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Abstract. All {-groups shall be abelian. An a-extension of an ¢-group is an extension
preserving the lattice of ideals; an ¢-group with no proper a-extension is called a-closed.
A hyperarchimedean ¢-group is one for which each quotient is archimedean. This paper
examines hyperarchimedean ¢-groups with unit and their a-extensions by means of the
Yosida representation, focussing on several previously open problems. Paul Conrad asked
in 1965: If G is a-closed and M is an ideal, is G/M a-closed? And in 1972: If G is
a hyperarchimedean sub-/-group of a product of reals, is the f-ring which G generates
also hyperarchimedean? Marlow Anderson and Conrad asked in 1978 (refining the first
question above): If G is a-closed and M is a minimal prime, is G/M a-closed? If G is
a-closed and hyperarchimedean and M is a prime, is G/M isomorphic to the reals? Here,
we introduce some techniques of a-extension and construct a several parameter family of
examples. Adjusting the parameters provides answers “No” to the questions above.

1. Preliminaries. In the following, a lattice-ordered group, or an /(-
group, is an abelian group (G,+) with a lattice order < for which a < b
implies a + ¢ < b+ ¢ for all ¢. Moreover, GT = {g € G | g > 0} is the
positive cone of G. We shall use the references [AF], [BKW], [D], and [LZ]
for various aspects of £-group theory. We sketch some particular ideas which
we need here.

An ideal in an £-group is a convex sub-f-group; these are the kernels of
f-homomorphisms. The collection of all ideals in the ¢-group G is denoted
Idl(G). Let G be a sub-¢-group of H; we write G < H. When the contraction
map Idl(H) — Idl(G) is one-to-one and onto, H is called an a-eztension of G,
and we write G <, H.

ProposITION 1.1 ([C1, 2.1]). G <, H if and only if G < H and for
each h € HT there is g € GT such that g ~4 h, i.e., h < mg and g < nh for
some positive integers m,n.
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If G <, H implies G = H, then G is called a-closed. When G <, H and
H is a-closed, H is called an a-closure of GG. The first systematic study of
a-extensions is Conrad’s [C1]. A large literature has developed subsequently
on this complicated subject; see especially [AF] and [D]. Two main themes,
which this paper continues, are: non-uniqueness of a-closure, even in quite
restricted contexts; what does “a-closed” mean?

N, Z, Q and R denote the natural numbers, the integers, the rational
numbers, and the reals, respectively, as one sort of mathematical structure
or another, which being clear from context.

Let G be an /-group, and u € GT. An element g € G is infinitesimal
with respect to h, written ¢ < h, if 0 < ng < h for all n € N. G is
archimedean if g < h implies g = 0. A positive element u is a weak unit
in G if |g| Au = 0 implies g = 0; and w is a strong unit if (u) = G, where
(uy ={g € G| 3In €N (J]g| <nu)} denotes the ideal in G generated by u.

To illustrate: R is archimedean, and the class of archimedean ¢-groups
is closed under product and sub-/-group formation. So, whenever X is a
topological space, which we always assume to be completely regular and
Hausdorff (see [GJ]), the ¢-group C(X) of continuous R-valued functions is
archimedean. A function u € C(X)7 is a weak unit if and only if coz(u) =
{z € X | u(x) # 0} is dense in X; so the constant function 1 is a weak unit.
For compact X, 1 is a strong unit since each f € C(X) is bounded.

The following is the classical first representation theorem of Yosida [Y],
elaborated and augmented somewhat. Many useful variations and general-
izations are discussed in [AF], [LZ], [HR]| and [BH].

THEOREM 1.2 (Representation of objects). Let G be an archimedean {-
group with strong unit u.

(a) The set of maximal ideals of G, with the hull-kernel topology, is a
compact Hausdorff space, denoted Y (G, u) or just YG.

(b) There is an {-isomorphism G ~ G < C(Y G) for which @ =1 and G
separates the points of Y G.

(¢) If G = G < C(X) is an L-isomorphism with X compact Hausdorff
and uw = 1, then there is a continuous surjection 7 : X — Y G for
which g = go T for each g € G. The group G separates points of X
if and only if T is a homeomorphism.

(d) For each p € YG, M, = {g | g(p) = 0} is a mazimal ideal, and
each maximal ideal is of this form for unique p. For each p, we have

G/M,~{G(p)| g € G} <R.

THEOREM 1.3 (Representation of morphisms). Let (G,u) and (H,v) be
archimedean (-groups with strong units u,v, and let ¢ : G — H be an
£-homomorphism with ¢(u) = v. Define a function Yo : YG «— Y H by:
(Yo)(p) = g means o~Y(M,) = M,. Then Y is continuous and is the
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unique map for which p(g) = go (Y) for each g € G. Further, ¢ is one-
to-one if and only if Y is onto; if v is onto, then Y is one-to-one.

COROLLARY 1.4. Suppose G is archimedean with strong unit u, and
G <, H. Then H is archimedean, u is a strong unit in H, and YH = YG.

For the rest of the paper, we shall identify each archimedean f¢-group
with strong unit with its Yosida representation: 1 € G < C(YG), and that
notation means “G is an archimedean ¢-group with strong unit in its Yosida
representation”.

