,

where P and Q are the homogeneous versions of p and q appearing in (5.1).
The assumptions that q(z, w) = wd + Oz(wd−1) and p(z) = zd + O(zd−1)
imply that we have the expansion

f(z′, t′) = (P (z′, t′), t′d) + g(t′, z′),
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with (P (z′, t′), t′d) non-degenerate of degree d and g(t′, z′) consisting of terms
of degree d+ 1 and larger.

Therefore, we can construct a potential function (3) for the superattract-
ing point (0, 0):

h(z′, t′) := lim
n→∞

1
dn

log ‖fn(z′, t′)‖∞.(5.5)

The result is a continuous plurisubharmonic function [HP2] with logarithmic
singularity at (z′, t′) = (0, 0) having the property that (z′, t′) ∈ W s([0 : 1 :
0]) \ {[0 : 1 : 0]} if and only if h(z′, t′) < 0. In particular,

h : W s([0 : 1 : 0]) \ {[0 : 1 : 0]} → (−∞, 0)

is proper.
If we let (z′n, t

′
n) = fn(z′, t′), then (5.5) simplifies to

h(z′, t′) =
{

lim d−n log |t′n| if z′/t′ ∈ Kp,
lim d−n log |z′n| if z′/t′ 6∈ Kp,

(5.6)

since z′n+1/t
′
n+1 = p(z′n/t

′
n). Equation (5.3) gives that in the original affine

coordinates (z, w) we have

h(z, w)=
{

lim d−n log |t′n|=− lim d−n log |wn|=−Gz(w) if z ∈ Kp,
lim d−n log |z′n|=log |z| − lim d−n log |wn|=−Gz(w) if z 6∈ Kp,

(5.7)

which is harmonic on the intersection of any vertical line {z} × C with
W s([0 : 1 : 0]) and pluriharmonic except when z ∈ Jp; see Lemma 5.3.
A similar calculation shows that h coincides with the extension of −Gz(w)
described in Lemma 5.3 and that the restriction of h to Π is −GΠ . (Here,
GΠ is the Green’s function for the action fΠ of f on the line at infinity.)

Hence, h(z′, t′) is pluriharmonic on W s([0 : 1 : 0])\{(z′, w′) : z′/w′ ∈ Jp}
and the restriction of h(z′, t′) to any line through (0, 0) is harmonic on
W s([0 : 1 : 0]) \ {[0 : 1 : 0]}, with a logarithmic singularity at (0, 0).

Since Jz0 is connected for every z0 ∈ Jp, Proposition 6.3 from [J2] gives
that Jz is connected for every z ∈ C and also JΠ is connected, or, equiv-
alently, that Gz(w) (for any z) and GΠ have no (escaping) critical points.
Therefore, the restriction of h to any complex line through (0, 0) has no
critical points in W s([0 : 1 : 0]).

The sublevel set Wa := h−1([−∞, a)) is open for any a ∈ (−∞, 0) since
h : W s([0 : 1 : 0])\{[0 : 1 : 0]} → (−∞, 0) is continuous with h(z′, t′)→ −∞
if and only if (z′, t′)→ (0, 0). Equation (2.2) from [J2] implies that

(3) The potential function h is sometimes also called the Green’s function of the point
(0, 0).
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h(z′, t′) = log |t′|+Gp

(
z′

t′

)
+ η(z′, t′) if t′ 6= 0,

h(z′, t′) = log |z′|+G#
p

(
t′

z′

)
+ η(z′, t′) if z′ 6= 0,

with η(z′, t′) becoming arbitrarily small for (z′, t′) sufficiently small and
G#
p (x) obtained by extending Gp(1/x) − log(1/x) continuously through

x = 0. Therefore, for a sufficiently negative, the intersection of Wa with any
complex line through (0, 0) will be convex. In particular,Wa is a star-convex
open subset in C2, implying that it is homeomorphic to an open ball. (See
[Br, Theorem 11.3.6.1].)

We define a new function h̃ which agrees with h except in the interior
of Wa, where we make a C∞ modification (assigning values less than a) in
order to remove the logarithmic singularity at [0 : 1 : 0].

We will use h̃ as Morse function to show that Wb := h−1([−∞, b)) is
diffeomorphic to Wa for any b ∈ (a, 0). The classical technique from The-
orem 3.1 of [M1] would use the normalization of −∇h̃ to generate a flow
whose time b− a map gives the desired diffeomorphism. This will not work
in our situation, since h̃ is not differentiable at points for which z′/w′ ∈ Jp.
However, essentially the same proof works if we replace −∇h̃ with any C1

vector field V on W s([0 : 1 : 0]) having no singularities in h̃−1([a, b]) and
along which h̃ is decreasing. Note that, as in [M1], we need that h̃−1([a, b])
is compact, which follows from h being proper.

