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Abstract. All `-groups shall be abelian. An a-extension of an `-group is an extension
preserving the lattice of ideals; an `-group with no proper a-extension is called a-closed.
A hyperarchimedean `-group is one for which each quotient is archimedean. This paper
examines hyperarchimedean `-groups with unit and their a-extensions by means of the
Yosida representation, focussing on several previously open problems. Paul Conrad asked
in 1965: If G is a-closed and M is an ideal, is G/M a-closed? And in 1972: If G is
a hyperarchimedean sub-`-group of a product of reals, is the f -ring which G generates
also hyperarchimedean? Marlow Anderson and Conrad asked in 1978 (refining the first
question above): If G is a-closed and M is a minimal prime, is G/M a-closed? If G is
a-closed and hyperarchimedean and M is a prime, is G/M isomorphic to the reals? Here,
we introduce some techniques of a-extension and construct a several parameter family of
examples. Adjusting the parameters provides answers “No” to the questions above.

1. Preliminaries. In the following, a lattice-ordered group, or an `-
group, is an abelian group (G,+) with a lattice order ≤ for which a ≤ b
implies a + c ≤ b + c for all c. Moreover, G+ = {g ∈ G | g ≥ 0} is the
positive cone of G. We shall use the references [AF], [BKW], [D], and [LZ]
for various aspects of `-group theory. We sketch some particular ideas which
we need here.

An ideal in an `-group is a convex sub-`-group; these are the kernels of
`-homomorphisms. The collection of all ideals in the `-group G is denoted
Idl(G). Let G be a sub-`-group of H; we write G ≤ H. When the contraction
map Idl(H)→ Idl(G) is one-to-one and onto,H is called an a-extension ofG,
and we write G ≤a H.

Proposition 1.1 ([C1, 2.1]). G ≤a H if and only if G ≤ H and for
each h ∈ H+ there is g ∈ G+ such that g ∼a h, i.e., h ≤ mg and g ≤ nh for
some positive integers m,n.
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If G ≤a H implies G = H, then G is called a-closed. When G ≤a H and
H is a-closed, H is called an a-closure of G. The first systematic study of
a-extensions is Conrad’s [C1]. A large literature has developed subsequently
on this complicated subject; see especially [AF] and [D]. Two main themes,
which this paper continues, are: non-uniqueness of a-closure, even in quite
restricted contexts; what does “a-closed” mean?
N, Z, Q and R denote the natural numbers, the integers, the rational

numbers, and the reals, respectively, as one sort of mathematical structure
or another, which being clear from context.

Let G be an `-group, and u ∈ G+. An element g ∈ G is infinitesimal
with respect to h, written g � h, if 0 ≤ ng ≤ h for all n ∈ N. G is
archimedean if g � h implies g = 0. A positive element u is a weak unit
in G if |g| ∧ u = 0 implies g = 0; and u is a strong unit if 〈u〉 = G, where
〈u〉 = {g ∈ G | ∃n ∈ N (|g| ≤ nu)} denotes the ideal in G generated by u.

To illustrate: R is archimedean, and the class of archimedean `-groups
is closed under product and sub-`-group formation. So, whenever X is a
topological space, which we always assume to be completely regular and
Hausdorff (see [GJ]), the `-group C(X) of continuous R-valued functions is
archimedean. A function u ∈ C(X)+ is a weak unit if and only if coz(u) =
{x ∈ X | u(x) 6= 0} is dense in X; so the constant function 1 is a weak unit.
For compact X, 1 is a strong unit since each f ∈ C(X) is bounded.

The following is the classical first representation theorem of Yosida [Y],
elaborated and augmented somewhat. Many useful variations and general-
izations are discussed in [AF], [LZ], [HR] and [BH].

Theorem 1.2 (Representation of objects). Let G be an archimedean `-
group with strong unit u.

(a) The set of maximal ideals of G, with the hull-kernel topology , is a
compact Hausdorff space, denoted Y (G,u) or just Y G.

(b) There is an `-isomorphism G ≈ Ĝ ≤ C(Y G) for which û = 1 and Ĝ
separates the points of Y G.

(c) If G ≈ G̃ ≤ C(X) is an `-isomorphism with X compact Hausdorff
and ũ = 1, then there is a continuous surjection τ : X → Y G for
which g̃ = ĝ ◦ τ for each g ∈ G. The group G̃ separates points of X
if and only if τ is a homeomorphism.

(d) For each p ∈ Y G, Mp = {g | ĝ(p) = 0} is a maximal ideal , and
each maximal ideal is of this form for unique p. For each p, we have
Ĝ/Mp ≈ {ĝ(p) | g ∈ G} ≤ R.

Theorem 1.3 (Representation of morphisms). Let (G,u) and (H, v) be
archimedean `-groups with strong units u, v, and let ϕ : G → H be an
`-homomorphism with ϕ(u) = v. Define a function Y ϕ : Y G ← Y H by :
(Y ϕ)(p) = q means ϕ−1(Mp) = Mq. Then Y ϕ is continuous and is the
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unique map for which ϕ̂(g) = ĝ ◦ (Y ϕ) for each g ∈ G. Further , ϕ is one-
to-one if and only if Y ϕ is onto; if ϕ is onto, then Y ϕ is one-to-one.

Corollary 1.4. Suppose G is archimedean with strong unit u, and
G ≤a H. Then H is archimedean, u is a strong unit in H, and Y H = Y G.

For the rest of the paper, we shall identify each archimedean `-group
with strong unit with its Yosida representation: 1 ∈ G ≤ C(Y G), and that
notation means “G is an archimedean `-group with strong unit in its Yosida
representation”.

For X a topological space, clop(X) denotes the Boolean algebra of clopen
subsets of X. For U ⊆ X, χ(U) denotes the characteristic function of U and
gχ(U) stands for the function on Y G which vanishes off U and agrees with
g on U. The expression “gχ(U) ∈ G” means there is h ∈ G which in the
Yosida representation is gχ(U). The following is simple but crucial.