For X a topological space, clop(X ) denotes the Boolean algebra of clopen
subsets of X. For U C X, x(U) denotes the characteristic function of U and
gx(U) stands for the function on Y'G which vanishes off U and agrees with
g on U. The expression “gx(U) € G” means there is h € G which in the
Yosida representation is gx(U). The following is simple but crucial.

PROPOSITION 1.5. Suppose that 1 € G < C(YG). Then gx(U) € G for
any U € clop(YG) and g € G.

Proof. We first show that x(U) € G: Let {h < a} stand for {z € YG |
h(z) < a}, and let U' = YG — U. For each p € U and each ¢ € U’,
choose gp, € G which is 2 at p and —1 at ¢. (From Theorem 1.2, there
is g € G with g(p) = 1 and g(q) = 0. Let g,q = 39 — 1.) Fixing p, the
set {{gpg < 0} | ¢ € U’} covers U’, so for some finite E C U’, the set
{{gpg < 0} | ¢ € E} covers U'. Then g, = (A cpgpg) V 0 is 2 at p and 0
on U'. Now {{g, > 1} | p € U} covers U, so for some finite F' C U, the set
{{gp > 1} | p € F'} covers U. Then x(U) = (V,ep 9p) N1 € G.

If g > 0, there is n with ¢ < n, and then gx(U) = g A nx(U) € G.
Finally, gx(U) = (¢ V0)x(U) = ((=9) VO)x(U) € G. =

2. Hyperarchimedean /-groups with unit. A hyperarchimedean {-
group is one for which each quotient is archimedean. We abbreviate “hyper-
archimedean” to “HA”. In this section we indicate some basic features of
HA {-groups.

For G an abelian ¢-group, dG denotes the divisible hull. This is the
unique divisible ¢-group containing G for which b € dG implies there exists
a € G for which nb = a for some n € N. For G archimedean with strong
unit, viewed per Theorem 1.2 as 1 € G < C(YG), it is easily seen that
{rg| g€ G, reQ} <C(YQ) is an explicit presentation of dG.

ProprosITION 2.1 ([C2]). (a) If H is HA and G < H, then G is HA.
(b) If G is HA and G <, H, then H is HA.

(c) If G is HA, then dG is HA.

(d) If G is HA, then any weak unit in G is strong.

We turn to a discussion of the central role of “zero-sets”.



110 A. W. Hager and C. M. Kimber

For f € RX, the zero-set of fis Z(f) = f~1({0}) and the cozero-set of f
is coz(f) =X —Z(f). If f € C(X), then Z(f) is closed and coz(f) is open.
For 1€ G <C(YQ), let ZG ={Z(g) | g € G}; note that Theorem 1.3 says
clop(YG) C Z(@Q). For X a space, S(X) ={f € C(X) | range f is finite} <
C(X), and S(X,Z) = {f € S(X) | rangef C Z} < S(X). Note that
ZS(X)=ZS5(X,Z) = clop(X).

Let G be an f-group and g € G. A component of g is an h € G for
which h A (g9 — h) = 0. The following is immediate.

PROPOSITION 2.2. Let 1 € G < C(YG), and let h € G. Then h is a
component of 1 if and only if there is U € clop(YG) for which h = x(U).

In view of [BKW], Theorem 1.2 and Proposition 2.1 we obtain the fol-
lowing characterization of HA groups.

THEOREM 2.3. Let G be an abelian £-group with weak unit u. The fol-
lowing are equivalent:

(a) G is HA.

(b) G is archimedean, u is a strong unit, and in the Yosida representa-
tion ZG = clop(YG).

(c¢) G is archimedean, u is a strong unit, and for some representation
G~G< C(X) with X compact Hausdorff, v = 1, and ZG C
clop(X).

(d) u is a strong unit, and for each g € G there is a pair (x,n), where
X s a component of u and n € N, with ng > x and g A (u—x) = 0.

(e) G is archimedean, and in the Yosida representation S(YG,Z) <, G.

Proposition 2.1, Theorem 2.3 and [C2] give the following.

COROLLARY 2.4. (a) If G is HA with strong unit, then YG is zero-
dimensional (i.e., clop(Y'G) is a base for the open sets).

(b) For X a space, S(X) is HA.

(c) Let G be an l-group. Then G is HA with strong unit if and only if
there is a space Y with S(Y) <, G.

(d) For X a space, C(X) is HA if and only if the sub--group of bounded
functions C*(X) is HA if and only if X is finite.

(e) If G is HA with strong unit, then: G is a-closed if and only if (G <,
H < C(YQG) implies H = Q).

Some of Theorem 2.3 generalizes as follows. First, if G is archimedean
with weak unit, in its Yosida representation (see [HR]), and g € G then
Z(g) is open if and only if g has a (x,n) per Theorem 2.3(c). Second,
for G abelian with weak unit u, and G* = (u), these are equivalent: G
is archimedean and G* is HA; G is archimedean and ZG = clop(Y G); each
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g € G has a (x,n). These (-groups are called bounded away, and were
introduced in the preprint [KM], and are discussed in [HKM].

This section concludes with the following useful results which show that
if an ¢-group G has ¢-group generators which seem hyperarchimedean, then
G actually is hyperarchimedean.

