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Finite-to-one maps and dimension

by

Jerzy Krzempek (Gliwice)

Abstract. It is shown that for every at most k-to-one closed continuous map f from
a non-empty n-dimensional metric space X, there exists a closed continuous map g from
a zero-dimensional metric space onto X such that the composition f ◦ g is an at most
(n + k)-to-one map. This implies that f is a composition of n + k − 1 simple (= at
most two-to-one) closed continuous maps. Stronger conclusions are obtained for maps
from Anderson–Choquet spaces and ones that satisfy W. Hurewicz’s condition (α). The
main tool is a certain extension of the Lebesgue–Čech dimension to finite-to-one closed
continuous maps.

This paper deals with a composition problem, which originates in papers
of K. Borsuk, R. Molski, and K. Sieklucki [6, 25]. In [15] the present author
proved that every at most k-to-one closed map from an n-dimensional space
is a composition of (n+1)k−1 simple (= at most two-to-one) closed maps.
Herein, we improve the bound (n + 1)k − 1 to n + k − 1 without other
assumptions added, and to n+ k − 2 if either the domain X of the map to
be factored contains no pair of disjoint homeomorphic n-dimensional closed
subspaces, or the map is irreducible and X satisfies the following condition
of W. Hurewicz [12]:

(α) every nowhere dense subspace of X has dimension less than that of X.

Our main tool is the use of the concepts of covering and partition di-
mensions of a map, which were defined in [16] and extend the notion of the
Lebesgue–Čech dimension of a space to closed maps. We prove two formulas
for calculating the covering dimension cdim of a map and we use them to
show that every at most k-to-one closed map f from an n-dimensional space
has cdim f ≤ n + k − 1. (The statement emphasized in the abstract is, in
fact, equivalent to this inequality.) Our formulas for cdim imply well-known
theorems on dimension-raising maps by Hurewicz [11, 12], K. Morita [21],
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J. E. Keesling [13], and A. V. Zarelua [29, 30]. The paper ends with some
remarks about Anderson–Choquet and Cook type continua.

Throughout the paper, all spaces are assumed to be metrizable and all
maps to be continuous.

1. The covering dimension of closed maps: basic facts. Let X
be a topological space and A = (As)s∈S be an indexed collection of subsets
of X. It is important that the sets As may be equal for distinct indices s.
We denote the boundary of As by ∂As. Given a function f on X, we de-
note the collections (As)s∈S , (∂As)s∈S and (f(As))s∈S by A, ∂A and f(A),
respectively. All coverings and refinements will be considered as indexed
collections of sets, and from now on we omit the word “indexed”.

By |S| ∈ N∪{∞} we denote the number of elements in S. For any x∈X
we define ordxA = |{s ∈ S : x ∈ As}| and ordA = supx∈X ordxA. If X is
empty, then ordA = 0.

1.1. Definition ([16]). Let f be a closed map from a space X. The
covering dimension cdim f is the least integer n such that every finite open
cover of X has a finite closed refinement F with ord f(F) ≤ n + 1. If such
n’s do not exist, we write cdim f =∞.

Images of distinct elements of F may be equal, and then such an image
is counted two or more times among the elements of the collection f(F).

It is easily seen that dimX ≤ cdim f and dim f(X) ≤ cdim f . Since
dimX = cdim idX for every space X, cdim may be viewed as an extension
of the Lebesgue–Čech dimension. Moreover, certain properties of dimension
extend to maps: the countable and locally finite sum theorems, the comple-
tion theorem, and the enlargement theorem—see [16]. The importance of
cdim to the study of finite-to-one maps comes from the following

1.2. Theorem. If f is a closed map from a non-empty space X, then
statements (a) and (b) below are equivalent , and they imply (c).

(a) cdim f ≤ n.
(b) There exists a closed map g from a zero-dimensional space onto X

such that the composition f ◦ g is at most (n+ 1)-to-one.
(c) f is a composition of n simple closed maps.