Proposition 1.5. Suppose that 1 ∈ G ≤ C(Y G). Then gχ(U) ∈ G for
any U ∈ clop(Y G) and g ∈ G.

Proof. We first show that χ(U) ∈ G: Let {h < a} stand for {x ∈ Y G |
h(x) < a}, and let U ′ = Y G − U . For each p ∈ U and each q ∈ U ′,
choose gpq ∈ G which is 2 at p and −1 at q. (From Theorem 1.2, there
is g ∈ G with g(p) = 1 and g(q) = 0. Let gpq = 3g − 1.) Fixing p, the
set {{gpq < 0} | q ∈ U ′} covers U ′, so for some finite E ⊆ U ′, the set
{{gpq < 0} | q ∈ E} covers U ′. Then gp = (

∧
q∈E gpq) ∨ 0 is 2 at p and 0

on U ′. Now {{gp > 1} | p ∈ U} covers U, so for some finite F ⊆ U, the set
{{gp > 1} | p ∈ F} covers U. Then χ(U) = (

∨
p∈F gp) ∧ 1 ∈ G.

If g ≥ 0, there is n with g ≤ n, and then gχ(U) = g ∧ nχ(U) ∈ G.
Finally, gχ(U) = (g ∨ 0)χ(U)− ((−g) ∨ 0)χ(U) ∈ G.

2. Hyperarchimedean `-groups with unit. A hyperarchimedean `-
group is one for which each quotient is archimedean. We abbreviate “hyper-
archimedean” to “HA”. In this section we indicate some basic features of
HA `-groups.

For G an abelian `-group, dG denotes the divisible hull. This is the
unique divisible `-group containing G for which b ∈ dG implies there exists
a ∈ G for which nb = a for some n ∈ N. For G archimedean with strong
unit, viewed per Theorem 1.2 as 1 ∈ G ≤ C(Y G), it is easily seen that
{rg | g ∈ G, r ∈ Q} ≤ C(Y G) is an explicit presentation of dG.

Proposition 2.1 ([C2]). (a) If H is HA and G ≤ H, then G is HA.
(b) If G is HA and G ≤a H, then H is HA.
(c) If G is HA, then dG is HA.
(d) If G is HA, then any weak unit in G is strong.

We turn to a discussion of the central role of “zero-sets”.
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For f ∈ RX , the zero-set of f is Z(f) = f−1({0}) and the cozero-set of f
is coz(f) = X −Z(f). If f ∈ C(X), then Z(f) is closed and coz(f) is open.
For 1 ∈ G ≤ C(Y G), let ZG = {Z(g) | g ∈ G}; note that Theorem 1.3 says
clop(Y G) ⊆ Z(G). For X a space, S(X) = {f ∈ C(X) | range f is finite} ≤
C(X), and S(X,Z) = {f ∈ S(X) | range f ⊆ Z} ≤ S(X). Note that
ZS(X) = ZS(X,Z) = clop(X).

Let G be an `-group and g ∈ G+. A component of g is an h ∈ G for
which h ∧ (g − h) = 0. The following is immediate.

Proposition 2.2. Let 1 ∈ G ≤ C(Y G), and let h ∈ G. Then h is a
component of 1 if and only if there is U ∈ clop(Y G) for which h = χ(U).

In view of [BKW], Theorem 1.2 and Proposition 2.1 we obtain the fol-
lowing characterization of HA groups.

Theorem 2.3. Let G be an abelian `-group with weak unit u. The fol-
lowing are equivalent :

(a) G is HA.
(b) G is archimedean, u is a strong unit , and in the Yosida representa-

tion ZG = clop(Y G).
(c) G is archimedean, u is a strong unit , and for some representation

G ≈ G̃ ≤ C(X) with X compact Hausdorff , ũ = 1, and ZG̃ ⊆
clop(X).

(d) u is a strong unit , and for each g ∈ G+ there is a pair (χ, n), where
χ is a component of u and n ∈ N, with ng ≥ χ and g ∧ (u− χ) = 0.

(e) G is archimedean, and in the Yosida representation S(Y G,Z) ≤a G.
Proposition 2.1, Theorem 2.3 and [C2] give the following.

Corollary 2.4. (a) If G is HA with strong unit , then Y G is zero-
dimensional (i.e., clop(Y G) is a base for the open sets).

(b) For X a space, S(X) is HA.
(c) Let G be an `-group. Then G is HA with strong unit if and only if

there is a space Y with S(Y ) ≤a G.
(d) For X a space, C(X) is HA if and only if the sub-`-group of bounded

functions C∗(X) is HA if and only if X is finite.
(e) If G is HA with strong unit , then: G is a-closed if and only if (G ≤a

H ≤ C(Y G) implies H = G).

Some of Theorem 2.3 generalizes as follows. First, if G is archimedean
with weak unit, in its Yosida representation (see [HR]), and g ∈ G+ then
Z(g) is open if and only if g has a (χ, n) per Theorem 2.3(c). Second,
for G abelian with weak unit u, and G∗ = 〈u〉, these are equivalent: G
is archimedean and G∗ is HA; G is archimedean and ZG = clop(Y G); each
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g ∈ G+ has a (χ, n). These `-groups are called bounded away, and were
introduced in the preprint [KM], and are discussed in [HKM].

This section concludes with the following useful results which show that
if an `-group G has `-group generators which seem hyperarchimedean, then
G actually is hyperarchimedean.

Let H be an `-group, let B be a subgroup of H, and let 〈B〉 denote the
sub-`-group of H generated by B. The elements of 〈B〉 are the elements of H
of the form

∧
k

∨
j bjk, for bjk ∈ B and finite index sets. (See [BKW].) The

usual problem with analyzing 〈B〉 is the inscrutability of the expressions∧∨
bjk.