Let H be an {-group, let B be a subgroup of H, and let (B) denote the
sub-¢-group of H generated by B. The elements of (B) are the elements of H
of the form A\, V/; bjx, for bji, € B and finite index sets. (See [BKW].) The
usual problem with analyzing (B) is the inscrutability of the expressions

AV bk

PROPOSITION 2.5. Suppose X is compact and zero-dimensional, and that
B is a point-separating subgroup of C(X) with 1 € B and Z(b) open for all
b€ B. Then (B) is HA and (B) = {>_,c;bix(Us) | b; € B, U; € clop(X);
I finite}.

COROLLARY 2.6. Suppose G is archimedean with strong unit: 1 € G <
C(YG@), and suppose b € C(YG) has Z(g + zb) open for each g € G, z € Z.
Then

(G+Z-b) G—i—{Zzle

el

zi € Z, U; € clop(YG); Iﬁm’te},

(GH+Z-b)y is HA and hence G <, (G + Z - b). Moreover, if for each U €
clop(YG), one of bx(U),bx(YG —U) is in G, then (G+Z-b) = G+ Z - b;

when G is divisible, the converse holds.
The following lemma is necessary.

LEMMA 2.7. If I is finite and h = > {bix(U;) | i € I}, then for a finite
set €, there is a rewriting h =Y {bpx(Vg) | E € £} with the sets Vg disjoint
and non-empty and X =\ J{Vg | E € £}.

Proof. For EC I, let Vg =(\{U; |i€ E}N({X —U; |i¢ E}, and
let £ ={F | E CI, Vg # 0}. Note that Vj = X —|J{U; | i € E}. For
D£Eec& letbg=>{bi|i€E}, and set by = 0. If E # F, say i € E but
i € F, then Vg C U; while Vp C X —U;, so VEN Vg = (. For p € X, let
E(p) ={i € I|pe U} Then Vi # 0, and so E(p) € £, and

Z{b ) i€ E(p)} =bppx(Vep)(® Z{bEX (VE) | E € E}(p)
since the Vg’s are disjoint. =

Proof of Proposition 2.5. Of course, (B) is archimedean with strong
unit 1; by Theorem 1.2, Y(B) = X and the presentation of (B) is the
Yosuia representation. Let By be the set of expressions > b;x(U;). By Propo-
sition 1.5, each bx(u) € (B), so that By C (B), and By clearly is a group.
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We shall show that Z(h) is open for h € By and then that By is an ¢-group.
So By = (B), and by Theorem 2.3, (B) is HA.

Now let By 3 h = Y bgx(Vg) be written as in Lemma 2.7. Then
Z(h) =U{Z(h) NV} =U{Z(bg) N VE}, by disjointness. Since each Z(bg)
is supposed open, and each Vg is open, Z(h) is open.

For By to be an {-group, it suffices that h € By imply hV 0 € By (see
[BKW]). Again write h = ) bpx(VEg) as in Lemma 2.7. Disjointness implies
hv0=> (bpx(Ve)VO0)and bpx(VE) V0 = (bg VO)x(E). SohV0 € By. m

Proof of Corollary 2.6. For the first part, just apply Proposition 2.5 to
B = G + Z - b. For the second part: Let U’ = YG — U. Suppose one of
bx(U),bx(U’) is in G for all U € clop(YG). For all U, bx(U) = g+ z-b
for some g € G, z € Z. If bx(U) € G, use z = 0. If bx(U’) € G, then
B =bx(U)+bx(U’), and we can use z = —1. This shows that any expression
g+ > zibx(U;) actually lies in G + Z - b. Conversely, suppose (G +Z - b) =
G+ Z-b, and U € clop(YG). Suppose bx(U) € G, so bx(U) = g + zb with
z # 0. Then bx(U) = g+2b = gx(U)+gx(U")+2bx(U)+2zbx(U"). For z € U’,
this equation becomes 0 = g(x) + zb(x). This shows gx(U’) + zbx(U’) = 0.
Since G is divisible, z # 0, and gx(U’) € G by Proposition 1.5, we have
bx(U') €G. u

It is not difficult to construct an H A group such that (G+7Z-b) # G+Z-b;
we omit this.

3. The P-groups. aN = N U {a} denotes the one-point compactifica-
tion of the discrete space N. In this section we describe all the groups G
with S(aN,Z) <, G. This is a generalization of

EXAMPLE 3.1. Let Cop = {f € C(aN) | f vanishes on a neighborhood
of a}. This is the weak product of countably many copies of R, and Cpp <
S(aN). Let b(n) = 7+ 1/n, so b € C(aN) — S(aN) and b(a) = w. Write
R = A ® Qm, as a direct sum of Q-vector spaces.

(a) (P. Conrad [C2, 7.1]) Let J = (Cpo + Q) + Q- b. Then S(aN,Z) <,
J Z S(aN). Then J is HA, cannot be represented as an ¢-group of
step functions, and the vector lattice hull, v.J, is not H A.