The equivalence (a)⇔(b) is proved in [16, Theorem 6.1]. It extends the
well-known Hurewicz–Morita theorem (Morita [21], see also R. Engelking [9,
Theorem 4.3.15]), which corresponds to the case f = idX . The implication
(b)⇒(c) is Theorem 2.2 of [15].

Finally, note that for every finite-to-one map f from a space X, we have
dimX ≤ dim f(X)—by the theorem on dimension-lowering maps, see [9,
Theorem 4.3.4].
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2. The first formula for cdim f . Let f be a function into a set Y . We
define the order of f by ord f = supy∈Y |f−1(y)|, and for k ∈ N we let

Ck(f) = {y ∈ Y : |f−1(y)| ≥ k}, Ek(f) = f−1(Ck(f)).

If f is a closed map, then Ck(f) and Ek(f) are Fσ-sets; cf. [9, Lemma 4.3.5],
see also our Lemma 2.4(a).

Here we prove the following

2.1. Theorem. If f is a closed map from a non-empty space and ord f
<∞, then

cdim f = max{dimCj(f) + j − 1 : j = 1, . . . , ord f}.
The formula above enables easy calculation of the covering dimension

cdim. For example, the original Peano map from [0, 1] onto [0, 1]2 has order 4,
and its covering dimension turns out to be 3. Another example: if f is an
exactly k-to-one closed map from an n-dimensional space, then cdim f turns
out to be n + k − 1 (to see this use also Lemma 3.2 below). More essential
applications will be given in Section 3.

Before the proof of Theorem 2.1, we need some preparation.
Suppose that V = (Vi)mi=1 is a finite open cover of a space X. By the

reduction of V we understand the closed cover, denoted by [V], that consists
of sets [V1], . . . , [Vm] defined as follows:

[V1] = V 1,

[Vi] = V i \ (V1 ∪ · · · ∪ Vi−1) for i = 2, . . . ,m;

cf. J. M. Aarts, R. J. Fokkink and H. Vermeer [1, Definition 12 and Lem-
ma 13] and S. A. Bogaty̆ı [5, Lemma 3].

Observe that for each s ≥ 2 and each sequence 1 ≤ i1 < · · · < is ≤ m,
we have

[Vi1 ] ∩ · · · ∩ [Vis ] ⊂ ∂Vi1 ∩ · · · ∩ ∂Vis−1 .(1)

Indeed, if x ∈ [Vi1 ] ∩ · · · ∩ [Vis ], then x ∈ V it for t ≤ s. However, x 6∈ Vit for
t < s by the definition of [Vis ]. Hence x ∈ ∂Vi1 ∩ · · · ∩ ∂Vis−1 .

2.2. Lemma. Suppose that f : X → Y is a function, and V is a finite
open cover of X. Then for every point y ∈ Y we have

ordy f([V]) ≤ ordy f(∂V) + |f−1(y)|.
Proof. Let V = (Vi)mi=1 and T = {i : y ∈ f([Vi]). To each index i ∈ T we

assign a point ϕ(i) ∈ f−1(y) ∩ [Vi]. We have

ordy f([V]) = |T | =
∑

x∈f−1(y)

|ϕ−1(x)|.(2)

For every x ∈ f−1(y), we can write ϕ−1(x) = {ix1 < · · · < ix|ϕ−1(x)|} whenever
this point-inverse is non-empty.
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According to the inclusion (1), we have

y ∈
⋂

x∈f−1(y)
|ϕ−1(x)|>1

f(∂Vix1 ) ∩ · · · ∩ f(∂Vix|ϕ−1(x)|−1
).

Then, since {ix1 , . . . , ix|ϕ−1(x)|} ∩ {ix̂1 , . . . , ix̂|ϕ−1(x̂)|} = ∅ for x 6= x̂, we obtain
∑

x∈f−1(y)

(|ϕ−1(x)| − 1) ≤
∑

x∈f−1(y)
|ϕ−1(x)|>1

(|ϕ−1(x)| − 1) ≤ ordy f(∂V).

This inequality together with (2) completes the proof.

The next statement is a direct consequence of Corollary 2.5 and Theo-
rem 4.3 in [16], where the notion of the partition dimension pdim of a map
is used in formulations and proofs.