Proposition 2.5. Suppose X is compact and zero-dimensional , and that
B is a point-separating subgroup of C(X) with 1 ∈ B and Z(b) open for all
b ∈ B. Then 〈B〉 is HA and 〈B〉 = {∑i∈I biχ(Ui) | bi ∈ B, Ui ∈ clop(X);
I finite}.

Corollary 2.6. Suppose G is archimedean with strong unit : 1 ∈ G ≤
C(Y G), and suppose b ∈ C(Y G) has Z(g + zb) open for each g ∈ G, z ∈ Z.
Then

〈G+ Z · b〉 = G+
{∑

i∈I
zibχ(Ui)

∣∣∣ zi ∈ Z, Ui ∈ clop(Y G); I finite
}
,

〈G + Z · b〉 is HA and hence G ≤a 〈G + Z · b〉. Moreover , if for each U ∈
clop(Y G), one of bχ(U), bχ(Y G− U) is in G, then 〈G+ Z · b〉 = G+ Z · b;
when G is divisible, the converse holds.

The following lemma is necessary.

Lemma 2.7. If I is finite and h =
∑{biχ(Ui) | i ∈ I}, then for a finite

set E , there is a rewriting h =
∑{bEχ(VE) | E ∈ E} with the sets VE disjoint

and non-empty and X =
⋃{VE | E ∈ E}.

Proof. For E ⊆ I, let VE =
⋂{Ui | i ∈ E} ∩

⋂{X − Ui | i 6∈ E}, and
let E = {E | E ⊆ I, VE 6= ∅}. Note that V∅ = X − ⋃{Ui | i ∈ E}. For
∅ 6= E ∈ E , let bE =

∑{bi | i ∈ E}, and set b∅ = 0. If E 6= F, say i ∈ E but
i 6∈ F, then VE ⊆ Ui while VF ⊆ X − Ui, so VE ∩ VF = ∅. For p ∈ X, let
E(p) = {i ∈ I | p ∈ Ui}. Then VE(p) 6= ∅, and so E(p) ∈ E , and

h(p) =
∑
{bi(p) | i ∈ E(p)} = bE(p)χ(VE(p))(p) =

∑
{bEχ(VE) | E ∈ E}(p)

since the VE ’s are disjoint.

Proof of Proposition 2.5. Of course, 〈B〉 is archimedean with strong
unit 1; by Theorem 1.2, Y 〈B〉 = X and the presentation of 〈B〉 is the
Yosida representation. Let B0 be the set of expressions

∑
biχ(Ui). By Propo-

sition 1.5, each bχ(u) ∈ 〈B〉, so that B0 ⊆ 〈B〉, and B0 clearly is a group.
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We shall show that Z(h) is open for h ∈ B0 and then that B0 is an `-group.
So B0 = 〈B〉, and by Theorem 2.3, 〈B〉 is HA.

Now let B0 3 h =
∑
bEχ(VE) be written as in Lemma 2.7. Then

Z(h) =
⋃{Z(h)∩ VE} =

⋃{Z(bE)∩ VE}, by disjointness. Since each Z(bE)
is supposed open, and each VE is open, Z(h) is open.

For B0 to be an `-group, it suffices that h ∈ B0 imply h ∨ 0 ∈ B0 (see
[BKW]). Again write h =

∑
bEχ(VE) as in Lemma 2.7. Disjointness implies

h ∨ 0 =
∑

(bEχ(VE) ∨ 0) and bEχ(VE) ∨ 0 = (bE ∨ 0)χ(E). So h ∨ 0 ∈ B0.

Proof of Corollary 2.6. For the first part, just apply Proposition 2.5 to
B = G + Z · b. For the second part: Let U ′ = Y G − U. Suppose one of
bχ(U), bχ(U ′) is in G for all U ∈ clop(Y G). For all U, bχ(U) = g + z · b
for some g ∈ G, z ∈ Z. If bχ(U) ∈ G, use z = 0. If bχ(U ′) ∈ G, then
B = bχ(U)+bχ(U ′), and we can use z = −1. This shows that any expression
g +

∑
zibχ(Ui) actually lies in G+ Z · b. Conversely, suppose 〈G+ Z · b〉 =

G + Z · b, and U ∈ clop(Y G). Suppose bχ(U) ∈ G, so bχ(U) = g + zb with
z 6= 0. Then bχ(U) = g+zb = gχ(U)+gχ(U ′)+zbχ(U)+zbχ(U ′). For x ∈ U ′,
this equation becomes 0 = g(x) + zb(x). This shows gχ(U ′) + zbχ(U ′) = 0.
Since G is divisible, z 6= 0, and gχ(U ′) ∈ G by Proposition 1.5, we have
bχ(U ′) ∈ G.

It is not difficult to construct an HA group such that 〈G+Z·b〉 6= G+Z·b;
we omit this.

3. The P -groups. αN = N ∪ {α} denotes the one-point compactifica-
tion of the discrete space N. In this section we describe all the groups G
with S(αN,Z) ≤a G. This is a generalization of

Example 3.1. Let C00 = {f ∈ C(αN) | f vanishes on a neighborhood
of α}. This is the weak product of countably many copies of R, and C00 ≤
S(αN). Let b(n) = π + 1/n, so b ∈ C(αN) − S(αN) and b(α) = π. Write
R = A⊕Qπ, as a direct sum of Q-vector spaces.

(a) (P. Conrad [C2, 7.1]) Let J = (C00 +Q) +Q · b. Then S(αN,Z) ≤a
J 6⊆ S(αN). Then J is HA, cannot be represented as an `-group of
step functions, and the vector lattice hull, vJ, is not HA.

(b) (M. Anderson and P. Conrad [AC, 4.1]) Let K = (C00 +A) +Q · b.
Then J ≤a K and K/Mp = R for all p ∈ αN. So K is a-closed, thus
an a-closure of J. But K is not a vector lattice. Note that, actually,
[AC, p. 239] says “K is the a-closure of J”. It can be seen from
Proposition 3.5 below that J has 2c a-closures.