(b) (M. Anderson and P. Conrad [AC, 4.1]) Let K = (Coo+ A) + Q- b.
Then J <, K and K/M, =R for all p € aN. So K is a-closed, thus
an a-closure of J. But K is not a vector lattice. Note that, actually,
[AC, p. 239] says “K is the a-closure of J”. It can be seen from
Proposition 3.5 below that J has 2° a-closures.

Some of these assertions about J and K are not particularly obvious.
Some, not all, will be shown below. But we emphasize what is going on here:
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The signature of the hyperarchimedean situation, which is the basic
theme of this paper, is the interplay between the locally constant functions
and the non-locally constant functions. This takes a rather simple form for
the groups in Example 3.1 above, and indeed for general G with Y G = aN,
as described in the rest of this section. For more general G, the interplay
is highly visible, but more complicated and more difficult to describe. We
quantify some of this at a rudimentary level:

For archimedean G with strong unit and YG = aN, let

L(G,a)={0€eR|3Jg € G (g =0 on anbhd of )},
nL(G,a)={6€R | g€ G (g(a) =0, g is not constant on any nbhd of «)}.
Regarding Example 3.1, we have

J/IMy =Qa®Q-m, L(J,a) =Q, nL(J,a)=J/M,—Q;
K/My=A®Q -7=R, L(K,a)=A4, nL(J,a)=R-A.

Here we have L(J,a) N nL(J,a) = 0, likewise for K, and this is why
the groups are hyperarchimedean; and K/M, = R, and this is why K is
a-closed. These ideas will be articulated fully for YG = aN.

It will be helpful to keep these guidelines in mind as we proceed.

Suppose S(aN,Z) < § < S(aN), let F'= SN Cy and A = S/M,,. For
each s € S and n € N, we have sy({n}) € S. Thus, S/M,, = F/M,, for each
n € N, for each § € A there is n(d) such that 6 € F/M,, for n > n(J), and
S=F+ A,

We prefer to start with /' and A as initial data.

PROPOSITION 3.2. Suppose F' < Cyg,1 € A < R, and suppose that for
each 6 € A there is n(9) such that 6 € F/M,, for n > n(d). Let b € C(aN) —
S(aN) with b(n) € F/M, for each n € N. The following are equivalent:

(a) bla) €dA=Q- A.

(b) The sub-l-group of C(aN) generated by A+ 7 -b is HA.

(c) (F+A)+Z-b(or(Q-F+QA)+Q-b) is a sub-l-group of C(aN)
which is HA.

(d) (Coo+A)+Z-b (or (Coo+Q-A)+Q-b) is a sub-L-group of C(aN)
which is HA.

Proof. (a)=(d). We use Corollary 2.6 with G = Cpp + A. We first want
to see that Z(g + zb) is open for ¢ € G. This is obvious if z = 0. So
suppose z # 0. Note that g(a) € A. Thus g(a) + zb(a) # 0 by (a), so
Z(g + zb) is a finite subset of N, thus open in aN. Now using the second
part of Corollary 2.6, consider by (U) for U € clop(aN). Then a ¢ U implies
U is finite, so bx(U) € Copp C G, and o € U implies aN — U is finite,
so bx(aN — U) € Cyp C G. The parenthetical part of (d) follows from
Proposition 2.1(c).
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(d)=(c)=-(b) follow by Proposition 2.1(a), using Proposition 2.1(c) for
the parenthetical part of (c).

(b)=(a). Let G = (A+Z-b) < C(aN). By (b) and Theorem 2.3, Z(d+zb)
is open for each z € Z and 0 € A. As in (a)=(d), this means that if z # 0,
then § + zb(a)) # 0, which says (a). =

Proposition 3.2 is a straightforward generalization of Example 3.1(a).
We now use it to describe explicitly all the divisible HA groups, G, with
strong unit for which YG = aN. The “divisible” restriction is simplifying,
and from most points of view, without loss of generality.

So consider Proposition 3.2 supposing F' and A are divisible, and let
P=(F+A)+Q-b

be the HA ¢-group in Proposition 3.2(c). Then PN Cyy = F, PN S(aN) =
F+ A, P/M,, = F/M,, for each n € N, PN S(aN)/My, = A and P/M, =
A® Q- b(w) as a direct sum of Q-vector spaces.

CONSTRUCTION 3.3. (a) Let F' and A be as in Proposition 3.2 and
divisible. Let D < R be divisible and Q-linearly independent of A, i.e.,
DN A={0}. Let ¢ : D — C(aN) be a Q-module homomorphism for which

(i) »(D) N S(aN) = {0},
(ii) Vo6 € D Vn € N (p(6)(n) € F/M,),
(iii) V9 € D (¢(6)(c) = 0), which implies ¢ is one-to-one.

Let P(F,A,(D,¢)) = (F+ A)+ ¢(D).

(b) Before proceeding, we take note that plenty of these exist: Given
F,A, D, let Dy be a Q-basis for D. Then let ¢ : D; — C(aN) — S(aN)
be “constructed” like this: A and each F/M,, are topologically dense in R,
so given 0 € Dy, there is a sequence a, € A with |6 — a,| < 1/n. Let ng
be the first integer such that (n > n; = a1 € F/M,), let na be the first
integer > n; such that (n > ny = ay € F/M,,), and so on. Now let f, =1
for 1 < n < mnq, so these f,, € F/My; let f, = a, for ny < n < ng, so these
fn € F/M,, and so on.