Let V be the the vector field parallel to each line through (z′, t′) = (0, 0),
obtained within each line as minus the gradient of the restriction of h̃ to that
line. The restriction of h̃ to each complex line through (0, 0) has no critical
points in h̃−1([a, b]), so it is decreasing along V . Since h is pluriharmonic for
points with z′/t′ 6∈ Jp, it follows immediately that V is smooth there. To see
that V is smooth in a neighborhood of points where z′/t′ ∈ Jp, notice that

∇wGz(w) = ∇wG(z, w)−Gp(z) = ∇wG(z, w),

with G(z, w) pluriharmonic on W s([0 : 1 : 0]) ∩ C2.
Therefore, for any b ∈ (a, 0), Wb is homeomorphic to Wa and thus to

an open ball. One can then make a relatively standard construction, using
these homeomorphisms for b increasing to 0, to show that W s([0 : 1 : 0]) =⋃
b<0Wb is homeomorphic to an open ball.

6. Further applications. In this final section we discuss a few examples
of maps to which we have applied the results of this paper, and then a few
types of maps which we feel would be fruitful to study further with techniques
similar to those of this paper.
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6.1. Relationship between connectivity of J2 and the topology
of the Fatou set for polynomial skew products. For polynomial skew
products, J2 = suppµ = supp(T ∧ T ) =

⋃
z∈Jp Jz, which by [J2] is also

the closure of the set of repelling periodic points. Here we examine to what
extent connectivity of J2 affects the homology of the Fatou set U .

The following example shows that there are many polynomial skew prod-
ucts f with J2 connected for which H1(U(f)) is non-trivial (in fact infinitely
generated).

Example 6.1. Consider f(z, w) = (z2 − 2, w2 + 2(2 − z)), which has
J2 connected and has Jz disconnected over z = −2 ∈ Jp, as shown in [J2,
Example 9.7]. Theorem 1.3 immediately applies, giving that H1(U(f)) is
infinitely generated.

In fact, examples of this phenomenon can appear “stably” within a one-
parameter family. Let pn(z) = z2 + cn be the unique quadratic polynomial
with periodic critical point of least period n and cn real. Then [DHr, Theorem
6.1] implies that for n sufficiently large,

fn(z, w) = (pn(z), w2 + 2(2− z))

is Axiom A with Jz disconnected for most z ∈ Jpn and with J2 connected.
Suppose that fn is embedded within any holomorphic one-parameter family
fn,λ of polynomial skew products. Then Theorems 4.1 and 4.2 from [DHr]
(see also [J1, Thm. C]) give that all maps fn,λ within the same hyperbolic
component as fn also have J2 connected, but Jz disconnected over most z
in Jpn,λ . (Here, pn,λ is the first component of fn,λ.) An immediate application
of Theorem 1.3 shows that H1(U(fn,λ)) is infinitely generated for all fn,λ
within this hyperbolic component.

Next we consider the possibility of J2 being disconnected, but f not
satisfying the hypotheses of our Theorem 1.3.

Question 6.2. Is there a polynomial skew product f with J2 discon-
nected, but all Jz’s connected for all z ∈ C, such that H1(U(f)) is trivial?
More generally, is there any endomorphism of P2 with J2 disconnected, but
with all Fatou components having trivial homology?

By [J2, Proposition 6.6], in order for f to satisfy the hypotheses of this
question, Jp would have to be disconnected. However, a simple product like
(z, w) 7→ (z2− 100, w2) does not suffice; note that for this map, the basin of
attraction of [1 : 0 : 0], hence the Fatou set, has non-trivial homology. Not
many examples of non-product polynomial skew products are understood,
and the current list of understood examples contains no maps which satisfy
the hypotheses of this question.
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6.2. A quadratic family of polynomial skew products. We now
consider the family of examples fa(z, w) = (z2, w2 + az), which are skew
products over p(z) = z2.

The geometry and dynamics in Jp × C were explored in [DHr]. For ex-
ample, there it is established that:

(1) [DHr, Theorem 5.1]: fa is Axiom A if and only if ga(w) := w2 + a is
hyperbolic.

(2) [DHr, Lemma 5.5]: J2 can be described geometrically in the following
manner: Jeit is a rotation of angle t/2 of J{z=1}. That is, start with
J(ga) in the fiber J{z=1}, then as the base point z = eit moves around
the unit circle Jp = S1, the corresponding Jz’s are rotations of J(ga)
of angle t/2, hence the Jz’s complete a half turn as z moves once
around the base circle.