Some of these assertions about J and K are not particularly obvious.
Some, not all, will be shown below. But we emphasize what is going on here:
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The signature of the hyperarchimedean situation, which is the basic
theme of this paper, is the interplay between the locally constant functions
and the non-locally constant functions. This takes a rather simple form for
the groups in Example 3.1 above, and indeed for general G with Y G = αN,
as described in the rest of this section. For more general G, the interplay
is highly visible, but more complicated and more difficult to describe. We
quantify some of this at a rudimentary level:

For archimedean G with strong unit and Y G = αN, let

L(G,α) = {δ ∈ R | ∃g ∈ G (g = δ on a nbhd of α)},
nL(G,α) = {δ ∈R | ∃g ∈G (g(α) = δ, g is not constant on any nbhd of α)}.
Regarding Example 3.1, we have

J/Mα = Q⊕Q · π, L(J, α) = Q, nL(J, α) = J/Mα −Q;

K/Mα = A⊕Q · π = R, L(K,α) = A, nL(J, α) = R− A.
Here we have L(J, α) ∩ nL(J, α) = ∅, likewise for K, and this is why

the groups are hyperarchimedean; and K/Mα = R, and this is why K is
a-closed. These ideas will be articulated fully for Y G = αN.

It will be helpful to keep these guidelines in mind as we proceed.
Suppose S(αN,Z) ≤ S ≤ S(αN), let F = S ∩ C00 and A = S/Mα. For

each s ∈ S and n ∈ N, we have sχ({n}) ∈ S. Thus, S/Mn = F/Mn for each
n ∈ N, for each δ ∈ A there is n(δ) such that δ ∈ F/Mn for n ≥ n(δ), and
S = F + A,

We prefer to start with F and A as initial data.

Proposition 3.2. Suppose F ≤ C00, 1 ∈ A ≤ R, and suppose that for
each δ ∈ A there is n(δ) such that δ ∈ F/Mn for n ≥ n(δ). Let b ∈ C(αN)−
S(αN) with b(n) ∈ F/Mn for each n ∈ N. The following are equivalent :

(a) b(α) 6∈ dA = Q ·A.
(b) The sub-`-group of C(αN) generated by A+ Z · b is HA.
(c) (F +A) + Z · b (or (Q · F +QA) +Q · b) is a sub-`-group of C(αN)

which is HA.
(d) (C00 +A) +Z · b (or (C00 +Q ·A) +Q · b) is a sub-`-group of C(αN)

which is HA.

Proof. (a)⇒(d). We use Corollary 2.6 with G = C00 +A. We first want
to see that Z(g + zb) is open for g ∈ G. This is obvious if z = 0. So
suppose z 6= 0. Note that g(α) ∈ A. Thus g(α) + zb(α) 6= 0 by (a), so
Z(g + zb) is a finite subset of N, thus open in αN. Now using the second
part of Corollary 2.6, consider bχ(U) for U ∈ clop(αN). Then α 6∈ U implies
U is finite, so bχ(U) ∈ C00 ⊆ G, and α ∈ U implies αN − U is finite,
so bχ(αN − U) ∈ C00 ⊆ G. The parenthetical part of (d) follows from
Proposition 2.1(c).
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(d)⇒(c)⇒(b) follow by Proposition 2.1(a), using Proposition 2.1(c) for
the parenthetical part of (c).

(b)⇒(a). LetG = 〈A+Z·b〉 ≤ C(αN). By (b) and Theorem 2.3, Z(δ+zb)
is open for each z ∈ Z and δ ∈ A. As in (a)⇒(d), this means that if z 6= 0,
then δ + zb(α) 6= 0, which says (a).

Proposition 3.2 is a straightforward generalization of Example 3.1(a).
We now use it to describe explicitly all the divisible HA groups, G, with
strong unit for which Y G = αN. The “divisible” restriction is simplifying,
and from most points of view, without loss of generality.

So consider Proposition 3.2 supposing F and A are divisible, and let

P = (F + A) +Q · b
be the HA `-group in Proposition 3.2(c). Then P ∩ C00 = F , P ∩ S(αN) =
F + A, P/Mn = F/Mn for each n ∈ N, P ∩ S(αN)/Mα = A and P/Mα =
A⊕Q · b(α) as a direct sum of Q-vector spaces.

Construction 3.3. (a) Let F and A be as in Proposition 3.2 and
divisible. Let D ≤ R be divisible and Q-linearly independent of A, i.e.,
D ∩A = {0}. Let ϕ : D → C(αN) be a Q-module homomorphism for which

(i) ϕ(D) ∩ S(αN) = {0},
(ii) ∀δ ∈ D ∀n ∈ N (ϕ(δ)(n) ∈ F/Mn),

(iii) ∀δ ∈ D (ϕ(δ)(α) = δ), which implies ϕ is one-to-one.

Let P (F,A, (D,ϕ)) = (F +A) + ϕ(D).
(b) Before proceeding, we take note that plenty of these exist: Given

F,A,D, let D1 be a Q-basis for D. Then let ϕ1 : D1 → C(αN) − S(αN)
be “constructed” like this: A and each F/Mn are topologically dense in R,
so given δ ∈ D1, there is a sequence an ∈ A with |δ − an| < 1/n. Let n1
be the first integer such that (n > n1 ⇒ a1 ∈ F/Mn), let n2 be the first
integer > n1 such that (n > n2 ⇒ a2 ∈ F/Mn), and so on. Now let fn = 1
for 1 ≤ n ≤ n1, so these fn ∈ F/Mn; let fn = an for n1 < n ≤ n2, so these
fn ∈ F/Mn, and so on.