Thus, f, € F/M, for all n, and f, — 0. Define ¢1(d)(n) = f, and
©1(9)(a) = 6, and now extend ¢ to ¢ : D — C(aN) by Q-linearity. Clearly
¢ satisfies (ii) and (iii) above. Easy examples show that the preceding pre-
cautions are necessary to ensure (i), which we now show: Since ¢ is 1-1, (i)
just means that for all 6 € D — {0}, () is constant on no neighborhood
of a. But in fact there exists n with ¢(J)(«) = 4§ if and only if § = 0, since
©(0)(n) € A and A and D are Q-linearly independent.

THEOREM 3.4. (I) P = P(F, A, (D,y)) is a divisible hyperarchimedean
£-group with strong unit 1 and Y P = aN, with the features:
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PNCo=F and PN S(aN) = F + A;
P/M,, = F/M, for all n € N and PN S(aN)/M, = L(P,«a) = A;
P/My =A® D and nL(P,a) = P/M, — A= (D —{0}) + A.

(IT) If G is any divisible hyperarchimedean (-group with strong unit, and
YG = aN, then there are F, A, D, ¢ for which, in the Yosida repre-
sentation of G, we have G = P(F, A, (D, ¢)).

Note that in (II), given G, the sets F' and A are determined by (I). But,
by (I), D only needs to have A& D = G/M,, and situations (D # D2 with
A® D1 = A® Dy) are common. Then of course, having fixed D, various ¢
are possible. See below.

Proof. Note that P(F, A, (D,¢)) =U{(F+A)+b]|be p(D)}.

(I) Clearly, 1 € P C C(aN) and P separates the points of aN. If 0 #
b = ¢(0) for some § € D, then d # 0 and ¢(d)(«) € A, so Proposition 3.2(a)
holds. Thus Proposition 3.2(c) holds, and (F'+ A) + Q- b is an HA {-group
with Yosida space aN. Therefore, if g; = (fi+a;)+b; € P (i = 1,2, b; € p(D),
etc.) then Z(g1) is open by Theorem 2.3, and g1 VO € (F+A)+Q-b; C P.
Also, if b; = ¢(6;), then since ¢ is Q-linear, by = by — ba = ¢(d1 — d2), so
that g1 — g2 € (F+ A) +by C P. So P is an ¢-group with open zero-sets,
thus HA by Theorem 2.3. By Theorem 1.2, Y P = aN, and the other claims
for P are clear.

(IT) Let G be given, let FF = GNCy and A = GNS(aN)/M, = L(G, ).
Thus nL(G,a) = G/M, — A.

Let D; be a subset of G/M, maximal Q-linearly independent of A, and
let ¢1 : D — G — S(aN) be any choice function with ¢;(d)(a) = 6 for
all § € D;. Let D be the Q-linear span of Dy and let ¢ : D — G be
the extension by Q-linearity. This satisfies Construction 3.3(a)(i); i.e., the
technicalities in Construction 3.3(b) are not needed here: If ¢(J) # 0 then
0+#6=¢(0)(a) € G/M, — A.

Solet P = P(F, A, (D,¢)). Obviously, P C G. For the reverse, let g € G.
Our choice of D makes G/M, = A® D, so that g(a) = a + 0 for unique
a€ A, 6 € D.Sothere are s € GN S(aN) and b € (D) with a = s(«) and
0 = b(«) and therefore g(a) = s(a) + b(a). Let h=s+be (F+A)+bC P.
Since h(a) = g(a), we have h = ¢g on a neighborhood U of a.. Since aN — U
is finite, g —h € Coo NG =F. Thusg=(g—h)+h e (F+A) +bC P. u

It is easy to show the following.

PROPOSITION 3.5. Let P; = P(F;, A;, (D;, ;) fori=1,2 be as in Con-
struction 3.3 and Theorem 3.4. These are equivalent:

(a) P1 < Ps, so Py <, Ps.

(b) F1 < Fy, Ay < Ag, and Py/M, < P»/M,.
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(c) F1 < Fy, Ay < Ay, and Py = P(Fy, Ag, (D5, ) for some Dy D Dy
and @ D .

Proposition 3.5 makes it obvious how to construct all a-extensions of an
l-group P = P(F, A, (D, )): enlarge F, A and D and then extend ¢. When
these are not possible, P is a-closed:

COROLLARY 3.6. These are equivalent about P = P(F, A, (D, p)):

(a) P is a-closed.

(b) F= C[)O and P/Ma =R.

(¢c) F = Coo and for any Q-bases B for A and C for D, BUC is a
Q-basis for R, i.e., a Hamel basis.

Proof. (b)<(c) since P/M, = A& D; (a)<(c) by inspection of Propo-
sition 3.5. m

In Corollary 3.6, (b)=-(a) is a special case of a result from [AC]; (a)=-(b)
is also a consequence of topological properties of aN. Corollary 3.6 and
Theorem 3.4(I) give the following.

COROLLARY 3.7. Let A be a divisible subgroup of R with 1 € A, and let

D be any Q-vector space complement of A in R. Then any P = P(Cyp, A,
(D, )) is a-closed and nL(P,a) = R — A.