2.3. Lemma (cf. Aarts, Fokkink and Vermeer [1, Lemma 11]; Bogaty̆ı
[5, Lemma 2]). Suppose that f : X → Y is a closed map all of whose
point-inverses are zero-dimensional. Let Yj ⊂ Y , where j ∈ N, be Fσ-sets
such that dimYj = nj. Moreover , take subsets K1 ⊂ U1, . . . ,Km ⊂ Um
of X, where all the Ki are closed , and Ui are open. Then there exist open
subsets V1, . . . , Vm ⊂ X such that Ki ⊂ Vi ⊂ V i ⊂ Ui for each i, and
ord(f(∂Vi) ∩ Yj)mi=1 ≤ nj for every j.

2.4. Lemma. Suppose that f : X → Y is a closed map, k ≥ 2, and define

Ck(f, ε) =
{
y ∈ Y : if 1 ≤ m < k and x̂1, . . . , x̂m ∈ X are distinct ,

then f−1(y) 6⊂
m⋃

i=1

B(x̂i, ε)
}
,

where B indicates a ball. Then:

(a) Each Ck(f, ε) is a closed subset of Y , and Ck(f) =
⋃
ε>0Ck(f, ε).

(b) If y ∈ Ck(f, ε), then there are x1, . . . , xk ∈ f−1(y) such that %(xi, xj)
≥ ε for i 6= j (where % is the metric on X).

Proof. Ck(f, ε) is the intersection of the sets
{
y ∈ Y : f−1(y) 6⊂

m⋃

i=1

B(x̂i, ε)
}

= f
(
X \

m⋃

i=1

B(x̂i, ε)
)
,

which are closed by the closedness of f .

Proof of Theorem 2.1. The inequality “≤”. Let f : X → Y and k =
ord f . Take a finite open cover (Ui)mi=1 of X. Choose a closed shrinking
(Ki)mi=1 of (Ui)mi=1. By Lemma 2.3, there are open sets Vi, i = 1, . . . ,m, such
that Ki ⊂ Vi ⊂ V i ⊂ Ui for each i, and ord(f(∂Vi)∩Cj(f))mi=1 ≤ dimCj(f)
for j = 1, . . . , k. Consider the reduction [V] of the cover V = (Vi)mi=1. If y ∈ Y



Finite-to-one maps and dimension 99

and |f−1(y)| = j, then (by Lemma 2.2) we have ordy f([V]) ≤ ordy f(∂V) +
j ≤ dimCj(f) + j. Thus, ord f([V]) ≤ max{dimCj(f) + j : j = 1, . . . , k}.

The inequality “≥”. Since dim f(X) ≤ cdim f , it remains to check that
dimCj(f) + j−1 ≤ cdim f for j = 2, . . . , k. Fix j, and write n = dimCj(f).
The countable sum theorem (see Engelking [8, Theorem 7.2.1]) implies that
dimCj(f, ε) = n for some ε > 0.

Now, we confine our attention to the sets Y ′=Cj(f, ε),X ′=f−1(Cj(f, ε)),
and the restriction f |X ′. As ord f = k, for every y ∈ Y ′ there are pairwise
disjoint open (in X ′) sets V y

i , where i = 1, . . . , k, such that diamV y
i < ε

for each i, and f−1(y) ⊂ ⋃k
i=1 V

y
i . (Some of these V y

i may be empty.) Choose
a closed neighbourhood F y of y such that f−1(F y) ⊂ ⋃k

i=1 V
y
i . By the

paracompactness of Y ′, we can assume that the family {F y : y ∈ Y ′}
is locally finite. Define Ky

i = V y
i ∩ f−1(F y), which are closed sets. Ac-

cording to the locally finite sum theorem (see [8, Theorem 7.2.3]), we have
dim f(Ky0

i0
) ≥ n for some y0 and i0. Hence cdim f |Ky0

i0
≥ n, and there exists

a finite open cover U of Ky0
i0

that has no finite closed refinement F with
ord f(F) ≤ n.