Thus, fn ∈ F/Mn for all n, and fn → δ. Define ϕ1(δ)(n) = fn and
ϕ1(δ)(α) = δ, and now extend ϕ1 to ϕ : D → C(αN) by Q-linearity. Clearly
ϕ satisfies (ii) and (iii) above. Easy examples show that the preceding pre-
cautions are necessary to ensure (i), which we now show: Since ϕ is 1-1, (i)
just means that for all δ ∈ D − {0}, ϕ(δ) is constant on no neighborhood
of α. But in fact there exists n with ϕ(δ)(α) = δ if and only if δ = 0, since
ϕ(δ)(n) ∈ A and A and D are Q-linearly independent.

Theorem 3.4. (I) P = P (F,A, (D,ϕ)) is a divisible hyperarchimedean
`-group with strong unit 1 and Y P = αN, with the features:
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P ∩ C00 = F and P ∩ S(αN) = F + A;

P/Mn = F/Mn for all n ∈ N and P ∩ S(αN)/Mα = L(P, α) = A;

P/Mα = A⊕D and nL(P, α) = P/Mα −A = (D − {0}) +A.

(II) If G is any divisible hyperarchimedean `-group with strong unit , and
Y G = αN, then there are F,A,D,ϕ for which, in the Yosida repre-
sentation of G, we have G = P (F,A, (D,ϕ)).

Note that in (II), given G, the sets F and A are determined by (I). But,
by (I), D only needs to have A⊕D = G/Mα, and situations (D1 6= D2 with
A⊕D1 = A⊕D2) are common. Then of course, having fixed D, various ϕ
are possible. See below.

Proof. Note that P (F,A, (D,ϕ)) =
⋃{(F + A) + b | b ∈ ϕ(D)}.

(I) Clearly, 1 ∈ P ⊆ C(αN) and P separates the points of αN. If 0 6=
b = ϕ(δ) for some δ ∈ D, then δ 6= 0 and ϕ(δ)(α) 6∈ A, so Proposition 3.2(a)
holds. Thus Proposition 3.2(c) holds, and (F +A) +Q · b is an HA `-group
with Yosida space αN. Therefore, if gi = (fi+ai)+bi ∈ P (i = 1, 2, bi ∈ ϕ(D),
etc.) then Z(g1) is open by Theorem 2.3, and g1 ∨ 0 ∈ (F +A) +Q · b1 ⊆ P.
Also, if bi = ϕ(δi), then since ϕ is Q-linear, b0 = b1 − b2 = ϕ(δ1 − δ2), so
that g1 − g2 ∈ (F + A) + b0 ⊆ P. So P is an `-group with open zero-sets,
thus HA by Theorem 2.3. By Theorem 1.2, Y P = αN, and the other claims
for P are clear.

(II) Let G be given, let F = G∩C00 and A = G∩S(αN)/Mα = L(G,α).
Thus nL(G,α) = G/Mα −A.

Let D1 be a subset of G/Mα maximal Q-linearly independent of A, and
let ϕ1 : D1 → G − S(αN) be any choice function with ϕ1(δ)(α) = δ for
all δ ∈ D1. Let D be the Q-linear span of D1 and let ϕ : D → G be
the extension by Q-linearity. This satisfies Construction 3.3(a)(i); i.e., the
technicalities in Construction 3.3(b) are not needed here: If ϕ(δ) 6= 0 then
0 6= δ = ϕ(δ)(α) ∈ G/Mα −A.

So let P = P (F,A, (D,ϕ)). Obviously, P ⊆ G. For the reverse, let g ∈ G.
Our choice of D makes G/Mα = A ⊕ D, so that g(α) = a + δ for unique
a ∈ A, δ ∈ D. So there are s ∈ G ∩ S(αN) and b ∈ ϕ(D) with a = s(α) and
δ = b(α) and therefore g(α) = s(α) + b(α). Let h = s+ b ∈ (F +A) + b ⊆ P.
Since h(α) = g(α), we have h = g on a neighborhood U of α. Since αN−U
is finite, g − h ∈ C00 ∩G = F. Thus g = (g − h) + h ∈ (F + A) + b ⊆ P.

It is easy to show the following.

Proposition 3.5. Let Pi = P (Fi, Ai, (Di, ϕi)) for i = 1, 2 be as in Con-
struction 3.3 and Theorem 3.4. These are equivalent :

(a) P1 ≤ P2, so P1 ≤a P2.
(b) F1 ≤ F2, A1 ≤ A2, and P1/Mα ≤ P2/Mα.
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(c) F1 ≤ F2, A1 ≤ A2, and P2 = P (F2, A2, (D′2, ϕ
′
2)) for some D′2 ⊇ D1

and ϕ′2 ⊇ ϕ1.

Proposition 3.5 makes it obvious how to construct all a-extensions of an
`-group P = P (F,A, (D,ϕ)): enlarge F,A and D and then extend ϕ. When
these are not possible, P is a-closed:

Corollary 3.6. These are equivalent about P = P (F,A, (D,ϕ)):

(a) P is a-closed.
(b) F = C00 and P/Mα = R.
(c) F = C00 and for any Q-bases B for A and C for D, B ∪ C is a

Q-basis for R, i.e., a Hamel basis.

Proof. (b)⇔(c) since P/Mα = A ⊕D; (a)⇔(c) by inspection of Propo-
sition 3.5.

In Corollary 3.6, (b)⇒(a) is a special case of a result from [AC]; (a)⇒(b)
is also a consequence of topological properties of αN. Corollary 3.6 and
Theorem 3.4(I) give the following.

Corollary 3.7. Let A be a divisible subgroup of R with 1 ∈ A, and let
D be any Q-vector space complement of A in R. Then any P = P (C00, A,
(D,ϕ)) is a-closed and nL(P, α) = R−A.

Question 3.8 ([C2, p. 217, open question 4]). Suppose that G is a sub-
`-group of a product H of reals which satisfies

(∗) if 0 < g ∈ G, then r < g < s for some 0 < r, s ∈ R ≤ H.
Must the sub-`-ring of H generated by G be HA?