QUESTION 3.8 ([C2, p. 217, open question 4]). Suppose that G is a sub-
L-group of a product H of reals which satisfies

() f0<geq, thenr<g<s forsomeO<r,seR<H.
Must the sub-€-ring of H generated by G be HA?

In general, (x) implies G is HA. If G has strong unit, H A implies (x) for
any such G < H, as is easily seen from Sections 1 and 2 here.

The answer to Question 3.8 is “No”: Let P = P(Cyo, Q, (D, ¢)) with
D = Q-2 Here P < C(aN) < RN} = H. and the sub-f-ring of H
generated by P is the sub-f-ring of C'(aN) generated by P. Call this oP. By
Theorem 2.3, oP is HA if and only if it has open zero-sets. But there is
b= (v2) € Pso2—b*>c oP, but Z(2— b?) is not open since b?> cannot be
2 on a neighborhood of a.

4. The Y-groups. As noted in the Abstract, the following progres-
sively more pointed questions have been asked by Conrad, and Anderson
and Conrad.

QUESTION 4.1. Suppose that G is a-closed.

(1) Is G/I a-closed for every ideal I?
(2) Is G/ P a-closed for every minimal prime P ¢
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(3) If G is also HA, is G/M a-closed for every mazximal M, i.e., is
G/M =R?

Question (1) is from [C1, p. 153]; its converse is obviously true. Questions
(2) and (3) are from [AC, p. 227]. The converse to (2) is Corollary I of [AC,
p. 226], so the converse to (3) also holds.

We give the answer “No” to Question 4.1(3), so all these answers are
“No”, taking aim at the issue by analyzing, for (divisible) HA (-groups
with strong unit G, the mechanics of a-extendibility in terms of permissible
enlargements of the G/M,, one point p at a time. We make another con-
struction to produce various a-closed G for which various G /M), are various
proper subgroups of R.

CONSTRUCTION 4.2. Let X be an index set, and {G, | = € X} a set
of archimedean /-groups with strong unit. Let Y, = Y G, for x € X, and
let Y =a) {Yz | z € X} be the one-point compactification of the disjoint
union: Y = {a}U>_ Y, in which U C > Y, is open if and only if each UNY,,
is open in Y, and every neighborhood of « contains all but finitely many
Y,. Let 1 € A <R, construed as constant functions on Y, or on any Y., and
suppose that A < G, for each x for simplicity. ¥ = ¥ ({G,}, A) denotes the
(-subgroup of C(Y') generated by the weak product [[* G and the constant
functions from A.

It is easy to see that, for f € C(Y), we have f € ¥ if and only if
there is a finite set ' C X and a € A such that f|Y, € G, for x € F
and f is constantly a on Y — > {Y, | = € F}. Note that, for g € G, the
group ¥ contains the function which is g on Y, and 0 elsewhere; we denote
this by gx(Yz). Clearly, for the divisible hull, d¥ = ¥({dG,},dA). Thus
v =]["Gy+ A < C(Y) is archimedean with strong unit 1, Y¥ =Y by
Theorem 1.2(c), and evidently: for p € Y, ¥/M, = G, /M,, and ¥/M, = A.

U({G.},7Z) is the “unital version” of [[* G,.

Note that the ¥-groups are a partial generalization of the P-groups of §3:
Y({Ry}, A) = P(J[“ Ry, A, (0,0)). We could complete the generalization by
adding a (D, ¢) in the data for ¥ and we shall do that if a purpose develops.

Recall that a function f € C(X) is locally constant at p € X if there
is a neighborhood of p on which f is constant. In the following definition,
0 is always a real number. Recall also that given G and p € YG we have
G/M,=1{6|3g € G (g9(p) = d)}. We then define the analogous sets:

L(G,p) ={d | 3g € G locally constant at p(g(p) =)},
nL(G,p) = {0 | g € G not locally constant at p(g(p) = 9)}
nL(G) = U{nL(G,p) |p € YG}.
Observe that nL(¥) = J{nL(G;) | z € X}.
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We establish criteria for ¥ to be HA.

PROPOSITION 4.3. ¥({G,}, A) is HA if and only if for each v € X,
Gy is HA and nL(Gz) N A = ().

Proof. Suppose ¥ is HA. Restriction ¥ > f — f|Y, € G is a surjective
homomorphism, so G, is HA. This implies nL(G;) N A = () since A C
L(G,,p) for each p € Y.

Conversely, if g € ¥, then g = > {gzx(Yz) | © € F} + a for a finite
set F. If a # 0, then Z(g9) = U{Z(gz) | * € F'} and this is open. If a = 0,
then Z(g9) = U{Z(9x) | = € F} U(U{Yz | * € F}), which is open. By
Corollary 2.6, ¥ is HA. =

The following outlines properties of a-extensions of ¥, when it is HA,
based on the action of adjoining certain values. Let

Ad(G,p) =1{6|6 & G/M,, 3G <, H (6 € H/M,)},
AdL(G,p) = {0 |6 ¢ G/M,, 3G <, H (6 € L(H,p))},
AdnL(G,p) ={0|6 € G/M,, 3G <, H (§ € nL(H,p))}.