The sets of the following three kinds:

• U ∪ (V y0
i0
\Ky0

i0
), where U ∈ U ,

• V y0
i , where i 6= i0, and

• X ′ \ f−1(F y0)

form an open cover, say V, of X ′. We claim that V has no finite closed
refinement G such that ord f(G) ≤ n + j − 1. Indeed, suppose that a finite
closed cover G refines V. Since the sets G ∩ Ky0

i0
, where G ∈ G, form a

refinement of U , there is a point y ∈ ⋂n+1
s=1 f(Gs ∩Ky0

i0
) for distinct Gs ∈ G.

Since G refines V, we have Gs ⊂ V y0
i0

for each s. By Lemma 2.4, there are
points xt ∈ f−1(y), where t = 1, . . . , j, such that %(xt, xt′) ≥ ε for t 6= t′.
At most one of these points may belong to each of the sets V y0

i . There is
one in V y0

i0
, maybe. Hence, there are further distinct sets Gt+n+1 ∈ G, where

t = 1, . . . , j−1, such that xt ∈ Gt+n+1. Thus, ord f(G) ≥ n+1+j−1 = n+j.
The foregoing claim means that n+ j − 1 ≤ cdim f |X ′ ≤ cdim f .

3. The second formula for cdim f and main corollaries. The next
formula is more suitable for applications than that of Theorem 2.1.

3.1. Theorem. If f is a closed map from a non-empty space and ord f
<∞, then

cdim f = max{dimEj(f) + j − 1 : j = 1, . . . , ord f}.
To prove this we need the following two lemmata.
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3.2. Lemma (J. Suzuki [26]). If f is an exactly k-to-one closed map from
a space X, then dimX = dim f(X).

3.3. Lemma (Keesling [13, Corollary III.6], K. Nagami [23, Theo-
rem 24-4]; the separable case: Hurewicz [12]). If f is a finite-to-one closed
map from a space X, then

dimCk(f) ≤ max{dimX,dimCk+1(f) + 1} for each k.

Proof of Theorem 3.1. Write k = ord f . According to Theorem 2.1, it
suffices to prove that

max{dimEj(f) + j − 1 : j = 1, . . . , k}
= max{dimCj(f) + j − 1 : j = 1, . . . , k}.

The inequality “≤”. By the theorem on dimension-lowering maps (see
[9, Theorem 4.3.4]), we have dimEj(f) ≤ dimCj(f).

The inequality “≥”. Write M = max{dimEj(f) + j − 1 : j = 1, . . . , k}.
By downward induction we shall show that dimCj(f)+j−1 ≤M for each j.
Indeed, it follows from Lemma 3.2 that dimCk(f) + k − 1 = dimEk(f) +
k − 1 ≤ M (for j = k). Assume that dimCj+1(f) + j ≤ M . By Lemma 3.3
applied to the restriction f |Ej(f) we obtain

dimCj(f) + j − 1 ≤ max{dimEj(f),dimCj+1(f) + 1}+ j − 1

= max{dimEj(f) + j − 1,dimCj+1(f) + j} ≤M.

Since always dim f(X) ≤ cdim f , Theorem 3.1 implies that if f is a
closed map from a non-empty space X and ord f < ∞, then dim f(X) ≤
max{dimEj(f)+j−1 : j = 1, . . . , ord f}. This theorem on dimension-raising
maps was proved by Zarelua [29, 30] in a more general setting.

The next statement is a common generalization of several theorems on
dimension-raising maps: Hurewicz [12], Zarelua [29, Corollary 1], [30, Propo-
sition 4.5], Keesling [13, Theorem III.2], Nagami [23, Theorem 24-5] (see also
A. Lelek [18] for a survey concerning maps and dimension inequalities).

3.4. Theorem. Suppose that f is a finite-to-one closed map from a non-
empty space X. If the function y 7→ |f−1(y)| takes on finitely many values
m1 < · · · < mk on f(X), then

dim f(X) ≤ max{dimEmj (f) + j − 1 : j = 1, . . . , k}.
Proof. Note that f(X) = Cm1(f), and repeat the reasoning in the proof

of Theorem 3.1 (the inequality “≥”). Apply Lemma 3.2 to the restriction
f |Emk(f) and Lemma 3.3 to f |Emj (f).