In general, (∗) implies G is HA. If G has strong unit, HA implies (∗) for
any such G ≤ H, as is easily seen from Sections 1 and 2 here.

The answer to Question 3.8 is “No”: Let P = P (C00,Q, (D,ϕ)) with
D = Q ·

√
2. Here P ≤ C(αN) ≤ RN∪{α} = H, and the sub-`-ring of H

generated by P is the sub-`-ring of C(αN) generated by P. Call this %P. By
Theorem 2.3, %P is HA if and only if it has open zero-sets. But there is
b = ϕ(

√
2) ∈ P so 2− b2 ∈ %P, but Z(2− b2) is not open since b2 cannot be

2 on a neighborhood of α.

4. The Ψ-groups. As noted in the Abstract, the following progres-
sively more pointed questions have been asked by Conrad, and Anderson
and Conrad.

Question 4.1. Suppose that G is a-closed.

(1) Is G/I a-closed for every ideal I?
(2) Is G/P a-closed for every minimal prime P?
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(3) If G is also HA, is G/M a-closed for every maximal M, i.e., is
G/M = R?

Question (1) is from [C1, p. 153]; its converse is obviously true. Questions
(2) and (3) are from [AC, p. 227]. The converse to (2) is Corollary I of [AC,
p. 226], so the converse to (3) also holds.

We give the answer “No” to Question 4.1(3), so all these answers are
“No”, taking aim at the issue by analyzing, for (divisible) HA `-groups
with strong unit G, the mechanics of a-extendibility in terms of permissible
enlargements of the G/Mp, one point p at a time. We make another con-
struction to produce various a-closed G for which various G/Mp are various
proper subgroups of R.

Construction 4.2. Let X be an index set, and {Gx | x ∈ X} a set
of archimedean `-groups with strong unit. Let Yx = Y Gx for x ∈ X, and
let Y = α

∑{Yx | x ∈ X} be the one-point compactification of the disjoint
union: Y = {α}∪∑Yx, in which U ⊆∑Yx is open if and only if each U∩Yx
is open in Yx, and every neighborhood of α contains all but finitely many
Yx. Let 1 ∈ A ≤ R, construed as constant functions on Y, or on any Yx, and
suppose that A ≤ Gx for each x for simplicity. Ψ = Ψ({Gx}, A) denotes the
`-subgroup of C(Y ) generated by the weak product

∏ω Gx and the constant
functions from A.

It is easy to see that, for f ∈ C(Y ), we have f ∈ Ψ if and only if
there is a finite set F ⊆ X and a ∈ A such that f |Yx ∈ Gx for x ∈ F
and f is constantly a on Y −∑{Yx | x ∈ F}. Note that, for g ∈ Gx, the
group Ψ contains the function which is g on Yx and 0 elsewhere; we denote
this by gχ(Yx). Clearly, for the divisible hull, dΨ = Ψ({dGx}, dA). Thus
Ψ =

∏ω Gx + A ≤ C(Y ) is archimedean with strong unit 1, Y Ψ = Y by
Theorem 1.2(c), and evidently: for p ∈ Yx, Ψ/Mp = Gx/Mp, and Ψ/Mα = A.

Ψ({Gx},Z) is the “unital version” of
∏ω Gx.

Note that the Ψ -groups are a partial generalization of the P -groups of §3:
Ψ({Rn}, A) = P (

∏ω Rn, A, (∅, ∅)). We could complete the generalization by
adding a (D,ϕ) in the data for Ψ and we shall do that if a purpose develops.

Recall that a function f ∈ C(X) is locally constant at p ∈ X if there
is a neighborhood of p on which f is constant. In the following definition,
δ is always a real number. Recall also that given G and p ∈ Y G we have
G/Mp = {δ | ∃g ∈ G (g(p) = δ)}. We then define the analogous sets:

L(G, p) = {δ | ∃g ∈ G locally constant at p(g(p) = δ)},
nL(G, p) = {δ | ∃g ∈ G not locally constant at p(g(p) = δ)}
nL(G) =

⋃
{nL(G, p) | p ∈ Y G}.

Observe that nL(Ψ) =
⋃{nL(Gx) | x ∈ X}.
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We establish criteria for Ψ to be HA.

Proposition 4.3. Ψ({Gx}, A) is HA if and only if for each x ∈ X,
Gx is HA and nL(Gx) ∩A = ∅.

Proof. Suppose Ψ is HA. Restriction Ψ 3 f 7→ f |Yx ∈ Gx is a surjective
homomorphism, so Gx is HA. This implies nL(Gx) ∩ A = ∅ since A ⊆
L(Gx, p) for each p ∈ Yx.

Conversely, if g ∈ Ψ, then g =
∑{gxχ(Yx) | x ∈ F} + a for a finite

set F. If a 6= 0, then Z(g) =
⋃{Z(gx) | x ∈ F} and this is open. If a = 0,

then Z(g) =
⋃{Z(gx) | x ∈ F} ∪ (

⋃{Yx | x 6∈ F}), which is open. By
Corollary 2.6, Ψ is HA.

The following outlines properties of a-extensions of Ψ, when it is HA,
based on the action of adjoining certain values. Let

Ad(G, p) = {δ | δ 6∈ G/Mp, ∃G ≤a H (δ ∈ H/Mp)},
AdL(G, p) = {δ | δ 6∈ G/Mp, ∃G ≤a H (δ ∈ L(H, p))},
AdnL(G, p) = {δ | δ ∈ G/Mp, ∃G ≤a H (δ ∈ nL(H, p))}.

We now examine Ad(G, p) = AdL(G, p) ∪ AdnL(G, p), by examining the
pieces separately.