We now examine Ad(G,p) = AdL(G,p) U AdnL(G,p), by examining the
pieces separately.

THEOREM 4.4. Let p € YG, and let § be a real number such that § &
G/M,. These are equivalent:

(a) 6 € AdL(G,p).

(b) There is U € clop(YG) with p € U, and there is G <, H with
x(U) € H.

(c) There is U € clop(YG) with p € U for which 6 ¢ nL(G,x) for each
xeU, e, UN{z|denl(G,z)}=0.

Proof. (a)<(b) follows by noticing that, via Corollary 1.4, we get: ¢ €
L(G,p) if and only if there is U € clop(YG) with p € U, and 6x(U) € G.

(a)=(c). If G <, H and ¢ € L(H,p), then § & nL(H,p) 2 nL(G,p) by
the note above.

(c)=(b). Assuming (b), let H = (G+Z-dx(U)). We use Corollary 2.6
to see that G <, H. Consider Z = Z(g + z0x(U)). We have Z = (Z N
U)Uu(Zn(YG —U)), and we show that each piece is open. The second,
ZNYG-U)=Z(g)N(YG—U), is open since Z(g) is open since G is HA,
and U is closed. Now ZNU ={zx € U | g(x) = —26}. So, if z € ZNU, then
g is locally constant at x since § € nL(G, x) and G is divisible, and there a
is clopen V 3z withg=—28on V,so V C ZNU. Thus ZNU is open. =

LEMMA 4.5. Suppose ¥ = W({G,},A) is HA. If ¥ <, H, then for
each ©, G, <, H|Y,. Conversely, if G, <, H, for each x, then ¥({G,}, A)
<o W({H,}, A).
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Proof. The notation makes sense since Y H, = Y G, for each z. The
first assertion is because G <, H implies G/I NG <, H/I for each ideal I.
Conversely, if h = > {hax(Yz) | z € F} + a, and for each x € F we have
9z ~a hg, then Y {gz|x(Yy) |2 € F} ~q h. n

PROPOSITION 4.6. (a) Let G be HA. Then G is a-closed if and only if
Ad(G,p) =0 for each p € YG.

(b) Suppose ¥ = ¥ ({G,}, A) is HA. Then ¥ is a-closed if and only if
each G is a-closed and Ad(¥, a) = ().

Proof. (a) “=" is clear. Conversely, let G <, H and h € H. Since all
Ad(G,p) are empty, for each p there is g, € G with g,(p) = h(p). Since
H is HA, h — g, is constant on a clopen U, containing p, which means
hx(Up) = gx(Up) € G, by Theorem 1.3. By compactness, there is a finite
with J{Up | p € F} =YG. Then h =/ and gx(Up) € G.

(b) By (a), ¥ is a-closed if and only if Ad(¥,p) = 0 for each p € Y.
For p € Y,, we have Ad(¥,p) = Ad(G,p) using Lemma 4.5. The result
follows. =

We need the following well known lemma:

LEMMA 4.7. X be compact zero-dimensional. For Z C X, the following
are equivalent: Z € ZC(X); Z is a closed Gs-set; Z is a countable intersec-
tion of clopen sets.

THEOREM 4.8. Given G,p € YG, and real § ¢ G /M,:

(I) If 6 € AdnL(G,p), then there is a zero-set Z with p € 0Z with
intZN{x|denL(G,z)} =0 and 0ZN{x | € L(G,z)} = 0.

(IT) If there is a zero-set Z with p € 0Z with int Z N {x |0 € nL(G,x)}
=0 and 0ZN{x |0 € G/My} =10, then 6 € AdnL(G,p).

Proof. (I) Suppose 6 € AdnL(G,p), so § ¢ G/M), and there is G <, H
with h € H for which h(p) = 0 and h is not locally constant at p. Let
Z ={x | h(xz) = d}. This is a zero-set and clearly for x € Z:

(a) x € int Z if and only if h is locally constant at « and then § € L(H, z);
(b) © € 9Z if and only if h is not locally constant at z and then § €
nL(H,x).

By (b), p € 0Z. Since nL(G,z) C nL(H,x) and nL(H,x) N L(H,z) = (), we
see that int ZN{z | 6 € nL(G,z)} = 0 from (a). Since L(G,z) C L(H,x)
and nL(H,z) N L(H,z) = 0, we get 0ZN{z |6 € L(G,x)} = 0 from (b).

(II) Let Z be as described. By Lemma 4.7, YG — Z = |J,, U, for U,, €
clop(YG). Let K,, = U, — |;,, Ui. These are disjoint and clopen, |J K, =
YG—-Z and YG = |JK, UZ. Let (r,) be a sequence of rational numbers
with 7, — 6. Define b € C(YG) as b(z) = ry, for x € K,, and b(z) = 0 for
x € Z. Then Z = {x | b(x) = 0}, and again for z € Z:



120 A. W. Hager and C. M. Kimber

(a) x € int Z if and only if b is locally constant at x;
(b) x € 0Z if and only if b is not locally constant at .

Let H = (G + Z - b). We shall use Corollary 2.6 to show that H is HA
so that G <, H. It follows that 0 € nL(H,p), so § € AdnL(G,p).