Due to the structure of J2, the difference between fa and the product
ha(z, w) = (z2, w2 + a) is one “twist” in J2. In [DHr] it is shown that fa
and ha are in the same hyperbolic component if and only if a is in the main
cardiod of the Mandelbrot set,M.

Note that the extension of fa to P2, given by

fa([Z : W : T ]) = [Z2,W 2 + aZT : T 2],

is symmetric under the involution S([Z : W : T ]) = [T : W : Z].

Theorem 6.3. The Fatou set of fa is the union of the basins of attraction
of three superattracting fixed points: [0 : 0 : 1], [0 : 1 : 0], and [1 : 0 : 0], each
of which is path connected.

Moreover:

• If a 6∈ M, then W s([0 : 1 : 0]) has infinitely generated first homology.
• If a ∈ M, then each of the three basins of attraction W s([0 : 1 : 0]),
W s([0 : 0 : 1]) and W s([1 : 0 : 0]) is homeomorphic to an open ball.

Proof. For any a, the fiberwise Julia set J0 is the unit circle |z| = 1.
Proposition 4.2 from [Ro] can be modified to show that there is a local
superstable manifoldW s

loc(J0) that is obtained as the image of a holomorphic
motion of J0 that is parameterized over Dε = {|z| < ε}, for ε > 0 sufficiently
small. The motion of (0, w) ∈ J0 is precisely the connected component of
local superstable manifold of (0, w) that contains (0, w), which we will call
the superstable leaf of w and denote byW s

loc(w). By construction, fa will map
the superstable leaf of (0, w) into the superstable leaf of (0, w2) = fa(0, w).
Moreover, the proof of Proposition 4.4 from [Ro] can also be adapted to
show that W s

loc(J0) is the zero locus of a pluriharmonic (hence real-analytic)
function.
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Pulling back W s
loc(J0) under iterates of fa, we obtain a global separatrix

W s(J0) over the entire unit disc D = {|z| = 1}. Note that W s(J0) may not
be a manifold, since ramification may occur at points where it intersects the
critical locus of fa. For |z| < 1, Jz is the intersection of W s(J0) with {z}×C
and thatKz is the intersection ofW s([0 : 0 : 1])∪W s(J0) with {z}×C. Thus,
any point (z, w) with |z| < 1 is in W s([0 : 0 : 1]) ∪W s(J0) ∪W s([0 : 1 : 0]).

Under the symmetry S, each of the above statements about the super-
stable manifold of J0 corresponds immediately to a statement about the unit
circle JΠ = {|Z/W | = 1} in the line at infinity Π = {T = 0}. Moreover, any
point in P2 with |T | < |Z| is in W s([1 : 0 : 0]) ∪W s(JΠ) ∪W s([0 : 1 : 0]).
Therefore, the Fatou set of fa is the union of the basins of attraction for
three superattracting fixed points [1 : 0 : 0], [0 : 1 : 0], and [0 : 0 : 1]. Since
each of these fixed points is totally invariant, Proposition 5.2 gives that each
of their basins of attraction is path connected.

The vertical Julia set J1 over the fixed fiber z = 1 is precisely the Julia
set of w 7→ w2 + a, which is connected if and only if a ∈ M. In particular,
if a 6∈ M, it follows from Theorem 1.3 that W s([0 : 1 : 0]) has infinitely
generated first homology.

If a ∈ M, then, for each z ∈ Jp, Jz is a rotation of the connected set
J1 and Theorem 1.3 gives that W s([0 : 1 : 0]) is homeomorphic to an open
ball. We will now use Słodkowski’s Theorem on holomorphic motions [Sl]
(see also [H, Section 5.2]) to show that W s([0 : 0 : 1]) and W s([1 : 0 : 0]) =
S(W s([0 : 0 : 1])) are homeomorphic to the open bidisc.

We will extend (in the parameter z) the holomorphic motion whose image
is W s

loc(J0) to a holomorphic motion of J0 parameterized by z ∈ D, having
the entire separatrix W s(J0) as its image. Then, by Słodkowski’s Theorem,
this holomorphic motion extends (in the fiber w) from J0 to a holomorphic
motion of the entire Riemann sphere P1 that is also parameterized by z ∈ D.
Consequently, W s([0 : 0 : 1]) will be the image of a holomorphic motion of
the open disc {z = 0, |w| < 1}, parameterized by z ∈ D.

Since a ∈M, it also follows from [J2, Proposition 6.4] that for each z ∈ C
the fiberwise critical points

Cz := {w ∈ C : q′z(w) = 0}
are in Kz. We now check that they are disjoint from W s(J0).