Theorems 3.1 and 1.2 immediately yield
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3.5. Corollary. If f is an at most k-to-one closed map from a non-
empty n-dimensional space X, then:

(a) cdim f ≤ n+ k − 1.
(b) There exists a closed map g from a zero-dimensional space onto X

such that the composition f ◦ g is at most (n+ k)-to-one.
(c) f is a composition of n+ k − 1 simple closed maps.

3.6. Remark. (i) In view of Remark 6.2 in [16] we infer that for any
countably many at most ki-to-one closed maps fi from an n-dimensional
space X there exists a closed map g from a zero-dimensional space onto X
such that each composition fi ◦ g is at most (n+ ki)-to-one.

(ii) If either n = 0, or k = 3 and n is odd, then the number n+ k − 1 in
(c) cannot in general be replaced by a smaller one; see [15, p. 151] and [25,
Theorem 2].

4. Maps from spaces with Hurewicz’s property (α). Motivated
by the work of Hurewicz [11, 12], we impose additional assumptions on the
map under which the number n+ k− 1 in Corollary 3.5 can be diminished.

A map f : X onto−→ Y is called irreducible if for every proper closed subset
F ⊂ X, we have f(F ) 6= Y .

4.1. Lemma (cf. G. T. Whyburn [28, Theorem 2], I. A. Văınštĕın [27,
p. 30, Corollary 2]). If f is an irreducible closed map from a space X, then
E2(f) is a first category Fσ-set in X.

Proof. In view of Lemma 2.4(a), it suffices to show that f−1(C2(f, ε))
is nowhere dense for every ε > 0. Take any x̂ ∈ X and any number δ < ε.
Since f is irreducible, there is a point x such that f−1f(x) ⊂ B(x̂, δ). Hence
x ∈ B(x̂, ε) \ f−1(C2(f, ε)).

4.2. Corollary. Suppose that f is an irreducible, at most k-to-one
(k ≥ 2), and closed map from an n-dimensional space X that satisfies Hure-
wicz’s condition (α). Then cdim f ≤ n + k − 2, and so the conclusions of
Corollary 3.5 remain true with n+ k replaced by n+ k − 1.

Proof. Since X has property (α), we obtain dimE2(f) ≤ n−1 by Lemma
4.1 and the countable sum theorem for dim (see [8, Theorem 7.2.1]). Use
Theorems 3.1 and 1.2 to complete the proof.

We cannot drop the assumption of irreducibility in Corollary 4.2, for any
exactly k-to-one map f from an n-dimensional space has cdim f = n+k−1.

5. Maps from n-ACh spaces. In this section we find n-dimensional
spaces that are not domains of at most k-to-one (k ≥ 2) closed maps f with
cdim f = n+ k − 1.
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R. D. Anderson and G. Choquet [2] constructed a continuum that con-
tains no pair of homeomorphic distinct non-degenerate subcontinua; see also
J. J. Andrews [3]. (All known examples of such continua are one-dimension-
al.) These continua are a prototype for the following classes of spaces:

We say that a space of dimension ≥ n is n-ACh if it contains no pair of
disjoint homeomorphic closed subspaces of dimension ≥ n. Spaces that are
1-ACh are called Anderson–Choquet (abbrev. ACh).

It follows from the countable sum theorem (see [8, Theorem 7.2.1]) that
in an n-ACh space, every Fσ-subspace of dimension ≥ n is also n-ACh.

This example shows that for every n ≥ 1, there exists an n-dimensional
n-ACh compactum:

5.1. Example. Consider the n-dimensional cube In, where n ≥ 2, and
choose a sequence of pairwise disjoint sets Dm ⊂ In such that |Dm| = m
for each m, limm→∞ diamDm = 0, and

⋃∞
m=1Dm is dense in In. Consider

the decomposition D of In into all the sets Dm and all remaining singletons
in In. It is easily checked that this decomposition is upper semicontinuous.
We prove that the quotient space An = In/D is an n-dimensional n-ACh
space.