Theorem 4.4. Let p ∈ Y G, and let δ be a real number such that δ 6∈
G/Mp. These are equivalent :

(a) δ ∈ AdL(G, p).
(b) There is U ∈ clop(Y G) with p ∈ U, and there is G ≤a H with

δχ(U) ∈ H.
(c) There is U ∈ clop(Y G) with p ∈ U for which δ 6∈ nL(G,x) for each

x ∈ U, i.e., U ∩ {x | δ ∈ nL(G,x)} = ∅.
Proof. (a)⇔(b) follows by noticing that, via Corollary 1.4, we get: δ ∈

L(G, p) if and only if there is U ∈ clop(Y G) with p ∈ U, and δχ(U) ∈ G.
(a)⇒(c). If G ≤a H and δ ∈ L(H, p), then δ 6∈ nL(H, p) ⊇ nL(G, p) by

the note above.
(c)⇒(b). Assuming (b), let H = 〈G+ Z · δχ(U)〉. We use Corollary 2.6

to see that G ≤a H. Consider Z = Z(g + zδχ(U)). We have Z = (Z ∩
U) ∪ (Z ∩ (Y G − U)), and we show that each piece is open. The second,
Z ∩ (Y G−U) = Z(g)∩ (Y G−U), is open since Z(g) is open since G is HA,
and U is closed. Now Z ∩U = {x ∈ U | g(x) = −zδ}. So, if x ∈ Z ∩U, then
g is locally constant at x since δ 6∈ nL(G,x) and G is divisible, and there a
is clopen V 3 x with g = −zδ on V, so V ⊆ Z ∩ U. Thus Z ∩ U is open.

Lemma 4.5. Suppose Ψ = Ψ({Gx}, A) is HA. If Ψ ≤a H, then for
each x, Gx ≤a H|Yx. Conversely , if Gx ≤a Hx for each x, then Ψ({Gx}, A)
≤a Ψ({Hx}, A).
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Proof. The notation makes sense since Y Hx = Y Gx for each x. The
first assertion is because G ≤a H implies G/I ∩G ≤a H/I for each ideal I.
Conversely, if h =

∑{hxχ(Yx) | x ∈ F} + a, and for each x ∈ F we have
gx ∼a hx, then

∑{gx|χ(Yx) | x ∈ F} ∼a h.
Proposition 4.6. (a) Let G be HA. Then G is a-closed if and only if

Ad(G, p) = ∅ for each p ∈ Y G.
(b) Suppose Ψ = Ψ({Gx}, A) is HA. Then Ψ is a-closed if and only if

each Gx is a-closed and Ad(Ψ, α) = ∅.
Proof. (a) “⇒” is clear. Conversely, let G ≤a H and h ∈ H. Since all

Ad(G, p) are empty, for each p there is gp ∈ G with gp(p) = h(p). Since
H is HA, h − gp is constant on a clopen Up containing p, which means
hχ(Up) = gχ(Up) ∈ G, by Theorem 1.3. By compactness, there is a finite F
with

⋃{Up | p ∈ F} = Y G. Then h =
∨
p∈F and gχ(Up) ∈ G.

(b) By (a), Ψ is a-closed if and only if Ad(Ψ, p) = ∅ for each p ∈ Y.
For p ∈ Yx, we have Ad(Ψ, p) = Ad(Gx, p) using Lemma 4.5. The result
follows.

We need the following well known lemma:

Lemma 4.7. X be compact zero-dimensional. For Z ⊆ X, the following
are equivalent : Z ∈ ZC(X); Z is a closed Gδ-set ; Z is a countable intersec-
tion of clopen sets.

Theorem 4.8. Given G, p ∈ Y G, and real δ 6∈ G/Mp:

(I) If δ ∈ AdnL(G, p), then there is a zero-set Z with p ∈ ∂Z with
intZ ∩ {x | δ ∈ nL(G,x)} = ∅ and ∂Z ∩ {x | δ ∈ L(G,x)} = ∅.

(II) If there is a zero-set Z with p ∈ ∂Z with intZ ∩ {x | δ ∈ nL(G,x)}
= ∅ and ∂Z ∩ {x | δ ∈ G/Mx} = ∅, then δ ∈ AdnL(G, p).

Proof. (I) Suppose δ ∈ AdnL(G, p), so δ 6∈ G/Mp and there is G ≤a H
with h ∈ H for which h(p) = δ and h is not locally constant at p. Let
Z = {x | h(x) = δ}. This is a zero-set and clearly for x ∈ Z:

(a) x ∈ intZ if and only if h is locally constant at x and then δ ∈ L(H,x);
(b) x ∈ ∂Z if and only if h is not locally constant at x and then δ ∈

nL(H,x).

By (b), p ∈ ∂Z. Since nL(G,x) ⊆ nL(H,x) and nL(H,x)∩L(H,x) = ∅, we
see that intZ ∩ {x | δ ∈ nL(G,x)} = ∅ from (a). Since L(G,x) ⊆ L(H,x)
and nL(H,x) ∩ L(H,x) = ∅, we get ∂Z ∩ {x | δ ∈ L(G,x)} = ∅ from (b).

(II) Let Z be as described. By Lemma 4.7, Y G − Z =
⋃
n Un for Un ∈

clop(Y G). Let Kn = Un −
⋃
i<n Ui. These are disjoint and clopen,

⋃
Kn =

Y G − Z and Y G =
⋃
Kn ∪ Z. Let (rn) be a sequence of rational numbers

with rn → δ. Define b ∈ C(Y G) as b(x) = rn for x ∈ Kn and b(x) = δ for
x ∈ Z. Then Z = {x | b(x) = δ}, and again for x ∈ Z:



120 A. W. Hager and C. M. Kimber

(a) x ∈ intZ if and only if b is locally constant at x;
(b) x ∈ ∂Z if and only if b is not locally constant at x.

Let H = 〈G + Z · b〉. We shall use Corollary 2.6 to show that H is HA
so that G ≤a H. It follows that δ ∈ nL(H, p), so δ ∈ AdnL(G, p).