The union of these fiberwise critical points is just the horizontal line
w = 0 that stays on one side of W s(J0), possibly touching at many points.
Note, however, that they are disjoint at z = 0. Consider the point z0 (with
|z0| < 1) of smallest modulus where w = 0 and W s(J0) touch. Then there is
a neighborhood of U of z0 in C2 in which W s(J0) is given by the zero set of
a PSH function Ψ . Changing the sign of Ψ (if necessary) we can assume that
Ψ ≤ 0 for points in Kz ∩ U . The restriction ψ(z) = Ψ |w=0 is a non-positive
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harmonic function in a neighborhood of z0 having ψ(z0) = 0, but ψ(z) < 0
for z with |z| < |z0|. This violates the maximum principle. Therefore, the
fiberwise critical points Cz are disjoint from W s(J0) for every z.

Suppose that D ⊂ W s(J0) is the graph of a holomorphic function ν(z)
defined on {|z| < r} for some 0 < r < 1. Then, since W s(J0) is disjoint from
the horizontal critical locus w = 0, the Implicit Function Theorem gives that
f−1
a (D) is the union of two discs through the preimages of ν(0), each given
as the graph of a holomorphic function over {|z| <

√
r}.

Let (0, w) ∈ J0 with preimages (w1, 0) and (w2, 0). Since fa(W s
loc(w1,2))

⊂ W s
loc(w), the two discs from f−1

a (W s
loc(w)) form extensions of W s

loc(w1)
and W s

loc(w2), as graphs of holomorphic functions of |z| <
√
ε.

Therefore, by taking the preimages under fa, the family of local stable
discs can be extended, each as the graph of a holomorphic function over
|z| <

√
ε. Applied iteratively, we can extend them as the graphs of holo-

morphic functions over discs |z| < r for any r < 1. In the limit we obtain
global stable curves W s(w0) through every w0 ∈ J0, each of which is the
graph of a holomorphic function of z ∈ D. Since the global stable curves of
distinct points in J0 are disjoint, their union gives W s(J0) as the image of a
holomorphic motion of J0 parameterized by z ∈ D.

6.3. Postcritically finite holomorphic endomorphisms. Until pre-
senting the conjecture of the previous subsection, this paper has been about
endomorphisms with complicated Fatou topology. The opposite extreme is
that the Fatou topology may also be trivial in many cases. We suspect one
simple case in which Fatou topology is trivial is when the map is postcriti-
cally finite (PCF).

Question 6.4. Does the Fatou set of a postcritically finite holomorphic
endomorphism of P2 always have trivial homology?

A starting point for investigation into this question could be to attempt to
establish it for the postcritically finite examples constructed by Sarah Koch
[K1, K2]. Heuristic evidence supports that the homology is trivial for Koch’s
maps. Her construction provides a class of PCF endomorphisms, containing
an infinite number of maps, including the previously studied examples of
[FS2] and [C].

6.4. Other holomorphic endomorphisms of Pk. As we have demon-
strated in Sections 4 and 5, given some information about the geometry of
the support of T , we can apply the techniques of Sections 3 to study the
Fatou set of a holomorphic endomorphism of P2. We would like to be able
to apply this theorem to other holomorphic endomorphisms of Pk. How-
ever, specific examples of holomorphic endomorphisms that are amenable
to analytic study are notoriously difficult to generate. One family of endo-
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morphisms which seem a potentially vast area of study are the Hénon-like
endomorphisms. Introduced by Hubbard and Papadopol in [HP1], and stud-
ied a bit further by Fornæss and Sibony in [FS4], these are holomorphic
endomorphisms arising from a certain perturbation of the Hénon diffeomor-
phisms. The Hénon diffeomorphisms have been deeply studied (e.g., by Bed-
ford, Lyubich, and Smillie [BLS1, BLS2], Bedford and Smillie [BS1, BS2],
Hubbard and Oberste-Vorth [HO1, HO2], and Fornæss and Sibony [FS1]). A
natural question which is thus far quite wide open is: how does the dynamics
of a Hénon diffeomorphism relate to the dynamics of the perturbed Hénon
endomorphism? Computer evidence suggests the dynamics of Hénon-like en-
domorphisms is rich and varied.

Specifically concerning the topology of the Fatou set, the main result of
[BS1] is that connectivity of the Julia set is determined by connectivity of
a slice Julia set in a certain unstable manifold. We ask whether this result
would have implications for the related Hénon endomorphism, which would
allow us to use linking numbers to establish some analog of Theorem 1.3 for
Hénon endomorphisms.
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