Write q : In → An for the natural quotient map. By Lemma 3.3 with
k = 1, we obtain dimAn ≤ n. We claim that dim q−1(G) = n iff dimG = n,
for every subset G ⊂ An. Indeed, if dim q−1(G) < n, then dimG < n—apply
Lemma 3.3 to the restriction q|q−1(G). If dim q−1(G) = n, the theorem on
dimension-lowering maps yields dimG = n. In consequence, dimAn = n.

In order to show that An has property (α), take an n-dimensional set
G ⊂ An. Then dim q−1(G) = n, int q−1(G) 6= ∅, and hence In \ q−1(G) is a
proper subset of In. Since q is an irreducible map, we have

∅ 6= An \ q[In \ q−1(G)] = An \ q[In \ q−1(G)]

⊂ An \ q[In \ q−1(G)] = An \An \G = intG.

Therefore, every n-dimensional subset of An has non-empty interior.

Now, suppose that h : M onto−→ N is a homeomorphism between disjoint
n-dimensional sets M,N ⊂ An. Then h maps U = M \ [∂M ∪ h−1(∂N)]
onto V = N \ [h(∂M) ∪ ∂N ]. As M and N have non-empty interiors, U
and V are non-empty open subsets of An. Any point Dm ∈ U disconnects
every small enough connected neighbourhood W of Dm into m components
of W \ {Dm}. A contradiction: V does not contain such a point with the
same m.

It is not difficult to construct an n-dimensional n-ACh continuum with-
out property (α). This can be done by starting with the product S × In−1

instead of In, where S denotes the sin 1/x curve.
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5.2. Theorem. If k ≥ 2, then there exists no exactly k-to-one closed
map from an n-ACh space.

Proof. Suppose that f : X onto−→ Y is such a map. It follows from Lem-
ma 2.4(a) and the countable sum theorem that dim f−1(Ck(f, ε)) ≥ n for
some ε > 0. Lemma 2.4(b) implies that for every x ∈ f−1(Ck(f, ε)), the map
f is one-to-one on B(x, ε/2)∩f−1(Ck(f, ε)). The restriction f |f−1(Ck(f, ε))
is a covering map, being an exactly k-to-one, locally one-to-one and closed
map; cf. Krzempek [17, Lemma 1].

There is an open cover (Ui)i∈I of Ck(f, ε) such that each f−1(U i) is the
union of pairwise disjoint closed subsets Gj

i ⊂ X, where j = 1, . . . , k, and
each f |Gji is a homeomorphism onto U i. By the paracompactness of Ck(f, ε),
we can assume that the cover (Ui)i∈I is locally finite. From the locally finite
sum theorem (see [8, Theorem 7.2.3]), we infer that some Gj

i has dimension
≥ n. This is impossible since X is n-ACh.

5.3. Corollary. Suppose that f is an at most k-to-one (k ≥ 2) closed
map from an n-dimensional n-ACh space X. Then cdim f ≤ n + k − 2,
and so the conclusions of Corollary 3.5 remain true with n + k replaced by
n+ k − 1.

Proof. If Ek(f) were n-dimensional, it would be n-ACh. Hence, Theorem
5.2 leads to dimEk(f) ≤ n− 1. Use Theorems 3.1 and 1.2.

Applying Theorems 5.2 and 3.4, we obtain the following new result of
the Hurewicz type; cf. Hurewicz [11, 12], Keesling [13, Theorem III.7].

5.4. Corollary. Suppose that f is a closed map from an n-dimensional
n-ACh space X. If the function y 7→ |f−1(y)| takes on k distinct values
on f(X), where k ≥ 2, then dim f(X) ≤ n+ k − 2.

Observe that an n-dimensional space X is n-ACh iff every simple closed
map from X is n-dimensional. Indeed, the sufficiency follows from Corollary
5.3. On the other hand, if X contains two disjoint closed copies of the same
n-dimensional space, then the simple map that glues these copies together
has covering dimension n+ 1.