Let ¢ € G and z € Z. We show that F = Z(g + zb) is open. Now
E = E1 U FEyU E3, where E; = U(Kn UE), Ey =intZNE, and F5 =
0Z N E. The set Ej is open since K, N E = K, N{x | g(x) = —zr,}
is open. Fj is open: since int Z N {z | 6 € nL(G,z)} = 0, it is also the
case that int Z N {x | —z0 € nL(G,x)} = 0 since G is divisible. Thus,
if x € FEy then there is a neighborhood V of x on which ¢ = —z and
x e VNintZ C Ey. Finally, E3 = 0 since 0ZN{x | § € G/M,} = () and
hence 0Z N{x | —20 € G/M,} = ) since G is divisible. m

It is not difficult to construct examples illustrating the gap between the
conditions in Theorem 4.8(I) and (II). We omit this.

So we can focus on Ad(¥, «). Keeping Theorem 4.4 in mind, note that if
a € U CY, then U contains a clopen set containing « if and only if there is
a finite F' such that U D | J{Y. | x € F'}; U contains a zero-set containing «
if and only if there is countable F' with U D | J{Y; | + € F'} by Lemma 4.7.

PROPOSITION 4.9. Suppose ¥ = ¥ ({Gy}, A) is HA with X uncountable.

(a) 0 € AdL(¥, ) if and only if there is finite a F' C X for which x ¢ F
implies § ¢ nL(G).

(b) 6 € AdnL(¥, ) if and only if there is a countable FF C X for which
x & F implies 6 ¢ nL(Gy).

Proof. (a) nL(¥,a) = () and for p € Y, nL(¥,p) = nL(Gy,p). So the
condition says that U = J{Y; | € F'} satisfies Theorem 4.4(c).

(b) We make the following obvious, but useful, observation: If G is HA
and T C YG is closed, then int T N{z | 6 € nL(G,x)} = 0 if and only if
TN{z|denL(G,z)} COT and 0T N{z | € L(G,x)} = 0 if and only if
TNn{x|o0e L(G,z)} CintT.

Consider this observation for Z a zero-set of Y containing «. Here 07 =
{a}, L(¥,a) = A and nL(¥,a) = 0. So for § ¢ A, we see that 0ZN{x | J €
U/M,} =0, thus 0ZN{z | 6 € nL(¥,z)} = () and the conditions in the two
parts of the observation each reduce to: int ZN{z | § € nL(¥,z)} = . The
condition in (b) says that for Zy = |J{Yz | * &€ F'} we have ZoN{z | ¢ €
nL(W,x)} = 0. Now apply Theorem 4.8. =

COROLLARY 4.10. Let ¥ = U ({G.},A) be HA with X uncountable.
Then Ad(¥,«) = 0 if and only if for each § ¢ A [for each countable F C X,
there is © ¢ F with 6 € nL(Gy)].
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Proof. The condition bracketed is the negation of the condition in Pro-
position 4.9(b), which implies the negation of the condition in Proposi-
tion 4.9(a). w

COROLLARY 4.11. Let Gy be HA, let X be uncountable and for each
z € X let Gy = Go. Let W =V ({Gz},A). Then ¥ is HA and Ad(¥,«) = ()
if and only if R — A = nL(Gy).

Such Gq are given in Corollary 3.7.

EXAMPLE 4.12. Let A be any divisible subgroup of R containing 1. There
is an a-closed ¥4 that is HA with strong unit, with a maximal ideal M for
which W4 /M = A.

Such a ¥4 is a ¥ in Corollary 4.11, with M = M, using Gy = P({Coo},
A,(D,p)) < C(aN) from §3, with a ¢ for which A ® D = R. Now Gy
is a-closed by Corollary 3.6, so ¥y is a-closed by Proposition 4.6(b) and
Corollary 4.11. As noted in Corollary 3.7, nL(Go,ap) = R — A (writing
aN =NU{ap} to avoid confusion).

For ¥, in Example 4.12, ¥4 /M, =R for every p # o, and ¥4 /M, = A.
Of course, more complicated situations can be constructed. We content our-
selves with just one more level of complexity.

ExaMPLE 4.13. Let A be any divisible subgroup of R with 1 € A and
let m be any uncountable cardinal number. Let aD(m) be the one-point
compactification of the discrete space of cardinal m. There is an a-closed
U = WUy, that is HA with strong unit, for which Y'¥ contains a copy of
aD(m) as a nowhere dense subset with ¥/M,, = A for each p € aD(m):

Let ¥ = ¥({H; | i < m}, A) with each H; given by the ¥4 of Ex-
ample 4.12. Here, nL(H;) = R — A and since nL(¥4) = R — A, we see
that ¥ is a-closed by Proposition 4.6(b) and Corollary 4.10. We have YV =
{a} U> YH; and ¥/M, = A. Also YH; = {a;} U () and H;/M,, = A.
The desired copy of aD(m) is {a} U {a; | i < m}.

With reference to “nowhere dense”, it is easy to show that: there is an
a-closed G for which {p € YG | G/M, # R} has interior if and only if there
is a-closed H for which {p € YH | H/M, = R} = () where G and H are HA
with strong unit. We do not know if such G, H exist.
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