Let g ∈ G and z ∈ Z. We show that E = Z(g + zb) is open. Now
E = E1 ∪ E2 ∪ E3, where E1 =

⋃
(Kn ∪ E), E2 = intZ ∩ E, and E3 =

∂Z ∩ E. The set E1 is open since Kn ∩ E = Kn ∩ {x | g(x) = −zrn}
is open. E2 is open: since intZ ∩ {x | δ ∈ nL(G,x)} = ∅, it is also the
case that intZ ∩ {x | −zδ ∈ nL(G,x)} = ∅ since G is divisible. Thus,
if x ∈ E2 then there is a neighborhood V of x on which g = −zδ and
x ∈ V ∩ intZ ⊆ E2. Finally, E3 = ∅ since ∂Z ∩ {x | δ ∈ G/Mx} = ∅ and
hence ∂Z ∩ {x | −zδ ∈ G/Mx} = ∅ since G is divisible.

It is not difficult to construct examples illustrating the gap between the
conditions in Theorem 4.8(I) and (II). We omit this.

So we can focus on Ad(Ψ, α). Keeping Theorem 4.4 in mind, note that if
α ∈ U ⊆ Y, then U contains a clopen set containing α if and only if there is
a finite F such that U ⊇ ⋃{Yx | x 6∈ F}; U contains a zero-set containing α
if and only if there is countable F with U ⊇ ⋃{Yx | x 6∈ F} by Lemma 4.7.

Proposition 4.9. Suppose Ψ = Ψ({Gx}, A) is HA with X uncountable.

(a) δ ∈ AdL(Ψ, α) if and only if there is finite a F ⊆ X for which x 6∈ F
implies δ 6∈ nL(Gx).

(b) δ ∈ AdnL(Ψ, α) if and only if there is a countable F ⊆ X for which
x 6∈ F implies δ 6∈ nL(Gx).

Proof. (a) nL(Ψ, α) = ∅ and for p ∈ Yx, nL(Ψ, p) = nL(Gx, p). So the
condition says that U =

⋃{Yx | x 6∈ F} satisfies Theorem 4.4(c).
(b) We make the following obvious, but useful, observation: If G is HA

and T ⊆ Y G is closed, then intT ∩ {x | δ ∈ nL(G,x)} = ∅ if and only if
T ∩ {x | δ ∈ nL(G,x)} ⊆ ∂T and ∂T ∩ {x | δ ∈ L(G,x)} = ∅ if and only if
T ∩ {x | δ ∈ L(G,x)} ⊆ intT.

Consider this observation for Z a zero-set of Y containing α. Here ∂Z =
{α}, L(Ψ, α) = A and nL(Ψ, α) = ∅. So for δ 6∈ A, we see that ∂Z ∩ {x | δ ∈
Ψ/Mx} = ∅, thus ∂Z ∩ {x | δ ∈ nL(Ψ, x)} = ∅ and the conditions in the two
parts of the observation each reduce to: intZ ∩ {x | δ ∈ nL(Ψ, x)} = ∅. The
condition in (b) says that for Z0 =

⋃{Yx | x 6∈ F} we have Z0 ∩ {x | δ ∈
nL(Ψ, x)} = ∅. Now apply Theorem 4.8.

Corollary 4.10. Let Ψ = Ψ({Gx}, A) be HA with X uncountable.
Then Ad(Ψ, α) = ∅ if and only if for each δ 6∈ A [for each countable F ⊆ X,
there is x 6∈ F with δ ∈ nL(Gx)].
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Proof. The condition bracketed is the negation of the condition in Pro-
position 4.9(b), which implies the negation of the condition in Proposi-
tion 4.9(a).

Corollary 4.11. Let G0 be HA, let X be uncountable and for each
x ∈ X let Gx = G0. Let Ψ = Ψ({Gx}, A). Then Ψ is HA and Ad(Ψ, α) = ∅
if and only if R− A = nL(G0).

Such G0 are given in Corollary 3.7.

Example 4.12. LetA be any divisible subgroup of R containing 1. There
is an a-closed ΨA that is HA with strong unit, with a maximal ideal M for
which ΨA/M = A.

Such a ΨA is a Ψ in Corollary 4.11, with M = Mα using G0 = P ({C00},
A, (D,ϕ)) ≤ C(αN) from §3, with a ϕ for which A ⊕ D = R. Now G0
is a-closed by Corollary 3.6, so ΨA is a-closed by Proposition 4.6(b) and
Corollary 4.11. As noted in Corollary 3.7, nL(G0, α0) = R − A (writing
αN = N ∪ {α0} to avoid confusion).

For ΨA in Example 4.12, ΨA/Mp = R for every p 6= α, and ΨA/Mα = A.
Of course, more complicated situations can be constructed. We content our-
selves with just one more level of complexity.

Example 4.13. Let A be any divisible subgroup of R with 1 ∈ A and
let m be any uncountable cardinal number. Let αD(m) be the one-point
compactification of the discrete space of cardinal m. There is an a-closed
Ψ = ΨA,m, that is HA with strong unit, for which Y Ψ contains a copy of
αD(m) as a nowhere dense subset with Ψ/Mp = A for each p ∈ αD(m):

Let Ψ = Ψ({Hi | i < m}, A) with each Hi given by the ΨA of Ex-
ample 4.12. Here, nL(Hi) = R − A and since nL(ΨA) = R − A, we see
that Ψ is a-closed by Proposition 4.6(b) and Corollary 4.10. We have Y Ψ =
{α} ∪∑Y Hi and Ψ/Mα = A. Also Y Hi = {αi} ∪

∑
(·) and Hi/Mαi = A.

The desired copy of αD(m) is {α} ∪ {αi | i < m}.
With reference to “nowhere dense”, it is easy to show that: there is an

a-closed G for which {p ∈ Y G | G/Mp 6= R} has interior if and only if there
is a-closed H for which {p ∈ Y H | H/Mp = R} = ∅ where G and H are HA
with strong unit. We do not know if such G,H exist.
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