6. Open problems and remarks. Comparing the bounds of dim f(X)
or cdim f (for a map f from a space X) in Corollaries 3.5, 4.2, 5.3, 5.4 and
in theorems on dimension-raising maps from [11–13, 21], we can ask about
stronger inequalities:

6.1. Question. Does there exist an n-dimensional compact space X,
n ≥ 2, such that dim f(X) ≤ n + k − 3 [or even cdim f ≤ n + k − 3] for
every at most k-to-one map f from X, k ≥ 3?
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The next proposition shows that if we knew Anderson–Choquet spaces
of dimensions greater than one, they would be appropriate examples to the
foregoing question.

6.2. Proposition. Suppose f is an at most k-to-one closed map from
an n-dimensional Anderson–Choquet space X. Then cdim f ≤ max{n, k−1},
and so the conclusions of Corollary 3.5 remain true with n + k replaced by
max{n+ 1, k}.

Proof. We can assume that k = ord f . We claim that dimEj(f) ≤
dimEj+1(f) + 1 for each j ≥ 2. Indeed, it follows from the enlargement
theorem (see [9, Theorems 4.1.19 and 4.1.3]) that there exists a Gδ-subset
H ⊂ X such that Ej+1(f) ⊂ H, dimH = dimEj+1(f), and H = f−1f(H).
The restriction f |Ej(f) \H is exactly j-to-one, and Ej(f) \H is an Fσ-set.
If it had positive dimension, it would be an ACh space, and this would con-
tradict Theorem 5.2. Thus dim[Ej(f) \H] ≤ 0. The claim follows from the
decomposition theorem (see [9, Theorems 4.1.16 and 4.1.3]).

We have dimEk+1(f) = −1, and our claim implies that dimEj ≤ k − j
for j ≥ 2. The proposition is a consequence of Theorems 3.1 and 1.2.

6.3. Question. Do there exist Anderson–Choquet spaces of dimensions
greater than one?

We shall state a negative result in this direction.
The next definition is much more restrictive than that of an Anderson–

Choquet space: By a Cook continuum we understand a continuum K such
that every map f : L → K from a subcontinuum L ⊂ K is either a con-
stant map or the identity idL. The first example of such a continuum K
was constructed by H. Cook [7] (for a detailed description see A. Pultr and
V. Trnková [24, Appendix A]); it was one-dimensional and hereditarily in-
decomposable.

T. Maćkowiak [19] showed that there exists no Cook continuum of di-
mension greater than two, and asked whether all Cook continua are curves.
Since every continuum of dimension greater than n contains a hereditarily
indecomposable continuum of dimension at least n (R. H. Bing [4]), the
following statement implies Maćkowiak’s:

6.4. Proposition. There exists no hereditarily indecomposable Cook
continuum of dimension greater than one.

Proof. We modify the argument given in [19, (4.1)]. Recall that a map is
monotone if each of its point-inverses is a continuum. A map f : X → Y is
weakly confluent if for every continuum B ⊂ Y there is a continuum A ⊂ X
such that f(A) = B.

LetK be any hereditarily indecomposable continuumK with dimK ≥ 2.
Take a proper subcontinuumX ⊂ K with dimX ≥ 2. SinceX is hereditarily
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indecomposable, by a theorem of J. L. Kelley [14] (see also K. P. Hart, J. van
Mill and R. Pol [10]) there is a monotone open map f : X → Y onto an
infinite-dimensional continuum Y . By a theorem of S. Mazurkiewicz [20] (see
also S. B. Nadler [22, Theorem 13.56]) there is a weakly confluent map g :
Y → I3 onto the cube I3. Take any one-dimensional continuum Z ⊂ K \X
and an embedding i : Z → I3.

As g is weakly confluent, there is a continuum A ⊂ Y with g(A) = i(Z).
As f is monotone, L = f−1(A) ⊂ X is a continuum; cf. [22, Exercise 8.46].

The map i−1 ◦ g ◦ f |L : L onto−→ Z shows that K is not a Cook continuum.
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